Science.gov

Sample records for strengthened ferritic alloy

  1. A micro-alloyed ferritic steel strengthened by nanoscale precipitates

    SciTech Connect

    Shen, Yongfeng; Wang, Chong M.; Sun, Xin

    2011-10-25

    A ferritic steel with finely dispersive precipitates was investigated to reveal the fundamental strengthening mechanisms. The steel has a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. Using energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM), fine carbides TiC with an average diameter of 10 nm were observed in the ferrite matrix of the 0.08%Ti steel, and some cubic M23C6 precipitates were also observed at the grain boundaries and the interior of the grains. The finely dispersive TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa, depending on the average size of the nanoscale precipitates. Dislocation densities increased from 3.42×1013 m-2 to 1.69 × 1014 m-2, respectively, with increasing tensile strain from 5.5% to 22%. The measured work-hardening behavior can be related to the observed dislocation accumulations resulting from the dispersive nano-scale precipitates.

  2. A Micro-Alloyed Ferritic Steel Strengthened by Nanoscale Precipitates

    SciTech Connect

    Shen, Yongfeng; Wang, Chong M.; Sun, Xin

    2011-08-04

    A high strength ferritic steel with finely dispersive precipitates was investigated to reveal the fundamental strengthening mechanisms. Using energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM), fine carbides with an average diameter of 10 nm were observed in the ferrite matrix of the 0.08%Ti steel, and some cubic M23C6 precipitates were also observed at the grain boundaries and the interior of grains. The dual precipitate structure of finely dispersive TiC precipitates in the matrix and coarse M23C6 at grain boundaries provides combined matrix and grain boundary strengthening. The calculated amount of precipitation strengthening by the carbides was approximately 450 ~ 630 MPa, depending on the average size of nanoscale precipitates. This value is two or three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels. Dislocation densities increased from 3.42×1013 m-2 to 1.69 × 1014 m-2, espectively, with increasing tensile strain from 5.5% to 22%. The effect of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations and the relationship for resolved shear stress for single crystal under this condition has been presented using simulation data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery as well as annihilation of dislocations. The DD results also show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size.

  3. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    NASA Astrophysics Data System (ADS)

    Legendre, F.; Poissonnet, S.; Bonnaillie, P.; Boulanger, L.; Forest, L.

    2009-04-01

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  4. Processing and characterization of oxide dispersion strengthened 14YWT ferritic alloys

    NASA Astrophysics Data System (ADS)

    West, Michael Keith

    Oxide dispersion strengthened (ODS) ferritic steels are currently being investigated as candidate materials for nuclear applications due to their increased high temperature strength and low activation characteristics. Recent studies have shown that ODS ferritic steels containing Ti exhibit enhanced high temperature properties due to the formation of a very fine dispersion of nanometer-sized oxide clusters based on Ti, Y, and O. Studies are currently underway to examine so called 14YWT alloys with nominal compositions of Fe-14Cr-3W-0.4Ti (wt. %) mechanically alloyed with 0.25 (wt.%) Y2O3. The focus of this study was to investigate how the early stages of processing of 14YWT alloys during mechanical milling, heat treatment, and consolidation affect the structure and properties of the alloys. The 14YWT alloys were milled at different times up to 80 hours, along with alloy powder compositions of Fe-14Cr + 0.25 wt.% Y2O 3 (14Y) and Fe-14Cr without Y2O3 (Fe-14Cr). The evolution of the microstructure and mechanical properties during milling was examined with a combination of optical metallography, x-ray diffraction, electron microscopy, atom probe tomography, and nanoindentation. Alloy powders were also heat treated and studied using high temperature x-ray diffraction and differential scanning calorimetry methods. Special attention was paid to milling parameters and temperature ranges which lead to the formation of nanosized oxide clusters in the alloys. Finally, the microstructure of consolidated alloys was examined and related to milling and heat treatment methods. Mechanical properties and microstructure during milling were similar in the three alloy powders examined regardless of dispersoid or alloy addition. Mechanical mixing of the alloy powders was inefficient after 40 hours of milling. Milling did not produce bulk amorphous phases but quickly reduced the crystallite size to ˜10-20 nm. Milling also resulted in relatively uniform dissolution of Y2O3. Thermal

  5. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE PAGESBeta

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Liaw, Peter K.

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  6. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  7. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  8. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    DOE PAGESBeta

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys bymore » illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.« less

  9. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    PubMed Central

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-01-01

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700–950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. PMID:26537060

  10. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    SciTech Connect

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony; Grant, Glenn J.

    2015-07-09

    INCOLOY® MA956 is a ferritic Oxide Dispersion Strengthened (ODS) alloy. Three different oxides, Y4Al2O9, YAlO3 and Y3Al5O12, have been observed in this alloy. The oxide particle sizes range from just a few up to hundreds of nm and these particles are responsible of the high temperature mechanical strength of this alloy. Mechanically alloyed MA956 powder was consolidated via Friction Consolidation using three different processing conditions. As a result, three small compacts of low porosity were produced. The compacts exhibited a refined equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion.YAlO3 and Y3Al5O12 were identified in the compacts by Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS showing an aluminum enrichment trend as precipitates grow in size.

  11. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    SciTech Connect

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys by illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.

  12. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation.

    PubMed

    Terentyev, D; Bakaev, A

    2013-07-01

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2<111> and <100> loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2<111> and <100> loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2<111> loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed. PMID:23756468

  13. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    NASA Astrophysics Data System (ADS)

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony P.; Grant, Glenn J.

    2015-10-01

    INCOLOY® MA956 is a ferritic oxide dispersion-strengthened alloy manufactured by mechanical alloying followed by hot extrusion in vacuum-sealed cans or by degassing and hot isostatic pressing. This could be followed by a tailored heat treatment sequence in order to obtain a desired microstructure and to allow the oxide dispersion to precipitate. Three different oxides, responsible for the high-temperature mechanical strength, have been observed in this alloy: Y4Al2O9, YAlO3, and Y3Al5O12. Their sizes range from just a few to hundreds of nanometers. In this work, mechanically alloyed MA956 powder was consolidated via friction consolidation, a single-step and potentially cheaper processing alternative. Three fully dense compacts were produced. The compacts exhibited a refined, equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion. YAlO3 and Y3Al5O12 were identified by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction. The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS, showing an aluminum enrichment trend as precipitates grew in size.

  14. Epitaxial Fe/Y2O3 interfaces as a model system for oxide-dispersion-strengthened ferritic alloys

    SciTech Connect

    Kaspar, Tiffany C.; Bowden, Mark E.; Wang, Chong M.; Shutthanandan, V.; Overman, Nicole R.; Van Ginhoven, Renee M.; Wirth, Brian D.; Kurtz, Richard J.

    2015-02-01

    The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (100), (110), and (111) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by x-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial ntation for Fe(211) deposited on Y2O3(110)/YSZ(110). In contrast, Fe on Y2O3(111)/YSZ(111) was fully polycrystalline, and Fe on Y2O3(100)/YSZ(100) exhibited out-of-plane texture in the [110] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(211)/Y2O3(110)/YSZ(110) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.

  15. Structure and elevated temperature properties of carbon-free ferritic alloys strengthened by a Laves phase

    NASA Technical Reports Server (NTRS)

    Bhandarkar, M. D.; Zackay, V. F.; Parker, E. R.; Bhat, M. S.

    1975-01-01

    A Laves phase, Fe2Ta, was utilized to obtain good elevated temperature properties in a carbon-free iron alloy containing 1 at. pct Ta and 7 at. pct Cr. Room temperature embrittlement resulting from the precipitation of the Laves phase at grain boundaries was overcome by spheroidizing the precipitate. This was accomplished by thermally cycling the alloys through the alpha to gamma transformation. The short-time yield strength of the alloys decreased very slowly with increase in test temperature up to 600 C, but above this temperature, the strength decreased rapidly. Results of constant load creep and stress rupture tests conducted at several temperatures and stresses indicated that the rupture and creep strengths of spheroidized 1 Ta-7 Cr alloy were higher than those of several commercial steels containing chromium and/or molybdenum carbides but lower than those of steels containing substantial amounts of tungsten and vanadium. When molybdenum was added to the base Fe-Ta-Cr alloy, the rupture and creep strengths were considerably increased.

  16. Irradiation creep and swelling from 400 to 600 °C of the oxide dispersion strengthened ferritic alloy MA957

    NASA Astrophysics Data System (ADS)

    Toloczko, M. B.; Gelles, D. S.; Garner, F. A.; Kurtz, R. J.; Abe, K.

    2004-08-01

    An irradiation creep and swelling study was performed on the Y 2O 3-strengthened ODS ferritic steel MA957. Pressurized tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 to 110 dpa at temperatures ranging from 400 to 600 °C. None of the stress-free tubes exhibited any evidence of swelling as determined by diameter change measurements. With a few exceptions, the irradiation creep behavior is similar to that of conventional ferritic-martensitic steels. Calculated creep compliance values are equal to those of HT9 irradiated within the same temperature range, except at 600 °C where the creep rate of MA957 is about one-half the value for HT9. The magnitude of the creep transient for MA957 is comparable to HT9, again except at 600 °C where the transient is much lower for MA957.

  17. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  18. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  19. Irradiation Creep and Swelling from 400 C to 600 C of the Oxide Dispersion Strengthened Ferritic Alloy MA957

    SciTech Connect

    Toloczko, Mychailo B.; Gelles, David S.; Garner, Francis A.; Kurtz, Richard J.; Abe, Katsunori

    2004-04-24

    Recently, there has been a growing interest in the use of oxide dispersion strengthened (ODS) ferritic steels for fusion reactor applications. As part of an extensive study performed at PNNL on the ODS steel MA957 [1], irradiation creep tests were performed on pressurized tubes made from MA957 by two different methods. The tubes were made either by gun drilling alone or by a combination of rod drawing and gun drilling. The different fabrication methods were explored because ODS steels have been difficult to form. The pressurized tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 dpa to 110 dpa at temperatures ranging from 400 C to 600 C. The effective stresses resulting from the pressurization of the tubes ranged from 0 MPa to 175 MPa.

  20. Deformation mechanisms in a precipitation-strengthened ferritic super alloy revealed by in situ neutron dffraction studies at elevated temperatures

    SciTech Connect

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Teng, Zhenke; Wu, Wei; Liaw, Peter K.

    2015-01-01

    The ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)AlB2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticity theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.

  1. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1998-03-01

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  2. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  3. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  4. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  5. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGESBeta

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  7. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  8. Joining Techniques for Ferritic ODS Alloys

    SciTech Connect

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  9. Microstructural examination of commercial ferritic alloys at 200 dpa

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1996-10-01

    Microstructures and density change measurements are reported for martensitic commercial steels HT-9 and modified 9Cr1Mo (T91) and oxide dispersion strengthened ferritic alloys MA956 and MA957 following irradiation in the FFTF/MOTA at 420°C to 200 dpa. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class.

  10. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  11. Precipitation of Nb in Ferrite After Austenite Conditioning. Part II: Strengthening Contribution in High-Strength Low-Alloy (HSLA) Steels

    NASA Astrophysics Data System (ADS)

    Altuna, M. A.; Iza-Mendia, Amaia; Gutiérrez, I.

    2012-12-01

    Often, Nb contributes to the strength of a microalloyed steel beyond the expected level because of the grain size strengthening resulting from thermomechanical processing. Two different mechanisms are behind this phenomenon, and both of them have to do with the amount of Nb remaining in solution after hot rolling. The first of them is the increase of the hardenability of the steel as a result of Nb, and the second one is the fine precipitation of NbC in ferrite. Three Nb microalloyed steels were thermomechanically processed in the laboratory and coiled at different temperatures to investigate the effect of Nb content on the tensile properties. The extra strength was linearly related to the Nb remaining in solution after the hot working. The maximum contribution from Nb was reached for a coiling temperature of 873 K (600 °C).

  12. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    SciTech Connect

    Zirker, L.R. ); Bottcher, J.H. ); Shikakura, S. ); Tsai, C.L. . Dept. of Welding Engineering); Hamilton, M.L. )

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab.

  13. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  14. Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Liu, C. T.; Miller, M. K.; Chen, Hongmin

    2009-01-01

    Nanocluster-strengthened ferritic alloys are promising as structural materials because of their excellent high-temperature strength and radiation-damage resistance. Recently, Fu [Phys. Rev. Lett. 99, 225502 (2007)] predicted that vacancies play an essential role in the formation and stabilization of nanoclusters in these materials. Positron-lifetime spectroscopy has been used to test this theoretical prediction in a nanocluster-strengthened Fe-based alloy. Nanoclusters (2-4 nm in diameter) containing Ti, Y, and O have been observed in a mechanically alloyed ferritic steel by atom-probe tomography. Vacancy clusters containing four to six vacancies have also been found in this material. In contrast, no vacancy clusters were detected in similar alloys containing no nanoclusters. These results indicate that vacancies are a vital component of the nanoclusters in these alloys.

  15. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  16. Development oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  17. Helium entrapment in a nanostructured ferritic alloy

    SciTech Connect

    Edmondson, Philip D; Parish, Chad M; Zhang, Yanwen; Hallen, Dr Anders; Miller, Michael K

    2011-01-01

    The nanostructured ferritic alloy 14YWT has been irradiated with He ions to simulate accumulation of He during the service life of a nuclear reactor to test the hypothesis that the large surface area for nanoclusters is a preferential nucleation site for bubbles. Transmission electron microscopy and atom probe tomography showed that high number densities of He bubbles were formed on the surface of nanoclusters and Ti(C,N) precipitates, and along grain boundaries and dislocations. At higher fluences, facetted bubbles are formed and it is postulated that the lowest energy state configuration is the truncated rhombic dodecahedron.

  18. Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling

    NASA Astrophysics Data System (ADS)

    Sun, Q. X.; Fang, Q. F.; Zhou, Y.; Xia, Y. P.; Zhang, T.; Wang, X. P.; Liu, C. S.

    2013-08-01

    The oxide dispersion strengthened ferritic steel with a nominal composition of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 (14Cr-ODS) was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and hot isostatic pressing (HIP) techniques. Pure Fe-1.5Y2O3 precursor was obtained by a sol-gel process and a reduction process at 650 °C for 3 h and pure 14Cr-ODS alloy powders were obtained from this precursor and the alloying metallic powders by mechanical alloying. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) reveal that Y-Ti-O complexes and V-Ti-O complexes with a main particle size of 8 nm are formed in the 14Cr-ODS steel matrix. After HIP sintering the weight and the relative density of the compacted ingots are about 0.8 kg and 99.7%. The uniform elongation and ultimate tensile strength of the ODS steel obtained by HIP after annealing at 1100 °C for 5 h are about 13% and 840 MPa, respectively.

  19. Friction Stir Welding Of Ma957 Oxide Dispersion Strengthened Ferritic Steel

    SciTech Connect

    Howard, Stanley M.; Jasthi, Bharat K.; Arbegast, William J.; Grant, Glenn J.; Koduri, Santhosh K.; Herling, Darrell R.; Gelles, David S.

    2005-04-02

    A 1-in. (25.4 mm) diameter yttria-dispersion-strengthened MA957 ferritic steel alloy tube with a 0.125" (3.18 mm) wall thickness was successfully plasticized by friction stir welding. The pin tool was a W-Re tool with 0.125" (3.17 mm) diameter tip. It showed no discernable wear for the total 12" (305 mm) of weld. Weld conditions were 1000 and 1400 RPM, 4 in/min (101 mm/min), with and without preheating to 135ºC. Metallographic analysis of the post friction-stir welded material showed a decrease in material hardness to 225±22 HV compared to the parent material at 373±21 HV. All weld conditions produced plasticization; however, improved plasticization was observed for preheated samples

  20. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  1. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    DOE PAGESBeta

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; Romero, Tobias J.; Odette, G. Robert; Yamamoto, Takuya; Li, S.; Cole, James I.; Fielding, Randall

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms ofmore » the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.« less

  2. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    NASA Astrophysics Data System (ADS)

    Maloy, S. A.; Saleh, T. A.; Anderoglu, O.; Romero, T. J.; Odette, G. R.; Yamamoto, T.; Li, S.; Cole, J. I.; Fielding, R.

    2016-01-01

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress-strain curves are analyzed to provide true stress-strain constitutive σ(ɛ) laws for all of these alloys. In the irradiated condition, the σ(ɛ) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where the latter can be understood in terms of the alloy's σ(ɛ) behavior. Increases in the average σ(ɛ) in the range of 0-10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are also analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. Notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  3. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  4. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  5. Charpy impact test results for low-activation ferritic alloys

    SciTech Connect

    Cannon, N.S.; Hu, W.L.; Gelles, D.S.

    1987-05-01

    The objective of this work is to evaluate the shift of the ductile to brittle transition temperature (DBTT) and the reduction of the upper shelf energy (USE) due to neutron irradiation of low activation ferritic alloys. Six low activation ferritic alloys have been tested following irradiation at 365/sup 0/C to 10 dpa and compared with control specimens in order to assess the effect of irradiation on Charpy impact properties.

  6. Towards Radiation Tolerant Nanostructured Ferritic Alloys

    SciTech Connect

    Miller, Michael K; Hoelzer, David T; Russell, Kaye F

    2010-01-01

    The high temperature and irradiation response of a new class of nanostructured ferritic alloys have been investigated by atom probe tomography. These materials are candidate materials for use in the extreme environments that will be present in the next generation of power generating systems. Atom probe tomography has revealed that the yttria powder is forced into solid solution during the mechanical alloying process andsubsequently 2-nm-diameter Ti-, Y- and O-enriched nanoclusters are formedduring the extrusion process. These nanoclusters have been shown to be remarkably stable during isothermal annealing treatments up to 0.92 of the melting temperature and during proton irradiation up to 3 displacements per atom. No significant difference in sizes, compositions and number densities of the nanoclusters was also observed between the unirradiated and proton irradiated conditions. The grain boundaries were found to have high number densities of nanoclusters as well as chromium and tungsten segregation which pin the grain boundary to minimize creep and grain growth.

  7. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    SciTech Connect

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; Romero, Tobias J.; Odette, G. Robert; Yamamoto, Takuya; Li, S.; Cole, James I.; Fielding, Randall

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms of the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  8. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals. PMID:23421286

  9. Design and Development of bcc-Copper- and B2 Nickel-Aluminium-Precipitation-Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Kapoor, Monica

    A series of high-strength low-carbon bcc-Cu- & B2-NiAl-precipitation-strengthened ferritic steels with Mn, Cu, Ni and Al were studied. The yield strength of these alloys increases with the amount of alloying elements. A maximum strength of 1600 MPa, with 12.40 at. % elements, is achieved which is about 30 % higher than the strength of previously reports NUCu (Northwestern Copper) alloys. All the alloys studied attain a maximum hardness within 1--2 h of aging at 500°C--550°C. Aging at a lower temperature and solution treating at a higher temperature can increase the hardness of all the alloys. The lower aging temperature is limited to 500°C by the slow precipitation kinetics observed at 400°C. The higher solution treatment temperature is limited to 1050°C by the adverse impact on toughness in dilute alloys. The primary strengthening contribution is due to combined precipitation of bcc Cu and NiAl-type intermetallic precipitates. The composition, structure and morphology evolution of the precipitates from the 1600 MPa alloy was studied using atom probe tomography and transmission electron microscopy, as a function of aging time at 550°C. Near the peak hardness, the equiaxed bcc Cu-alloyed precipitates have substantial amounts of Fe and are coherent with the Fe matrix. On subsequent aging, the Cu-alloyed precipitates are progressively enriched with Cu and elongate to transform to the 9R phase. The number density of the Cu-alloyed and NiAl-type precipitate is similar near peak hardness indicating that NiAl-type precipitates nucleate on Cu-alloyed precipitates. Almost all Cu-alloyed precipitates are enveloped on one side by ordered NiAl-type precipitates after aging from 2 h to 100 h. Cu-alloyed precipitates coarsen slower than NiAl-type precipitates because of three possible reasons: interfacial energy differences between the two types of precipitates, slower diffusion kinetics of Cu through the ordered B2 NiAl envelope around the bcc Cu-alloyed precipitate

  10. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  11. ENABLING THE PRACTICAL APPLICATION OF OXIDE DISPERSION-STRENGTHENED FERRITIC STEELS

    SciTech Connect

    Wright, Ian G; Pint, Bruce A; Dyadko, Dr. Eugene G.; Bornstein, Norman S.; Tatlock, Gordon J

    2007-01-01

    Effort has continued to evaluate joints made in oxide dispersion-strengthened (ODS) FeCrAl by (i) pulsed plasma-assisted diffusion (PPAD) bonding, and (ii) transient liquid phase (TLP) bonding. Creep tests of PPAD-bonded butt joints in air at 1000 C, using small, shoulder-loaded, dog bone-shaped specimens and an incrementally-loaded test technique, indicated that failure occurred at loads of up to 82% of that required to fail the parent alloy in the same test. For high creep-strength ferritic steels joined by conventional welding methods, strength reduction factors of 50-80% are considered to be acceptable. The failures apparently did not initiate along the joints; the observed mode of failure of the joined specimens was the same as observed for monolithic specimens of this alloy, by crack-initiated transgranular brittle fracture, followed by ductile overload failure. The progress of TLP bonding has been slower, with the major effort focused on understanding the behavior of the transient liquid phase and its interaction with the alloy microstructure during the various stages of bonding. Creep testing using the same procedures also has been used to evaluate changes resulting from torsional deformation of ODS-FeCrAl tubes in an attempt to modify their microstructures and increase their hoop strength. Interpretation of the results so far has not shown a clear trend, largely due to difficulties in measuring the effective angle of twist in the specimen gauge lengths. Other issues that have been addressed are the refinement of an approach for prediction of the oxidation-limited service lifetime of alumina scale-forming ODS alloys, and alternative routes for ODS alloy powder processing. Analysis of alloy specimens oxidized to failure (in some cases involving exposures for many thousands of hours) over a range of temperatures has provided an improved basis for calculating the values of parameters required in the lifing model (minimum Al content for protective behavior

  12. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  13. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  14. Unusual Thermal Stability of Nano-structured Ferritic alloys

    SciTech Connect

    Wang, Xun-Li; Liu, Chain T; Stoica, A. D.; Keiderling, Dr. Uwe; Yang, Ling; Miller, Michael K; Fu, Chong Long; Ma, Dong; An, Ke

    2012-01-01

    A scientific question vitally important to the materials community is whether there exist self-assembled nanoclusters that are thermodynamically stable at elevated temperatures. Using in-situ neutron scattering, we characterized the structure and thermal stability of a nano-structured ferritic (NSF) alloy. Nanometer sized clusters were found to persist up to ~1400 C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. Cluster formation requires the coexistence of Y, Ti, and O without the precipitation of oxide phases. The presence of thermally stable nanoclusters at grain boundaries limits the diffusion of Fe atoms, thereby stabilizing the microstructure of the ferritic matrix at high temperatures. Our experimental results provide physical insights of the dramatically improved high-temperature mechanical properties in NSF alloy and point to a new direction in alloy design.

  15. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy.

    PubMed

    Stoica, G M; Stoica, A D; Miller, M K; Ma, D

    2014-01-01

    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation. PMID:25300893

  16. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-01

    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation.

  17. Ferritic Fe-Mn alloy for cryogenic applications

    DOEpatents

    Hwang, Sun-Keun; Morris, Jr., John W.

    1979-01-01

    A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

  18. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Suryanarayana, C.; Froes, F.H.; Gelles, D.S.

    1996-04-01

    Seven ODS steels, Fe(5-13.5)Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) were manufactured using the mechanical alloying process. Only the composition Fe-13.5Cr3W-0.5Ti-0.25Y{sub 2}O{sub 3} showed no austenite formation at any temperature using differential thermal analysis and hence was selected as an experimental alloy for the present investigation. Milled powders were consolidated by hot isostatic pressing and hot swaging. Electron microscopy studies indicated high material homogeneity. The hardness of the as-swaged specimen was 65 R{sub c}. Annealing of the as-swaged material at 800, 900, 1000, 1100, and 1200{degrees}C showed a minor decrease in the hardness.

  19. The Role of Alloying Elements in Nanostructured Ferritic Steels

    SciTech Connect

    Miller, Michael K; Parish, Chad M

    2010-01-01

    The roles of the alloying elements in three nanostructured ferritic alloys (14YWT, MA957 and Eurofer 97) have been established through the characterisation of the microstructure by atom probe tomography and spectrum imaging in a transmission electron microscope. Cr, W, Mo, Ti and Y were found in the ferrite matrix and contributed to solid solution hardening. Ti, Y, C, O and N were found in high number densities of precipitates and nanoclusters both in the grain interior and on grain boundaries and thereby contributed to precipitation hardening. Cr, W and Mo were enriched at the intraparticle regions of the grain boundaries. The solute segregation and precipitation pinned the grain boundaries and contributed to the excellent creep properties of the alloys.

  20. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  1. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  2. High Temperature Fracture Characteristics of a Nanostructured Ferritic Alloy (NFA)

    SciTech Connect

    Byun, Thak Sang; Kim, Jeoung H; Ji Hyun, Yoon; Hoelzer, David T

    2010-01-01

    High temperature fracture behavior has been investigated for the nanostructured ferritic alloy 14YWT (SM10). The fracture toughness of the alloy was above 140 MPa m at low temperatures, room temperature (RT) and 200 C, but decreased to a low fracture toughness range of 52 82 MPa m at higher temperatures up to 700 C. This behavior was explained by the fractography results indicating that the unique nanostructure of 14YWT alloy produced shallow plasticity layers at high temperatures and a low-ductility grain boundary debonding occurred at 700 C.

  3. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-12-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (-30 °C), which could be further reduced by purification.

  4. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-04-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  5. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    SciTech Connect

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu; Jatuporn Burns; Kerry N. Allahar; Darryl P. Butt; James I. Cole

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomography revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.

  6. Precipitation Strengthening in Al-Ni-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Fan, Yangyang; Huang, Kai; Makhlouf, Makhlouf M.

    2015-12-01

    Precipitation hardening of eutectic and hypoeutectic Al-Ni alloys by 2 to 4 wt pct. manganese is investigated with focus on the effect of the alloys' chemical composition and solidification cooling rate on microstructure and tensile strength. Within the context of the investigation, mathematical equations based on the Orowan Looping strengthening mechanism were used to calculate the strengthening increment contributed by each of the phases present in the aged alloy. The calculations agree well with measured values and suggest that the larger part of the alloy's yield strength is due to the Al3Ni eutectic phase, this is closely followed by contribution from the Al6Mn particles, which precipitate predominantly at grain boundaries.

  7. Oxide strengthened molybdenum-rhenium alloy

    SciTech Connect

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  8. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  9. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  10. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGESBeta

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  11. Oxide strengthened molybdenum-rhenium alloy

    SciTech Connect

    Bianco, Robert; Buckman, William R. Jr.

    1998-12-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (1) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (2) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (3) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (4) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (5) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (6) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method.

  12. GRAIN BOUNDARY STRENGTHENING PROPERTIES OF TUNGSTEN ALLOYS

    SciTech Connect

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-10-10

    Density functional theory was employed to investigate grain boundary (GB) properties of W alloys. A range of substitutional solutes across the Periodic Table was investigated to understand the behavior of different electronic orbitals in changing the GB cleavage energy in the Σ27a[110]{525} GB. A number of transition metals were predicted to enhance the GB cohesion. This includes Ru, Re, Os, Ir, V, Cr, Mn, Fe, Co, Ti, Hf, Ta and Nb. While lanthanides, s and p elements were tended to cause GB embrittlement.

  13. Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

    SciTech Connect

    Rieken, Joel; Anderson, Iver; Kramer, Matthew

    2011-04-01

    An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.

  14. The role of nickel in radiation damage of ferritic alloys

    DOE PAGESBeta

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; Terentyev, Dmitry

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content frommore » 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.« less

  15. The role of nickel in radiation damage of ferritic alloys

    SciTech Connect

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; Terentyev, Dmitry

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content from 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.

  16. Characteristics of alumina particles in dispersion-strengthened copper alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-hui; Li, Xiao-xian

    2014-11-01

    Two types of alumina dispersion-strengthened copper (ADSC) alloys were fabricated by a novel in-situ reactive synthesis (IRS) and a traditional internal oxidation (IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.

  17. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  18. Discussion on the Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Fe-C-Mn-X Alloys

    NASA Astrophysics Data System (ADS)

    Wei, R.; Enomoto, M.

    2011-12-01

    Experimental data on alloying element partition and growth kinetics of proeutectoid ferrite in quaternary Fe-C-Mn-Si, Ni, and Co alloys were reanalyzed using an approximate method, which permits a quick evaluation of alloy partitioning to be made. The method yielded results in good agreement with DICTRA and is applicable to Fe-C base multicomponent alloys. Differences of the predicted local condition at the α/ γ boundary from those previously presented in the alloys are noted.

  19. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tan, L.; Katoh, Y.; Snead, L. L.

    2014-02-01

    The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic-martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.

  20. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  1. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys

    DOE PAGESBeta

    Yu, Xinghua; Mazumder, B.; Miller, M. K.; David, S. A.; Feng, Z.

    2015-01-19

    Nanostructured ferritic alloys, which have complex microstructures which consist of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This paper evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. Finally, the hardness difference in different regions of friction stir weld has been explained.

  2. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  3. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Reinhard, D.; Larson, D. J.

    2015-07-01

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m-3 and 1.2 × 1024 m-3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O- clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  4. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    NASA Technical Reports Server (NTRS)

    Perkins, R. J.; Bailey, P. G.

