Science.gov

Sample records for streptococcus agalactiae bacteriophages

  1. Characterization and genome sequencing of a novel bacteriophage infecting Streptococcus agalactiae with high similarity to a phage from Streptococcus pyogenes.

    PubMed

    Bai, Qinqin; Zhang, Wei; Yang, Yongchun; Tang, Fang; Nguyen, Xuanhoa; Liu, Guangjin; Lu, Chengping

    2013-08-01

    A novel bacteriophage, JX01, specifically infecting bovine Streptococcus agalactiae was isolated from milk of mastitis-affected cattle. The phage morphology showed that JX01 belongs to the family Siphoviridae, and this phage demonstrated a broad host range. Microbiological characterization demonstrated that nearly 90 % of JX01 phage particles were adsorbed after 2.5 min of incubation, that the burst size was 20 virions released per infected host cell, and that there was a latent period of 30 min. JX01 was thermal sensitive and showed acid and alkaline resistance (pH 3-11). The genome of JX01 was found to consist of a linear, double-stranded 43,028-bp DNA molecule with a GC content of 36.81 % and 70 putative open reading frames (ORFs) plus one tRNA. Comparative genome analysis revealed high similarity between JX01 and the prophage 315.2 of Streptococcus pyogenes. PMID:23515875

  2. Streptococcus iniae and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  3. Streptococcus agalactiae mastitis: a review.

    PubMed Central

    Keefe, G P

    1997-01-01

    Streptococcus agalactiae continues to be a major cause of subclinical mastitis in dairy cattle and a source of economic loss for the industry. Veterinarians are often asked to provide information on herd level control and eradication of S. agalactiae mastitis. This review collects and collates relevant publications on the subject. The literature search was conducted in 1993 on the Agricola database. Articles related to S. agalactiae epidemiology, pathogen identification techniques, milk quality consequences, and control, prevention, and therapy were included. Streptococcus agalactiae is an oblique parasite of the bovine mammary gland and is susceptible to treatment with a variety of antibiotics. Despite this fact, where state or provincial census data are available, herd prevalence levels range from 11% (Alberta, 1991) to 47% (Vermont, 1985). Infection with S. agalactiae is associated with elevated somatic cell count and total bacteria count and a decrease in the quantity and quality of milk products produced. Bulk tank milk culture has, using traditional milk culture techniques, had a low sensitivity for identifying S. agalactiae at the herd level. New culture methods, using selective media and large inocula, have substantially improved the sensitivity of bulk tank culture. Efficacy of therapy on individual cows remains high. Protocols for therapy of all infected animals in a herd are generally successful in eradicating the pathogen from the herd, especially if they are followed up with good udder hygiene techniques. PMID:9220132

  4. Molecular typing of Streptococcus agalactiae isolates from fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic variability among Streptococcus agalactiae isolates recovered from fish was characterized using single-stranded conformation polymorphisms (SSCP) analysis of the intergenic spacer region (ISR), and amplified fragment length polymorphism (AFLP) fingerprinting. A total of 49 S. agalactiae ...

  5. Surface protein of a Streptococcus agalactiae isolate.

    PubMed Central

    de Cueninck, B J

    1979-01-01

    A Streptococcus agalactiae isolate of bovine origin was cultured in broth; log-phase cells were washed and radioiodinated and subsequently extracted at low pH in the presence of a nonionic detergent. A protein antigen was purified from concentrated extract by ultracentrifugation, gel filtration, and ion-exchange chromatography. The molecular weight of the protein was estimated at 31,800. The agglutinogenic character of the protein indicated its localization at the cell surface. Images PMID:381197