    1978-01-01

    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  5. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  6. Neutron irradiation effects on the microstructure of low-activation ferritic alloys*1

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Matsui, H.

    1994-09-01

    Microstructures of low-activation ferritic alloys, such as 2.25% Cr-2% W, 7% Cr-2% W, 9% Cr-2% W and 12% Cr-2% W alloys, were observed after FFTF irradiation at 698 K to a dose of 36 dpa. Martensite in 7% Cr-2% W, 9% Cr-2% W and 12% Cr-2% W alloys and bainite in 2.25% Cr-2% W alloy were fairly stable after the irradiation. Microvoids were observed in the martensite in each alloy but not in bainite and δ-ferrite in 12% Cr-2% W alloys. An addition of 0.02% Ti to 9% Cr-2% W alloy considerably reduced the void density. Spherical (Ta, W) and Ti-rich precipitates were observed in the Ti-added 9% Cr-2% W alloy. Precipitates observed in 9% Cr-2% W and 7% Cr-2% W alloys are mainly Cr-rich M 23C 6 (Ta, W) and Ta(W)-rich M 6C and Fe-rich Laves phase. In 2.25% Cr-2% W alloy, high density of fine (Ta, W)-rich M 2C type precipitates as well as M 6C were observed. Spherical small α' Cr-rich particles were observed in both martensite and α-ferrite in 12% Cr-2% W alloys. Correlation between postirradiation microstructure and irradiation hardening is shown and discussed for these alloys.

  7. Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0.4Ti-0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R. M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-09-01

    Ferritic steels strengthened with Ti-Y-O nanoclusters are leading candidates for fission and fusion reactor components. A Fe-14Cr-0.4Ti + 0.25Y2O3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1-20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y2Ti2O7, FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y2Ti2O7 nanoclusters of <5 nm diameter and number density of 1.04 × 1023 m-3. Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys.

  8. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  9. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    SciTech Connect

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  10. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-08-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure ( Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  11. Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2008-02-01

    This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.

  12. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-06-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure (Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  13. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    DOE PAGESBeta

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; Miller, M. K.

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using amore » combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.« less

  14. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    SciTech Connect

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; Miller, M. K.

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.

  15. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    PubMed Central

    Zhang, Z. W.; Yao, L.; Wang, X.-L.; Miller, M. K.

    2015-01-01

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. Here we report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters. PMID:26023747

  16. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  17. Friction consolidation of oxide dispersion strengthened INCOLOY RTM alloy MA956 powder

    NASA Astrophysics Data System (ADS)

    Catalini, David

    INCOLOYRTM MA956 is a ferritic ODS alloy. It has very good oxidation resistance by virtue of its large chromium and aluminum concentrations and high mechanical strength and creep resistance at elevated temperatures thanks to oxide dispersion strengthening. The conventional processing route utilized to obtain this alloy involves two main multistep stages. The first (or front end) stage of the process consists of a dry, high-energy milling process which mixes very fine Y2O3 particles with elemental alloy powders by Mechanical Alloying (MA) in an attritor. The second (or back end) stage of the process consists of consolidating the mechanically alloyed powder by hot extrusion in vacuum-sealed cans at about 1000°C, or by degassing followed by hot isostatic pressing (HIP). The precipitation of a fine dispersion of yttrium-aluminum-rich oxides (Y-Al-O) during the consolidation is at the origin of the high temperature mechanical strength of this alloy. Three different thermodynamically stable oxides are known to exist for the binary Y2O3:Al 2O3 system: Y4Al2O9, YAlO 3 and Y3Al5O12. All three of them have been observed in this type of alloys when processed by the route described above. Their size ranges from just a few up to hundreds of nm. In this work, the applicability of Friction Consolidation to this ODS alloy was investigated in order to tackle the downsides of the conventional processing route (multisteps and extremely high raw material final cost). For this study, mechanically alloyed INCOLOYRTM MA956 powder was consolidated through Friction Consolidation under three different sets of processing conditions. As a result, three small compacts of low porosity have been achieved with a refined equiaxed ferritic grain structure smaller than 10 microns and the desired oxide dispersion. Two types of mixed Y-Al oxides were observed by different complementary techniques, Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD

  18. Stability of Y Ti O Precipitates in Friction Stir Welded Nanostructured Ferritic Alloys

    DOE PAGESBeta

    Yu, Xinghua; Mazumder, Baishakhi; Miller, Michael K; David, Stan A; Feng, Zhili

    2015-01-01

    Nanostructured ferritic alloys (NFAs), which have complex microstructures consisting of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters (NC), are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This study evaluates microstructure of friction stir welded NFA using electron microscopy and atom probe tomography (APT) techniques. APT results revealed NCs are coarsened and inhomogeneously distributed in the stir zone. Three hypotheses on coarsening of NC are presented.

  19. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    PubMed

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. PMID:25754233

  20. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  1. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  2. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  3. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  4. Swelling and dislocation evolution in simple ferritic alloys irradiated to high fluence in FFTF/MOTA

    NASA Astrophysics Data System (ADS)

    Katoh, Yutai; Kohyama, Akira; Gelles, David S.

    1995-08-01

    Microstructures of a series of Fe sbnd Cr binary ferritic alloys were examined following neutron irradiation to 140 dpa at 698 K in FFTF/MOTA. The chromium concentration ranged from 3 to 18% in 3% increments and the irradiation temperature corresponded to the peak swelling condition for this alloy class. The swelling varied from 0.4 to 2.9% depending on chromium concentration, and the highest swelling was found in the Fe sbnd 9Cr alloy. The cavity microstructures corresponded to transient to early steady-state swelling regime. Dislocations were composed of networks with both a<100> and ( a/2)<111> Burgers vector and a<100> type interstitial loops. The dislocation density was negatively correlated with swelling. Explanation for the observed chromium concentration dependence of microstructural development and low swelling in the ferritic alloys will be studied in connection with the dislocation bias efficiency and the theory of sink strength ratio.

  5. An exploratory study of a zirconium-modified, precipitation-strengthened nickel-30 copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened alloy has been produced through minor additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. Comparison of the mechanical properties, as determined by testing in air, of the Zr-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  6. Self-Consistent Model for Planar Ferrite Growth in Fe-C-X Alloys

    NASA Astrophysics Data System (ADS)

    Zurob, H. S.; Panahi, D.; Hutchinson, C. R.; Brechet, Y.; Purdy, G. R.

    2013-08-01

    A self-consistent model for non-partitioning planar ferrite growth from alloyed austenite is presented. The model captures the evolution with time of interfacial contact conditions for substitutional and interstitial solutes. Substitutional element solute drag is evaluated in terms of the dissipation of free energy within the interface, and an estimate is provided for the rate of buildup of the alloying element "spike" in austenite. The transport of the alloying elements within the interface region is modeled using a discrete-jump model, while the bulk diffusion of C is treated using a standard continuum treatment. The model is validated against ferrite precipitation and decarburization kinetics in the Fe-Ni-C, Fe-Mn-C, and Fe-Mo-C systems.

  7. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  8. The Effect of H and He on Irradiation Performance of Fe and Ferritic Alloys

    SciTech Connect

    James F. Stubbins

    2010-01-22

    This research program was designed to look at basic radiation damage and effects and mechanical properties in Fe and ferritic alloys. The program scope included a number of materials ranging from pure single crystal Fe to more complex Fe-Cr-C alloys. The range of materials was designed to examine materials response and performance on ideal/model systems and gradually move to more complex systems. The experimental program was coordinated with a modeling effort. The use of pure and model alloys also facilitated the ability to develop and employ atomistic-scale modeling techniques to understand the inherent physics underlying materials performance

  9. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    DOE PAGESBeta

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detectedmore » for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less

  10. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  11. Correlation of Fe/Cr phase decomposition process and age-hardening in Fe-15Cr ferritic alloys

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Kimura, Akihiko; Han, Wentuo

    2014-12-01

    The effects of thermal aging on the microstructure and mechanical properties of Fe-15Cr ferritic model alloys were investigated by TEM examinations, micro-hardness measurements and tensile tests. The materials used in this work were Fe-15Cr, Fe-15Cr-C and Fe-15Cr-X alloys, where X refers to Si, Mn and Ni to simulate a pressure vessel steel. Specimens were isothermally aged at 475 °C up to 5000 h. Thermal aging causes a significant increase in the hardness and strength. An almost twice larger hardening is required for embrittlement of Fe-15Cr-X relative to Fe-15Cr. The age-hardening is mainly due to the formation of Cr-rich α‧ precipitates, while the addition of minor elements has a small effect on the saturation level of age-hardening. The correlation of phase decomposition process and age-hardening in Fe-15Cr alloy was interpreted by dispersion strengthened models.

  12. Irradiation creep of various ferritic alloys irradiated at ˜400°C in the PFR and FFTF reactors

    NASA Astrophysics Data System (ADS)

    Toloczko, M. B.; Garner, F. A.; Eiholzer, C. R.

    1998-10-01

    Irradiation creep of three ferritic alloys at ˜400 ∘C has been studied. Specimens were in the form of pressurized tubes. In a joint US/UK creep study, two identical sets of creep specimens constructed from one heat of HT9 were irradiated in fast reactors, one in the Prototypic Fast Reactor (PFR) and the other in the Fast Flux Test Facility (FFTF). The specimens in PFR were irradiated to a dose of ˜50 dpa, whereas the specimens in FFTF were irradiated to a dose of 165 dpa. The observed swelling and creep behavior were very different in the two reactors. Creep specimens constructed from D57, a developmental alloy ferritic alloy, were also irradiated in PFR to a dose of ˜50 dpa. Creep behavior typical of previous studies on ferritic alloys was observed. Finally, creep specimens constructed from MA957, a Y 2O 3 dispersion-hardened ferritic alloy, were irradiated in FFTF to a dose of ˜110 dpa. This alloy exhibited a large amount of densification, and the creep behavior was different than observed in more conventional ferritic or ferritic-martensitic alloys.

  13. Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications

    SciTech Connect

    Jablonski, P.D.; Alman, D.E.

    2008-05-15

    Chromia (Cr2O3) forming ferritic stainless steels are being developed for interconnect application in Solid Oxide Fuel Cells (SOFC). A problem with these alloys is that in the SOFC environment chrome in the surface oxide can evaporate and deposit on the electrochemically active sites within the fuel cell. This poisons and degrades the performance of the fuel cell. The development of steels that can form conductive outer protective oxide layers other than Cr2O3 or (CrMn)3O4 such as TiO2 may be attractive for SOFC application. This study was undertaken to assess the oxidation behavior of ferritic stainless steel containing 1 weight percent (wt.%) Ti, in an effort to develop alloys that form protective outer TiO2 scales. The effect of Cr content (6–22 wt.%) and the application of a Ce-based surface treatment on the oxidation behavior (at 800° C in air+3% H2O) of the alloys was investigated. The alloys themselves failed to form an outer TiO2 scale even though the large negative {delta}G of this compound favors its formation over other species. It was found that in conjunction with the Ce-surface treatment, a continuous outer TiO2 oxide layer could be formed on the alloys, and in fact the alloy with 12 wt.% Cr behaved in an identical manner as the alloy with 22 wt.% Cr.

  14. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  15. Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Quatinetz, M.

    1975-01-01

    An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.

  16. An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1976-01-01

    An experimental oxide dispersion strengthened (ODS) alloy, WAZ-D, derived from the WAZ-20 composition was produced by the mechanical alloying process. Cast WAZ-20 is strengthened by both a high refractory metal content, and 70 volume percent of gamma prime. The ODS alloy WAZ-D was responsive to variables of alloy content, of attritor processing, of consolidation by extrusion, and of heat treatment. The best material produced had large highly elongated grains. It exhibited tensile strengths generally superior to a comparable cast alloy. The ODS alloy exhibited high temperature stress rupture life considerably superior to any known cast superalloy. Tensile and rupture ductility were low, as was intermediate temperature rupture life. Very low creep rates were noted and some specimens failed with essentially no third stage creep. Also the benefit derived from the oxide dispersion, far out-weighed that from the elongated microstructure alone.

  17. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures

    DOE PAGESBeta

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Wu, Wei; Teng, Zhenke; Liaw, Peter K

    2014-10-22

    In this study, the ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticitymore » theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.« less

  18. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures

    SciTech Connect

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Wu, Wei; Teng, Zhenke; Liaw, Peter K

    2014-10-22

    In this study, the ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticity theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.

  19. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  20. High Frequency Properties of Ferrite/Fe-Si-Al Alloy Soft Magnetic Composites

    NASA Astrophysics Data System (ADS)

    Stergiou, Charalampos A.; Zaspalis, Vassilios

    The inclusion of Fe-Si-Al alloy particles in NiCuZn ferrite matrix was investigated with regard to the high frequency electromagnetic properties (complex permeability and permittivity). The resultant composites of relatively low density exhibit a shift of the permeability spectra to higher frequencies and an increase of dielectric polarization, which finally favour the electromagnetic wave attenuation at microwave frequencies. Thus, wider band return loss peaks are attained at frequencies above 6 GHz by thinner composite materials.

  1. Criteria for Yielding of Dispersion-Strengthened Alloys

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Lenel, F. V.

    1960-01-01

    A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.

  2. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    SciTech Connect

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-04-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved.

  3. Surface modification of ferritic and Ni based alloys for improved oxidation resistance of SOFC interconnect applications

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.; Kung, Steven C.

    2005-08-01

    This research is aimed at evaluating a surface modification of ferritic stainless steels (Type-430 and Crofer 22APU) and nickel-base alloys (Haynes 230) for use in the SOFC temperature range of 700 to 800°C. A surface treatment was devised to enhance the stability of the base metal oxide that forms and to reduce the oxidation rate of the materials at high temperature. Oxidation tests (in wet air; treated and untreated) were conducted at 800°C to evaulate the corrosion resistance of the alloys. It was found that the surface treatment improved the oxidation resistance of all the alloys tested. However, the treatment improved the performance of 430SS more than that of the other alloys.

  4. Effect of Alloy Composition, Surface Preparation and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloy

    SciTech Connect

    Meier, G H; Mu, N; Yanar, N M; Pettit, F S; Piron Abellan, J; Olszewski, T; Quadakkers, W J; Holcomb, G R

    2010-09-01

    Abstract Selective oxidation behavior of ferritic martensitic Fe–Cr base alloys, exposed in various atmospheres containing combinations of O2, CO2, and H2O, were studied at various temperatures relevant to oxy-fuel combustion. This paper begins with a discussion of the required Cr content to form a continuous external chromia scale on a simple binary Fe–Cr alloy exposed in oxygen or air based on experiments and calculations using the classic Wagner model. Then, the effects of the exposure environment and Cr content on the selective oxidation of Fe–Cr alloys are evaluated. Finally, the effects produced by alloying additions of Si, commonly present in various groups of commercially available ferritic steels, are described. The discussion compares the oxide scale formation on simple binary and ternary Fe–Cr base model alloys with that on several commercially available ferritic steels.

  5. An oxide dispersion strengthened alloy for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1979-01-01

    The strength of the newly developed alloy MA-6000E is derived from a nickel alloy base, an enlongated grain structure, naturally occurring precipitates of gamma prime, and an artificial distribution of extremely fine, stable oxide particles. Its composition is Ni-15% Cr-2% Mo-2% Ta-4% W-4.5% Al-2.5% Ti-0.15% Zr-0.05% C-0.01% B-1.1% Y2O3. It exhibits strength of a conventional nickel-base alloy at 1400 F, but is quite superior at 2000 F. Its shear strength is relatively low, necessitating consideration of special joining procedures. Its high-cycle, low-cycle, and thermal fatigue properties are excellent. The relationship between alloy micro-structure and properties is discussed.

  6. An oxide dispersion strengthened alloy for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1979-01-01

    The strength of the newly developed alloy MA-6000E is derived from a nickel alloy base, an elongated grain structure, naturally occurring precipitates of gamma prime, and an artificial distribution of extremely fine, stable oxide particles. Its composition is Ni-15Cr-2Mo-2Ta-4W-4.5Al-2.5Ti-0.15Zr 0.05C-0.01B-1.1Y2O3. It exhibits the strength of a conventional nickel-base alloy at 1400 F but is quite superior at 2000 F. Its shear strength is relatively low, necessitating consideration of special joining procedures. Its high cycle, low cycle, and thermal fatigue properties are excellent. The relationship between alloy microstructure and properties is discussed.

  7. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    SciTech Connect

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of

  8. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  9. Experimental study of the distribution of alloying elements after the formation of epitaxial ferrite upon cooling in a low-carbon steel

    SciTech Connect

    Santofimia, M.J.; Kwakernaak, C.; Sloof, W.G.; Zhao, L.; Sietsma, J.

    2010-10-15

    The distributions of carbon and substitutional elements in a low-carbon steel during the formation of epitaxial ferrite on cooling after intercritical annealing have been studied by electron probe microanalysis (EPMA). The analysis has shown that the formation of epitaxial ferrite takes place with a partial redistribution of alloying elements between the epitaxial ferrite and the austenite. This redistribution of alloying elements causes compositional gradients in the epitaxial ferrite that lead to a different etching behaviour with respect to the intercritical ferrite. Contrary to Thermo-Calc predictions, a distinct partitioning behaviour of silicon has been observed.

  10. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-10-01

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50-100 μm irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Y3Al5O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion.

  11. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-10-01

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50-100 μm irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Y3Al5O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion.

  12. Dispersion strengthened nickel-yttria sheet alloy produced from comminuted powders

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Quatinetz, M.

    1974-01-01

    Report on initial efforts to dispersion-strengthen nickel with Y2O3 in an attempt to replace radioactive ThO2 as the strengthening phase in dispersion-strengthened alloys. Nickel-Y2O3 powders were processed by the NASA comminution and blending (NASCAB) method and subsequently thermomechanically worked. Experimental variables included volume per cent Y2O3 (2% and 4%), powder cleaning temperature (315, 371, and 426 C), a screening step in the process, and the number (up to 23) of cold-roll-anneal cycles. Tensile strengths, determined at 1093 C, as well as some stress-rupture life data, are presented.

  13. Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy.

    SciTech Connect

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.; Materials Science Division; Shimane Univ.; Osaka Univ.

    2008-12-01

    Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe{sup +} ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation.

  14. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    NASA Astrophysics Data System (ADS)

    Toloczko, M. B.; Garner, F. A.; Voyevodin, V. N.; Bryk, V. V.; Borodin, O. V.; Mel'nychenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  15. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    SciTech Connect

    Toloczko, Mychailo B.; Garner, F. A.; Voyevodin, V.; Bryk, V. V.; Borodin, O. V.; Melnichenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high at 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No coinjection of helium or hydrogen was employed. It was shown that compared to several ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450°C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  16. MULTI-PHASE HIGH TEMPERATURE ALLOYS: EXPLORATION OF LAVES-STRENGTHENED STEELS

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Lu, Zhao Ping; Liu, Chain T

    2007-01-01

    Exploratory effort was initiated for the development of Fe-base alloys strengthened by intermetallic Laves phase combined with MC (M: metals) carbide for improved elevated-temperature strength in fossil energy system components such as super-heater tubes and industrial gas turbines. Work in FY 2006 was focused on strengthening of Fe-Cr-Ni base austenitic stainless alloys by Fe2Nb Laves-phase precipitates with/without MC carbides, in combination with the improvement of oxidation resistance via Al-modification to promote alumina scale formation. A series of Fe-Cr-Ni-Nb base austenitic alloys with additions of Mo, Al, Si, C, B, etc. were cast and thermomechanically processed, and then tensile creep-rupture tested at the conditions of 750-850oC/70-170 MPa. The Al-modified alloys strengthened by Laves + MC show superior creep strength to that of conventional type 347 stainless steels, and their creep life-limit reaches up to 500 h at 750 oC/100 MPa. These alloys also show an excellent oxidation resistance from 650-800oC in air and air + 10% water vapor environments due to formation of a protective Al2O3 scale. Microstructural analysis of alloys strengthened by only Laves phase revealed that the Laves phase was effective to pin dislocations when the particle size is less than 0.5 m, but the resultant creep rupture lives were relatively short. The Al-modification was also applied to an advanced carbide-strengthened austenitic stainless steel, and it yielded creep resistance comparable to state-of-the-art austenitic alloys such as NF709, together with protective alumina scale formation. Modification of this alloy composition for its creep strength and oxidation resistance will be pursued in FY2007. Preliminary results suggest that the developed alloys with Al-modification combined with MC carbide strengthening are promising as a new class of high-temperature austenitic stainless steels.

  17. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    SciTech Connect

    Asgharzadeh, H.; Kim, H.S.; Simchi, A.

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometric alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.

  18. Evaluation of Oxide Dispersion Strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1995-12-31

    A series of fourteen (14) novel high-strength molybdenum alloy compositions containing a dispersion of very fine (< 1 {mu}m diameter) oxide particles were consolidated using two proprietary powder metallurgy techniques. The developmental compositions were evaluated to determine the microstructural stability and mechanical properties from cryogenic (-148{degrees}F) to elevated temperatures (4000{degrees}F) for material in the as-swaged (>98% cold work) condition and for as-swaged material in the heat treated condition. Extremely fine oxide particle sizes (<1000 {Angstrom}) were observed by Transmission Electron Microscopy (TEM) for a number of the experimental compositions in the as-swaged condition. A one hour recrystallization temperature as high as 3990{degrees}F was measured and a ductile-to-brittle transition temperature as low as {approximately}58{degrees}F for material in the recrystallized condition was determined. The preliminary results support the alloy design concept feasibility.

  19. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  20. System and method of forming nanostructured ferritic alloy

    DOEpatents

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  1. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Gu; Park, Jin-Ju; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu; Spirin, Alexey; Krutikov, Vasiliy; Paranin, Sergey

    2015-07-01

    The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

  2. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  3. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  4. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    NASA Technical Reports Server (NTRS)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  5. Thermal fatigue and oxidation data of oxide dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Hill, V. L.; Humphreys, V. E.

    1980-01-01

    Thermal fatigue and oxidation data were obtained 24 specimens representing 9 discrete oxide dispersion-strengthened alloy compositions or fabricating techniques. Double edge wedge specimens, both bare metal and coated for each systems, were cycled between fluidized beds maintained at 1130 C with a three minute immersion in each bed. The systems included alloys identified as 262 in hardness of HRC 38; 264 in hardness of HRC 38, 40 and 43; 265 HRC 39, 266 of HRC 37 and 40; 754; and 956. Specimens in the bare condition of 265 HRC 39 and 266 HRC 37 survived 6000 cycles without cracking on the small radius of the double edge wedge specimen. A coated specimen of 262 HRC 38, 266 HRC 37 and 266 HRC40 also survived 6000 cycles without cracking. A duplicate coated specimen of 262 HRC 38 alloy survived 5250 cycles before cracks appeared. All the alloys showed little weight change compared compared to alloys tested in prior programs.

  6. Effect of alloying on microstructure and precipitate evolution in ferritic weld metal

    NASA Astrophysics Data System (ADS)

    Narayanan, Badri Kannan

    The effect of alloying on the microstructure of ferritic weld metal produced with an self-shielded flux cored arc welding process (FCAW-S) has been studied. The welding electrode has a flux core that is intentionally alloyed with strong deoxidizers and denitriding elements such as aluminum, titanium and zirconium in addition to austenite formers such as manganese and nickel. This results in formation of microstructure consisting of carbide free bainite, retained austenite and twinned martensite. The work focuses on characterization of the microstructures and the precipitates formed during solidification and the allotropic phase transformation of the weld metal. Aluminum, manganese and nickel have significant solubility in iron while aluminum, titanium and zirconium have very strong affinity for nitrogen and oxygen. The effect of these alloying elements on the phase transformation and precipitation of oxides and nitrides have been studied with various characterization techniques. In-situ X-ray synchrotron diffraction has been used to characterize the solidification path and the effect of heating and cooling rates on microstructure evolution. Scanning Transmission Electron Microscopy (STEM) in conjunction with Energy Dispersive Spectroscopy (EDS) and Electron energy loss spectroscopy (EELS) was used to study the effect of micro-alloying additions on inclusion evolution. The formation of core-shell structure of oxide/nitride is identified as being key to improvement in toughness of the weld metal. Electron Back Scattered Diffraction (EBSD) in combination with Orientation Imaging Microscopy (OIM) and Transmission electron microscopy (TEM) has been employed to study the effect of alloying on austenite to ferrite transformation modes. The prevention of twinned martensite has been identified to be key to improving ductility for achieving high strength weld metal.

  7. Microstructural development in reduced activation ferritic alloys irradiated to 200 dpa at 420$deg;C

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1994-09-01

    Density change and microstructural development are reported for nine reduced activation ferritic steels covering the range 2.3 to 12Cr with varying additions of V and/or W for hardening and up to 6.5 Mn for austenite stability. Specimens were examined following irradiation in FFTF/MOTA at 420°C to a dose exceeding 200 dpa. Void swelling was found, but the swelling remained at 5% or below, with the worst case in an alloy of 9Cr-2Mn-1WV. The carbide structure pinning martensite lath boundaries remained in place.

  8. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-04-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  9. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-06-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  10. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  11. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  12. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    NASA Astrophysics Data System (ADS)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non

  13. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-08-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  14. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-06-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  15. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  16. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Alinger, M. J.; Odette, G. R.; Yamamoto, T.

    2004-08-01

    A transmission electron microscopy (TEM) study was carried out on the co-evolution of the coarser-scale microstructural features in mechanically alloyed (MA) powders and hot isostatic press (HIP) consolidated Fe-14Cr-3W-0 and 0.4Ti-0.25Y 2O 3 nanostructured ferritic alloys (NFAs). The pancake shaped nanoscale grains in the as-MA powders are textured and elongated parallel to the particle surface. Powder annealing results in re-crystallization at 850 °C and grain growth at 1150 °C. The grains also recrystallize and may grow in the alloys HIPed at 850 °C, but appear to retain a polygonized sub-grain structure. The grains are larger and more distinct in the alloys HIPed at 1000 and 1150 °C. However, annealing resulted in bi-modal grain size distribution. Finer grains retained a significant dislocation density and populations of small precipitates with crystal structures distinct form the matrix. The grains and precipitates were much larger in alloys without Ti.

  17. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  18. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    NASA Astrophysics Data System (ADS)

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-06-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  19. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    NASA Astrophysics Data System (ADS)

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-04-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  20. High-throughput study of crystal structures and stability of strengthening precipitates in Mg alloys

    NASA Astrophysics Data System (ADS)

    Wang, Dongshu; Amsler, Maxmilian; Hegde, Vinay; Saal, James; Issa, Ahmed; Zeng, Xiaoqin; Wolverton, Christopher

    Age hardening, in which precipitates form and impede the movement of dislocations, can be applied to magnesium alloys in order to increase their limited strengthening behavior. To help clarify the energetics of precipitation hardening of Mg alloys, we employed first principles density functional theory calculations to elucidate both crystal structures and energetics of a very large set of precipitates in Mg alloys. We find the enthalpy changes of (stable and metastable) observed precipitates during the age hardening process are consistent with the experimental sequence of formation for many Mg binary alloys (Mg- {Nd, Gd, Y, Sn, Al, Zn}). For cases where the metastable precipitate crystal structure is unavailable, we search over several prototypes and predict structures/stoichiometries for several ternary precipitates. In addition, high-throughput calculations are performed to construct hcp-based based convex hulls, which assist the identification of coherent GP zones and new metastable phases in age-hardened hcp systems.

  1. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  2. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  3. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Parish, C. M.; Bei, H.

    2015-07-01

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  4. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect

    Gelles, D.S.

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  5. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  6. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    DOE PAGESBeta

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less

  7. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Alekseeva, E. V.

    2016-02-01

    The structure and phase composition of Al-Ca-Mg-Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300-350°C.

  8. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  9. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  10. Nanoindentation creep study on an ion beam irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Huang, Zijing; Harris, Adrian; Maloy, Stuart A.; Hosemann, Peter

    2014-08-01

    Oxide dispersion strengthened (ODS) alloys are considered advanced structural materials for nuclear application due to their radiation tolerance and creep resistance. Ion beam irradiation is used to study the property changes due to displacement damage. In this work 1 dpa displacement damage in an ODS was produced followed by a nanoindentation creep study at temperatures up to 600 °C to evaluate the changes in mechanical properties due to irradiation. Converted yield strength (YS) and creep related parameters are reported.

  11. Effect of sulphur on the strengthening of a Zr Nb alloy

    NASA Astrophysics Data System (ADS)

    Chang, K. I.; Hong, S. I.

    2008-02-01

    The effect of sulphur on the strengthening and the thermally activated deformation of cold-worked Zr-1 Nb alloy was investigated. In the present study, the sulphur strengthening was observed even at room temperature unlike the previous study of Ferrer et al. The flow stress increased by 65 MPa at room temperature with the addition of sulphur as little as 20 ppm. With further increase of sulphur content up to 300 ppm, negligible change of the flow stress was observed. The additive strengthening behavior in which the entire stress-strain curve shift upward by the friction stress due to the addition of sulphur was observed in the Zr-Nb alloy of the present study. The activation volume decreased slightly (from 110b 3 to 80b 3) with the addition of 300 ppm sulphur at room temperature. The rate-controlling mechanism of the deformation can best be explained by the dislocation interaction mechanism in which the segregation of alloying elements such as oxygen and sulphur atoms affects the activation length of dislocations.

  12. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect

    Rebak, Raul B.