  6. Streptococcus agalactiae pyomyositis in diabetes mellitus.

    PubMed

    Panikkath, Deepa; Tantrachoti, Pakpoom; Panikkath, Ragesh; Nugent, Kenneth

    2016-07-01

    Pyomyositis is an acute infectious disorder affecting the skeletal muscle. Although seen more commonly in the tropics, cases are being reported in temperate countries, including the United States. We report a case of nontropical pyomyositis in a 58-year-old diabetic man who presented with a vague chest wall swelling. His initial clinical presentation and imaging findings suggested an intramuscular hematoma. He later developed fever with increased swelling, and pyomyositis was diagnosed after an aspiration of the swelling yielded Streptococcus agalactiae. Aspiration of the abscess and the use of appropriate antibiotics led to complete resolution of the disease. We discuss possible factors in diabetics that might predispose them to pyomyositis. PMID:27365874

  7. Streptococcus agalactiae pyomyositis in diabetes mellitus

    PubMed Central

    Tantrachoti, Pakpoom; Panikkath, Ragesh; Nugent, Kenneth

    2016-01-01

    Pyomyositis is an acute infectious disorder affecting the skeletal muscle. Although seen more commonly in the tropics, cases are being reported in temperate countries, including the United States. We report a case of nontropical pyomyositis in a 58-year-old diabetic man who presented with a vague chest wall swelling. His initial clinical presentation and imaging findings suggested an intramuscular hematoma. He later developed fever with increased swelling, and pyomyositis was diagnosed after an aspiration of the swelling yielded Streptococcus agalactiae. Aspiration of the abscess and the use of appropriate antibiotics led to complete resolution of the disease. We discuss possible factors in diabetics that might predispose them to pyomyositis. PMID:27365874

  8. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy.

    PubMed

    Pasnik, D J; Evans, J J; Panangala, V S; Klesius, P H; Shelby, R A; Shoemaker, C A

    2005-04-01

    Streptococcus agalactiae is a major bacterial pathogen that is the cause of serious economic losses in many species of freshwater, marine and estuarine fish worldwide. A highly efficacious S. agalactiae vaccine was developed using extracellular products (ECP) and formalin-killed whole cells of S. agalactiae. The vaccine efficacy following storage of S. agalactiae ECP and formalin-killed S. agalactiae cells at 4 degrees C for 1 year was determined. The stored ECP containing S. agalactiae formalin-killed cells failed to prevent morbidity and mortality among the vaccinated fish, and the relative percentage survival was 29. Serum antibody responses of the stored ECP and freshly prepared ECP against soluble whole cell extract of S. agalactiae indicated that significantly less antibody was produced in fish immunized with stored ECP and S. agalactiae cells than in those fish immunized with freshly prepared ECP and S. agalactiae cells at day 31 post-vaccination. Silver staining of sodium dodecyl sulphate-polyacrylamide gels and immunostaining of Western blots with tilapia antiserum to S. agalactiae revealed that predominant 54 and 55 kDa bands were present in the freshly prepared ECP fraction. The 55 kDa band was absent from the stored ECP and new bands below 54 kDa appeared on the Western blot. The results of this study on S. agalactiae ECP provide evidence for a correlation between protection and antibody production to ECP and for the importance of the 55 kDa ECP antigen for vaccine efficacy. PMID:15813862

  9. Streptococcus agalactiae infection in zebrafish larvae

    PubMed Central

    Kim, Brandon J; Hancock, Bryan M; Cid, Natasha Del; Bermudez, Andres; Traver, David; Doran, Kelly S

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β il1b and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis. PMID:25617657

  10. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), long recognized as a mammalian pathogen, is an emerging pathogen to fish. We show that a GBS serotype Ia, multilocus sequence type ST-7 isolate from a human neonatal meningitis clinical case causes disease signs and mortality in N...

  11. GENOMIC DIVERSITY OF STREPTOCOCCUS AGALACTIAE FROM FISH, BOVINE AND HUMAN HOSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) is a cause of infectious disease in multiple poikilothermic and homothermic animal species. Epidemiological and zoonotic considerations necessitate an undertaking of a comparison of S. agalactiae isolates from different phylogenetic hosts and geographical regi...

  12. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  13. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis.

    PubMed

    Gao, Jian; Yu, Fu-Qing; Luo, Li-Ping; He, Jian-Zhong; Hou, Rong-Guang; Zhang, Han-Qi; Li, Shu-Mei; Su, Jing-Liang; Han, Bo

    2012-12-01

    The aim of this study was to characterise the phenotypic and genotypic antibiotic resistance patterns of Streptococcus agalactiae isolated from cows with mastitis in China. Antibiotic resistance was based on minimum inhibitory concentrations and detection of resistance genes by PCR. S. agalactiae isolates most frequently exhibited phenotypic resistance to tetracycline, while the resistance genes most frequently detected were ermB, tetL and tetM. Resistance genes were detected in some susceptible isolates, whereas no resistance genes could be detected in some resistant isolates, indicating that the resistance genotype does not accurately predict phenotypic resistance. PMID:22627045

  14. Clinical analysis of cases of neonatal Streptococcus agalactiae sepsis.

    PubMed

    Zeng, S J; Tang, X S; Zhao, W L; Qiu, H X; Wang, H; Feng, Z C

    2016-01-01

    With the advent of antibiotic resistance, pathogenic bacteria have become a major threat in cases of neonatal sepsis; however, guidelines for treatment have not yet been standardized. In this study, 15 cases of neonatal Streptococcus agalactiae sepsis from our hospital were retrospectively analyzed. Of these, nine cases showed early-onset and six cases showed late-onset sepsis. Pathogens were characterized by genotyping and antibiotic sensitivity tests on blood cultures. Results demonstrated that in cases with early-onset sepsis, clinical manifestations affected mainly the respiratory tract, while late-onset sepsis was accompanied by intracranial infection. Therefore, we suggest including a cerebrospinal fluid examination when diagnosing neonatal sepsis. Bacterial genotyping indicated the bacteria were mainly type Ib, Ia, and III S. agalactiae. We recommend treatment with penicillin or ampicillin, since bacteria were resistant to clindamycin and tetracycline. In conclusion, our results provide valuable information for the clinical treatment of S. agalactiae sepsis in neonatal infants. PMID:27323190

  15. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  16. Protein degradation in bovine milk caused by Streptococcus agalactiae.

    PubMed

    Åkerstedt, Maria; Wredle, Ewa; Lam, Vo; Johansson, Monika

    2012-08-01

    Streptococcus (Str.) agalactiae is a contagious mastitis bacterium, often associated with cases of subclinical mastitis. Different mastitis bacteria have been evaluated previously from a diagnostic point of view, but there is a lack of knowledge concerning their effect on milk composition. Protein composition is important in achieving optimal yield and texture when milk is processed to fermented products, such as cheese and yoghurt, and is thus of great economic value. The aim of this in vitro study was to evaluate protein degradation mainly caused by exogenous proteases originating from naturally occurring Str. agalactiae. The samples were incubated at 37°C to imitate degradation caused by the bacteria in the udder. Protein degradation caused by different strains of Str. agalactiae was also investigated. Protein degradation was observed to occur when Str. agalactiae was added to milk, but there were variations between strains of the bacteria. Caseins, the most economically important proteins in milk, were degraded up to 75% in milk inoculated with Str. agalactiae in relation to sterile ultra-high temperature (UHT) milk, used as control milk. The major whey proteins, α-lactalbumin and β-lactoglobulin, were degraded up to 21% in relation to the sterile control milk. These results suggest that different mastitis bacteria but also different strains of mastitis bacteria should be evaluated from a milk quality perspective to gain knowledge about their ability to degrade the economically important proteins in milk. PMID:22850579

  17. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  18. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    PubMed Central

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae. PMID:25165085

  19. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections.