    2014-12-30

    provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  13. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  14. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGESBeta

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  15. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    SciTech Connect

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by means of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.

  16. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    SciTech Connect

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-06-03

    Nanostructured ferritic alloys (NFAs) have outstanding high temperature creep properties and extreme tolerance to radiation damage. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of -Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of -Fe with 50-100 m irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Al5Y3O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These differences can be explained by the differences in the microstructure and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms retarding diffusion.

  17. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    DOE PAGESBeta

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-06-03

    Nanostructured ferritic alloys (NFAs) have outstanding high temperature creep properties and extreme tolerance to radiation damage. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of -Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of -Fe with 50-100 m irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embeddedmore » precipitates with the Al5Y3O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These differences can be explained by the differences in the microstructure and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms retarding diffusion.« less

  18. Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy

    SciTech Connect

    Enomoto, M.

    1999-10-08

    The diffusion-controlled growth of proeutectoid ferrite ({alpha}) from austenite ({gamma}) in an Fe-C-Mn alloy was simulated incorporating the possible drag effect of Mn on the migration of {alpha}:{gamma} interphase boundaries. The magnitude of drag force or the dissipation of free energy by drag was evaluated by means of Cahn and Purdy-Brechet models. The growth rate of ferrite was calculated from the flux balance equation for carbon taking into account the fact that the carbon concentration at the boundary in austenite varied with time. Whereas the time exponent of growth deviated from one-half at each moment, the overall time dependence was dictated by carbon volume diffusion in austenite. The reported differences of experimental growth rates from those calculated assuming paraequilibrium were reduced considerably by incorporating the drag of Mn, although simulation results may largely depend on the shape and depth of solute interaction potential with {alpha}:{gamma} boundaries and Mn diffusivity within the boundary, etc.

  19. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  20. Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Yoon, Ji Hyun; Wee, Sung Hun; Hoelzer, David T.; Maloy, Stuart A.

    2014-06-01

    Nanostructured ferritic alloys (NFAs) have been considered as primary candidate materials for both fission and fusion reactors because of their excellent creep and irradiation resistances. It has been shown that high temperature fracture toughness could be significantly improved by appropriate thermo-mechanical treatments (TMTs). This article focuses on the static fracture behaviors of newly developed 9Cr NFAs with improved toughness. Optimal TMTs resulted in high fracture toughness at room temperature (>250 MPa √m) and in retaining higher than 100 MPa √m over a wide temperature range of 22-700 °C. Significant differences were found in fracture surfaces and fracture resistance (J-R) curves after different TMTs. Unique fracture surface features such as shallow nanoscale facets decorated with shear lips and flake-like grains were observed in high toughness specimens.

  1. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  2. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  3. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  4. Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates

    NASA Astrophysics Data System (ADS)

    Knipling, Keith Edward

    This research is toward developing a castable and heat-treatable precipitation-strengthened aluminum alloy exhibiting coarsening- and creep resistance at temperatures exceeding 400°C. Criteria for selecting alloying elements capable of producing such an alloy are established. Those systems forming Al3M trialuminide compounds with a cubic L12 crystal structure are favored, and based on a review of the existing literature, these are assessed in terms of solid-solubility and diffusivity in alpha-Al(satisfying the need for slow coarsening kinetics), and castability (which is discussed based on the binary phase diagrams). The first Group 3 element, Sc, and the second Group 4 element, Zr, are shown to be most promising. These expectations are confirmed by an initial study on the Al-Ti system, which demonstrates that conventionally-solidified alloys are not capable of precipitation strengthening. The Al-Zr system, by contrast, exhibits precipitation of nanometer-scale Al3Zr (L12) producing pronounced precipitation hardening when aged at 375, 400, or 425°C. The Al3 Zr precipitates are coarsening resistant and have the metastable L1 2 structure up to 500°C, a result of very sluggish diffusion of Zr in alpha-Al. Ternary additions of Ti are also investigated, forming Al 3(Zr1-xTix) (L12) precipitates with a reduced lattice parameter mismatch with alpha-Al, potentially improving the coarsening resistance. The composition of Al3(Zr1-xTi x) precipitates formed at 375 or 425°C are measured directly using 3-D atom-probe tomography. At these temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that most of the available Ti fails to partition to the Al3(Zr1- xTix) phase. This is consistent with prior studies on Al-Sc alloys, where the slower-diffusing ternary solute species make up a small fraction of the Al3Sc-based precipitates. Despite the confirmed presence of Ti, Al3(Zr1- xTix) precipitates exhibit no improvement in terms of

  5. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGESBeta

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  6. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  7. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  8. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  9. On the structure and chemistry of complex oxide nanofeatures in nanostructured ferritic alloy U14YWT

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Dickerson, P.; Odette, G. R.; Maloy, S. A.; Misra, A.; Nastasi, M. A.

    2012-06-01

    The remarkable radiation damage resistance of nanostructured ferritic alloys (NFAs) is attributed to the large numbers of matrix nanofeatures (NFs) of various types, which can enhance the recombination of displacement defects and trap transmutant helium in fine scale bubbles. Characterizing the chemistry, crystallographic structure and orientation relationships of the NFs is critical to understanding how they enhance the radiation damage resistance of NFAs. Conventional and high-resolution transmission electron microscopy and energy-dispersive spectroscopy were used to characterize the various types of NF and larger oxide phases in a model 14Cr-3 W-0.4Ti-0.25Y2O3 NFA (14YWT) hot isostatic pressed (HIP-ed) at 1150°C. Large CrTiO3 precipitates (50-300 nm) and small diffracting NFs (<5 nm) were found in this alloy. One major new result is the observation of an additional type of nanofeature (10-50 nm), orthorhombic in structure, with a square center cross-section, which constitutes a new kind of Y-Ti-oxide phase with lattice parameters different from those of known Y and Ti complex oxides. The interfaces of these particles seem to be semicoherent, while manifesting a possible orientation relationship with the BCC matrix. The ratio of Y to Ti varies between <1 and 2 for these larger NFs.

  10. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ˜1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  11. THE STRUCTURE AND INTERDIFFUSIONAL DEGRADATION OF ALUMINIDE COATINGS ON OXIDE DISPERSION STRENGTHENED ALLOYS

    SciTech Connect

    Boone, D. H.; Crane, D. A.; Whittle, D. P.

    1981-04-01

    A study of the effects of oxide dispersion strengthened {ODS) superalloy composition and coating processing on the structure and diffusional stability of aluminide coatings was undertaken. Increasing substrate aluminum content results in the formation of a more typical nickel base superalloy aluminide coating structure that is more resistant to spallation during high temperature isothermal exposure. The coating application process also affected coating stability, a low aluminum, outward diffusion type resulting in greater apparent stability. A SEM deep etching and fractography examination technique was used in an attempt to establish the location and kinetics of void formation. Alurninide protective lifetimes are still found to be far short of the alloys rnechnital property capabilities.

  12. Diffusional creep and creep-degradation in dispersion-strengthened Ni-Cr base alloys.

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1973-01-01

    Dispersoid-free regions were observed in the dispersion-strengthened alloy TD-NiCr (Ni-20 Cr-2 ThO2) after slow strain rate testing (stress rupture, creep, and fatigue) in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of creep in TD-NiCr is the degradation of the alloy to a duplex microstructure. Creep degradation of TD-NiCr is further enhanced by the formation of voids and intergranular oxidation in the dispersoid-free bands. Void formation was observed after as little as 0.13% creep deformation at 1255 K. The dispersoid-free regions apparently provide sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20 Cr-2 ThO2.

  13. Changes in acoustic emission peaks in precipitation strengthened alloys with heat treatment

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.

    1983-01-01

    Acoustic emission was measured during tensile deformation in a number of precipitation-strengthened alloys as a function of prior heat treatment. The alloys tested included 7075, 6061, and 2219 aluminum; a modified A-286 stainless steel (JBK-75) and an experimental beryllium-containing stainless steel; and Incoloy 903. A rms voltage peak was observed in all the alloys near the onset of plastic flow, and a second peak was usually observed in 7075, 2219, and Incoloy 903 at plastic strains greater than 1%. Some evidence of a second peak was also observed in 6061 aluminum. Changes with heat treatment in the stress and strain at which the second peak occurred were consistent with the peak arising from the fracture of inclusions. The shifts in the location of the peak were in a direction so as to make the stress on the inclusions at the second peak relatively insensitive to prior heat treatment. The amplitude distributions of acoustic emission signals were also consistent with this interpretation. The strain at which the first acoustic emission peak occurred also varied with heat treatment, but the dependence of peak location on prior aging was different for the various alloys.

  14. Effects of Partial Phase Transformation on Characteristics of 9Cr Nanostructured Ferritic Alloy

    SciTech Connect

    Ji Hyun, Yoon; Byun, Thak Sang; Hoelzer, David T

    2014-01-01

    The core structures of future nuclear systems require tolerance to extreme irradiation, and some critical components, for example, the fuel cladding in Sodium-cooled Fast Reactors (SFRs), have to maintain mechanical integrity to very high doses of 200 -400 dpa at high temperatures up to 700 degrees C. The high Cr nanostructured ferritic alloys (NFAs) are under intense research worldwide as a candidate core material. Although the NFAs have some admirable characteristics for high-temperature applications, their crack sensitivity is very high at high temperatures. The fracture toughness of high strength NFAs is unacceptably low above 300 degrees C. The objective of this study is to develop processes and microstructures with improved high temperature fracture toughness and ductility. To optimize the afterextrusion heat treatment condition, both the computational simulation technique on phase equilibrium and the basic microstructural and mechanical characterization have been carried out. 9 Cr-NFA was produced by the mechanical alloying of pre-alloyed Fe-9Cr base metallic powder and yttria particles, and subsequent extrusion. The post-extrusion heat-treatments of various conditions were applied to the asextruded NFA. The tensile and fracture toughness tests were conducted for as-extruded and heat-treated samples at up to 700 degrees C. Fracture toughness of the NFA has increased by more than 40% at every testing temperature after heat-treatment in the inter-critical temperature range. The increment of fracture toughness of the NFA after post-extrusion heat-treatment is attributed to the increased strength at below 500 degrees C, and an increased ductility at 700 degrees C.

  15. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  16. Enhancement of Physical and Mechanical Properties of Oxide Dispersion-Strengthened Tungsten Heavy Alloys

    NASA Astrophysics Data System (ADS)

    Daoush, Walid Mohamed Rashad; Elsayed, Ayman Hamada Abdelhady; Kady, Omayma Abdel Gawad El; Sayed, Mohamed Abdallah; Dawood, Osama Monier

    2016-05-01

    Oxide dispersion-strengthened (ODS) tungsten heavy alloys are well known for their excellent mechanical properties which make them useful for a wide range of high-temperature applications. In this investigation, microstructural, magnetic, and mechanical properties of W-5 wt pct Ni alloys reinforced with 2 wt pct Y2O3, ZrO2 or TiO2 particles were investigated. Cold-pressed samples were sintered under vacuum at 1773 K (1500 °C) for 1 hour. The results show that, among three kinds of oxides, Y2O3 is the most efficient oxide to consolidate W powder by sintering. W-Ni-Y2O3 alloys form relatively uniform interconnected structure and also show higher density and compressive strength than those of W-Ni-ZrO2 and W-Ni-TiO2. On the other hand, W-Ni-TiO2 and W-Ni-ZrO2 alloys have non-homogeneous microstructure due to the formation of Ni globules in some areas in the matrix and almost nickel-free zones in other areas causing the appearance of pores. The Vickers hardness values for W-Ni-TiO2 alloys are slightly higher than those of W-Ni-ZrO2 and Ni-W-Y2O3 due to the smaller particle size of TiO2 than the other oxides. At room temperature, the investigated alloys have very weak magnetic properties. This is due to the combination of the ferromagnetic nickel metal binder with the non-magnetic tungsten forming the weak magnetic W-Ni solid solution. Moreover, the measured (mass) magnetizations had small values of the power of 10-3 emu/g. Additionally, the values of coercivity ( H C) and remanence ( M r) for the W-Ni-TiO2 alloy were higher than that of the W-Ni-Y2O3 and W-Ni-ZrO2 alloys due to the particle size effect of TiO2 nanoparticles.

  17. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-01

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  18. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-04

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  19. Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy

    DOE PAGESBeta

    Capdevila, C.; Aranda, M. M.; Rementeria, R.; Chao, J.; Urones-Garrote, E.; Aldazabal, J.; Miller, Michael K.

    2016-02-05

    In this paper, the strengthening mechanism observed during ageing at temperatures of 435 and 475 °C in the oxide dispersion strengthened (ODS) Fe–Cr–Al–Ti system has been investigated. Atom probe tomography (APT) and high-resolution transmission electron microscopy (HRTEM) analyses determined that the alloy undergoes simultaneous precipitation of Cr-rich (α' phase) and nanoscale precipitation of TiAl-rich intermetallic particles (β' phase). APT indicated that the composition of the intermetallic β' phase is Fe2AlTi0.6Cr0.4, and the evolving composition of α' phase with ageing time was also determined. The results obtained from HRTEM analyses allow us to confirm that the β' precipitates exhibit a cubicmore » structure and hence their crystallography is related to the Heusler-type Fe2AlTi (L21) structure. Finally, the strengthening could be explained on the basis of two hardening effects that occur simultaneously: the first is due to the α-α' phase separation through the modulus effect, and the second mechanism is due to the interaction of nanoscale β' particles with dislocations.« less

  20. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Miller, Michael K; Ma, Dong; Chen, Guang; Williams, J R; Chin, Bryan

    2012-01-01

    Newly-developed precipitate-strengthened ferritic steels with and without pre-existing nanoscale precipitates were irradiated with 4 MeV protons to a dose of ~5 mdpa at 50 C and subsequently examined by nanoindentation and atom probe tomography (APT). Irradiation-enhanced precipitation and coarsening of pre-existing nanoscale precipitates were observed. Copper partitions to the precipitate core along with a segregation of Ni, Al and Mn to the precipitate/matrix interface after both thermal aging and proton irradiation. Proton irradiation induces the precipitation reaction and coarsening of pre-existing nanoscale precipitates, and these results are similar to a thermal aging process. The precipitation and coarsening of nanoscale precipitates are responsible for the changes in hardness. The observation of the radiation-induced softening is essentially due to the coarsening of the pre-existing Cu-rich nanoscale precipitates. The implication of the precipitation on the embrittlement of reactor-pressure-vessel steels after irradiation is discussed.

  1. Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient

    NASA Technical Reports Server (NTRS)

    Staniek, G.; Whittenberger, J. D.

    1980-01-01

    Thermal gradient testing of three oxide dispersion strengthened alloys (two Ni-base alloys, MA 754 and MA 6000 E, and the Fe-base MA 956) and the directionally solidified eutectic alloy, gamma/gamma prime-alpha, have been conducted. Experiments were carried out with maximum temperatures up to 1200 C and thermal gradients on the order of 100 C/mm. The oxide dispersion strengthened alloys were difficult to test because the thermal stresses promoted crack nucleation and growth; thus the ability of these alloys to maintain a thermal gradient may be limited. The stability of individual fibers in gamma/gamma prime-alpha was excellent; however, microstructural changes were observed in the vicinity of grain boundaries. Similar structures were also observed in isothermally annealed material; therefore thermal gradients do not affect the microstructure of gamma/gamma prime-alpha in any significant manner.

  2. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  3. Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging

    SciTech Connect

    Lee, Seungwon; Matsunaga, Hirotaka; Sauvage, Xavier; Horita, Zenji

    2014-04-01

    An age-hardenable Cu–2.9%Ni–0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ∼ 150 nm and the Vickers microhardness was significantly increased through the HPT processing. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis including high-resolution transmission electron microscopy revealed that nanosized precipitates having compositions of a metastable Cu{sub 3}Ni{sub 5}Si{sub 2} phase and a stable NiSi phase were formed in the Cu matrix by aging of the HPT-processed samples and these particles are responsible for the additional increase in strength after the HPT processing. - Highlights: • Grain refinement is achieved in Corson alloy the size of ∼150nm by HPT. • Aging at 300°C after HPT leads to further increase in the mechanical property. • Electrical conductivity reaches 40% IACS after aging for 100 h. • 3D-APT revealed the formation of nanosized-precipitates during aging treatment. • Simultaneous hardening in both grain refinement and precipitation is achieved.

  4. Progress in the R and D Project on Oxide Dispersion Strengthened and Precipitation Hardened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

    SciTech Connect

    Kaito, Takeji; Ohtsuka, Satoshi; Inoue, Masaki

    2007-07-01

    High burnup capability of sodium cooled fast breeder reactor (SFR) fuels depends significantly on irradiation performance of their component materials. Japan Atomic Energy Agency (JAEA) has been developing oxide dispersion strengthened (ODS) ferritic steels and a precipitation hardened (PH) ferritic steel as the most prospective materials for fuel pin cladding and duct tubes, respectively. Technology for small-scale manufacturing is already established, and several hundreds of ODS steel cladding tubes and dozens of PH steel duct tubes were successfully produced. We will step forward to develop manufacturing technology for mass production to supply these steels for future SFR fuels. Mechanical properties of the products were examined by out-of-pile and in-pile tests including material irradiation tests in the experimental fast reactor JOYO and foreign fast reactors. The material strength standards (MSSs) were tentatively compiled in 2005 for ODS steels and in 1993 for PH steel. In order to upgrade the MSSs and to demonstrate high burnup capability of the materials, we will perform a series of irradiation tests in BOR-60 and JOYO until 2015 and contribute to design study for a demonstration SFR of which operation is expected after 2025. (authors)

  5. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  6. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  7. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGESBeta

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  8. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    SciTech Connect

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  9. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  10. Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Moeslang, A.; Rohde, M.

    2004-08-01

    Results on rapidly solidified filler metals for tungsten brazing are presented. A rapidly quenched foil-type filler metal based on Ni bal-15Cr-4Mo-4Fe-(0.5-1.0)V-7.5Si-1.5B was developed to braze tungsten to ferritic/martensitic Crl3Mo2NbVB steel (FS) for helium gas cooled divertors and plasma facing components. Polycrystalline W-2CeO 2 and monocrystalline pure tungsten were brazed to the steel under vacuum at 1150 °C, using a 0.5 mm thick foil spacer made of a 50Fe-50Ni alloy. As a result of thermocycling tests (100 cycles between 700 °C/20 min and air-water cooling/3-5 min) on brazed joints, tungsten powder metallurgically processed W-2CeO 2 failed due to residual stresses, whereas the brazed joint with zone-melted monocrystalline tungsten withstood the thermocycling tests.

  11. An empirical approach to strain to fracture of two-ductile-phase alloys. [Ti-Mn alloys and ferrite-martensite steels

    SciTech Connect

    Fan, Z.; Miodownik, A.P. )

    1993-04-15

    Two-ductile-phase alloys refer to the alloys comprising two phases which are plastically deformable under applied stress, for example, [alpha]-[beta] brasses, [alpha]-[beta] Ti-alloys and dual-phase steels. As a group, two-ductile-phase alloys offer an excellent combination of high strength, good ductility and promising fracture toughness. In this paper, the authors present an empirical approach to the strain to fracture of two-ductile-phase alloys, based on the microstructural characterization method developed by Fan et al. The proposed approach can predict the strain to fracture of two-ductile-phase alloys in terms of the strains to fracture of the constituent phases and the microstructural parameters, such as volume fraction, contiguity and grain size of each constituent phase. The predictions by the present approach will be compared with the experimental results in [alpha]-[beta] Ti-Mn alloys and ferrite-martensite dual-phase steels drawn from the literature. In addition, the effect of relative grain size (the grain size ratio) on the strain to fracture of two-ductile-phase alloys will be discussed.

  12. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    DOE PAGESBeta

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process,more » mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.« less

  13. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    SciTech Connect

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  14. Role of Y-Al Oxides During Extended Recovery Process of a Ferritic ODS Alloy

    NASA Astrophysics Data System (ADS)

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, M. K.

    2015-08-01

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Finally, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  15. Fatigue and Creep-Fatigue Deformation of an Ultra-Fine Precipitate Strengthened Advanced Austenitic Alloy

    SciTech Connect

    M.C. Carroll; L.J. Carroll

    2012-10-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. The low-cycle fatigue and creep-fatigue behavior of an HT-UPS alloy have been investigated at 650 °C and a 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain as long as 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in fatigue and creep-fatigue of both alloys at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present for hold times of 60 min and longer, and substantially more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ significantly; an equiaxed cellular structure is observed in 316 SS, whereas in HT-UPS the microstructure takes the form of widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as it evolves with continued cycling.

  16. Contributions of different strengthening mechanisms to the shear strength of an extruded Mg-4Zn-0.5Ca alloy

    NASA Astrophysics Data System (ADS)

    Naghdi, F.; Mahmudi, R.; Kang, J. Y.; Kim, H. S.

    2015-11-01

    The shear deformation behaviour of an extruded Mg-4Zn-0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.

  17. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  18. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    SciTech Connect

    Parish, Chad M.; Miller, Michael K.

    2014-12-09

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  19. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    DOE PAGESBeta

    Parish, Chad M.; Miller, Michael K.

    2014-12-09

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography.more » In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.« less

  20. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Parish, Chad M.; Miller, Michael K.

    2015-07-01

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  1. The role of grain size and shape in strengthening of dispersion hardened nickel alloys.

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.

  2. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1976-01-01

    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.

  3. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-07-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1-x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1-x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1-x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1-x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  4. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  5. Isothermal Annealing of a Thermally Stabilized Fe-Based Ferritic Alloy

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan; Darling, Kris A.

    2015-09-01

    In this study, the stability and microstructural evolution, including grain size and hardness of nanocrystalline Fe91Ni8Zr1 alloyed powders, produced by ball milling, were investigated after annealing at 900 and 1000 °C for up to 24 h. Results indicate that rapid grain growth to the micron scale occurs within the first few minutes of exposure to the elevated annealing temperatures. However, despite the loss of nanocrystallinity, an extremely stable and efficient hardening effect persists, which has been found to be equal to that predicted by Hall-Petch strengthening even at the smallest grain sizes. The mechanical properties of the samples consolidated to bulk via equal channel angular extrusion at 900 °C were evaluated by uniaxial compression at room and elevated temperatures. Results reveal high compressive yield stress as well as the appearance and disappearance of a yield drop indicating the presence of coherent (GP zone like) precipitates within the microstructure. Such a hardening mechanism has implications for developing new Fe-Ni-based alloys exhibiting a combination of high strength and ductility for high temperature applications.

  6. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  7. Low void swelling in dispersion strengthened copper alloys under single-ion irradiation

    NASA Astrophysics Data System (ADS)

    Hatakeyama, M.; Watanabe, H.; Akiba, M.; Yoshida, N.

    2002-12-01

    Oxide dispersion strengthened copper (ODS-Cu) alloys GlidCop CuAl15 and CuAl25 were irradiated with Cu 2+ ions at 573-773 K up to doses of 30 dpa. Void swelling was observed in all specimens irradiated at temperatures ranging from 573 to 673 K. In CuAl15 brazed with graphite at 1083 K, mean grain size was about 800 nm. Voids were observed in grains larger than 1 μm but not in smaller than 500 nm in diameter. The CuAl25 joined with SUS316 by hot isostatic pressing (HIP) at 1323 K had a mean grain size of 60 μm because of a large grain growth during the HIP process and showed large void swelling. Small grain size is effective in suppressing void swelling due to strong sink effects of grain boundaries for the point defects. The present results indicate that joining at high temperatures may reduce the void swelling resistance of GlidCop copper alloys.

  8. Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy

    SciTech Connect

    Zupanič, Franc; Wang, Di; Gspan, Cristian; Bončina, Tonica

    2015-08-15

    In this work, an Al–Mn–Be–Cu alloy was studied containing a primary and eutectic icosahedral quasicrystalline phase in the as-cast microstructure. Special attention was given to a transmission electron microscopy investigation of precipitates formed within the aluminium solid solution (Al{sub ss}) at different temperatures. At 200 °C, only binary Al–Cu precipitates (θ′) were formed. At 300 °C, icosahedral quasicrystalline (IQC) precipitates prevailed with a crystallographic orientation relationship with the Al{sub ss.} The rods of the T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) which were precipitated above 400 °C, also had a specific orientation relationship with the Al{sub ss}. The primary and eutectic IQC microstructural constituent started to transform rapidly to the T-phase and Be{sub 4}Al(Mn,Cu) at 500 °C. - Highlights: • In a quasicrystal-strengthened Al-alloy several types of precipitates can form. • At 200 °C, only binary Al–Cu precipitates formed (Al{sub 2}Cu-θ′). • The icosahedral quasicrystalline (IQC) precipitates prevailed at 300 °C. • T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) precipitated at temperatures above 400 °C. • The precipitation of different phases did not have a strong effect on hardness.

  9. The ferrite and austenite lattice parameters of Fe-Co and Fe-Cu binary alloys as a function of temperature

    SciTech Connect

    Velthuis, S.G.E. te; Sietsma, J.; Rekveldt, M.T.; Zwaag, S. van der; Root, J.H.

    1998-09-18

    The lattice parameters of Fe-15 Cu, Fe-2% Cu, Fe-1% Co, and Fe-2% Co binary alloys were determined by means of neutron diffraction at temperatures around the austenite-ferrite phase transformation (860--1350 K). While the thermal expansion coefficients prove to be similar to those of Fe for all alloys, Cu and Co have an opposite effect on the lattice parameter of Fe. Addition of Cu increases the lattice parameter in both ferrite ({alpha}) and austenite ({gamma}), while Co decreases the lattice parameter. For all alloys, the {alpha} {leftrightarrow} {gamma} phase transformation introduces a volume change of 1.0%. Evidence is found that both ferrite and austenite are slightly strained ({epsilon} < 8 {times} 10{sup {minus}4}) when both phases are present simultaneously.

  10. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  11. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Mervyn, D. A.

    1980-01-01

    The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.

  12. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  13. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    PubMed

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them. PMID:18503676

  14. Simulation of Ferrite Formation in Fe-C Alloys Based on a Three-Dimensional Mixed-Mode Transformation Model

    NASA Astrophysics Data System (ADS)

    van Bohemen, S. M. C.; Bos, C.; Sietsma, J.

    2011-09-01

    A three-dimensional mixed-mode (MM) transformation model accounting for both soft impingement and hard impingement was developed that calculates the growth kinetics of ferrite grains in an austenite matrix. The simulations are compared to the kinetics of ferrite formation in high-purity Fe-C alloys for which phase-transformation kinetics were measured isothermally by dilatometry at several temperatures in the range of 973 K to 1043 K (700 °C to 770 °C). The interface mobility is obtained from the best fit of the data at 1023 K (750 °C) for which the nucleus density N is estimated from the final microstructure. Subsequently, the experimental ferrite kinetics in Fe-0.36C at the other temperatures are simulated. The values of N extracted from the fits can be described with a nucleation model. The significance of the MM calculations is rationalized by comparing the results for Fe-0.17C with simulations assuming purely diffusion-controlled (DC) and purely interface-controlled (IC) growth. Comparison of simulated fraction curves for Fe-0.57C with the three models demonstrates that the transformation in high-carbon steels is essentially DC.

  15. Role of Boundary Strengthening on Prevention of Type IV Failure in High Cr Ferritic Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tsukamoto, Susumu; Sawada, Kota; Abe, Fujio

    2013-10-01

    Microstructure evolution of newly developed 9Cr-3W-3Co-V, Nb steel with boron addition (B steel) has been analyzed during HAZ thermal cycle at the peak temperature of around Ac3 (Ac3 HAZ) and post-weld heat treatment (PWHT) to elucidate the prevention mechanism of type IV failure by boron addition. It was found that enhancement of the boundary strengthening by precipitates is the main reason for prevention of type IV failure by boron addition. In B steel HAZ, original austenite is reconstituted through martensitic α to γ reverse transformation during the heating and original martensite is reconstituted through martensitic transformation during cooling of the Ac3 HAZ thermal cycle. This process allows M23C6 carbides to precipitate at the prior austenite grain (PAG) and block boundaries during PWHT even if the chemical segregation of carbide forming elements exists. The effect of boundary strengthening on the creep property has also been investigated. Microstructure evolution during creep was compared among Gr.92 with different Ac3 HAZ microstructures prepared by three kinds of heat treatments and B steel. The results revealed that both the boundary length and kernel average misorientation value decreased in all samples during creep. However, this process occurred very rapidly in Ac3 HAZ simulated Gr.92, whereas it was significantly retarded in the other samples with sufficient boundary strengthening by precipitates. This result confirms that the precipitates formed at PAG and block boundaries play the most important role to stabilize the microstructure of Ac3 HAZ simulated samples during creep and prolong the creep life.

  16. Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X{sub 2} alloys

    SciTech Connect

    Tanaka, T.; Aaronson, H.I.; Enomoto, M.

    1995-03-01

    The parabolic rate constant for the thickening of grain boundary ferrite allotriomorphs at the faces of austenite grain boundaries was measured as a function of isothermal transformation temperature in three Fe-C-X{sub 1}-X{sub 2} alloys where X{sub 1} is Mn and X{sub 2} is successively Si, Ni, and Co. The results were compared with the predictions of the local equilibrium model for multi-component systems and with those derived from the theory of growth under paraequilibrium conditions. The distribution of Mn and Si in ferrite and austenite in the Fe-C-Mn-Si alloy was also measured as a function of reaction temperature with transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The observed temperature below which alloying element partition ceased was in good agreement with the local equilibrium model. Whereas the parabolic rate constant for thickening was considerably larger than the amount predicted by this theory in the alloying element diffusion-controlled regime, the opposite was true in the carbon diffusion-controlled regime. Similarly, the calculated paraequilibrium constant was usually considerably larger than that measured experimentally. Synergistic enhancements of the effects of Mn and X{sub 2} in diminishing thickening kinetics were observed for each X{sub 2}. The time-temperature-transformation (TTT) curves for the beginning of transformation were calculated from a modified Cahn analysis for the overall kinetics of grain-boundary-nucleated reactions using values of the nucleation rate and the parabolic growth rate constant computed from various models and compared with experimentally determined TTT curves.

  17. Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Wu; Kong, Xiang-Shan; Liu-Wei; Liu, Chang-Song; Fang, Qian-Feng

    2014-10-01

    We investigate the segregation behavior of alloying atoms (Sr, Th, In, Cd, Ag, Sc, Au, Zn, Cu, Mn, Cr, and Ti) near Σ3 (111) [11¯0] tilt symmetric grain boundary (GB) in tungsten and their effects on the intergranular embrittlement by performing first-principles calculations. The calculated segregation energies suggest that Ag, Au, Cd, In, Sc, Sr, Th, and Ti prefer to occupy the site in the mirror plane of the GB, while Cu, Cr, Mn, and Zn intend to locate at the first layer nearby the GB core. The calculated strengthening energies predict Sr, Th, In, Cd, Ag, Sc, Au, Ti, and Zn act as embrittlers while Cu, Cr, and Mn act as cohesion enhancers. The correlation of the alloying atom's metal radius with strengthening energy is strong enough to predict the strengthening and embrittling behavior of alloying atoms; that is, the alloying atom with larger metal radius than W acts as an embrittler and the one with smaller metal radius acts as a cohesion enhancer.

  18. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

    NASA Astrophysics Data System (ADS)

    Bergner, Frank; Hilger, Isabell; Virta, Jouko; Lagerbom, Juha; Gerbeth, Gunter; Connolly, Sarah; Hong, Zuliang; Grant, Patrick S.; Weissgärber, Thomas

    2016-07-01

    The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors' groups are also highlighted.

  19. Effect of austenitizing conditions on the impact properties of an alloyed austempered ductile iron of initially ferritic matrix structure

    SciTech Connect

    Delia, M.; Alaalam, M.; Grech, M.

    1998-04-01

    The effect of austenitizing conditions on the microstructure and impact properties of an austempered ductile iron (ADI) containing 1.6% Cu and 1.6% Ni as the main alloying elements was investigated. Impact tests were carried out on samples of initially ferritic matrix structure and which had been first austenitized at 850, 900, 950, and 1,000 C for 15 to 360 min and austempered at 360 C for 180 min. Results showed that the austenitizing temperature, T{sub {gamma}}, and time, t{sub {gamma}} have a significant effect on the impact properties of the alloy. This has been attributed to the influence of these variables on the carbon kinetics. Microstructures of samples austenitized at 950 and 1,000 C contain no pro-eutectoid ferrite. The impact properties of the former structures are independent of t{sub {gamma}}, while those solution treated at 1,000 C are generally low and show wide variation over the range of soaking time investigated. For fully ausferritic structures, impact properties fall with an increase in T{sub {gamma}}. This is particularly evident at 1,000 C. As the T{sub {gamma}} increases, the amount of carbon dissolved in the original austenite increases. This slows down the rate of austenite transformation and results in coarser structures with lower mechanical properties. Optimum impact properties are obtained following austenitizing between 900 and 950 C for 120 to 180 min.

  20. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  1. Microstructure and Strengthening Mechanism of Fiber Laser-Welded High-Strength Mg-Gd-Y-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lyuyuan; Huang, Jian; Li, Zhuguo; Dong, Jie; Wu, Yixiong

    2016-08-01

    The microstructure and mechanical properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in T6 condition were investigated. The network-distributed precipitates at grain boundaries were identified as the Mg24(Gd,Y)5. No significant grain coarsening was observed in the heat-affected zone. The deterioration of mechanical properties was attributed to the dissolution of precipitates in the heat-affected zone during laser welding. For the weakest part of the heat-affected zone, solid solution strengthening was the most important strengthening factor.

  2. Identification of strengthening phases in Al-Cu-Li alloy Weldalite 049

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1989-01-01

    The tensile properties in the peak-strength T8 temper for Weldalite 049, a family of ultrahigh-strength weldable Al-Cu-Li-based alloys with a Li content ranging from 0 to 1.9 wt percent, are investigated, and strengthening precipitates at selected Li levels are identified. Relatively small amounts of Ag and Mg were found to be extremely effective in stimulating precipitation in Weldalite 049, resulting in a homogeneous distribution of fine, platelike precipitates with a 111-type habit plane in the peak-aged, T8 temper. The yield and tensile strengths are strongly dependent on Li content, with a peak in the range of 1.1 to 1.4 wt percent Li. At above 1.4 wt percent Li, strength decreases rapidly, which is associated with delta-prime precipitation. For high-resolution TEM, the structure of T(1)-type precipitates in Weldalite 049 is similar to that of T(1) platelets in 2090.

  3. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    SciTech Connect

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  4. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    SciTech Connect

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  5. Nucleation kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X{sub 2} alloys

    SciTech Connect

    Tanaka, T.; Aaronson, H.I.; Enomoto, M.

    1995-03-01

    The steady-state nucleation rates of ferrite allotriomorphs at the ``faces`` of austenite grain boundaries were measured in Fe-C-X{sub 1}-X{sub 2} alloys, where X{sub 1} was Mn and X{sub 2} was successively Si, Ni, and Co, using techniques previously developed for counterpart studies on Fe-C and Fe-C-X alloys. The results were compared with the predictions of the classical nucleation theory, using the pillbox-shaped critical nucleus model. The volume free energy changes associated with nucleation in Fe-C-X{sub 1}-X{sub 2} quaternary systems were evaluated from the central atoms model (CAM) for both para- and orthoequilibrium modes of transformation. The nucleation process was assumed to be controlled by volume and/or grain boundary diffusion of alloying elements. The so-called synergistic effects of alloying elements were considered in terms of the volume free energy change and interfacial energies on the basis of the result of the nucleation rate measurements.

  6. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    DOE PAGESBeta

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; et al

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

  7. Concepts for the Development of Nanoscale Stable Precipitation-Strengthened Steels Manufactured by Conventional Methods

    NASA Astrophysics Data System (ADS)

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y.-W.; Speer, J. G.; Findley, K. O.; Dogan, Ö. N.; Jablonski, P. D.; Maloy, S. A.; Hackenberg, R. E.; Clarke, A. J.; Clarke, K. D.

    2014-12-01

    The development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modified alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.

  8. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    SciTech Connect

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; Maloy, S. A.; Hackenberg, R. E.; Clarke, A. J.; Clarke, K. D.

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modified alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.

  9. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGESBeta

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  10. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  11. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  12. Effects of Solute Nb Atoms and Nb Precipitates on Isothermal Transformation Kinetics from Austenite to Ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Li; Parker, Sally; Rose, Andrew; West, Geoff; Thomson, Rachel

    2016-05-01

    Nb is a very important micro-alloying element in low-carbon steels, for grain size refinement and precipitation strengthening, and even a low content of Nb can result in a significant effect on phase transformation kinetics from austenite to ferrite. Solute Nb atoms and Nb precipitates may have different effects on transformation behaviors, and these effects have not yet been fully characterized. This paper examines in detail the effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite. The mechanisms of the effects have been analyzed using various microscopy techniques. Many solute Nb atoms were found to be segregated at the austenite/ferrite interface and apply a solute drag effect. It has been found that solute Nb atoms have a retardation effect on ferrite nucleation rate and ferrite grain growth rate. The particle pinning effect caused by Nb precipitates is much weaker than the solute drag effect.

  13. Effects of Solute Nb Atoms and Nb Precipitates on Isothermal Transformation Kinetics from Austenite to Ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Li; Parker, Sally; Rose, Andrew; West, Geoff; Thomson, Rachel

    2016-07-01

    Nb is a very important micro-alloying element in low-carbon steels, for grain size refinement and precipitation strengthening, and even a low content of Nb can result in a significant effect on phase transformation kinetics from austenite to ferrite. Solute Nb atoms and Nb precipitates may have different effects on transformation behaviors, and these effects have not yet been fully characterized. This paper examines in detail the effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite. The mechanisms of the effects have been analyzed using various microscopy techniques. Many solute Nb atoms were found to be segregated at the austenite/ferrite interface and apply a solute drag effect. It has been found that solute Nb atoms have a retardation effect on ferrite nucleation rate and ferrite grain growth rate. The particle pinning effect caused by Nb precipitates is much weaker than the solute drag effect.

  14. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  15. Journal of Nuclear Materials - Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    SciTech Connect

    Jiao, Zhijie; Busby, Jeremy T; Was, Gary S; Jiao, Zhijie

    2010-01-01

    Radiation-induced segregation in ferritic martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni Si Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures. 2010 Elsevier B.V. All rights reserved

  16. First principles assessment of helium trapping in Y2TiO5 in nano-featured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Jin, Yanan; Jiang, Yong; Yang, Litong; Lan, Guoqiang; Robert Odette, G.; Yamamoto, Takuya; Shang, Jiacheng; Dang, Ying

    2014-10-01

    Nano-scale Y2Ti2O7 and Y2TiO5 oxides are the major features that provide high strength and irradiation tolerance in nano-structured ferritic alloys. Here, we employ density functional theory to study helium trapping in Y2TiO5. The results suggest that helium is more deeply trapped in Y2TiO5 compared to Y2Ti2O7. Helium occupies open channels in Y2TiO5, where it weakly chemically interacts with neighboring oxygen anions, and results in less volume expansion compared to Y2Ti2O7, reducing strains in the iron matrix. The corresponding helium mobility in these channels is very high. While its ultimate fate is to form oxide/matrix interface bubbles, transient deep trapping of helium in oxides plays a major role in the ability of NFA to manage helium distribution.

  17. Soft magnetic properties of a ferritic Fe-Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Jin, S.; Sherwood, R. C.; Chin, G. Y.; Wernick, J. H.; Bordelon, C. M.

    1984-03-01

    Technologically important applications may exist for magnetically soft alloys that possess, in addition to the appropriate magnetic properties, relatively high mechanical strength and corrosion resistance. Such an alloy can be used, for example, for certain types of telephone receiver armature applications. In the present paper, we report the magnetic and mechanical properties of the ternary Fe-3Ni-5Cr alloy. The soft magnetic properties of the alloy are significantly improved by heat treatment within the (α+γ) two-phase region. Exemplary properties after heat treatment at ˜625 °C for 2 h are Hc˜1.2 Oe, μm˜4700, yield strength ˜59 ksi, and elongation ˜30%. The alloy exhibits reasonably good corrosion resistance. Magnetic, mechanical, and electrical properties of the alloy as well as the acoustic performance of telephone receivers using it, have been found to be comparable to those of the 2V-Permendur alloy.

  18. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  19. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  20. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    DOE PAGESBeta

    Aydogan, E.; Pal, S.; Anderoglu, O.; Maloy, S. A.; Vogel, S. C.; Odette, G. R.; Lewandowski, J. J.; Hoelzer, D. T.; Anderson, I. E.; Rieken, J. R.

    2016-03-08

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  1. Release of deuterium from irradiation damage in Fe-9Cr-2W ferritic alloy irradiated with deuterium ions

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Kudo, F.

    2014-09-01

    The release profile of deuterium from an Fe-9Cr-2W ferritic alloy irradiated with low-energy deuterium ions was studied by thermal desorption spectroscopy (TDS) and in situ transmission electron microscopy (TEM). It was found that one sharp TDS peak appeared at a temperature around 410 K depending on the heating rate that ranged from 1.5 to 20 K/min. The TDS peak height increased with increasing fluence from 2 × 1019 to 2 × 1021 D+/m2 with no shift of the peak temperature. A close correlation between these TDS peaks and the disappearance of dislocation loops formed by the irradiation was observed. The effects of tiny bubbles on TDS were small. These results suggest that most of the deuterium was trapped by dislocation loops, which affected the thermal stability of dislocation loops in the alloy. The dependence of TDS peak temperature on the heating rate yielded an activation energy of 0.63 ± 0.02 eV for deuterium de-trapping from dislocation loops. The retention properties of the total amount of deuterium exhibited a tendency of saturation at values on the order of 1020 D+/m2, which corresponded to a saturation tendency of the loop density.

  2. Evaluation of mechanical properties and biological response of an alumina-forming Ni-free ferritic alloy.

    PubMed

    González-Carrasco, J L; Ciapetti, G; Montealegre, M A; Pagani, S; Chao, J; Baldini, N

    2005-06-01

    PM 2000 is a Ni-free oxide dispersion strengthened Fe-20Cr-5Al alloy able to develop a fine, dense and tightly adherent alpha-alumina scale during high-temperature oxidation. Despite the high temperature involved during thermal oxidation (1100 degrees C), microstructural changes in the candidate material, a hot rolled product, hardly occurs. Consequently, the good mechanical properties of the as-received material are not significantly affected. Moreover, due to the high compressive residual stresses at the alumina scale, an increase in the fatigue limit from 500 to 530 MPa is observed. Such stresses also account for the high capability of the coating/metal system to withstand more than 1% tensile deformation without cracking. The biocompatibility of the alloy was assessed in comparison to commercial alumina. Saos-2 osteoblast-like cells were either challenged with PM 2000 particles, or seeded onto PM 2000 (with and without scale) solid samples. Viability, growth, and ALP release from cells were assessed after 3 or 7 days, while mineralization was checked at 18 days. This study has demonstrated that PM 2000 with and without scale are capable of supporting in vitro growth and function of osteoblast-like cells over a period of 18 days. Results from this study suggest that the resulting alumina/alloy system combines the good mechanical properties of the alloy with the superior biocompatibility of the alpha-alumina, for which there is very good clinical experience. PMID:15626434

  3. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  4. Modified ferritic iron alloys with improved high-temperature mechanical properties and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1975-01-01

    An alloy modification program was conducted in which the compositions of two existing Fe-Cr-Al alloys (Armco 18SR and GE-1541) were changed to achieve either improved high-temperature strength or improved fabricability. Only modifications of Armco 18SR were successful in achieving increased strength without loss of fabricability or oxidation resistance. The best modified alloy, designated NASA-18T, had twice the rupture strength of Armco 18SR at 800 and 1000 C. The NASA-18T alloy also had better oxidation resistance than Armco 18SR and comparable fabricability. The nominal composition of NASA-18T is Fe-18Cr-2Al-1Si-1.25Ta. All attempted modifications of the GE-1541 alloy were unsuccessful in terms of achieving better fabricability without sacrificing high-temperature strength and oxidation resistance.

  5. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  6. Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas John

    This work advances the understanding of the Y-Ti-O nanofeatures (NFs) in nanostructured ferritic alloys (NFAs); a class of high temperature, oxide dispersion strengthened iron alloys with applications in both advanced fission and fusion reactors. NFAs exhibit high creep strength up to 800ºC and a remarkable radiation damage tolerance and He management. However, the NFs, which are responsible for these properties, are not fully understood. This work addresses key questions including: a) what is the NF structure and composition and how are they affected by alloy composition and processing; b) what is the NFA long-term thermal stability; c) and what alternative processing paths are available to reduce costs and produce more uniform NF distributions? A detailed study using small angle neutron scattering (SANS), transmission electron microscopy (TEM-group member Y. Wu), and atom probe tomography (APT) evaluated the NF average size (), number density (N), volume fraction (f), composition, and structure in two heats of the commercial NFA MA957. The and N were ≈2.6 nm and ≈5x1023 m-3 , respectively, for both heats, with TEM indicating the NF are Y 2Ti2O7. However, SANS indicates a mixture of NF compositions or atomic densities with a difference between the heats, while APT shows compositions with ≈ 10% Cr and a Y/Ti ratio < 1. However, microscope artifacts such as preferential undercounting of Y and O or trajectory aberrations that prevent resolving Ti segregation to the NF-matrix interface could account for the discrepancy. The microstructure and NFs in MA957 were stable for long times at temperatures up to 900ºC. Notably, Ti in the matrix and some from the NFs migrates to large, Ti-rich phases. Aging at higher temperatures up to 1000ºC for 19.5 kh produced modest coarsening for ≈ 3.8 nm and ≈30% increase in grain size for a corresponding 13% reduction in microhardness. A coarsening model shows no significant NF coarsening will occur at temperatures less than

  7. Recrystallization Process in Fe-Cr-Al Oxide Dispersion-Strengthened Alloy: Microstructural Evolution and Recrystallization Mechanism

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Chao, J.; Capdevila, C.

    2014-05-01

    Mechanically alloyed iron-base oxide dispersion-strengthened (ODS) alloys are the class of advanced materials for application in heat exchangers tubing in which creep and oxidation resistance are paramount. The yttria dispersion in such alloys improves the high-temperature creep and stress rupture life. The strength is further enhanced by the development of a coarse-grained microstructure during recrystallization. Factors controlling the evolution of this desirable microstructure are explored in this work, focusing specifically on PM 2000. The results presented in terms of orientation imaging, transmission electron microscopy, and scanning electron microscopy indicate that the recrystallization process consists of two different stages. Before the coarse grain takes place, the alloy undergoes an extended recovery process followed by abnormal grain growth. The initial microstructure consisted of subgrains (submicrometer sizes) with a strong <110>∥RD fiber texture ( α fiber), which are transformed into coarse grains (mm sizes) with orientations <112>∥RD. The aim of this study is to describe the mechanisms involved in the intermediate stages of recrystallization process from the submicrometer grain size to the abnormal grain size.

  8. Radiation-induced strengthening in EB welds of Mo-Re alloys during high temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Morito, F.; Chakin, V. P.; Danylenko, M. I.; Krajnikov, A. V.

    2011-10-01

    Mo-Re alloys have been known as excellent construction materials with good thermal stability and resistivity for chemical corrosion. These alloys may be fabricated into equipments for various chemical plants and new energy facilities such as fusion reactor. Accordingly it is interesting to elucidate the weldability and radiation performance of Mo-Re alloys in the actual constructions. In this study Mo-Re welds with 16-50% Re exhibited a large radiation-induced strengthening and embrittlement by irradiation at ˜1073 K to ˜5 × 10 21 cm -2 ( E > 0.1 MeV). High temperature neutron irradiation leads to intensive homogeneous nucleation of Re-rich σ-phases in all studied Mo-Re alloys that equalizes the difference in mechanical properties between melting zone, heat-affected zone and base metal. As a result, all parts of as-irradiated welds displayed approximately same level of strength. Therefore, the application of EB welding in Mo-Re constructions operating under high temperature neutron irradiation does not limit lifetime of such constructions.

  9. Method and Apparatus to Access Optimum Strength During Processing of Precipitation Strengthened Alloys

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Yost, William T. (Inventor)

    2001-01-01

    A method and apparatus are provided which enable the nondestructive testing of strength of a heat treated alloy. An alloy is insonified with an ultrasonic signal. The resulting convoluted signal is detected and the acoustic nonlinearity parameter is determined. The acoustic nonlinearity parameter shows a peak corresponding to a peak in material strength.

  10. Process for the synthesis of nanophase dispersion-strengthened aluminum alloy

    DOEpatents

    Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell

    1998-12-15

    A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.

  11. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  12. Composition effects on mechanical properties of HfC-strengthened molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1976-01-01

    The mechanical properties of swaged rod thermomechanically processed from arc-melted Mo-2Re-Hf-C alloys containing as much as 0.9 mol pct HfC have been evaluated. The low temperature ductilities of these alloys were not influenced by the amount of HfC present but by the amount of Hf in excess of stoichiometry. Maximum ductility occurred at 0.2 to 0.3 at. pct excess Hf. At 0.3 to 0.5 mol pct HfC, alloy strength varied directly with the Mo content of extracted carbide particles, both decreasing as the amount of excess Hf increased. Additions of 2 at. pct Re had little effect on strength or ductility. Tensile and creep strengths of Mo-2Re-0.7Hf-0.5C alloy equaled or exceeded those of other high strength Mo alloys.

  13. Compositional effects on mechanical properties of hafnium-carbide-strengthened molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1975-01-01

    The mechanical properties of swaged rod thermomechanically processed from arc melted Mo-2Re-Hf-C alloys containing as much as 0.9-mol% HfC were evaluated. The low-temperature ductilities of these alloys were not influenced by the amount of HfC present but by the amount of Hf in excess of stoichiometry. Maximum ductility occurred at 0.2- to 0.3-at.% excess Hf. At 0.3- to 0.5-mol% HfC, alloy strength varied directly with the Mo content of extracted carbide particles, both decreasing as the amount of excess Hf increased. Additions of 2-at.% Re had little effect on strength or ductility. Tensile and creep strengths of Mo-2Re-0.7Hf-0.5C alloy equaled or exceeded those of other high strength Mo alloys.

  14. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    SciTech Connect

    Wright, Ian G; Tatlock, Gordon J; Badairy, H.; Chen, C-L.

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potential for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.

  15. Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: An object kinetic Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Chiapetto, M.; Malerba, L.; Becquart, C. S.

    2015-10-01

    Self-interstitial cluster diffusivity in Fe-Cr alloys, model materials for high-Cr ferritic/martensitic steels, is known to be reduced in a non-monotonic way as a function of Cr concentration: it first decreases, then increases. This non-monotonic behaviour is caused by a relatively long-ranged attractive interaction between Cr atoms and crowdions and correlates well with the experimentally observed swelling in these alloys under neutron irradiation, also seen to first decrease and then increase with increasing Cr content, under comparable irradiation conditions. Moreover, recent studies reveal that C atoms dispersed in the Fe matrix form under irradiation complexes with vacancies which, in turn, act as trap for one-dimensionally migrating self-interstitial clusters. The mobility of one-dimensional migrating clusters is considered key to determine swelling susceptibility. However, no model has ever been built that quantitatively describes the dependence of swelling on Cr content, allowing for the presence of C in the matrix. In this work we developed physically-based sets of parameters for object kinetic Monte Carlo (OKMC) simulations intended to study the nanostructure evolution under irradiation in Fe-Cr-C alloys. The nanostructural evolution in Fe-C and in four Fe-Cr-C alloys (containing 2.5, 5, 9 and 12 wt.% Cr) neutron irradiated up to ∼0.6 dpa at 563 K was simulated according to the model and reference experiments were reproduced. Our model shows that the SIA cluster reduced mobility has a major influence on the nanostructural evolution: it increases the number of vacancy-SIA recombinations and thus leads to the suppression of voids formation. This provides a clear framework to interpret the non-monotonic dependence of swelling in Fe-Cr alloys versus Cr content. Our model also suggests that the amount of C in the matrix has an equally important role: high amounts of it may counteract the beneficial effect that Cr has in reducing swelling.

  16. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y. He, Z. B.; Li, L. F.; Wang, Y. D.; Nie, Z. H.; Wang, Z. L.; Ren, Y.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  17. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  18. Microstructure of laser clad Ni- Cr- Al- Hf alloy on a γ' strengthened ni- base superalloy

    NASA Astrophysics Data System (ADS)

    Singh, Jogender; Mazumder, J.

    1988-08-01

    Alloys and coatings for alloys for improved high temperature service life under aggressive atmo-spheres are of great contemporary interest. There is a general consensus that the addition of rare earths such as Hf will provide many beneficial effects for such alloys. The laser cladding technique was used to produce Ni-Cr-AI-Hf alloys with extended solid solution of Hf. A 10 kW CO2 laser with mixed powder feed was used for laser cladding. Optical, scanning electron (SEM) and scanning transmission electron (STEM) microscopy were employed to characterize the microstructure of alloys produced during laser cladding processes. Microstructural studies revealed grain refinement, considerable in-crease in solubility of Hf in the matrix, Hf-rich precipitates, and new metastable phases. The size and morphology of γ' (Ni3Al) phase were discussed in relation to its microchemistry and the laser processing conditions. This paper will report the microstructural development in this laser clad Ni-Cr-AI-Hf alloy.

  19. Irradiation effect of nano-bubble dispersion strengthened (N-BDS) alloy

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Kawano, Ryohei; Shi, Shi; Ukai, Shigeharu; Hayashi, Shigenari; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2013-11-01

    Nano-bubble dispersion strengthened (N-BDS) Fe was made from Fe and polymethylmethacrylate (PMMA) powder and irradiated by 6.4 MeV Fe3+ ions to investigate the cavity strengthening and the bubble to void evolution. The bubbles accelerated the irradiation-induced cavity growth. The hardness of the N-BDS Fe was 500 MPa higher than that of unalloyed Fe and the hardness increased by irradiation, while that of unalloyed Fe did not increase. Cavity is probably the origin of the irradiation hardening of N-BDS Fe.

  20. Swelling in several commercial alloys irradiated to very high neutron fluence

    SciTech Connect

    Gelles, D.S.; Pintler, J.S.

    1983-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650/sup 0/C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys.

  1. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  2. Strengthening of Mg based alloy through grain refinement for orthopaedic application.

    PubMed

    Nayak, Soumyaranjan; Bhushan, Bharat; Jayaganthan, R; Gopinath, P; Agarwal, R D; Lahiri, Debrupa

    2016-06-01

    Magnesium is presently attracting a lot of interest as a replacement to clinically used orthopaedic implant materials, due to its ability to solve the stress shielding problems, biodegradability and osteocompatibility. However, the strength of Mg is still lower than the requirement and it becomes worse after it starts degrading fast, while being exposed in living body environment. This research explores the effectiveness of 'grain refinement through deformation', as a tool to modify the strength (while keeping elastic modulus unaffected) of Mg based alloys in orthopaedic application. Hot rolled Mg-3wt% Zn alloy (MZ3) has been investigated for its potential in orthopaedic implant. Microstructure, mechanical properties, bio-corrosion properties and biocompatibility of the rolled samples are probed into. Grain size gets refined significantly with increasing amount of deformation. The alloy experiences a marked improvement in hardness, yield strength, ultimate tensile strength, strain and toughness with finer grain size. An increment in accelerated corrosion rate is noted with decreasing grain size, which is correlated to the increased grain boundary area and mechano-chemical dissolution. However, immersion test in simulated body fluid (SBF) reveals reduction in corrosion rate after third day of immersion. This was possible owing to precipitation of protective hydroxyapatite (HA) layer, formed out of the interaction of SBF and the alloy. More nucleation sites at the grain boundary for fine grained samples help in forming more HA and thus reduce the corrosion rate. Human osteosarcoma cells show less viability and adhesion on grain refined alloy. PMID:26745721

  3. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  4. Gas- and plasma-driven hydrogen permeation through a reduced activation ferritic steel alloy F82H

    NASA Astrophysics Data System (ADS)

    Zhou, Haishan; Hirooka, Yoshi; Ashikawa, Naoko; Muroga, Takeo; Sagara, Akio

    2014-12-01

    The first wall of a magnetic fusion power reactor will be subjected to hydrogen isotope permeation by the two mechanisms: one is gas-driven and the other is plasma-driven. Hydrogen transport through a reduced activation ferritic steel alloy F82H has been investigated using a steady-state laboratory-scale plasma device. Permeation parameters including permeability, solubility and diffusivity have been measured in the temperature range from 150 to 520 °C. The surface recombination coefficient for hydrogen has also been estimated by a one-dimensional steady-state permeation model with the input data taken from experiments. Using these parameters, the hydrogen plasma-driven permeation flux and inventory for a 0.5 cm thick first wall around 500 °C are estimated to be ∼1.0 × 1013 atom cm-2 s-1 and ∼2 × 1016 atom cm-3, respectively. Also, the implications of all these data on reactor operation are discussed.

  5. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  6. Effect of ferrite formation on abnormal austenite grain coarsening in low-alloy steels during the hot rolling process

    NASA Astrophysics Data System (ADS)

    Asahi, Hitoshi; Yagi, Akira; Ueno, Masakatsu

    1998-05-01

    Abnormal coarsening of austenite (γ) grains occurred in low-alloy steels during a seamless pipe hotrolling process. Often, the grains became several hundred micrometers in diameter. This made it difficult to apply direct quenching to produce high-performance pipes. The phenomenon of grain coarsening was successfully reproduced using a thermomechanical simulator, and the factors which affected grain coarsening were clarified. The mechanism was found to be basically strain-induced grain rowth which occurred during reheating at around 930 °C. Furthermore, once a pipe temperature decreased to the dual-phase region after the minimal hot working and prior to the reheating process, the grain coarsening was more pronounced. It was understood that the formation of ferrite along grain boundaries had the role of reducing the migration of grain boundaries into neighboring grains, leaving a strain-free, recrystallized region behind. This abnormal grain coarsening was found to be effectively prevented by an addition of Nb, the content of which varied depending on the C content. The effect of the Nb addition was confirmed by an in-line test.

  7. Effect of ferrite formation on abnormal austenite grain coarsening in low-alloy steels during hot rolling process

    SciTech Connect

    Asahi, Hitoshi; Ueno, Masakatsu; Yagi, Akira

    1998-05-01

    Abnormal coarsening of austenite ({gamma}) grains occurred in low-alloy steels during a seamless pipe hot-rolling process. Often, the grains became several hundred micrometer in diameter. This made it difficult to apply direct quenching to produce high-performance pipes. The phenomenon of grain coarsening was successfully reproduced using a thermomechanical simulator, and the factors which affected grain coarsening were clarified. The mechanism was found to be basically strain-induced grain growth which occurred during reheating at around 930 C. Furthermore, once a pipe temperature decreased to the dual-phase region after the minimal hot working and prior to the reheating process, the grain coarsening was more pronounced. It was understood that the formation of ferrite along grain boundaries had the role of reducing the migration of grain boundaries into neighboring grains, leaving a strain-free, recrystallized region behind. This abnormal grain coarsening was found to be effectively prevented by an addition of Nb, the content of which varied depending on the C content. The effect of the Nb addition was confirmed by an in-line test.