    PubMed

    Leelahapongsathon, Kansuda; Schukken, Ynte Hein; Pinyopummintr, Tanu; Suriyasathaporn, Witaya

    2016-02-01

    The objectives of study were to determine the transmission parameters (β), durations of infection, and basic reproductive numbers (R0) of both Streptococcus agalactiae and Streptococcus uberis as pathogens causing mastitis outbreaks in dairy herds. A 10-mo longitudinal study was performed using 2 smallholder dairy herds with mastitis outbreaks caused by Strep. agalactiae and Strep. uberis, respectively. Both herds had poor mastitis control management and did not change their milking management during the entire study period. Quarter milk samples were collected at monthly intervals from all lactating animals in each herd for bacteriological identification. The durations of infection for Strep. uberis intramammary infection (IMI) and Strep. agalactiae IMI were examined using Kaplan-Meier survival curves, and the Kaplan-Meier survival functions for Strep. uberis IMI and Strep. agalactiae IMI were compared using log rank survival-test. The spread of Strep. uberis and Strep. agalactiae through the population was determined by transmission parameter, β, the probability per unit of time that one infectious quarter will infect another quarter, assuming that all other quarters are susceptible. For the Strep. uberis outbreak herd (31 cows), 56 new infections and 28 quarters with spontaneous cure were observed. For the Strep. agalactiae outbreak herd (19 cows), 26 new infections and 9 quarters with spontaneous cure were observed. The duration of infection for Strep. agalactiae (mean=270.84 d) was significantly longer than the duration of infection for Strep. uberis (mean=187.88 d). The transmission parameters (β) estimated (including 95% confidence interval) for Strep. uberis IMI and Strep. agalactiae IMI were 0.0155 (0.0035-0.0693) and 0.0068 (0.0008-0.0606), respectively. The R0 (including 95% confidence interval) during the study were 2.91 (0.63-13.47) and 1.86 (0.21-16.61) for Strep. uberis IMI and Strep. agalactiae IMI, respectively. In conclusion, the transmission

  20. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    PubMed Central

    Dehbashi, Sanaz; Pourmand, Mohammad Reza; Mashhadi, Rahil

    2016-01-01

    Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. PMID:27092228

  1. Draft Genome Sequence of an Invasive Streptococcus agalactiae Isolate Lacking Pigmentation

    PubMed Central

    Singh, Pallavi; Aronoff, David M.; Davies, H. Dele

    2016-01-01

    This report provides the whole-genome sequence of Streptococcus agalactiae isolate GB00037 isolated from a newborn in Calgary, Canada. This serotype V isolate is unique because it lacks pigment production previously shown to be critical for S. agalactiae virulence. PMID:26950320

  2. Whole-Genome Shotgun Sequencing of a Colonizing Multilocus Sequence Type 17 Streptococcus agalactiae Strain

    PubMed Central

    Singh, Pallavi; Springman, A. Cody; Davies, H. Dele

    2012-01-01

    This report highlights the whole-genome shotgun draft sequence for a Streptococcus agalactiae strain representing multilocus sequence type (ST) 17, isolated from a colonized woman at 8 weeks postpartum. This sequence represents an important addition to the published genomes and will promote comparative genomic studies of S. agalactiae recovered from diverse sources. PMID:23045509

  3. Influence of Tricaine Methanesulfonate on Streptococcus agalactiae vaccination of Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to study the influence of tricaine methanesulfonate (MS-222) on blood glucose levels and percent cumulative survival of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae 30 days post-vaccination with S. agalactiae vaccine or sham-vaccination wit...

  4. Fecal strings Associated with Streptococcus agalactiae Infection in Nile Tilapia, Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nile tilapia (Oreochromis niloticus) were experimentally-infected with Streptococcus agalactiae for several infectivity and vaccine studies. Some of the S. agalactiae-infected tilapia produced considerably longer (up to 20 cm in length) fecal waste strings than historically observed from tilapia at...