  8. Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses

    NASA Astrophysics Data System (ADS)

    Meslin, E.; Lambrecht, M.; Hernández-Mayoral, M.; Bergner, F.; Malerba, L.; Pareige, P.; Radiguet, B.; Barbu, A.; Gómez-Briceño, D.; Ulbricht, A.; Almazouzi, A.

    2010-11-01

    Understanding the behavior of reactor pressure vessel (RPV) steels under irradiation is a mandatory task that has to be elucidated in order to be able to operate safely a nuclear power plant or to extend its lifetime. To build up predictive tools, a substantial experimental data base is needed at the nanometre scale to extract quantitative information on neutron-irradiated materials and to validate the theoretical models. To reach this experimental goal, ferritic model alloys and French RPV steel were neutron irradiated in a test reactor at an irradiation flux of 9 × 10 17 nm -2 s, doses from 0.18 to 1.3 × 10 24 nm -2 and 300 °C. The main goal of this paper is to report the characterization of the radiation-induced microstructural change in the materials by using the state-of-the-art of characterization techniques available in Europe at the nanometre scale. Possibilities, limitations and complementarities of the techniques to each other are highlighted.

  9. Solid solution strengthened duct and cladding alloy D9-B1

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    A modified AISI type 316 stainless steel is described for use in an atmosphere where the alloy will be subject to neutron irradiation. The alloy is characterized by its phase stability in both the annealed as well as cold work condition and above all by its superior resistance to radiation induced swelling. Graphical data is included to demonstrate the superior swelling resistance of the alloy which contains from about 0.5% to 2.2% manganese, from about 0.7% to about 1.1% silicon, from about 12.5% to 14% chromium, from about 14.5% to about 16.5% nickel, from about 1.2% to about 1.6% molybdenum, from 0.15% to 0.30% titanium, from 0.02% to 0.08% zirconium, and the balance iron with incidental impurities.

  10. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  11. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    NASA Astrophysics Data System (ADS)

    Xie, Zhuoming; Liu, Rui; Fang, Qianfeng; Zhang, Tao; Jiang, Yan; Wang, Xianping; Liu, Changsong

    2015-12-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C-600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177, 11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)

  12. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    SciTech Connect

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  13. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Lukáč, F.; Melikhova, O.; Hruška, P.; Procházka, I.; Vlach, M.; Stulíková, I.; Smola, B.; Jäger, A.

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C.

  14. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

    DOEpatents

    Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

    1982-01-01

    A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

  15. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    SciTech Connect

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  16. Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Knipling, Keith E.; Dunand, David C.; Seidman, David N.

    2007-10-01

    Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 °C or 425 °C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipitation of Al3Zr (L12) within Zr-enriched dendritic regions. This discrepancy between the two alloys is explained within the context of the equilibrium phase diagrams: (1) the disparity in solid and liquid solubilities of Ti in α-Al is much greater than that of Zr in α-Al; and (2) the relatively small liquid solubility of Ti in α-Al limits the amount of solute retained in solid solution during solidification, while the comparatively high solid solubility reduces the supersaturation effecting precipitation during post-solidification aging. The lattice parameter mismatch of Al3Ti (L12) with α-Al is also larger than that of Al3Zr (L12), further hindering nucleation of Al3Ti. Classical nucleation theory indicates that the minimum solute supersaturation required to overcome the elastic strain energy of Al3Ti nuclei cannot be obtained during conventional solidification of Al-Ti alloys (unlike for Al-Zr alloys), thus explaining the absence of Al3Ti precipitation and the presence of Al3Zr precipitation.

  17. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  18. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  19. Dispersion-strengthened nickel-alumina alloy produced from comminuted powders

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Quatinetz, M.

    1972-01-01

    An investigation was conducted to determine whether a nickel - 2-volume-percent alumina dispersion-strengthened material with a fine, uniformly distributed dispersoid could be produced, which was equivalent in short time tensile strength to commercially available thoriated sheet materials. Comminution and blending with a modified triple stirrer attritor and a hydrogen and vacuum precleaning treatment prior to consolidation were used. A product with a fine dispersoid with an average particle size of 0.04 micron and an interparticle spacing of 0.7 micron was achieved. This material has a 1093 C (2000 F) short time tensile strength of 117 MN/sq m (16 900 psi).

  20. Radiation-Induced Phase Instabilities and Their Effects on Hardening and Solute Segregation in Precipitation-Strengthened Alloy 718

    SciTech Connect

    Thomas, Larry E.; Sencer, Bulent H.; Bruemmer, Stephen M.

    2001-03-31

    A classic example of radiation-induced phase instability and degraded mechanical properties occurs in g'-g" (gamma prime - gamma double prime) -strengthened alloy 718. During neutron irradiation at 288 degrees C, the Ni3Nb g" particles at grain boundaries and in the matrix disappear after a few dpa. At higher doses, the g' (present only in the matrix) also dissolves and reprecipitates. Hardness is unaffected by disappearance of the g", but decreases as the original g' particles dissolve. Fine-probe compositional measurements in a TEM show that the softening coincides with solute redistribution rather than with the phase disappearance. Compositional changes at grain boundaries included leveling of the thermally segregated Mo as well as strong Ni enrichment and loss of Nb after higher doses. Radiation-induced softening is also observed after irradiations at low temperatures (30-60 degrees C) in a mixed spectrum of protons and spallation neutrons. In this case, both g' and g" completely disappear by 0.6 dpa as the alloy becomes hardened and embrittled. Minor softening occurs at higher doses after the g' and g" have disappeared. The complex phase stability and solute redistribution behavior reflects mainly ballistic mixing at 30-70 degrees C irradiation temperatures and the influence of significant thermal diffusivities at the higher temperatures.

  1. Effect of alloying with titanium on the microstructure of an oxide dispersion strengthened 13.5% Cr steel

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Bogachev, A. A.; Kirillov, D. I.; Nikitin, A. A.; Orlov, N. N.; Aleev, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.

    2014-12-01

    Microstructure and phase composition of a high-chromium oxide dispersion strengthened (ODS) steel Fe-13.5% Cr-2% W-0.3% Y2O3 without a titanium additive, as well as alloyed with 0.2, 0.3, and 0.4 wt %Ti, has been studied using transmission electron microscopy. A comparison of the nanoscale state of the steels under investigation with that of an ODS Eurofer steel alloyed with 0.2 wt % V has been carried out. In all of the states found, a high number density of nanosized oxide inclusions has been observed. Upon an increase of the titanium concentration in the steel Fe-13.5% Cr-2% W-0.3% Y2O3 to 0.3 wt %, the average size of the particles decreases, while their number density grows. In this steel, single nanosized (0.1-0.7 μm) grains or their agglomerates have been found, as well as coarse (6-8 μm) grains.

  2. High strength oxide dispersion strengthened silver aluminum alloys optimized for Bi2Sr2CaCu2O8+x round wire

    NASA Astrophysics Data System (ADS)

    Kajbafvala, Amir; Nachtrab, William; Kumar, Raj; Hunte, Frank; Wong, Terence; Schwartz, Justin

    2013-12-01

    High strength dispersion strengthened (DS) Ag/Al alloys with various Al content are studied as candidates for sheathing Bi2Sr2CaCu2O8+x (Bi2212) wire. The Ag/Al alloys are fabricated by powder metallurgy and internally oxidized in pure oxygen. The time and temperature of the internal oxidation heat treatment is varied to maximize the strength after undergoing the Bi2212 partial melt process (PMP). Vickers micro-hardness number (HVN), room temperature tensile behavior, optical and scanning electron microscopy, ion channeling contrast imaging using a focused ion beam and electrical resistivity measurements are used to characterize the alloys. An Ag/0.2wt%Mg (Ag/Mg) alloy is used for comparison. Results show that internal oxidation at 650-700  ° C for 4 h produces the highest HVN for the DS Ag/Al alloy; when oxidized at 675 ° C for 4 h the HVN, yield strength and tensile strength of the DS Ag/Al are 50% higher than the corresponding values of Ag/Mg. Microstructural observations show that Al2O3 precipitates play the main role in strengthening the DS Ag/Al alloy. The alloy retains its fine grain structure and strength after PMP heat treatment.

  3. Role of alloy additions on strengthening in 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  4. The influence of Ag+Mg additions on the nucleation of strengthening precipitates in a non-cold-worked Al-Cu-Li alloy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Aluminum-copper-lithium alloys generally require cold work to attain their highest strengths in artificially aged tempers. These alloys are usually strengthened by a combination of the metastable delta prime (Al3Li) and theta prime (Al2Cu) phases and the equilibrium T sub 1 (Al2CuLi) phase, and where the T sub 1 phase is a more potent strengthener than the delta prime. Various investigators have shown that the high strengths obtained after artificial aging associated with cold work result from the heterogeneous precipitation of T sub 1 on matrix dislocations. The objective here is to elucidate the mechanism by which the Ag+Mg additions stimulate the precipitation of T sub 1 type precipitates without cold work. To accomplish this, the microstructure of an Al-6.3Cu-1.3Li-0.14Zr model alloy was evaluated in a T6 type temper with and without the Ag+Mg addition.

  5. Y{sub 2}O{sub 3} morphology in an oxide dispersion strengthened FeAl alloy prepared by mechanical alloying

    SciTech Connect

    Inkson, B.J.; Threadgill, P.L.

    1997-12-31

    The microstructure of an oxide dispersion strengthened FeAl (Zr,B) alloy, manufactured by mechanical alloying then extrusion, has been examined by HREM. Y{sub 2}O{sub 3} is dispersed throughout the FeAl matrix as particles, ranging in size from 5 nm upwards, which are effective in pinning the bulk dislocations. Although in the main the observed oxide particles are irregular in morphology, a significant minority of particles exhibit faceted surfaces. In particular, the facets of the Y{sub 2}O{sub 3} particles are observed to coincide with {l_brace}100{r_brace}{sub B2}, {l_brace}110{r_brace}{sub B2} and {l_brace}112{r_brace}{sub B2} planes of the surrounding bulk FeAl matrix. In addition, HREM imaging reveals uncoupled 1/2<111>{sub FeAl} superpartial dislocations lying a few nanometers from some of the FeAl-Y{sub 2}O{sub 3} interfaces.

  6. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    SciTech Connect

    Morris E. Fine; Gautam Ghosh; Dieter Isheim; Semyon Vaynman; Keith Knipling; Jefferson Z. Liu

    2006-05-06

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloy matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.

  7. The development and evaluation of a cobalt base oxidation resistant dispersion strengthened alloy

    NASA Technical Reports Server (NTRS)

    Irani, K. K.

    1971-01-01

    The Co-18Cr-20Ni-4 Vol % ThO2 powders were prepared by a flash drying selective reduction process starting with an aqueous solution of metal salts and colloidal thoria. Powders were consolidated and extruded into rods with a minimum density of 99% of theoretical. Swaging and annealing studies were conducted to determine the conditions that would lead to a product with high stress-rupture strength. The best process yielded a stress-rupture life of 7.2 hours at 10 KSI (69 MN sq m and 2000 F (1094 C). The alloy recrystallized to a duplex (coarse-fine) structure and thus did not exhibit the desired strength of 3000 hours at 15 KSI (103.5MN/sq m and 2000 F (1094 C).

  8. Interdiffusion Behavior of Al-Rich Oxidation Resistant Coatings on Ferritic-Martensitic Alloys

    SciTech Connect

    Velraj, S.; Zhang, Ying; Hawkins, W. E.; Pint, Bruce A.

    2012-06-21

    We investigated interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic–martensitic alloys in the temperature range of 650–700°C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H2O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. Moreover, the model was also applied to predict coating lifetime at 650–700°C based on a minimum Al content (Cb) required at the coating surface to re-form protective oxide scale. In addition to a Cb value established from the failure of a thin CVD coating at 700°C, values reported for slurry aluminide coatings were also included in lifetime predictions.

  9. Notch Impact Behavior of Oxide-Dispersion-Strengthened (ODS) Fe20Cr5Al Alloy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Capdevila, C.; Serrano, M.; Garcia-Junceda, A.; Jimenez, J. A.; Pimentel, G.; Urones-Garrote, E.

    2013-10-01

    In this article, tensile tests as well as LS and LT notched Charpy impact tests were performed at the temperature range between 77 K (-196 °C) and 473 K (200 °C) on an oxide-dispersion-strengthened (ODS) Fe20Cr6Al0.5Y2O3 hot-rolled tube. The absorbed energy values in the range of high temperatures of LS notched specimens are considerably higher than those of LT notched specimens; however, such values tend to converge as temperature increases. Ductile fracture on the normal planes to RD with delaminations parallel to the tube surface was observed in the temperature range between room temperature (RT) and 473 K (200 °C). Delaminations of crack divider type were observed in LT specimens, whereas delaminations of crack arrester type were observed in LS specimens. The yttria particles in the grain boundaries and the transverse plastic anisotropy are the possible reasons why the delaminations were parallel to the tube surface.

  10. J/sub Ic/ fracture toughness of ferritic DCI (ductile cast iron) alloys: A comparison of two versions of ASTM E 813

    SciTech Connect

    Salzbrenner, R.

    1989-05-01

    The fracture toughness of several ductile cast iron (DCI) alloys has been calculated according to two versions of the ASTM Standard covering the determination of J/sub Ic/. The original version (ASTM E 813-81) had previously been used to establish the relationship between ferritic DCI alloys and the graphite nodule spacing. The J/sub Ic/ values were recalculated by the methods of the revised version of the ASTM Standard (ASME 813-87), and were found to be 5 to 8% higher than those determined by the original standard. A linear regression analysis was used to reaffirm that the fracture toughness is directly related to the graphite nodule size or spacing. 6 refs., 8 figs., 3 tabs.

  11. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  12. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Meslin, E.; Radiguet, B.; Pareige, P.; Barbu, A.

    2010-04-01

    The embrittlement of reactor pressure vessel steels under neutron irradiation is partly due to the formation of solute clusters. To gain more insight into their formation mechanisms, ferritic model alloys (low copper Fe-0.08 at.% Cu, Fe-0.09 Cu-1.1 Mn-0.7 Ni (at.%), and a copper free Fe-1.1 Mn-0.7 Ni (at.%)) and a French 16MND5 reactor pressure vessel steel, were irradiated in a test reactor at two fluxes of 0.15 and 9 × 10 17 n( E> 1 MeV) m -2 s -1 and at increasing doses from 0.18 to 1.3 × 10 24 n( E> 1 MeV) m -2. Atom probe tomography analyses revealed that nanometer-size solute clusters were formed during irradiation in all the materials, even in the copper free Fe-1.1 Mn-0.7 Ni (at.%) alloy. It should be noted that solute segregation in a low-Ni ferritic material was never reported before in absence of the highly insoluble copper impurity. The manganese and nickel segregation is suggested to result from a radiation-induced mechanism.

  13. High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings.

    PubMed

    Vakili-Tahami, F; Hayhurst, D R; Wong, M T

    2005-11-15

    Constitutive equations are reviewed and presented for low alloy ferritic steels which undergo creep deformation and damage at high temperatures; and, a thermodynamic framework is provided for the deformation rate potentials used in the equations. Finite element continuum damage mechanics studies have been carried out using these constitutive equations on butt-welded low alloy ferritic steel pipes subjected to combined internal pressure and axial loads at 590 and 620 degrees C. Two dominant modes of failure have been identified: firstly, fusion boundary failure at high stresses; and, secondly, Type IV failure at low stresses. The stress level at which the switch in failure mechanism takes place has been found to be associated with the relative creep resistance and lifetimes, over a wide range of uniaxial stresses, for parent, heat affected zone, Type IV and weld materials. The equi-biaxial stress loading condition (mean diameter stress equal to the axial stress) has been confirmed to be the worst loading condition. For this condition, simple design formulae are proposed for both 590 and 620 degrees C. PMID:16243708

  14. Micromechanical Behavior of Solid-Solution-Strengthened Mg-1wt.%Al Alloy Investigated by In-Situ Neutron Diffraction

    SciTech Connect

    Lee, Sooyeol; Woo, Wanchuck; Gharghouri, Michael; Yoon, Cheol; An, Ke

    2014-01-01

    In-situ neutron-diffraction experiments were employed to investigate the micromechanical behavior of solid-solution-strengthened Mg-1wt.%Al alloy. Two starting textures were used: 1) as-extruded then solutionized texture, T1, in which the basal poles of most grains are tilted around 70~85 from the extrusion axis, and 2) a reoriented texture, T2, in which the basal poles of most grains are tilted around 10~20 from the extrusion axis. Lattice strains and diffraction peak intensity variations were measured in situ during loading-unloading cycles in uniaxial tension. Twinning activities and stress states for various grain orientations were revealed. The results show that the soft grain orientations, favorably oriented for either extension twinning or basal slip, exhibit the stress relaxation, resulting in the compressive residual strain after unloading. On the other hand, the hard grain orientations, unfavorably oriented for both extension twinning and basal slip, carry more applied load, leading to much higher lattice strains during loading followed by tensile residual strains upon unloading.

  15. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  16. Concurrent Integration of Science-Based Mechanistic Relationships with Computational Thermodynamics and Kinetic Simulations for Strengthening Magnesium Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Bryan, Z. L.; Manuel, M. V.

    2015-01-01

    Integrated computational materials engineering approaches to alloy development leverage the hierarchical, interconnected nature of materials systems to rapidly optimize material performance. Particular emphasis is placed on the use of predictive models and simulation tools to elucidate fundamental relationships within the processing-structure-processing materials paradigm. For the current work, computational simulation results were used in combination with mechanistic, science-based models to assist alloy design. Two case studies are presented as illustrative examples that focus on high-temperature magnesium (Mg) alloy development. Solid solution strengthening potency and solute-based effects on creep rate were discussed in the first case study to guide strategies for solute selection in alloy development. This analysis was completed through the identification of composition-sensitive microstructural parameters that were subsequently evaluated in a predictive fashion. The second case study used computational thermo-kinetic simulations to evaluate Mg alloy precipitate systems for their ability to nucleate a high number density of coarsening-resistant particles. This nucleation and growth analysis was then applied to a Mg-Sn-Al alloy to highlight the utility of the current methodology in predicting multicomponent alloy precipitation behavior. This paper ultimately seeks to provide insight into an integrative approach that captures the important underlying material physics through relationships parameterized by descriptive thermodynamic and kinetic factors, where these factors can be readily calculated with a commercially available suite of computational tools in concert with accessible data in the literature.

  17. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-Th-O2) sheet for space shuttle vehicles, part 1

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1971-01-01

    A dispersion-strengthened alloy, TD nickel chromium (TDNiCr) is being developed for use on the thermal protection system of the space shuttle at temperatures up to 1204 C(2200 F). Manufacturing processes were developed for the fabrication of sheet and foil to specifications. The addition of aluminum to the basic TDNiCr composition provides outstanding oxidation resistance up to 1260 C(2300 F); aluminum levels of 2 to 4% are considered optimum for space shuttle application.

  18. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Béchade, J. L.; Tournié, I.; Tancray, A.; Bougault, A.; Bonnaillie, P.

    2010-10-01

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  19. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    SciTech Connect

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is observed for clean

  20. Oxide-Dispersion-Strengthened Fe3Al-Based Alloy Tubes: Application-Specific Development for the Power Generation Industry

    SciTech Connect

    Kad, BK

    2001-07-20

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100 C in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is observed for clean

  1. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  2. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  3. Development of a nitride dispersion strengthened (NDS) metallic alloy for high-temperature recuperators. Final report, 1 October 1982-30 September 1984

    SciTech Connect

    Kindlimann, L.E.

    1985-06-01

    The objective of this program was to demonstrate the feasibility of using nitride dispersion-strengthened (NDS) stainless steel in fabricating a recuperator for advanced gas turbine engines. Test results showed an alloy--designated NDS 300--to have tensile properties comparable to those of Inconel 625 at temperatures up to 1650 F, and at higher temperatures the properties of the NDS alloy exceeded those of the Inconel 625. However, creep test results showed a three-fold improvement in strength of NDS 300 over Inconel 625 at temperatures above 1500 F. The NDS material demonstrated adequate formability and joinability by brazing with a filler metal of nominal composition Ni-19Cr-10Si (J8100). The same filler metal proved to be a good coating for high-temperature oxidation resistance. Tests on specimens prepared to a typical plate-fin recuperator configuration confirmed the strength of the brazing alloy and demonstrated the marked superiority of the NDS material over Inconel 625.

  4. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  5. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    NASA Astrophysics Data System (ADS)

    Saroja, S.; Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M.; Bhanu Sankara Rao, K.; Raj, Baldev

    2011-02-01

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y 2O 3 particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures ( Ac1, Ac3 and Ms) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  6. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    SciTech Connect

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjorn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials.

  7. Effects of surface conditions on the plasma-driven permeation behavior through a ferritic steel alloy observed in VEHICLE-1 and QUEST

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Hirooka, Y.; Zushi, H.; Kuzmin, A.; Ashikawa, N.; Muroga, T.; Sagara, A.

    2015-08-01

    Effects of surface conditions on the plasma-driven permeation of hydrogen through a ferritic steel alloy F82H have been studied in a laboratory-scale plasma device: VEHICLE-1 and the medium-sized spherical tokamak: QUEST. Both of the surface contamination and area effects have been examined and discussed. Thick surface impurity film has been found to act as a second layer for diffusion and affect the permeation behavior in laboratory-scale and tokamak experiments. Hydrogen diffusion coefficient in the impurity layer has been estimated using the multi-layer diffusion model. A decrease in steady state permeation flux has been measured when increasing the plasma-facing surface area, which is in agreement with theoretical prediction.

  8. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Hanzelka, S.E.; Haltom, C.P.

    1981-07-01

    Four distinct ferrite morphologies have been identified in type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidification and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds contaning a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstaetten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very litte. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  9. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.

    1981-04-01

    Four distinct ferrite morphologies have been identified in Type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidfication and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds containing a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstatten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were also related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the Type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s (44.6 to 2912/sup 0/F/s) showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very little. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  10. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro; Wang, Zhanhong; Zhong, Jinming

    2013-11-01

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W-TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5-5 × 1018 D/cm2; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress. Fundamental physical and mechanical properties. Comparative thermal performance tests with respect to the reference grade S-65C. The program for thermal performance behaviors included several tests such as thermal shock resistance capabilities, vertical displacement event (VDE) simulation testing and subsequent thermal shock tests, and thermal cyclic fatigue tests after VDE simulation testing.Table 1 lists the data for physical and thermo-mechanical properties of CN-G01 beryllium measured at ambient temperature, in which the data are the average values measured by at least three samples, the measure procedures and the data at

  11. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    SciTech Connect

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  12. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  13. Addition of Fe 2O 3 as oxygen carrier for preparation of nanometer-sized oxide strengthened steels

    NASA Astrophysics Data System (ADS)

    Wen, Yuren; Liu, Yong; Liu, Feng; Fujita, Takeshi; Liu, Donghua; Chen, Mingwei; Huang, Boyun

    2010-10-01

    Nano-structured ferritic alloys, which are prepared almost exclusively via the mechanical alloying of Y 2O 3, have recently attracted much attention. Our preliminary results show that the usage of Fe 2O 3 as oxygen source leads to better control of powder properties than Y 2O 3 and a high density of nanometer-sized oxide particles can be formed by atomic mixing of Y, Ti and O. This may provide a new route with reduced costs and improved reproducibility for industrial production of nanometer-sized oxide strengthened steels.

  14. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    SciTech Connect

    Michelic, S.K.; Loder, D.; Reip, T.; Ardehali Barani, A.; Bernhard, C.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  15. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  16. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  17. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  18. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    SciTech Connect

    Leitnaker, J.M.

    1981-05-05

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 015-0.030 times the volume percent ferrite present in alloy. The formation of chi phase upon aging is controlled by controlling the mo content.

  19. Optimization and testing results of Zr-bearing ferritic steels

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata; Sridharan, K.

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  20. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGESBeta

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjorn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  1. First principles assessment of helium trapping in Y{sub 2}TiO{sub 5} in nano-featured ferritic alloys

    SciTech Connect

    Jin, Yanan; Jiang, Yong E-mail: odette@engineering.ucsb.edu; Yang, Litong; Lan, Guoqiang; Robert Odette, G. E-mail: odette@engineering.ucsb.edu; Yamamoto, Takuya; Shang, Jiacheng; Dang, Ying

    2014-10-14

    Nano-scale Y{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}TiO{sub 5} oxides are the major features that provide high strength and irradiation tolerance in nano-structured ferritic alloys. Here, we employ density functional theory to study helium trapping in Y{sub 2}TiO{sub 5}. The results suggest that helium is more deeply trapped in Y{sub 2}TiO{sub 5} compared to Y{sub 2}Ti{sub 2}O{sub 7}. Helium occupies open channels in Y{sub 2}TiO{sub 5}, where it weakly chemically interacts with neighboring oxygen anions, and results in less volume expansion compared to Y{sub 2}Ti{sub 2}O{sub 7}, reducing strains in the iron matrix. The corresponding helium mobility in these channels is very high. While its ultimate fate is to form oxide/matrix interface bubbles, transient deep trapping of helium in oxides plays a major role in the ability of NFA to manage helium distribution.

  2. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-12-01

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  3. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales.

    PubMed

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  4. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials.

  5. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    PubMed Central

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  6. A dual ion irradiation study of helium-dpa interactions on cavity evolution in tempered martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Wu, Yuan; Robert Odette, G.; Yabuuchi, Kiyohiro; Kondo, Sosuke; Kimura, Akihiko

    2014-06-01

    Cavity evolutions in a normalized and tempered martensitic steel (TMS) and two nanostructured ferritic alloys (NFA) under Fe3+ and He+ dual ion beam irradiations (DII) at 500 °C and 650 °C were characterized. The irradiation conditions encompass a wide range of displacement per atom damage (dpa), He and He/dpa. The 500 °C DII produced damage and He levels of ≈10-47 dpa and ≈400-2000 appm, respectively. Transmission electron microscopy (TEM) showed that DII of a 8Cr TMS, at 500 °C to up to 60 dpa and 2100 appm He, produced a moderate density of non-uniformly distributed cavities with bimodal sizes ranging from ≈1 nm He bubbles to ≈20 nm faceted voids, and swelling ≈0.44%. In contrast, the same irradiation conditions produced only small ≈1.3 nm diameter bubbles and swelling of ≈0.05% in the NFA MA957. Similar bubble distributions were observed in MA957 and a developmental NFA DII at 650 °C up to ≈80 dpa and ≈3900 appm He. These results demonstrate the outstanding He management capability of the oxide nano-features in the NFA. The various data trends are shown as a function of dpa, He, He/dpa and He*dpa.

  7. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  8. On the Role of Alloy Composition and Sintering Parameters in the Bimodal Grain Size Distribution and Mechanical Properties of ODS Ferritic Steels

    NASA Astrophysics Data System (ADS)

    García-Junceda, Andrea; Campos, Mónica; García-Rodríguez, Nerea; Torralba, José Manuel

    2016-04-01

    A sintered 14Cr-5Al-3W oxide dispersion strengthened steel was produced by mechanical alloying and consolidated by field-assisted hot pressing. First, a nanostructured powder was developed thanks to the high-energy milling used for introducing 0.4Ti-0.25Y2O3-0.6ZrO2 into the prealloyed Fe-Cr-Al-W powder, and then the processed powders were consolidated under a low diffusive technique to better retain the microstructure inherited from milling. The effect of the addition of zirconia and of the pressure applied during sintering on the final bimodal grain microstructure and mechanical properties is assessed. Both parameters are responsible for the refinement of the microstructure by increasing the volume fraction of the ultrafine grains (0 to 400 nm), leading to an enhancement of the mechanical properties, such as the microhardness and tensile strength.

  9. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  10. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  11. Standard specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat-exchanger tubes. ASTM standard

    SciTech Connect

    1996-04-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.10 on Tubing. Current edition approved Oct. 10 and Nov. 10, 1995. 1995 and was published April 1996. Originally published as A 213-39T. Last previous edition was A 213/A 213M-94b.

  12. Correlation of Fractographic Features with Mechanical Properties in Systematically Varied Microstructures of Cu-Strengthened High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Das, Swapan Kumar; Tarafder, Soumitra

    2009-12-01

    Fracture is often the culmination of continued deformation. Therefore, it is probable that a fracture surface may contain an imprint of the deformation processes that were operative. In this study, the deformation behavior of copper-strengthened high-strength low-alloy (HSLA) 100 steel has been investigated. Systematic variation of the microstructure has been introduced in the steel through various aging treatments. Due to aging, the coherency, size, shape, and distribution of the copper precipitates were changed, while those of inclusions, carbides, and carbonitrides were kept unaltered. Two-dimensional dimple morphologies, quantified from tensile fracture surfaces, have been correlated to the nature of the variation of the deformation parameters with aging treatment.

  13. Effect of prestrain on stretch-zone formation during ductile fracture of Cu-strengthened high-strength low-alloy steels

    NASA Astrophysics Data System (ADS)

    Sivaprasad, S.; Tarafder, S.; Ranganath, V. R.; Das, S. K.; Ray, K. K.

    2002-12-01

    The effects of prestrain on the ductile fracture behavior of two varieties of Cu-strengthened high-strength low-alloy (HSLA) steels have been investigated through stretch-zone geometry measurements. It is noted that the ductile fracture-initiation toughness of both the steels remained unaltered up to prestrains of ˜2 pct, beyond which the toughness decreased sharply. A methodology for estimating the stretch-zone dimensions is proposed. Fracture-toughness estimations through stretch-zone width (SZW) and stretch-zone depth (SZD) measurements revealed that the nature of the variation of ductile fracture toughness with prestrain can be better predicted through SZD rather than the SZW measurements. However, for the specimen geometries and prestrain levels that were investigated, none of these methods were found suitable for quantifying the initiation fracture toughness.

  14. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications.

    PubMed

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken; Liu, Huihong

    2015-11-01

    In previous studies, it has been concluded that volume losses (V loss) of the Ti-29Nb-13Ta-4.6Zr (TNTZ) discs and balls are larger than those of the respective Ti-6Al-4V extra-low interstitial (Ti64) discs and balls, both in air and Ringer's solution. These results are related to severe subsurface deformation of TNTZ, which is caused by the lower resistance to plastic shearing of TNTZ than that of Ti64. Therefore, it is necessary to further increase the wear resistance of TNTZ to satisfy the requirements as a biomedical implant. From this viewpoint, interstitial oxygen was added to TNTZ to improve the plastic shear resistance via solid-solution strengthening. Thus, the wear behaviors of combinations comprised of a new titanium alloy, TNTZ with high oxygen content of 0.89 mass% (89O) and a conventional titanium alloy, Ti64 were investigated in air and Ringer's solution for biomedical implant applications. The worn surfaces, wear debris, and subsurface damage were analyzed using a scanning electron microscopy and an electron probe microanalysis. V loss of the 89O discs and balls are smaller than those of the respective TNTZ discs and balls in both air and Ringer's solution. It can be concluded that the solid-solution strengthening by oxygen effectively improves the wear resistance for TNTZ materials. However, the 89O disc/ball combination still exhibits higher V loss than the Ti64 disc/ball combination in both air and Ringer's solution. Moreover, V loss of the disc for the 89O disc/Ti64 ball combination significantly decreases in Ringer's solution compared to that in air. This decrease for the 89O disc/Ti64 ball combination in Ringer's solution can be explained by the transition in the wear mechanism from severe delamination wear to abrasive wear. PMID:26301568

  15. Properties of dispersion-strengthened chromium - 4-volume-percent-thoria alloys produced by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1974-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol. %ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1537 C. Hot pressed Cr + ThO2 had a DBTT of 501 C as compared with minus 8 to 24 C for the hot rolled Cr + ThO2 and with 139 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  16. Mechanical properties and strengthening of a Ni-25Mo-8Cr alloy containing Ni{sub 2}(Mo,Cr) precipitates

    SciTech Connect

    Kumar, M.; Vasudevan, V.K.

    1996-12-01

    The mechanical properties and mechanisms of deformation and strengthening of Haynes Alloy 242{sup tm}, a nominal Ni-25Mo-8Cr (in wt%) containing Ni{sub 2}(Mo,Cr) precipitates in a face-centered cubic matrix, are reported. Both solution treated, as well as aged samples (550--750 C, 1--1,200 h) were deformed to permanent strains of 1 and 6% in compression and to failure in tension. The deformation structures were observed by transmission electron microscopy. A two-fold increase in strength and tremendous strain hardening are observed as the short-range (SRO) to long-range ordering (LRO) transformation proceeds, although ductility remains high even in well-aged samples. Major contribution to strengthening and strain hardening comes from the precipitation of a high volume fraction of Ni{sub 2}(Mo,Cr) precipitates, with hardening in the solution treated samples and those aged for short periods being associated with the presence of SRO in the matrix. A transition in deformation mode, from glide of unit dislocations in planar arrays to profuse twinning, is observed as a function of aging time and imposed strain, twinning being observed in samples containing Ni{sub 2}(Mo,Cr) precipitates. A semi-quantitative model developed on the basis of precipitate size and mode of deformation (shearing, twinning, bypassing) is able to satisfactorily account for this transition. A presentation and discussion of these results, as well as those of the mechanisms of strengthening and strain hardening, are provided.

  17. Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling

    PubMed Central

    Guan, R. G.; Shen, Y. F.; Zhao, Z. Y.; Misra, R. D. K.

    2016-01-01

    We elucidate the effect of lanthanum (La) on the microstructure and mechanical properties of Mg-3Sn-1Mn-xLa (wt.%) alloy plates processed through continuous rheo-rolling for the first time. At x = 0.2 wt.%, La dissolved completely in the α-Mg matrix. As the La content was increased to 0.6 wt.%, a new plate-shaped three-phase compound composed of La5Sn3, Mg2Sn and Mg17La2 phases was formed with an average length of 380 ± 10 nm and an average width of 110 ± 5 nm. This compound had a pinning effect on the α-Mg grain boundary and on dislocations. With further increase in La-content to 1.0 wt.%, the length of the plate-shaped compound increased to an average length of 560 ± 10 nm, while the width was reduced to 90 ± 5 nm. The particle size of Mg2Sn decreased from 100 nm to 50 nm with increase in La-content from 0.2 to 1.4 wt.%. At La content of 1.0 wt.%, the tensile strength and elongation of the alloy was maximum, with 29% and 32% increase, respectively, compared to the Mg-3Sn-1Mn (wt.%) alloy, and 37% and 89% increase, in comparison to the Mg-3Sn-1Mn-0.87 Ce (wt.%) alloy. PMID:26988533

  18. Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling

    NASA Astrophysics Data System (ADS)

    Guan, R. G.; Shen, Y. F.; Zhao, Z. Y.; Misra, R. D. K.

    2016-03-01

    We elucidate the effect of lanthanum (La) on the microstructure and mechanical properties of Mg-3Sn-1Mn-xLa (wt.%) alloy plates processed through continuous rheo-rolling for the first time. At x = 0.2 wt.%, La dissolved completely in the α-Mg matrix. As the La content was increased to 0.6 wt.%, a new plate-shaped three-phase compound composed of La5Sn3, Mg2Sn and Mg17La2 phases was formed with an average length of 380 ± 10 nm and an average width of 110 ± 5 nm. This compound had a pinning effect on the α-Mg grain boundary and on dislocations. With further increase in La-content to 1.0 wt.%, the length of the plate-shaped compound increased to an average length of 560 ± 10 nm, while the width was reduced to 90 ± 5 nm. The particle size of Mg2Sn decreased from 100 nm to 50 nm with increase in La-content from 0.2 to 1.4 wt.%. At La content of 1.0 wt.%, the tensile strength and elongation of the alloy was maximum, with 29% and 32% increase, respectively, compared to the Mg-3Sn-1Mn (wt.%) alloy, and 37% and 89% increase, in comparison to the Mg-3Sn-1Mn-0.87 Ce (wt.%) alloy.

  19. Effect of torsion conditions under high pressure on the structure and strengthening of the Zr-1% Nb alloy

    NASA Astrophysics Data System (ADS)

    Rogachev, S. O.; Rozhnov, A. B.; Nikulin, S. A.; Rybal'chenko, O. V.; Gorshenkov, M. V.; Chzhen, V. G.; Dobatkin, S. V.

    2016-04-01

    The effect of temperature and degree of deformation upon severe plastic deformation by torsion under a high pressure on the structure, phase composition, and microhardness of the industrial zirconium Zr-1% Nb alloy (E110) has been studied. The high-pressure torsion (HPT) (with N = 10 revolutions) of the Zr-1% Nb alloy at room temperature results in the formation of grain-subgrain nanosize structure with an average size of structural elements of 65 nm, increase in the microhardness by 2.3-2.8 times (to 358 MPa), and α-Zr → β-Zr and α-Zr → ω-Zr phase transformations. The increase in the HPT temperature to 200°C does not lead to a decrease in the microhardness of alloy owing to the increase in the fraction of ω-Zr phase, though the average size of structural elements increases to 125 nm. The increase in the temperature to 400°C during HPT with N = 10 revolutions leads to the grain growth in the α-Zr grain structure (~90%) to 160 nm and a decrease in the microhardness to 253-276 HV.

  20. Corrosion properties of oxide dispersion strengthened steels in super-critical water environment

    NASA Astrophysics Data System (ADS)

    Cho, H. S.; Kimura, A.; Ukai, S.; Fujiwara, M.

    2004-08-01

    The effects of alloying elements on corrosion resistance in super critical pressurized water (SCPW) have been investigated to develop corrosion resistant oxide dispersion strengthened (ODS) steels. Corrosion tests were performed in a SCPW (783 K, 25 MPa) environment. Weight gain was measured after exposure to the SCPW. For the improvement of corrosion-resistance, the effects of chromium, aluminum, and yttrium on the corrosion behavior were investigated. The 9-12 wt%Cr ODS steels showed almost similar corrosion behavior with the ordinary ferritic/martensitic steel in the SCPW. However, the addition of high chromium (>13 wt%) and aluminum (4.5 wt%) are very effective to suppress the corrosion in the SCPW. Anodic polarization experiments revealed that the passive current of the ODS steels are lower than the ordinary ferritic/martensitic steels. Addition of aluminum improves the Charpy impact property of the ODS steels.

  1. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  2. Residual ferrite formation in 12CrODS steels

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Kudo, Y.; Wu, X.; Oono, N.; Hayashi, S.; Ohtsuka, S.; Kaito, T.

    2014-12-01

    Increasing Cr content from 9 to 12 mass% leads to superior corrosion and high-temperature oxidation resistances, and usually changes microstructure from martensite to a ferrite. To make transformable martensitic type of 12CrODS steels that have superior processing capability by using α/γ phase transformation, alloy design was conducted through varying nickel content. The structure of 12CrODS steels was successfully modified from full ferrite to a transformable martensite-base matrix containing ferrite. This ferrite consists of both equilibrium ferrite and a metastable residual ferrite. It was shown that the fraction of the equilibrium ferrite is predictable by computed phase diagram and formation of the residual ferrite was successfully evaluated through pinning of α/γ interfacial boundaries by oxide particles.

  3. Thermal fatigue behavior of Mg-9Al-Zn alloy with biomimetic strengthening units processed by laser surface remelting

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Lin, Pengyu; Kong, Shuhua; Li, Xiujuan; Ren, Luquan

    2015-07-01

    Pulsed Nd:YAG laser was used to treat the surface of a magnesium alloy to improve the thermal fatigue resistance. The average grain size of the as-received material was reduced to ~3 μm and moreover β-Mg17Al12 was precipitated in different forms. In addition, high density dislocation was acquired. The treated zone could efficiently prevent cracking on the sample surface. The crack growth was curbed within the treated zone and the microhardness increased by 80%. This enhancement was ascribed to the modified microstructural characteristics of the treated surface.

  4. Effects of Grit Blasting and Annealing on the High-Temperature Oxidation Behavior of Austenitic and Ferritic Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Proy, M.; Utrilla, M. V.; Otero, E.; Bouchaud, B.; Pedraza, F.

    2014-08-01

    Grit blasting (corundum) of an austenitic AISI 304 stainless steel (18Cr-8Ni) and of a low-alloy SA213 T22 ferritic steel (2.25Cr-1Mo) followed by annealing in argon resulted in enhanced outward diffusion of Cr, Mn, and Fe. Whereas 3 bar of blasting pressure allowed to grow more Cr2O3 and Mn x Cr3- x O4 spinel-rich scales, higher pressures gave rise to Fe2O3-enriched layers and were therefore disregarded. The effect of annealing pre-oxidation treatment on the isothermal oxidation resistance was subsequently evaluated for 48 h for both steels and the results were compared with their polished counterparts. The change of oxidation kinetics of the pre-oxidized 18Cr-8Ni samples at 850 °C was ascribed to the growth of a duplex Cr2O3/Mn x Cr3- x O4 scale that remained adherent to the substrate. Such a positive effect was less marked when considering the oxidation kinetics of the 2.25Cr-1Mo steel but a more compact and thinner Fe x Cr3- x O4 subscale grew at 650 °C compared to that of the polished samples. It appeared that the beneficial effect is very sensitive to the experimental blasting conditions. The input of Raman micro-spectroscopy was shown to be of ground importance in the precise identification of multiple oxide phases grown under the different conditions investigated in this study.

  5. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  6. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  7. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGESBeta

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimentalmore » results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  8. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  9. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  10. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    PubMed

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. PMID:24894808

  11. On the synthesis of copper-nickel binary alloy nanoparticles and binding silane coupling agents to magnetic ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pritchett, Jeremy Scott

    This dissertation addresses the creation of a multifunctional nanoplatform for cancer targeting, imaging, and therapy. Magnetic oxide nanoparticles were labeled with silane coupling agents that could be used for targeting. The magnetic oxides have application as contrast enhancing agents for magnetic resonance imaging. Copper-nickel binary alloy nanoparticles were prepared for possible use in Curie temperature limited hyperthermia therapy. Spherical, single crystal iron oxide nanoparticles with average diameters of 4 nm, 6 nm, 8 nm, 11 nm, or 16 nm were prepared using published procedures. The iron oxide particle chemistry was extended to synthesize 13 nm diameter CoFe2O4, 9 nm diameter MnFe2O4, and 12 nm diameter NiFe2O4. The particles had a coating of oleic acid and oleylamine ligands. Silane coupling chemistry was used to displace these ligands with either beta-aminoethyl-gamma-aminopropyl-trimethoxysilane, triethoxysilane-PEG, or triethoxysilane-biotin. The silane ligands would allow the particles to be conjugated with a targeting group. New chemistry was developed to synthesize fcc CuNi nanoparticles with the objective of finding methods that give particles with an average size less than 50 nm, a narrow distribution of particle sizes, and control of particle composition. The particle synthesis involves the reduction of a mixture of copper(II) and nickel(II) and the reduction conditions included diol reduction, polyol synthesis, seeding by diol reduction, and oleate reduction. One of the main issues is the formation of hcp nickel particles as a containment in the method. The factors that avoided the formation of hcp nickel particles and allow only fcc particles to form were the choice of reducing agent, ratio of surfactants, and heating time. Both the oleate reduction and diol reduction gave a mixture of the hcp and fcc phases. By controlling certain reaction conditions, such as keeping the ratio of oleic acid to oleylamine 1:1 and slowly heating to reflux for

  12. Deformation Behavior of Solid-Solution-Strengthened Mg-9wt%Al Alloy: In-Situ Neutron Diffraction and Elastic-Viscoplastic Self-Consistent Modeling

    SciTech Connect

    Lee, Sooyeol; Wang, H; Gharghouri, Michael; Nayyeri, G.; Woo, Wan; Shin, E; Wu, Peidong; Poole, W. J.; Wu, Wei; An, Ke

    2014-01-01

    In situ neutron diffraction and elastic viscoplastic self-consistent (EVPSC) modeling have been employed to understand the deformation mechanisms of the loading unloading process under uniaxial tension in a solid-solution-strengthened extruded Mg 9 wt.% Al alloy. The initial texture measured by neutron diffraction shows that the {00.2} basal planes in most grains are tilted around 20 30 from the extrusion axis, indicating that basal slip should be easily activated in a majority of grains under tension. Non-linear stress strain responses are observed during unloading and reloading after the material is fully plastically deformed under tension. In situ neutron diffraction measurements have also demonstrated the non-linear behavior of lattice strains during unloading and reloading, revealing that load redistribution continuously occurs between soft and hard grain orientations. The predicted macroscopic stress strain curve and the lattice strain evolution by the EVPSC model are in good agreement with the experimental data. The EVPSC model provides the relative activities of the available slip and twinning modes, as well as the elastic and plastic strains of the various grain families. It is suggested that the non-linear phenomena in the macroscopic stress strain responses and microscopic lattice strains during unloading and reloading are due to plastic deformation by the operation of basal a slip in the soft grain orientations (e.g. {10.1}, {11.2} and {10.2} grain families).

  13. Multicomponent High-Strength Low-Alloy Steel Precipitation-Strengthened by Sub-nanometric Cu Precipitates and M2C Carbides

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Isheim, Dieter; Hunter, Allen H.; Seidman, David N.

    2016-05-01

    HSLA-115 is a novel high-strength low-alloy structural steel derived from martensitic Cu-bearing HSLA-100. HSLA-100 is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility. Present work on HSLA-115 demonstrates that incorporating sub-nanometric-sized M2C carbides along with Cu precipitates produces higher strength steels that still meet impact toughness and ductility requirements. Isothermal aging at 823 K (550 °C) precipitates M2C carbides co-located with the Cu precipitates and distributed heterogeneously at lath boundaries and dislocations. 3D atom-probe tomography is used to characterize the evolution of these precipitates at 823 K (550 °C) in terms of mean radii, number densities, and volume fractions. These results are correlated with microhardness, impact toughness, and tensile strength. The optimum combination of mechanical properties, 972 MPa yield strength, 24.8 pct elongation to failure, and 188.0 J impact toughness at 255 K (-18 °C), is attained after 3-hour aging at 823 K (550 °C). Strengthening by M2C precipitates offsets the softening due to overaging of Cu precipitates and tempering of martensitic matrix. It is shown that this extended yield strength plateau can be used as a design principle to optimize strength and toughness at the same time.

  14. Multicomponent High-Strength Low-Alloy Steel Precipitation-Strengthened by Sub-nanometric Cu Precipitates and M2C Carbides

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Isheim, Dieter; Hunter, Allen H.; Seidman, David N.

    2016-08-01

    HSLA-115 is a novel high-strength low-alloy structural steel derived from martensitic Cu-bearing HSLA-100. HSLA-100 is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility. Present work on HSLA-115 demonstrates that incorporating sub-nanometric-sized M2C carbides along with Cu precipitates produces higher strength steels that still meet impact toughness and ductility requirements. Isothermal aging at 823 K (550 °C) precipitates M2C carbides co-located with the Cu precipitates and distributed heterogeneously at lath boundaries and dislocations. 3D atom-probe tomography is used to characterize the evolution of these precipitates at 823 K (550 °C) in terms of mean radii, number densities, and volume fractions. These results are correlated with microhardness, impact toughness, and tensile strength. The optimum combination of mechanical properties, 972 MPa yield strength, 24.8 pct elongation to failure, and 188.0 J impact toughness at 255 K (-18 °C), is attained after 3-hour aging at 823 K (550 °C). Strengthening by M2C precipitates offsets the softening due to overaging of Cu precipitates and tempering of martensitic matrix. It is shown that this extended yield strength plateau can be used as a design principle to optimize strength and toughness at the same time.

  15. Long-term high temperature oxidation behavior of ODS ferritics

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.

    2002-12-01

    Four oxide dispersion strengthened Fe-(13-14 at.%) Cr ferritic compositions were exposed in air and air with 10 vol.% water vapor for up to 10 000 h at 700-1100 °C. At 700-800 °C in air, the reaction rates were very low for all of the alloys compared to stainless steels. At 900 °C, a dispersion of Y 2O 3, compared to Al 2O 3, showed a distinct benefit in improving the oxidation resistance, due to a reactive element effect. However, failure occurred after 7000 h at 900 °C when only 13% Cr was present. The absence of Ti and W in one alloy appeared to result in a thinner reaction product after oxidation at 800 °C. One composition was exposed in 10 vol.% water vapor at 800 and 900 °C and in air at 1000 and 1100 °C. Under both of these conditions, there was a significant increase in the rates of oxidation. With the relatively low Cr contents in these alloys, their corrosion-limited operating temperature in air is near 900 °C.

  16. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    SciTech Connect

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  17. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  18. Deformation at ambient and high temperature of in situ Laves phases-ferrite composites

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia; Pohlmann, Carsten; Scudino, Sergio; Blandin, Jean-Jacques; Babu Surreddi, Kumar; Eckert, Jürgen

    2014-06-01

    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ˜50 nm to ˜150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.

  19. Dependence of the nitriding rate of ferritic and austenitic substrates on the crystallographic orientation of surface grains; gaseous nitriding of Fe-Cr and Ni-Ti alloys

    NASA Astrophysics Data System (ADS)

    Akhlaghi, M.; Jung, M.; Meka, S. R.; Fonović, M.; Leineweber, A.; Mittemeijer, E. J.

    2015-12-01

    Gaseous nitriding of ferritic Fe-Cr and austenitic Ni-Ti solid solutions reveals that the extent of the uptake of dissolved nitrogen depends on the crystallographic orientation of the surface grains of the substrate. In both ferritic and austenitic substrates, the surface nitrogen concentration and the nitriding depth decrease upon increasing the smallest angle between the surface normal and the normal of a {1 0 0} plane of the surface grain considered. This phenomenon could be ascribed to the residual compressive macrostress developed during nitriding which varies as a function of crystallographic orientation of the (surface) grains due to the elastically anisotropic nature of ferrite and austenite solid solutions investigated in this study.

  20. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  1. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  2. Irradiation embrittlement of neutron-irradiated low activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kayano, H.; Kimura, A.; Narui, M.; Sasaki, Y.; Suzuki, Y.; Ohta, S.

    1988-07-01

    Effects of neutron irradiation and additions of small amounts of alloying elements on the ductile-brittle transition temperature (DBTT) of three different groups of ferritic steels were investigated by means of the Charpy impact test in order to gain an insight into the development of low-activation ferritic steels suitable for the nuclear fusion reactor. The groups of ferritic steels used in this study were (1) basic 0-5% Cr ferritic steels, (2) low-activation ferritic steels which are FeCrW steels with additions of small amounts of V, Mn, Ta, Ti, Zr, etc. and (3) FeCrMo, Nb or V ferritic steels for comparison. In Fe-0-15% Cr and FeCrMo steels, Fe-3-9% Cr steels showed minimum brittleness and provided good resistance against irradiation embrittlement. Investigations on the effects of additions of trace amounts of alloying elements on the fracture toughness of low-activation ferritic steels made clear the optimum amounts of each alloying element to obtain higher toughness and revealed that the 9Cr-2W-Ta-Ti-B ferritic steel showed the highest toughness. This may result from the refinement of crystal grains and improvement of quenching characteristics caused by the complex effect of Ti and B.

  3. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  4. Modeling C-Curves for the Growth Rate of Widmanstätten and Bainitic Ferrite in Fe-C Alloys

    NASA Astrophysics Data System (ADS)

    Leach, Lindsay; Hillert, Mats; Borgenstam, Annika

    2016-01-01

    When Zener formulated his maximum growth rate criterion for predicting the coarseness of various metallographic objects, he simplified the growth rate equations and predicted that the optimum coarseness should be twice the critical value for which all the driving force would be absorbed by interfacial energy. It is now emphasized that a composition dependence of the diffusion coefficient has a considerable influence and can result in a ratio much larger than two. Various approximations have now been removed from the growth rate equation. When applied to acicular ferrite in the Fe-C system, a C-curve for the growth rate is obtained that resembles the unusually wide C-curve obtained experimentally when information on Widmanstätten ferrite and bainite is combined. It is not necessary to explain that shape as a combination of separate curves for Widmanstätten ferrite and bainite. The main reason for the wide C-curve is the direct effect of the composition dependence of the diffusivity of carbon in austenite.

  5. Structural applications of mechanical alloying; Proceedings of the ASM International Conference, Myrtle Beach, SC, Mar. 27-29, 1990

    SciTech Connect

    Froes, F.H.; Debarbadillo, J.J. Inco Alloys International, Inc., Huntington, WV )

    1990-01-01

    The present conference on mechanically alloyed (MA) products discusses their aerospace and industrial applications, the design and isothermal forging of Ni-base oxide dispersion-strengthened (ODS) superalloys, the microstructure and tensile properties of ODS ferritic alloys, the high temperature corrosion resistance of MA refractory products, the mechanical properties of novel MA Fe-based ODS alloys, and dispersoids in MA metals. Also discussed are MA Al-alloys for aircraft applications, the microstructure and properties of MA Al-Mn, the MA processing of the Ti-Al system, the origin of the strength of MA Al alloys, the interaction of Al with SiC during MA processing, the synthesis of chromium silicide via MA, and the MA production of 'TiC-steel'.

  6. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  7. The Influence of Dynamic Strain Aging on Fatigue and Creep-Fatigue Characterization of Nickel-Base Solid Solution Strengthened Alloys

    SciTech Connect

    L.J. Carroll; W.R. Lloyd; J.A. Simpson; R.N. Wright

    2010-12-01

    The nickel-base solid solution alloys, Alloy 617 and Alloy 230, have been observed to exhibit serrated yielding or dynamic strain aging (DSA) in a temperature/strain rate regime of interest for intermediate heat exchangers (IHX) of high temperature nuclear reactors. At 800°C, these nickel-base alloys are prone to large serrated yielding events at relatively low strains. The presence of DSA introduces challenges in characterizing the creep-fatigue and low cycle fatigue behavior. These challenges include inability to control the target strains as a result of DSA induced strain excursions and distorted hysteresis loops. Methods to eliminate or reduce the influence of DSA on creep-fatigue testing have been investigated, including varying the strain rate, stepping to the target strain, and adjusting servo-hydraulic tuning parameters. It has not been possible to eliminate the impact of serrated flow in the temperature range of interest for these alloys without compromising the desired test protocols.

  8. A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Mazlan, Saiful Amri; Shameli, Kamyar

    2016-09-01

    In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1-xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni-Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni-Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350-700 cm-1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about -34 dB at 9.7 GHz, making them the best candidates for high frequency applications.

  9. EELS study of niobium carbo-nitride nano-precipitates in ferrite.

    PubMed

    Courtois, E; Epicier, T; Scott, C

    2006-01-01

    Micro-alloying steels allow higher strength to be achieved, with lower carbon contents, without a loss in toughness, weldability or formability through the generation of a fine ferrite grain size with additional strengthening being provided by the fine scale precipitation of complex carbo-nitride particles. Niobium is reported to be the most efficient micro-alloying element to achieve refinement of the final grain structure. A detailed microscopic investigation is one of the keys for understanding the first stages of the precipitation sequence, thus transmission electron microscopy (TEM) is required. Model Fe-(Nb,C) and Fe-(Nb,C,N) ferritic alloys have been studied after annealing under isothermal conditions. However the nanometre scale dimensions of the particles makes their detection, structural and chemical characterization delicate. Various imaging techniques have then been employed. Conventional TEM (CTEM) and high resolution TEM (HRTEM) were used to characterise the morphology, nature and repartition of precipitates. Volume fractions and a statistical approach to particle size distributions of precipitates have been investigated by energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) imaging. Great attention was paid to the chemical analysis of precipitates; their composition has been quantified by electron energy loss spectroscopy (EELS), on the basis of calibrated 'jump-ratios' of C-K and N-K edges over the Nb-M edge, using standards of well-defined compositions. It is shown that a significant addition of nitrogen in the alloy leads to a complex precipitation sequence, with the co-existence of two populations of particles: pure nitrides and homogeneous carbo-nitrides respectively. PMID:16500107

  10. Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    SciTech Connect

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y–Ti–O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y₂O₃, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y₂Ti₂O₇ and, especially, TiO. However, the MA957 and J12YWT and annealed–consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  11. Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors

    NASA Technical Reports Server (NTRS)

    Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)

    1974-01-01

    The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.

  12. In Situ Synchrotron Tensile Investigations on 14YWT, MA957 and 9-Cr ODS Alloys

    SciTech Connect

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James; Yacout, Abdellatif

    2016-01-01

    Nanostructured ferritic alloys (NFAs) provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of two NFAs including 14YWT and MA957, and a 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14 YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, respectively. This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstr m s dislocation models.

  13. Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steel

    SciTech Connect

    Gannon, Paul; Gorokhovsky, Vladimir I.; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; White, P T.; Sofie, Stephen W.; Yang, Z Gary; Mccready, David E.; Visco, S.; Jacobson, C.; Kurokawa, H.

    2007-11-01

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEM/EDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time dependent Area Specific Resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (>1,000 hours) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed.

  14. Design of tough ferritic steels for cryogenic use

    SciTech Connect

    Morris, J.W. Jr.

    1985-10-01

    This paper describes the design of ferritic steels and weldments that combine strength and toughness at cryogenic temperatures. The alloy must have a ductile-brittle transition temperature below the intended service temperature and a high fracture toughness in the ductile mode. Its systematic design uses the microstructure-property relations that govern the transition temperature and fracture toughness to identify a suitable microstructure, and then employs the microstructure-processing relations that govern its thermal response to manipulate the microstructure into the appropriate form. The procedure is illustrated by describing the heat treatments, microstructures and properties of a variety of laboratory and commercial alloys, including conventional ''9Ni'' steel, the low-Ni and Fe-Mn ferritic steels that have been developed as an alternative to 9Ni, the 12Ni steels that are promising for use at 4K, and the welding procedures and ferritic filler metals that are useful for ferritic cryogenic steels.

  15. Microstructural Response During Isothermal and Isobaric Loading of a Precipitation-Strengthened Ni-29.7Ti-20Hf High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Padula, S. A.; Vaidyanathan, R.