  5. Draft Genome Sequence of an Invasive Streptococcus agalactiae Isolate Lacking Pigmentation.

    PubMed

    Singh, Pallavi; Aronoff, David M; Davies, H Dele; Manning, Shannon D

    2016-01-01

    This report provides the whole-genome sequence of Streptococcus agalactiae isolate GB00037 isolated from a newborn in Calgary, Canada. This serotype V isolate is unique because it lacks pigment production previously shown to be critical for S. agalactiae virulence. PMID:26950320

  6. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  7. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  8. Identification and Epidemiology of Streptococcus iniae and S. agalactiae in tilapias Oreochromis spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being known mainly as mammalian disease agents, Streptococcus iniae and S. agalactiae have become recognized as emerging pathogens of wild and cultured fish. The worldwide economic impact of S. iniae and S. agalactiae to the aquaculture industry is estimated in hundreds of millions annually...

  9. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from diseased Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae strain 138P was isolated from the kidney of diseased Nile tilapia in Idaho during a 2007 streptococcal disease outbreak. The full genome of S. agalactiae 138P is 1,838,716 bp. The availability of this genome will allow comparative genomics to identify genes for antigen disco...

  10. Draft genome sequence of a nonhemolytic fish-pathogenic Streptococcus agalactiae strain.

    PubMed

    Delannoy, Christian M J; Zadoks, Ruth N; Lainson, Frederick A; Ferguson, Hugh W; Crumlish, Margaret; Turnbull, James F; Fontaine, Michael C

    2012-11-01

    Streptococcus agalactiae is a significant Gram-positive bacterial pathogen of terrestrial and aquatic animals. A subpopulation of nonhemolytic strains which appear to be pathogenic only for poikilotherms exists. We report here the first draft genome sequence of a nonhemolytic S. agalactiae isolate recovered from a diseased fish. PMID:23105075

  11. Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand

    PubMed Central

    Areechon, Nontawith; Kannika, Korntip; Hirono, Ikuo

    2016-01-01

    Streptococcus agalactiae serotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscine S. agalactiae serotypes Ia and III. PMID:27013037

  12. Evaluation of nine teat dip formulations under experimental challenge to staphylococcus aureus and streptococcus agalactiae.

    PubMed

    Pankey, J W; Philpot, W N; Boddie, R L; Watts, J L

    1983-01-01

    Nine postmilking teat dips were evaluated by an experimental challenge model against either Staphylococcus aureus, Streptococcus agalactiae, or both. Formulations containing .9 and .6% sodium hypochlorite, 1% sodium dichloro-s-triazene-trione, .55% chlorhexidine gluconate, and .35% povidone iodine reduced incidence of Staphylococcus aureus infections 56.8, 28.3, 75.9, 92.5, and 77.9%. Incidence of infections with Streptococcus agalactiae was reduced 48.1 and 63.2% by 1.7 and 1% sodium dichloro-s-triazene-trione formulations. The 1% chlorhexidine gluconate and .35% povidone iodine products reduced Streptococcus agalactiae infections 71.0 and 67.0%. Three experimental 1% iodophor formulations reduced Streptococcus agalactiae infections 28.9, 44.8, and 50.7%. The experimental challenge model was refined further and provided an efficient method to determine efficacy of postmilking teat dips. PMID:6339575

  13. Non-infectivity of Cattle Streptococcus agalactiae in Nile Tilapia, Oreochromis niloticus and Channel Catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is classified as a Lancefield’s group B Streptococcus (GBS). It is the causative bacterium of streptococcosis that is responsible for severe economic losses in wild and cultured fish, worldwide. Streptococcus agalactiae also causes bovine mastitis. Only limited comparativ...

  14. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart

    PubMed Central

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T.

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  15. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart.

    PubMed

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  16. Serotype IX, a Proposed New Streptococcus agalactiae Serotype.

    PubMed

    Slotved, Hans-Christian; Kong, Fanrong; Lambertsen, Lotte; Sauer, Susanne; Gilbert, Gwendolyn L

    2007-09-01

    We identified three isolates of Streptococcus agalactiae (group B streptococcus [GBS]), of human origin, which failed to react with antisera against any of the nine known GBS serotypes. Polyclonal rabbit antisera raised against these isolates and standard GBS typing sera were used in capillary precipitation and Ouchterlony tests to compare the strains with known GBS serotype reference strains. All three previously nontypeable isolates reacted with all three new antisera, producing lines of identity in the Ouchterlony test. Weak cross-reactions with antisera against several GBS serotypes were observed but were removed by absorption with corresponding antigens. The new antisera were used to test 227 GBS isolates that had been nontypeable or difficult to type using standard antisera. Of these, five reacted with the new antisera. These results suggested that all eight isolates belong to the previously unrecognized GBS serotype. They were tested by Western blotting for the Calpha and Cbeta proteins and by PCR to identify molecular serotypes and surface protein antigen genes. Two segments of the cps gene cluster (3' end of cpsE-cpsF and 5' end of cpsG, approximately 700 bp; 3' end of cpsH and 5' end of cpsM, approximately 560 bp) were sequenced. All eight isolates expressed Calpha, and seven expressing the Cbeta protein and the corresponding genes, bca and bac, respectively, were identified. They all share the same, unique partial cps sequence. These results indicate that these eight isolates represent a new S. agalactiae serotype, which we propose should be designated serotype IX. PMID:17634306

  17. A comparative investigation of Streptococcus agalactiae isolates from fish and cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is the causative bacterium of streptococcosis and causes severe economic losses in wild and cultured fish and cattle, worldwide. In fish, infection can result in septicemia with hemorrhages on the body surface and in the external and internal organs. Streptococcus agalacti...

  18. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250.

    PubMed

    Czabańska, Anna; Neiwert, Olga; Lindner, Buko; Leigh, James; Holst, Otto; Duda, Katarzyna A

    2012-11-01

    Lipoteichoic acid (LTA) is an amphiphilic polycondensate located in the cell envelope of Gram-positive bacteria. In this study, LTAs were isolated from the three bovine mastitis species Streptococcus uberis 233, Streptococcus dysgalactiae 2023, and Streptococcus agalactiae 0250. Structural investigations of these LTAs were performed applying 1D and 2D nuclear magnetic resonance experiments as well as chemical analyses and mass spectrometry. Compositional analysis revealed the presence of glycerol (Gro), Glc, alanine (Ala), and 16:0, 16:1, 18:0, 18:1. The LTAs of the three Streptococcus strains possessed the same structure, that is, a lipid anchor comprised of α-Glcp-(1→2)-α-Glcp-(1→3)-1,2-diacyl-sn-Gro and the hydrophilic backbone consisting of poly(sn-Gro-1-phosphate) randomly substituted at O-2 of Gro by d-Ala. PMID:23036931

  19. Complete Genome Sequence of Streptococcus agalactiae Serotype III, Multilocus Sequence Type 283 Strain SG-M1

    PubMed Central

    Mehershahi, Kurosh S.; Hsu, Li Yang; Koh, Tse Hsien

    2015-01-01

    Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from meningitis. PMID:26494662

  20. Complete Genome Sequence of Streptococcus agalactiae Serotype III, Multilocus Sequence Type 283 Strain SG-M1.

    PubMed

    Mehershahi, Kurosh S; Hsu, Li Yang; Koh, Tse Hsien; Chen, Swaine L

    2015-01-01

    Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from meningitis. PMID:26494662

  1. Complete Genome Sequence of Nonhemolytic Streptococcus agalactiae Serotype V Strain 1, Isolated from the Buccal Cavity of a Canine.

    PubMed

    Harden, Leeanne K; Morales, Karina M; Hughey, Jeffery R

    2016-01-01

    The complete genome sequence from a nonhemolytic strain of Streptococcus agalactiae from the oral cavity of a canine was assembled. The genome is 2,165,968 bp, contains 2,055 genes, and is classified as group B streptococcus (GBS) serotype V, strain 1. A comparison to other S. agalactiae sequences shows high gene synteny with human and bovine strains. PMID:26823579

  2. Complete Genome Sequence of Nonhemolytic Streptococcus agalactiae Serotype V Strain 1, Isolated from the Buccal Cavity of a Canine

    PubMed Central

    Harden, Leeanne K.; Morales, Karina M.