    2012-12-01

    A stable Ni-rich Ni-29.7Ti-20Hf (at. pct) shape memory alloy, with relatively high transformation temperatures, was shown to exhibit promising properties at lower raw material cost when compared to typical NiTi-X (X = Pt, Pd, Au) high-temperature shape memory alloys (HTSMAs). The excellent dimensional stability and high work output for this alloy were attributed to a coherent, nanometer size precipitate phase observed using transmission electron microscopy. To establish an understanding of the role of these precipitates on the microstructure and ensuing stability of the NiTiHf alloy, a detailed study of the micromechanical and microstructural behaviors was performed. In-situ neutron diffraction at stress and temperature was used to obtain quantitative information on phase-specific internal strain, texture, and phase volume fractions during both isothermal and isobaric testing of the alloy. During isothermal testing, the alloy exhibited low isothermal strains due to limited detwinning, consistent with direct measurements of the bulk texture through neutron diffraction. This limited detwinning was attributed to the pinning of twin and variant boundaries by the dispersion of fine precipitates. During isobaric thermal cycling at 400 MPa, the high work output and near-perfect dimensional stability was attributed to the presence of the precipitates that act as homogeneous sources for the nucleation of martensite throughout the material, while providing resistance to irrecoverable processes such as plastic deformation.

  16. Microstructure control for high strength 9Cr ferritic-martensitic steels

    SciTech Connect

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T; Sokolov, Mikhail A; Klueh, Ronald L

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  17. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8.5Fe-1.2V-1.7Si alloys produced by atomized melt deposition process

    NASA Astrophysics Data System (ADS)

    Hariprasad, S.; Sastry, S. M. L.; Jerina, K. L.; Lederich, R. J.

    1993-04-01

    Dispersion-strengthened high-temperature Al-8.5 pct Fe-pct Si-pct V alloys were produced by atomized melt deposition (AMD) process. The effects of process parameters on the evolution of microstructures were determined using optical metallography and scanning and transmission electron microscopy. The extent of undercooling and the rate of droplet solidification were correlated with process parameters, such as melt superheat, metal/gas flow rates, and melt stream diameter. The size distribution and morphology of silicide dispersoids were used to estimate the degree of undercooling and the cooling rate as functions of process parameters. The tensile properties at 25 °C to 425 °C and fracture toughness at 25 °C of these alloys produced with wide variations in dispersoids size and grain size were determined. Under optimum conditions, the alloy has ultimate tensile strength of 281 MPa and 9.5 pct ductility in the as-deposited condition. Upon hot-isostatic pressing and extrusion, the ultimate tensile strength increased to 313 MPa and ductility increased to 18 pct.

  18. Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Shibata, Hiroyuki; Hedström, Peter; Jönsson, Pär Göran; Nakajima, Keiji

    2016-08-01

    The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.

  19. Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Shibata, Hiroyuki; Hedström, Peter; Jönsson, Pär Göran; Nakajima, Keiji

    2016-03-01

    The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.

  20. Nanoscale characterization of ODS Fe-9%Cr model alloys compacted by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Hernández-Mayoral, M.; Ulbricht, A.; Bergner, F.; Shariq, A.; Weissgärber, T.; Frielinghaus, H.

    2012-09-01

    Ferritic/martensitic high-chromium steels are leading candidates for fission and fusion reactor components. Oxide dispersion strengthening is an effective way to improve properties related to thermal and irradiation-induced creep and to extend their elevated temperature applications. An extensive experimental study focusing on the microstructural characterization of oxide-dispersion strengthened Fe-9wt%Cr model alloys is reported. Several material variants were produced by means of high-energy milling of elemental powders of Fe, Cr and commercial yttria powders. Consolidation was based on spark plasma sintering. Special emphasis is placed on the characterization of the nano-particles using transmission electron microscopy, small-angle neutron scattering and atom probe tomography. The microstructure of the investigated alloys and the role of the process parameters are discussed. Implications for the reliability of the applied characterization techniques are also highlighted.

  1. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.

    PubMed

    Taneike, Masaki; Abe, Fujio; Sawada, Kota

    2003-07-17

    Creep is a time-dependent mechanism of plastic deformation, which takes place in a range of materials under low stress-that is, under stresses lower than the yield stress. Metals and alloys can be designed to withstand creep at high temperatures, usually by a process called dispersion strengthening, in which fine particles are evenly distributed throughout the matrix. For example, high-temperature creep-resistant ferritic steels achieve optimal creep strength (at 923 K) through the dispersion of yttrium oxide nanoparticles. However, the oxide particles are introduced by complicated mechanical alloying techniques and, as a result, the production of large-scale industrial components is economically unfeasible. Here we report the production of a 9 per cent Cr martensitic steel dispersed with nanometre-scale carbonitride particles using conventional processing techniques. At 923 K, our dispersion-strengthened material exhibits a time-to-rupture that is increased by two orders of magnitude relative to the current strongest creep-resistant steels. This improvement in creep resistance is attributed to a mechanism of boundary pinning by the thermally stable carbonitride precipitates. The material also demonstrates enough fracture toughness. Our results should lead to improved grades of creep-resistant steels and to the economical manufacture of large-scale steel components for high-temperature applications. PMID:12867976

  2. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  3. Understanding of copper precipitation under electron or ion irradiations in FeCu0.1 wt% ferritic alloy by combination of experiments and modelling

    NASA Astrophysics Data System (ADS)

    Radiguet, B.; Barbu, A.; Pareige, P.

    2007-02-01

    This work is dedicated to the understanding of the basic processes involved in the formation of copper enriched clusters in low alloyed FeCu binary system (FeCu0.1 wt%) under irradiation at temperature close to 300 °C. Such an alloy was irradiated with electrons or with ions (Fe+ or He+) in order to deconvolute the effect of displacement cascades and the associated generation of point defect clusters (ion irradiations), and the super-saturation of mono-vacancies and self-interstitial atoms (electron irradiation). The microstructure of this alloy was characterised by tomographic atom probe. Experimental results were compared with results obtained with cluster dynamic model giving an estimation of the evolution of point defects (free or agglomerated) under irradiation on the one hand and describing homogeneous enhanced precipitation of copper on the other hand. The comparison between the results obtained on the different irradiation conditions and the model suggests that the point defect clusters (dislocation loops and/or nano-voids) created in displacement cascades play a major role in copper clustering in low copper alloy irradiated at 573 K.

  4. Comparison of the Oxidation Rates of Some New Copper Alloys

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  5. Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Wang, Chong M.; Nie, Zimin; Templeton, Joshua D.; Singh, Prabhakar; Stevenson, Jeffry W.

    2008-05-30

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare and spinel coated AISI 441 were studied in terms of metallurgical characteristics, oxidation behavior, and electrical performance. The conventional melt metallurgy used for the bulk alloy fabrication leads to significant processing cost reduction and the alloy chemistry with the presence of minor alloying additions of Nb and Ti facilitate the strengthening by precipitation and formation of Laves phase both inside grains and along grain boundaries during exposure in the intermediate SOFC operating temperature range. The Laves phase formed along the grain boundaries also ties up Si and prevents the formation of an insulating silica layer at the scale/metal interface during prolonged exposure. The substantial increase in ASR during long term oxidation due to oxide scale growth suggested the need for a conductive protection layer, which could also minimize Cr evaporation. In particular, Mn1.5Co1.5O4 based surface coatings on planar coupons drastically improved the electrical performance of the 441, yielding stable ASR values at 800ºC for over 5,000 hours. Ce-modified spinel coatings retained the advantages of the unmodified spinel coatings, and also appeared to alter the scale growth behavior beneath the coating, leading to a more adherent scale. The spinel protection layers appeared also to improve the surface stability of 441 against the anomalous oxidation that has been observed for ferritic stainless steels exposed to dual atmosphere conditions similar to SOFC interconnect environments. Hence, it is anticipated that, compared to unmodified spinel coatings, the Ce-modified coatings may lead to superior structural stability and electrical performance.

  6. Characterizing and Modeling Ferrite-Core Probes

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-02-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D©, and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  7. Features of plastic deformation and fracture of dispersion-strengthened V–Cr–Zr–W alloy depending on temperature of tension

    SciTech Connect

    Ditenberg, Ivan A.; Grinyaev, Konstantin V.; Tyumentsev, Alexander N.; Smirnov, Ivan V.; Pinzhin, Yury P.; Tsverova, Anastasiya S.; Chernov, Vyacheslav M.

    2015-10-27

    Influence of tension temperature on features of plastic deformation and fracture of V–4.23Cr–1.69Zr–7.56W alloy was investigated by scanning and transmission electron microscopy. It is shown that temperature increase leads to activation of the recovery processes, which manifests in the coarsening of microstructure elements, reducing the dislocation density, relaxation of continuous misorientations.

  8. Investigations of low-temperature neutron embrittlement of ferritic steels

    SciTech Connect

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-12-31

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV.

  9. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  10. Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Sudha, C.; Saroja, S.

    2015-08-01

    9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.

  11. Corrosion performance of laser-welded austenitic-ferritic connections

    NASA Astrophysics Data System (ADS)

    Weigl, M.; Schmidt, M.

    2013-02-01

    In order to reduce the material costs of white-goods made of stainless steels, tailored constructions with unequally alloyed stainless steels shall be used. For that purpose nickel-alloyed austenitic stainless steels are supposed to be limited to zones with demanding needs for corrosions resistance, whereas nickel-free ferritic stainless steels provide an attractive cost-performance ratio for the remaining components of a system. Particularly the present article discusses the corrosion performance of austenitic-ferritic connections, welded with high-power disc lasers at accelerated feed rates, as a function of the shielding gas composition and the surface condition.

  12. Effects of cryomilling on the microstructures and high temperature mechanical properties of oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Gwon, Jin-Han; Kim, Jeoung-Han; Lee, Kee-Ahn

    2015-04-01

    The effects of cryomilling on the microstructures and high temperature mechanical properties of oxide dispersion-strengthened (ODS) steel were examined. Cryomilling was newly tried on this ODS steel to control oxides, grains, and dislocation microstructures. Fe-14Cr-3W-0.4Ti (wt.%) alloy powder and 0.3 wt.%Y2O3 powder were mixed and were mechanically alloyed (MA) through ball milling at each of room temperature (RT) and -150 °C and then hot isostatic pressing (HIP), hot rolling, and annealing processes were implemented to manufacture two types of ODS ferritic steel, K1 (RT) and K4 (-150 °C). Oxide particles were shown to be finer and more uniformly distributed in K4 (5-10 nm size distribution) than in K1 (average size 30 nm). The two alloys were subjected to high temperature compression (RT ∼ 900 °C) tests. K4 represented higher yield strength under all temperature conditions. However, K4 showed rapid strength decreases at high temperatures exceeding 700 °C and showed similar levels of strengths to K1 at 900 °C. This is considered attributable to the fact that although cryomilling increased the number density of oxide particles, it simultaneously reduced grain sizes too much, so that grain boundary weakening at high temperatures could not be sufficiently prevented.

  13. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  14. XXIst Century Ferrites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Zehani, K.; Pasko, A.; Loyau, V.; LoBue, M.

    2012-05-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Ørsted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the downsizing of ceramics microstucture to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba2+Fe12O19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  15. The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels

    SciTech Connect

    Tang Zhenghua Stumpf, Waldo

    2008-06-15

    Microstructures in Nb-Ti-microalloyed line-pipe steels with various molybdenum additions, consisted mostly of acicular ferrite plus polygonal ferrite after hot rolling and rapid cooling. Structure-sensitive surface relief after etching on shadowed extraction replicas, allowed quantification of the acicular and polygonal ferrite contents. Continuous cooling transformation diagrams of two alloys, one Mo-free and the other containing 0.22% Mo, were determined for cooling rates from 0.1 to 40 deg. C s{sup -1} without and with prior deformation of the austenite below the nil-recrystallisation temperature. Molybdenum additions slightly enhanced the acicular ferrite formation in the strain-free austenite whereas prior deformation had a much greater effect, and strongly promoted acicular ferrite formation in both alloys. Thin foil electron microscopy of acicular ferrite in these low-inclusion content alloys showed a preference for parallel acicular ferrite laths with less 'chaotically' nucleated laths.

  16. High-strength, low-alloy steels.

    PubMed

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties. PMID:17772810

  17. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  18. The Effect of Interfacial Element Partitioning on Ferrite and Bainite Formation

    NASA Astrophysics Data System (ADS)

    Chen, Hao; van der Zwaag, Sybrand

    2016-05-01

    The formation of bainitic ferrite and that of grain boundary ferrite in low alloy steels have been two of the most important and interesting research topics in the field of solid state ferrous phase transformation for several decades, and various aspects of these two transformations have been discussed extensively in the literature. Recently, a so-called Gibbs energy balance (GEB) model was proposed by the authors to evaluate alloying element effects on the growth of bainitic ferrite and grain boundary ferrite. The model predicts a growth mode transition from paraequilibrium, negligible partitioning to partitioning during the isothermal formation of bainitic ferrite and grain boundary ferrite. Transformation stasis and bay phenomenon are well explained by the GEB model and both of them are found to be due to alloying element diffusion at the interface. This overview gives a summary of the authors' recent progress in the understanding of the growth of bainitic ferrite and grain boundary ferrite, with particular focus on the growth mode transition, the transformation stasis phenomenon and the bay phenomenon.

  19. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T.; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James F.; Yacout, Abdellatif M.

    2016-04-01

    Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergström's dislocation models.

  20. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  1. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung

    Two types (CN66, CN71) of high interstitial stainless steels (HISSs) were investigated for down-hole application in sour gas well environments. Experiments were designed to identify factors that have a significant effect on mechanical properties. The three factors examined in the study were carbon + nitrogen content (0.66 or 0.71 mass %), cooling rate in quenching (air or water), and heat treatment time (2 or 4 hours). The results showed that the cooling rate, C+N content, and the two-factor interaction of these variables have a significant effect on the mechanical properties of HISSs. Based on the statistical analysis results on mechanical properties, extensive analyses were undertaken to understand the strengthening mechanisms of HISSs. Microstructure analysis revealed that a pearlite phase with a high carbide and/or nitride content is dissolved in the matrix by heat treatment at 1,200 ºC which is considered the dissolution to increase the concentration of interstitial elements in steels. The distribution of elements in HISSs was investigated by quantitative mapping using EPMA, which showed that the high carbon concentration (carbide/cementite) area was decreased by increases in both the cooling rate and C+N content. The ferrite volume fraction of each specimen is increased by an increase in cooling rate, because there is insufficient time to form austenite from retained ferrite. The lattice expansion of HISS was investigated by the calculation of lattice parameters under various conditions, and these investigations confirm the solid solution strengthening effect on HISSs. CN66 with heat treatment at fast cooling has the highest wear resistance; a finding that was consistent with hardening mechanisms that occur due to an increased ferrite volume fraction. In addition, precipitates on the surface and the chemical bonding of chromium were investigated. As the amount of CrN bonding increased, the wear resistance also increased. This study also assessed the

  2. The filler powders laser welding of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Liang, Shenyong; Lei, Yucheng; Zhu, Qiang

    2015-01-01

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y-M-O and TiC), submicron particles (Y-M-O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  3. Summary of workshop on alloys for very high-temperature applications

    SciTech Connect

    1996-08-01

    In current fossil energy systems, the maximum operating temperatures experienced by critical metal structures do not exceed approximately 732{degrees}C and the major limitation on the use of the alloys typically is corrosion resistance. In systems intended for higher performance and higher efficiency, increasingly higher working fluid temperatures will be employed, which will require materials with higher-temperature capabilities, in particular, higher creep strength and greater environmental resistance. There have been significant developments in alloys in recent years, from modifications of currently-used wrought ferritic and austenitic alloys with the intent of improving their high-temperature capabilities, to oxide dispersion-strengthened alloys targeted at extremely high-temperature applications. The aim of this workshop was to examine the temperature capability of these alloys compared to current alloys, and compared to the needs of advanced fossil fuel combustion or conversion systems, with the goals of identifying where modified/new alloys would be expected to find application, their limitations, and the information/actions required or that are being taken to qualify them for such use.

  4. A REVIEW OF THE OXIDATION BEHAVIOR OF STRUCTURAL ALLOYS IN STEAM

    SciTech Connect

    Wright, Ian G; Dooley, Barry

    2010-01-01

    The focus of this review is the state of knowledge of the oxidation behavior in steam of alloys with potential for use as pressure parts in steam boilers. Growth of steam-side oxides has implications for scale exfoliation, tube blockage and overheating, and turbine erosion. Mitigation of such problems requires mechanistic understanding of the influences of alloy composition and microstructure as well as time, temperature, and boiler operating parameters on the evolution of specific scale structures. The oxidation behavior in steam of three classes of alloys is addressed: ferritic steels (particularly the 9-12 wt% Cr alloys), austenitic steels, and high-temperature nickel-based alloys. Understanding the interplay among compositional and microstructural requirements for strengthening and oxidation resistance, and their influence on the rate and mode of scale evolution is key to the most effective application of these alloy classes. Underlying these interests is the apparently different mode of oxide growth in steam than in air, especially contributions from inward transport of oxidant species. The particular species involved and their roles in the oxidation process are expected to exert a large influence on the oxide morphologies developed, while the fate of any hydrogen released in the alloy is a further topic of particular interest.

  5. Development and characterisation of a new ODS ferritic steel for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Olier, P.; de Carlan, Y.; Baluc, N.

    2009-08-01

    This paper describes the microstructure, tensile properties and Charpy impact resistance of a reduced activation oxide dispersion strengthened ferritic steel Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 produced by mechanical alloying of a pre-alloyed, gas atomised steel powder with Y 2O 3 particles, compaction by hot extrusion at 1100 °C, hot rolling at 700 °C and heat treatment at 1050 °C for 1 h. At room temperature the material exhibits a high ultimate tensile strength of about 1420 MPa and high yield strength of about 1340 MPa in the transverse direction. In the longitudinal direction the values are about 10% lower, due to the anisotropy of the microstructure (elongated grains in the rolling direction). At 750 °C the material still exhibits relatively high yield strengths of about 325 MPa and 305 MPa in the longitudinal and transverse directions, respectively. The material exhibits reasonable uniform and total elongation values over the temperature range 23-750 °C, in both transverse and longitudinal directions. The material exhibits weak Charpy impact properties in the transverse direction. Charpy impact properties are slightly better in the longitudinal direction, with upper shelf energy of about 4.2 J and a ductile-to-brittle transition temperature of about 8.8 °C.

  6. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels

    SciTech Connect

    Zhu, S.; Yang, M.; Song, X.L.; Tang, S.; Xiang, Z.D.

    2014-12-15

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strength started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.

  7. Burnishing Techniques Strengthen Hip Implants

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the late 1990s, Lambda Research Inc., of Cincinnati, Ohio, received Small Business Innovation Research (SBIR) awards from Glenn Research Center to demonstrate low plasticity burnishing (LPB) on metal engine components. By producing a thermally stable deep layer of compressive residual stress, LPB significantly strengthened turbine alloys. After Lambda patented the process, the Federal Aviation Administration accepted LPB for repair and alteration of commercial aircraft components, the U.S. Department of Energy found LPB suitable for treating nuclear waste containers at Yucca Mountain. Data from the U.S. Food and Drug Administration confirmed LPB to completely eliminate the occurrence of fretting fatigue failures in modular hip implants.

  8. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  9. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  10. Solute strengthening at high temperatures

    NASA Astrophysics Data System (ADS)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2<τ /{τy0}≤slant 0.5 and then transitions to a power-law form at even lower stresses τ /{τy0}<0.03 . Δ {{E}\\text{b}} and {τy0} remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  11. Microstructure and texture of Nb + Ti stabilized ferritic stainless steel

    SciTech Connect

    Yan Haitao Bi Hongyun; Li Xin; Xu Zhou

    2008-12-15

    The microstructure, texture and grain boundary character distribution of Nb + Ti stabilized ferritic stainless steel were analyzed using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The addition of alloying elements such as Ti and Nb to ferritic stainless steel causes the formation of TiN, NbC and Fe{sub 2}Nb. The textures of cold rolled samples were dominated by the {alpha}-fiber, while the textures of annealed samples exhibit a very strong {gamma}-fiber. The changes in texture are closely related to the grain boundary characteristics.

  12. ON QUANTIFICATION OF HELIUM EMBRITTLEMENT IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect

    Gelles, David S.

    2000-12-01

    Helium accumulation due to transmutation has long been considered a potential cause for embrittlement in ferritic/martensitic steels. Three Charpy impact databases involving nickel- and boron-doped alloys are quantified with respect to helium accumulation, and it is shown that all predict a very large effect of helium production on embrittlement. If these predictions are valid, use of Ferritic/Martensitic steels for Fusion first wall applications is highly unlikely. It is therefore necessary to reorient efforts regarding development of these steels for fusion applications to concentrate on the issue of helium embrittlement.

  13. R&D of low activation ferritic steels for fusion in japanese universities*1

    NASA Astrophysics Data System (ADS)

    Kohyama, Akira; Kohno, Yutaka; Asakura, Kentaro; Kayano, Hideo

    1994-09-01

    Following the brief review of the R&D of low activation ferritic steels in Japanese universities, the status of 9Cr-2W type ferritic steels development is presented. The main emphasis is on mechanical property changes by fast neutron irradiation in FFTF. Bend test, tensile test, CVN test and in-reactor creep results are provided including some data about low activation ferritic steels with Cr variation from 2.25 to 12%. The 9Cr-2W ferritic steel, denoted as JLF-1, showed excellent mechanical properties under fast neutron irradiation as high as 60 dpa. As potential materials for DEMO and beyond, innovative oxide dispersion strengthened (ODS) quasi-amorphous low activation ferritic steels are introduced. The baseline properties, microstructural evolution under ion irradiation and the recent progress of new processes are provided.

  14. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  15. Strengthening Mechanisms in Microtruss Metals

    NASA Astrophysics Data System (ADS)

    Ng, Evelyn K.

    Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing

  16. A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, Sunil; Mathew, M. D.

    2012-04-01

    Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.

  17. Effect of chemical composition and ferrite content on room temperature SCC behavior of austenitic weld metals

    SciTech Connect

    Raghunatha Rao, B.; Prasad Rao, K.; Iyer, K.J.L. )

    1993-03-01

    Austenitic stainless steels are widely used in the welded condition especially in chemical, petrochemical, thermal power, and nuclear industries where they are subjected to stresses in corrosive environments. Since austenitic stainless steel weld metals invariably contain some delta ferrite to avoid hot cracking, the effect of ferrite on the stress corrosion cracking behavior is important. Austenitic weld metals with different alloy additions and different ferrite contents were investigated for their resistance to room temperature stress corrosion cracking (SCC) in 5 N H[sub 2]SO[sub 4] + 0.5 N NaCl solution. It was found that the delta ferrite content in the weld metals had a predominant effect on the SCC resistance. Higher ferrite contents increased the tendency for SCC. Post-weld heat treatment of weld metals resulted in the improvement of the SCC resistance.

  18. TEM Examination of Advanced Alloys Irradiated in ATR

    SciTech Connect

    Jian Gan, PhD

    2007-09-01

    Successful development of materials is critical to the deployment of advanced nuclear power systems. Irradiation studies of candidate materials play a vital role for better understanding materials performance under various irradiation environments of advanced system designs. In many cases, new classes of materials have to be investigated to meet the requirements of these advanced systems. For applications in the temperature range of 500 800ºC which is relevant to the fast neutron spectrum burner reactors for the Global Nuclear Energy Partnership (GNEP) program, oxide dispersion strengthened (ODS) and ferritic martensitic steels (e.g., MA957 and others) are candidates for advanced cladding materials. In the low temperature regions of the core (<600ºC), alloy 800H, HCM12A (also called T 122) and HT 9 have been considered.

  19. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles. PMID:15582472

  20. Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Kostryzhev, Andrii G.; Marenych, Olexandra O.; Killmore, Chris R.; Pereloma, Elena V.

    2015-08-01

    The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly.

  1. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep

    SciTech Connect

    Li, Shengzhi; Eliniyaz, Zumrat; Zhang, Lanting; Sun, Feng; Shen, Yinzhong; Shan, Aidang

    2012-11-15

    This research focused on the formation and microstructural evolution of delta ferrite phase in SAVE12 steel. The formation of delta ferrite was due to the high content of ferrite forming alloy elements such as Cr, W, and Ta. This was interpreted through either JMatPro-4.1 computer program or Cr{sub eq} calculations. Delta ferrite was found in bamboo-like shape and contained large amount of MX phase. It was surrounded by Laves phases before creep or aging treatment. Annealing treatments were performed under temperatures from 1050 Degree-Sign C to 1100 Degree-Sign C and various time periods to study its dissolution kinetics. The result showed that most of the delta ferrite can be dissolved by annealing in single phase austenitic region. Dissolution process of delta ferrite may largely depend on dissolution kinetic factors, rather than on thermodynamic factors. Precipitation behavior during short-term (1100 h) creep was investigated at temperature of 600 Degree-Sign C under a stress of 180 MPa. The results demonstrated that delta ferrite became preferential nucleation sites for Laves phase at the early stage of creep. Laves phase on the boundary around delta ferrite showed relatively slower growth and coarsening rate than that inside delta ferrite. - Highlights: Black-Right-Pointing-Pointer Delta ferrite is systematically studied under heat treatment and short-term creep. Black-Right-Pointing-Pointer Delta ferrite contains large number of MX phase and is surrounded by Laves phases before creep or aging treatment. Black-Right-Pointing-Pointer Formation of delta ferrite is interpreted by theoretical and empirical methods. Black-Right-Pointing-Pointer Most of the delta ferrite is dissolved by annealing in single phase austenitic region. Black-Right-Pointing-Pointer Delta ferrite becomes preferential nucleation sites for Laves phase at the early stage of creep.

  2. Development of low activation Ferritic steels

    NASA Astrophysics Data System (ADS)

    Noda, T.; Abe, F.; Araki, H.; Okada, M.

    1986-11-01

    Fe-(2-15)%Cr-(0-4)%W-0.1%C and Fe-9%Cr-(0-l)%V-0.1%C steels were prepared on the basis of reduced activation of ferritic steels. Tempering characteristics of these alloys were studied as a preliminary evaluation of mechanical properties. Alloys except for 12-15%Cr, 9%Cr-4%W, and 9%Cr-1%V showed a single phase of martensite. Carbides which precipitated in as-tempered steels are M 23C 6, M 6C, and W 2C for Cr-W steels and M 23C 6 and V 4C 3 for Cr-V steels. The toughness of the alloys was examined with Charpy impact test. The minimum DBTT (ductile-brittle transition temperature) was observed at around 0.25 at% of W or V concentration for 9%Cr steels. 9%Cr-V steels were superior to commercial 9%Cr-2%Mo steel in the point of toughness. The order of alloying element with a low DBTT was V > Mo > W.

  3. FRP : Strengthened RC Structures

    NASA Astrophysics Data System (ADS)

    Teng, J. G.; Chen, J. F.; Smith, S. T.; Lam, L.

    2002-01-01

    The strengthening of reinforced concrete (RC) structures using advanced fibre-reinforced polymer (FRP) composites, and in particular the behaviour of FRP-strengthened RC structures is a topic which has become very popular in recent years. This popularity has arisen due to the need to maintain and upgrade essential infrastructure in all parts of the world, combined with the well-known advantages of FRP composites, such as good corrosion resistance and ease for site handling due to their light weight. The continuous reduction in the material cost of FRP composites has also contributed to their popularity. While a great amount of research now exists in the published literature on this topic, it is scattered in various journals and conference proceedings. This book therefore provides the first ever comprehensive, state-of-the-art summary of the existing research on FRP strengthening of RC structures, with the emphasis being on structural behaviour and strength models. The main topics covered include: Bond behaviour Flexural and shear strengthening of beams Column strengthening Flexural strengthening of slabs. For each area, the methods of strengthening are discussed, followed by a description of behaviour and failure modes and then the presentation of rational design recommendations, for direct use in practical design of FRP strengthening measures. Researchers, practicing engineers, code writers and postgraduate students in structural engineering and construction materials, as well as consulting firms, government departments, professional bodies, contracting firms and FRP material suppliers will find this an invaluable resource.

  4. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Mueller, P.; Spätig, P.; Baluc, N.

    2011-05-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 °C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 °C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 °C).

  5. Microstructure and Mechanism of Strengthening of Microalloyed Pipeline Steel: Ultra-Fast Cooling (UFC) Versus Laminar Cooling (LC)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, X.; Hu, W.; Kang, J.; Yuan, G.; Di, H.; Misra, R. D. K.

    2016-06-01

    A novel thermo-mechanical controlled processing (TMCP) schedule involving ultra-fast cooling (UFC) technique was used to process X70 (420 MPa) microalloyed pipeline steel with high strength-high toughness combination. A relative comparison is made between microstructure and mechanical properties between conventionally processed (CP) and ultra-fast cooled (UFC) pipeline steels, together with differences in strengthening mechanisms with respect to both types of processes. UFC-processed steel exhibited best combination of strength and good toughness compared to the CP process. The microstructure of CP pipeline steel mainly consisted of acicular ferrite (AF), bainitic ferrite (BF), and dispersed secondary martensite/austenite (M/A) constituent and a small fraction of fine quasi-polygonal ferrite. In contrast, the microstructure of UFC-processed pipeline steel was predominantly composed of finer AF, BF, and dispersed M/A constituent. The primary strengthening mechanisms in UFC pipeline steel were grain size strengthening and dislocation strengthening with strength increment of ~277 and ~151 MPa, respectively. However, the strengthening contribution in CP steel was related to grain size strengthening, dislocation strengthening, and precipitation strengthening, and the corresponding strength increments were ~212, ~149 and ~86 MPa, respectively. The decrease in strength induced by reducing Nb and Cr in UFC pipeline steel was compensated by enhancing the contribution of grain size strengthening in the UFC process. In conclusion, cooling schedule of UFC combined with LC is a promising method for processing low-cost pipeline steels.

  6. Microstructure and Mechanism of Strengthening of Microalloyed Pipeline Steel: Ultra-Fast Cooling (UFC) Versus Laminar Cooling (LC)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, X.; Hu, W.; Kang, J.; Yuan, G.; Di, H.; Misra, R. D. K.

    2016-05-01

    A novel thermo-mechanical controlled processing (TMCP) schedule involving ultra-fast cooling (UFC) technique was used to process X70 (420 MPa) microalloyed pipeline steel with high strength-high toughness combination. A relative comparison is made between microstructure and mechanical properties between conventionally processed (CP) and ultra-fast cooled (UFC) pipeline steels, together with differences in strengthening mechanisms with respect to both types of processes. UFC-processed steel exhibited best combination of strength and good toughness compared to the CP process. The microstructure of CP pipeline steel mainly consisted of acicular ferrite (AF), bainitic ferrite (BF), and dispersed secondary martensite/austenite (M/A) constituent and a small fraction of fine quasi-polygonal ferrite. In contrast, the microstructure of UFC-processed pipeline steel was predominantly composed of finer AF, BF, and dispersed M/A constituent. The primary strengthening mechanisms in UFC pipeline steel were grain size strengthening and dislocation strengthening with strength increment of ~277 and ~151 MPa, respectively. However, the strengthening contribution in CP steel was related to grain size strengthening, dislocation strengthening, and precipitation strengthening, and the corresponding strength increments were ~212, ~149 and ~86 MPa, respectively. The decrease in strength induced by reducing Nb and Cr in UFC pipeline steel was compensated by enhancing the contribution of grain size strengthening in the UFC process. In conclusion, cooling schedule of UFC combined with LC is a promising method for processing low-cost pipeline steels.

  7. Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Rodrigo, Vargas Hideroa; Gentzbittel, J. M.; Rabeau, V.; Fournier, B.

    2012-07-01

    A Fe-14Cr oxide dispersion strengthened (ODS) ferritic steel is studied as a potential material for cladding tube application for the next generation of fast-breeder nuclear reactors. Tensile specimens machined out from a hot extruded round bar in three different orientations are used to evaluate the mechanical anisotropy of this steel for temperatures in the range 20-750 °C. Its anisotropy is discussed both in terms of mechanical strength and fracture mode. At high temperatures (HTs), above 500 °C, the longitudinal direction appears to be the most ductile and most resistant direction. Longitudinal creep tests between 650 °C and 900 °C were also carried out. They show this ODS steel has a high HT creep lifetime and a low creep failure strain. Intergranular cracks aligned along the loading axis were observed on fractured creep specimens. They reveal a particular weakness of prior particle boundaries and suggest to modify the elaboration process through mechanical alloying and hot extrusion.

  8. Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    London, A. J.; Lozano-Perez, S.; Santra, S.; Amirthapandian, S.; Panigrahi, B. K.; Sundar, C. S.; Grovenor, C. R. M.

    2014-06-01

    Oxide dispersion strengthened steels owe part of their high temperature stability to the nano-scale oxides they contain. These yttrium-titanium oxides are notoriously difficult to characterise since they are embedded in a magnetic-ferritic matrix and often <10 nm across. This study uses correlated transmission electron microscopy and atom probe tomography on the same material to explore the kind of information that can be gained on the character of the oxide particles. The influence of chromium in these alloys is of interest, therefore two model ODS steels Fe-(14Cr)-0.2Ti-0.3Y2O3 are compared. TEM is shown to accurately measure the size of the oxide particles and atom probe tomography is necessary to observe the smallest sub-1.5 nm particles. Larger Y2Ti2O7 and Y2TiO5 structured particles were identified by high-resolution transmission electron microscopy, but the smallest oxides remain difficult to index. Chemical data from energy-filtered TEM agreed qualitatively with the atom probe findings. It was found that the majority of the oxide particles exhibit an unoxidised chromium shell which may be responsible for reducing the ultimate size of the oxide particles.

  9. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    NASA Astrophysics Data System (ADS)

    Dawson, Karl; Haigh, Sarah J.; Tatlock, Gordon J.; Jones, Andy R.

    2015-09-01

    The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923-1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (NV > 1023 m-3) of coherent 2 nm yttrium-aluminium-oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y-Al-O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains.

  10. Development of ferritic weldments for grain-refined ferritic steels for 4. 2K service

    SciTech Connect

    Kim, H.J.

    1982-11-01

    The weldability of grain-refined ferritic nickel steels designed for structural use in liquid helium was investigated. Plates of interstitial-free Fe-12Ni-0.25Ti alloy and carbon-containing 9 Ni steel were welded with 14 Ni ferritic fillers using a gas tungsten arc welding (GTAW) process with pure argon gas shielding. The ferritic weldments made have a strength closely matching those of the base plates without a significant loss in base metal toughness at temperatures as low as 4.2 K. The comparable toughness obtained in the welded region is attributed to three factors; the defect-free weldment, the chemical cleanliness of the GTAW weld deposit, and the in-process formation of an appropriate microstructure in the welded region. Special emphasis in this study was placed on changes in microstructures with respect to the characteristic of the weld thermal cycles and the effect of the resultant microstructures on low temperature toughness. In the heat-affected zone (HAZ) of multipass welded 9Ni steel, the retained (or precipitated) austenite is removed by the weld heat cycles but the sequential rapid heat cycles to successively lower peak temperatures associated with succeeding weld passes re-establish high toughness by sequentially refining the grain size and gettering carbon in the form of cementite precipitates. On the other hand, the high toughness in the HAZ of the 12Ni alloy and in the weld deposit is a direct consequence of repeated grain refinement through the overlapped austenitizing cycles and is not affected by the tempering cycles because of the carbon-free nature of these materials. 46 figures.

  11. Development of ferritic weldments for grain-refined ferritic steels for 4. 2K service

    SciTech Connect

    Kim, H.J.

    1982-01-01

    The weldability of grain-refined ferritic nickel steels designed for structural use in liquid helium was investigated. Plates of interstitial-free Fe-12Ni-0.25Ti alloy and carbon-containing 9Ni steel were welded with 14Ni ferritic fillers using a gas tungsten arc welding (GTAW) process with pure argon gas shielding. The ferritic weldments made have a strength closely matching those of the base plates without a significant loss in base metal toughness at temperatures as low as 4.2K. The comparable toughness obtained in the welded region is attributed to three factors; the defect-free weldment, the chemical cleanliness of the GTAW weld deposit, and the in-process formation of an appropriate microstructure in the welded region. Special emphasis in this study was placed on changes in microstructures with respect to the characteristic of the weld thermal cycles and the effect of the resultant microstructures on low temperature toughness. In the heat-affected zone (HAZ) of multipass welded 9Ni steel, the retained (or precipitated) austenite is removed by the weld heat cycles but the sequential rapid heat cycles to successively lower peak temperatures associated with succeeding weld passes re-establish high toughness by sequentially refining the grain size and gettering carbon in the form of cementite precipitates. On the other hand, the high toughness in the HAZ of the 12Ni alloy and in the weld deposit is a direct consequence of repeated grain refinement through the overlapped austenitizing cycles and is not affected by the tempering cycles because of the carbon-free nature of these materials.

  12. Effect of Hot Coiling Under Accelerated Cooling on Development of Non-equiaxed Ferrite in Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Lanjewar, H. A.; Tripathi, Pranavkumar

    2016-06-01

    Strengthening mechanisms dominant in non-equiaxed ferrite structures are not so familiar and well measured. In present study, non-equiaxed ferritic structures were generated and perceived to be strengthened by grain/crystal refinement, presence of varying substructures, solid solution strengthening, and textural hardening. A Nb-V microalloyed steel was modeled under various accelerated cooling and coiling temperature conditions in a thermo-mechanical simulator. Decrease in coiling temperature in conjunction with accelerated cooling resulted in non-equiaxed ferrite structures with array of phase morphologies. Intermediate transformation conditions produced increase in strength concurrent with observed smallness in crystallite size and high amount of microstrain in the matrix phase indicative of high dislocation densities and crystal imperfections. Increase in strength is partially attributed to solid solution and texture hardening owing to increase in (111) pole intensity in structure.

  13. Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-pei; Zhao, Ai-min; Zhao, Zheng-zhi; Huang, Yao; Li, Liang; He, Qing

    2014-03-01

    The microstructures and properties of hot-rolled low-carbon ferritic steel have been investigated by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, and tensile tests after isothermal transformation from 600°C to 700°C for 60 min. It is found that the strength of the steel decreases with the increment of isothermal temperature, whereas the hole expansion ratio and the fraction of high-angle grain boundaries increase. A large amount of nanometer-sized carbides were homogeneously distributed throughout the material, and fine (Ti, Mo)C precipitates have a significant precipitation strengthening effect on the ferrite phase because of their high density. The nanometer-sized carbides have a lattice parameter of 0.411-0.431 nm. After isothermal transformation at 650°C for 60 min, the ferrite phase can be strengthened above 300 MPa by precipitation strengthening according to the Ashby-Orowan mechanism.

  14. Effect of Hot Coiling Under Accelerated Cooling on Development of Non-equiaxed Ferrite in Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Lanjewar, H. A.; Tripathi, Pranavkumar

    2016-04-01

    Strengthening mechanisms dominant in non-equiaxed ferrite structures are not so familiar and well measured. In present study, non-equiaxed ferritic structures were generated and perceived to be strengthened by grain/crystal refinement, presence of varying substructures, solid solution strengthening, and textural hardening. A Nb-V microalloyed steel was modeled under various accelerated cooling and coiling temperature conditions in a thermo-mechanical simulator. Decrease in coiling temperature in conjunction with accelerated cooling resulted in non-equiaxed ferrite structures with array of phase morphologies. Intermediate transformation conditions produced increase in strength concurrent with observed smallness in crystallite size and high amount of microstrain in the matrix phase indicative of high dislocation densities and crystal imperfections. Increase in strength is partially attributed to solid solution and texture hardening owing to increase in (111) pole intensity in structure.

  15. Residual Ferrite and Relationship Between Composition and Microstructure in High-Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Ren, Yibin; Yao, Chunfa; Yang, Ke; Misra, R. D. K.

    2015-12-01

    A series of high-nitrogen stainless steels (HNS) containing δ-ferrite, which often retained in HNS, were studied to establish the relationship between composition and microstructure. Both ferrite and nitrogen depletions were found in the center regions of cast ingots, and the depletion of nitrogen in that area was found to be the main reason for the existence of δ-ferrite. Because of the existence of heterogeneity, the variation of microstructure with nitrogen content was detected. Hence, the critical contents of nitrogen (CCN) for the fully austenitic HNS were obtained. Then the effects of elements such as N, Cr, Mn, and Mo on austenite stability were investigated via thermodynamic calculations. The CCN of HNS alloys were also obtained by calculations. Comparing the CCN obtained from experiment and calculation, it was found that the forged microstructure of the HNS was close to the thermodynamic equilibrium. To elucidate the above relationship, by regression analysis using calculated thermodynamic data, nitrogen equivalent and a new constitution diagram were proposed. The constitution diagram accurately distinguishes the austenitic single-phase region and the austenite + ferrite dual-phase region. The nitrogen equivalent and the new constitution diagram can be used for alloying design and microstructural prediction in HNS. According to the nitrogen equivalent, the ferrite stabilizing ability of Mo is weaker than Cr, and with Mn content increases, Mn behaves as a weak austenite stabilizer first and then as a ferrite stabilizer.

  16. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  17. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  18. Characterization of Irradiated Nanostructured Ferritic Steels

    SciTech Connect

    Bentley, James; Hoelzer, David T; Tanigawa, H.; Yamamoto, T.; Odette, George R.

    2007-01-01

    The past decade has seen the development of a new class of mechanically alloyed (MA) ferritic steels with outstanding mechanical properties that come, at least in part, from the presence of high concentrations (>10{sup 23} m{sup -3}) of Ti-, Y-, and O-enriched nanoclusters (NC). From the outset, there has been much interest in their potential use for applications to fission and proposed fusion reactors, not only because of their attractive high-temperature strength, but also because the presence of NC may result in a highly radiation-resistant material by efficiently trapping point defects to enhance recombination. Of special interest for fusion applications is the potential of NC to trap transmutation-produced He in high concentrations of small cavities, rather than in fewer but larger cavities that lead to greater radiation-induced swelling and other degraded properties.

  19. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part 1: The Protective Scale

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.

  20. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  1. Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Chen, C.-L.; Richter, A.; Kögler, R.; Talut, G.

    2011-05-01

    Nanostructured ferritic oxide dispersion strengthened (ODS) alloy is an ideal candidate for fission/fusion power plant materials, particularly in the use of a first-wall and blanket structure of a next generation reactor. These steels usually contain a high density of Y-Ti-O and Y-Al-O nanoparticles, high dislocation densities and fine grains. The material contains nanoparticles with an average diameter of 21 nm and was treated by several cold rolling procedures, which modify the dislocation density. Structural analysis with HRTEM shows that the chemical composition of the initial Y 2O 3 oxide is modified to perovskite YAlO 3 (YAP) and Y 2Al 5O 12 garnet (YAG). Irradiation of these alloys was performed with a dual beam irradiation of 2.5 MeV Fe +/31 dpa and 350 keV He +/18 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. Extended SRIM calculations for ODS steel indicate a clear spatial separation between the excess vacancy distribution close to the surface and the excess interstitials in deeper layers of the material surface. The helium atoms are supposed to accumulate mainly in the vacancies. Additionally to structural changes, the effect of the irradiation generated defects on the mechanical properties of the ODS is investigated by nanoindentation. A clear hardness increase in the irradiated area is observed, which reaches a maximum at a close surface region. This feature is attributed to synergistic effects between the displacement damage and He implantation resulting in He filled vacancies. Fine He cavities with diameters of a few nanometers were identified in TEM images.

  2. Ferritic/martensitic steels - overview of recent results

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Gelles, D. S.; Jitsukawa, S.; Kimura, A.; Odette, G. R.; van der Schaaf, B.; Victoria, M.

    2002-12-01

    Considerable research work has been conducted on the ferritic/martensitic steels since the last International Conference on Fusion Reactor Materials in 1999. Since only a limited amount of that work can be reviewed in this paper, four areas will be emphasized: (1) the international collaboration under the auspices of the International Energy Agency (IEA) to address potential problems with ferritic/martensitic steels and to prove their feasibility for fusion, (2) the major uncertainty that remains concerning the effect of transmutation helium on mechanical properties of the steels when irradiated in a fusion neutron environment, (3) development of new reduced-activation steels beyond the F82H and JLF-1 steels studied in the IEA collaboration, and (4) work directed at developing oxide dispersion-strengthened steels for operation above 650 °C.

  3. Cryogenic Properties of a New Tough-Strong Iron Alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1977-01-01

    A program was undertaken to develop an iron-base alloy having a fracture toughness of 220 MPa. m superscript 1/2 with a corresponding yield stress of 1.4 GPa (200 ksi) at-196 C. An Fe-12Ni alloy was selected as the base alloy. Factors considered included reactive metal additions, effects of interstitial impurities, strengthening mechanisms, and weldability. The goals were met in an Fe-12Ni-0.5Al alloy strengthened by thermomechanical processing or by precipitate strengthening with 2 percent Cu. The alloy is weldable with the weld metal and heat affected zone in the postweld annealed condition having toughness equivalent to the base alloy.

  4. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  5. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  6. Strengthening America's Families.

    ERIC Educational Resources Information Center

    Alvarado, Rose; Kumpfer, Karol

    2000-01-01

    Improving parenting practices and the family environment is the most effective, enduring strategy for combating juvenile delinquency. Describes the Office of Juvenile Justice and Delinquency Prevention's Strengthening America's Families Initiative. Highlights several family-focused prevention programs identified as exemplary, explaining how they…

  7. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  8. Strengthening Resilience in Families

    ERIC Educational Resources Information Center

    Guild, Diane; Espiner, Deborah

    2014-01-01

    Rolling with Resilience (RwR) provides a springboard for developing strategies that build strengths and supports to foster developmental assets in children and youth (Benson, Scales, & Roehlkepartain, 2011). In Circle of Courage terms, resilience is strengthened by opportunities for Belonging, Mastery, Independence, and Generosity (Brendtro,…

  9. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  10. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    NASA Astrophysics Data System (ADS)

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  11. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  12. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  13. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Han; Wang, Sea-Fue; Tsai, An-Pang; Kameoka, Satoshi

    2015-05-01

    In this study, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. The Cu-Ni ferrites, synthesized using a solid-state reaction method, are reduced at temperatures from 240 °C to 500 °C in a H2 atmosphere. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. For the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites reduced at 240, 300, and 400 °C, respectively, nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After increasing the reduction temperature of NiFe2O4 ferrite to 500 °C, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covering on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240 °C exhibits the highest H2 production rate of 149 ml STP/min g-cat at 360 °C. The existence of Ni content in the Cu-Ni ferrites enhances the reverse water gas shift reaction, and raises the CO selectivity while reducing the CO2 selectivity. Formation of a Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.

  14. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  15. Nature of anisotropy of impact toughness of structural steels with ferrite-pearlite structure

    NASA Astrophysics Data System (ADS)

    Goritskii, V. M.; Shneyderov, G. R.; Lushkin, M. A.

    2013-10-01

    The anisotropy of the impact toughness of low-alloy steels of various compositions and purities with a ferrite-pearlite structure has been investigated using samples of type 11 according to the Russian Standard GOST 9454-78. It has been established that the anisotropy coefficient of the impact toughness depends on the anisotropy coefficient of the work of crack propagation and is independent of the degree of striation of the ferrite-pearlite structure and the work for nucleation of the ductile crack.

  16. Deuterium and helium trapping at TiC particles in ferritic steel

    NASA Astrophysics Data System (ADS)

    Spitznagel, J. A.; Brenner, S. S.; Miller, M. K.; Choyke, W. J.

    1984-05-01

    First wall and blanket materials in Tokamak machines must accommodate increasing concentrations of helium and hydrogen isotopes. Alloy design principles point to the efficacy of trapping He and hydrogen at finely dispersed precipitates to minimize their impact on mechanical properties. Titanium carbide particles are known to trap He effectively in austenitic stainless steel. Less is known about TiC as a trap for helium and hydrogen isotopes in ferritic steels. This paper demonstrates the feasibility of directly measuring the trapping of helium and deuterium at TiC-ferrite interfaces using atom probe field ion microscopy.

  17. A complex carbonitride of niobium and vanadium in 9% Cr ferritic steels

    SciTech Connect

    Tokuno, K.; Hamada, K.; Takeda, T. ); Uemori, R. ); Itoh, K. )

    1991-01-01

    It has been considered that small additions of Nb and V have striking effects on the creep strength of high Cr ferritic steels which are used for elevated temperature services such as boilers, steam generators etc. Although Nb and V are thought to form complex precipitates which may act as obstacles for the dislocation glide, the distribution and morphology of the precipitates have not been clarified yet. Several examples of simple precipitates of V in low alloy steels were only reported. In this paper, the morphology of the complex carbonitride of Nb and V in 9% Cr ferritic steels was investigated and the role of the carbonitride on the creep strength was discussed.

  18. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  19. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  20. Revealing the low-temperature effect of strengthening the magnetism of iron-vanadium-aluminum alloy upon small variation of the non-transition element content in the stoichiometric composition

    NASA Astrophysics Data System (ADS)

    Lonchakov, A. T.; Marchenkov, V. V.; Okulov, V. I.; Govorkova, T. E.; Okulova, K. A.; Bobin, S. B.; Deryushkin, V. V.; Emel'yanova, S. M.; Usik, A. Yu.; Weber, H. W.

    2016-03-01

    Anomalously strong change of ferromagnetic ordering parameters upon a small variation of aluminum content was revealed in low-temperature experimental studies of electrical resistivity and galvanomagnetic properties of iron-vanadium-aluminum magnetic alloys with the compositions near the stoichiometric Fe2VAl. By comparing the temperature and magnetic field dependences of the electrical resistivity and Hall effect in Fe2.1V0.91Al0.99 and Fe2.05V0.91Al1.04 alloys, it was shown that a small increase of aluminum content leads to doubling of the Curie temperature and a sharp change in the temperature dependences of the magnetoresistance and saturation of the spontaneous magnetization.

  1. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed Nickel Aluminum for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Deog

    The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate

  2. Effect of neutron irradiation on vanadium alloys

    SciTech Connect

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  3. Diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2013-11-01

    Ferritic oxide dispersion strengthened (ODS) steels are well suited as structural materials, e.g. for claddings in fission reactors and for plasma facing components in fusion power plants due to their high mechanical and oxidation stability at high temperatures and their high irradiation resistance. PM2000 is an iron based ODS ferritic steel with homogeneously distributed nanometric yttria particles. Melting joining techniques are not suitable for such ODS materials because of the precipitation and agglomeration of the oxide particles and hence the loss of their strengthening effect. Solid state diffusion bonding is thus chosen to join PM2000 and is investigated in this work with a focus on oxide particles. The diffusion bonding process is aided by the computational modeling, including the influence of the ODS particles. For modeling the microstructure stability and the creep behavior of PM2000 at various, diffusion bonding relevant temperatures (50-80% Tm) are investigated. Particle distribution (TEM), strength (tensile test) and toughness (Charpy impact test) obtained at temperatures relevant for bonding serve as input for the prediction of optimal diffusion bonding parameters. The optimally bonded specimens show comparable strength and toughness relative to the base material.

  4. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    PubMed Central

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; VanLeeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-01-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications. PMID:26134420

  5. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys.

    PubMed

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A; Wang, William Y; VanLeeuwen, Brian K; Liu, Xuan L; Kecskes, Laszlo J; Dickey, Elizabeth C; Liu, Zi-Kui

    2015-01-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications. PMID:26134420

  6. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  7. Microstructural model for hot strip rolling of high-strength low-alloy steels

    SciTech Connect

    Militzer, M.; Hawbolt, E.B.; Meadowcroft, T.R.

    2000-04-01

    The microstructural evolution during hot-strip rolling has been investigated in four commercial high-strength low-alloy (HSLA) steels and compared to that of a plain, low-carbon steel. The recrystallization rates decrease as the Nb microalloying content increases, leading to an increased potential to accumulate retained strain during the final rolling passes. The final microstructure and properties of the hot band primarily depend on the austenite decomposition and precipitation during run-out table cooling and coiling. A combined transformation-ferrite-grain-size model, which was developed for plain, low-carbon steels, can be applied to HSLA steels with some minor modifications. The effect of rolling under no-recrystallization conditions (controlled rolling) on the transformation kinetics and ferrite grain refinement has been evaluated for the Nb-containing steels. Precipitation of carbides, nitrides, and/or carbonitrides takes place primarily during coiling, and particle coarsening controls the associated strengthening effect. The microstructural model has been verified by comparison to structures produced in industrial coil samples.

  8. NASA Design Strengthens Welds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Friction Stir Welding (FSW) is a solid-state joining process-a combination of extruding and forging-ideal for use when the original metal characteristics must remain as unchanged as possible. While exploring methods to improve the use of FSW in manufacturing, engineers at Marshall Space Flight Center created technologies to address the method's shortcomings. MTS Systems Corporation, of Eden Prairie, Minnesota, discovered the NASA-developed technology and then signed a co-exclusive license agreement to commercialize Marshall's design for use in high-strength structural alloys. The resulting process offers the added bonuses of being cost-competitive, efficient, and most importantly, versatile.

  9. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  10. High-temperature oxidation behavior of two-phase iron-manganese-aluminum alloys

    SciTech Connect

    Liu, S.Y.; Lee, C.L.; Kao, C.H.; Perng, T.P.

    2000-04-01

    Oxidation behavior of two series of two-phase Fe-Mn-Al alloys in air up to 800 C was investigated. For the first series of alloys with various ratios of ferrite-austenite, the oxidation resistance of these alloys increased as the ferrite content increased. Two layers of oxide were formed mainly on the austenite grains, and oxidation in the ferrite phase was much less severe. The other layer of the scale on austenite was enriched with Mn and Fe, while Al was concentrated in the inner layer. For the second series of alloys with nearly the same contents of ferrite and C but various contents of Cr, the addition of Cr changed the oxidation characteristics and increased the oxidation resistance. Cr assisted the formation of a dense film of alumina (Al{sub 2}O{sub 3}) to prevent further oxidation.

  11. Effect of Nb on high-temperature properties for ferritic stainless steel

    SciTech Connect

    Fujita, N.; Kikuchi, M.; Ohmura, K.; Suzuki, T.; Funaki, S.; Hiroshige, I.

    1996-09-15

    In order to improve the efficiency of automobile engines and to reduce their weight, there is a move toward the use of conventional stainless steel sheets and pipes for exhaust manifolds to replace cast iron, the traditional material for this application. The exhaust manifold is used in an environment that includes engine vibrations as well as heating and cooling cycles caused by the travel pattern. Therefore, among high-temperature characteristics, thermal fatigue resistance is an important one that affects the life span of an exhaust manifold. Generally, austenitic steels have higher strength at high temperature than ferritic steels. However, type 304, a typical austenitic stainless steel, has less thermal fatigue resistance than type 430, a typical ferritic stainless steel. This is because austenitic steels have higher coefficient of thermal expansion than ferritic steels. Therefore, to obtain a material with excellent thermal fatigue resistance, it would conceivably be best to attempt to increase the high temperature strength of ferritic stainless steels. The present study centered on improvement of the high-temperature proof strength of ferritic stainless steels. The mechanism of high temperature strengthening by Nb addition, which was shown to be one of the most effective methods to improve proof strength at high temperature, was discussed.

  12. Multiferroic bismuth ferrite material core based inductive displacement sensor

    NASA Astrophysics Data System (ADS)

    Rajeswari, R.; Biswal, M. R.; Nanda, J.; Mishra, N. C.

    2012-07-01

    In this research, an inductive displacement sensor with multiferroic bismuth ferrite core has been realized. The bismuth ferrite sample is synthesized and its structural and dielectric properties are studied. A rod-shaped bismuth ferrite core is prepared and displaced through the inductor of a RLC circuit. The performance of the prepared bismuth ferrite core has been compared with a commercially available ferrite core.

  13. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  14. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  15. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  16. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  17. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  18. Dependency of machinability in gray cast iron on nitride-induced age strengthening

    NASA Astrophysics Data System (ADS)

    Teague, Jared Ashley

    Work of previous researchers has suggested that room temperature age strengthening in gray cast irons improves machinability. Verification and quantification of the machinability improvement is important to industry. Improved machinability will reduce overall manufacturing costs and reduce raw material consumption by decreasing the rate at which tools are replaced. Experimental work was performed to determine a connection between improved machinability in gray cast iron and changes in machining mechanics. An industrial tool wear study verified that age strengthening improved machinability by reducing tool wear to less than one-quarter of the unaged value. Laboratory tests on iron castings from the same foundry determined that tool forces decreased with age strengthening. Additional tool force experiments were performed on castings produced in the Missouri S&T laboratory of varying carbon equivalent and microstructure. Results showed that casting microstructure played a key role in determining how age strengthening affects machinability and that the equilibrium precipitate content did not solely dictate magnitudes of hardness increases or tool force decreases after age strengthening. Machining work with industrial castings resulted in cases in which gray iron decreased in machinability after age strengthening, a situation that was previously only anecdotally reported. The determination was made that irons containing greater than one percent free ferrite increase in machinability after age strengthening. Research concluded that gray iron age strengthening improved machinability by lowering fracture toughness which decreases tool-chip contact time thereby reducing tool temperature and tool wear.

  19. The partitioning of alloying elements in vacuum arc remelted, Pd-modified PH 13-8 Mo alloys

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Vandenavyle, J. A.; Carr, M. J.; Hills, C. R.; Semarge, R. E.

    1988-12-01

    The partitioning of alloying elements in as-solidified PH 13-8 Mo stainless steel containing up to 1.02 wt pct Pd has been investigated. The as-solidified structure is composed of two major phases, martensite and ferrite. Electron probe microanalysis reveals that Mo, Cr, and Al partition to the ferrite phase while Fe, Ni, Mn, and Pd partition to the martensite (prior austenite) during solidification and cooling from the solidus. In addition to bulk segregation between phases, precipitation of the intermetallic, PdAI, in the retained ferrite is observed. Precipitation of the normal hardening phase, β-NiAl, is also observed in the retained ferrite. Partition ratios of the various alloying elements are determined and are compared with those observed previously in duplex Fe-Cr-Ni stainless steel solidification structures. The martensite start temperature (Ms) was observed to decrease with increasing Pd concentration.

  20. Cu-Precipitation Strengthening in Ultrahigh-Strength Carburizing Steels

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin L.; Sachdev, Anil K.; Olson, Gregory B.

    2012-10-01

    Ultrahigh hardness levels greater than 700 VHN can be obtained in secondary hardening carburizing steels but depend on costly Co alloying additions to maximize hardness achieved through M2C-type carbide precipitation strengthening. This study aims to incorporate nanometer-scale bcc Cu precipitates to both provide strength as well as catalyze M2C nucleation in the absence of or with reduced Co. Cu additions of 1.0 and 3.7 wt pct were investigated, using a series of mechanistic models coupled with thermodynamic computational tools to derive final compositions. Thirty-pound experimental heats were cast of each designed alloy, samples of which were carburized and tempered to determine their hardness response. Characterization revealed the successful incorporation of Cu alloying additions into this family of steels, demonstrating a secondary hardening response even in the absence of Co. Matrix strength levels were close to those predicted by design models; however, all four alloys demonstrated a hardness deficit of approximately 200 VHN at the carburized surface, suggesting recalibration of the M2C precipitation strengthening model may be required in these alloys.