    2016-01-01

    The complete genome sequence from a nonhemolytic strain of Streptococcus agalactiae from the oral cavity of a canine was assembled. The genome is 2,165,968 bp, contains 2,055 genes, and is classified as group B streptococcus (GBS) serotype V, strain 1. A comparison to other S. agalactiae sequences shows high gene synteny with human and bovine strains. PMID:26823579

  3. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    PubMed Central

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction. PMID:26431539

  4. Isolation of quinupristin/dalfopristin-resistant Streptococcus agalactiae from asymptomatic Korean women.

    PubMed

    Nam, Hye Ran; Lee, Hak Mee; Lee, Yeonhee

    2008-02-01

    Seven Streptococcus agalactiae isolates were obtained from the vagina of 80 asymptomatic women. Three of these isolates showed multi-drug resistant (MDR) phenotypes: two isolates were resistant to clarithromycin, clindamycin, erythromycin, and tetracycline; and one isolate was resistant to clarithromycin, clindamycin, erythromycin, tetracycline, and quinupristin/dalfopristin. There was no clonal relationship among the MDR isolates. This is the first report of quinupristin/dalfopristin-resistant S. agalactiae. PMID:18337702

  5. Streptococcus agalactiae Serotype Distribution and Antimicrobial Susceptibility in Pregnant Women in Gabon, Central Africa.

    PubMed

    Belard, Sabine; Toepfner, Nicole; Capan-Melser, Mesküre; Mombo-Ngoma, Ghyslain; Zoleko-Manego, Rella; Groger, Mirjam; Matsiegui, Pierre-Blaise; Agnandji, Selidji T; Adegnika, Ayôla A; González, Raquel; Kremsner, Peter G; Menendez, Clara; Ramharter, Michael; Berner, Reinhard

    2015-01-01

    Neonatal invasive disease due to Streptococcus agalactiae is life threatening and preventive strategies suitable for resource limited settings are urgently needed. Protective coverage of vaccine candidates based on capsular epitopes will relate to local epidemiology of S. agalactiae serotypes and successful management of critical infections depends on timely therapy with effective antibiotics. This is the first report on serotype distribution and antimicrobial susceptibility of S. agalactiae in pregnant women from a Central African region. Serotypes V, III, and Ib accounted for 88/109 (81%) serotypes and all isolates were susceptible to penicillin and clindamycin while 13% showed intermediate susceptibility to erythromycin. PMID:26603208

  6. Streptococcus agalactiae Serotype Distribution and Antimicrobial Susceptibility in Pregnant Women in Gabon, Central Africa

    PubMed Central

    Belard, Sabine; Toepfner, Nicole; Capan-Melser, Mesküre; Mombo-Ngoma, Ghyslain; Zoleko-Manego, Rella; Groger, Mirjam; Matsiegui, Pierre-Blaise; Agnandji, Selidji T.; Adegnika, Ayôla A.; González, Raquel; Kremsner, Peter G.; Menendez, Clara; Ramharter, Michael; Berner, Reinhard

    2015-01-01

    Neonatal invasive disease due to Streptococcus agalactiae is life threatening and preventive strategies suitable for resource limited settings are urgently needed. Protective coverage of vaccine candidates based on capsular epitopes will relate to local epidemiology of S. agalactiae serotypes and successful management of critical infections depends on timely therapy with effective antibiotics. This is the first report on serotype distribution and antimicrobial susceptibility of S. agalactiae in pregnant women from a Central African region. Serotypes V, III, and Ib accounted for 88/109 (81%) serotypes and all isolates were susceptible to penicillin and clindamycin while 13% showed intermediate susceptibility to erythromycin. PMID:26603208

  7. [Streptococcus agalactiae (GBS)--the characteristic of isolated strains from productive women's vagina].

    PubMed

    Wolny, Katarzyna; Gołda-Matuszak, Ewa

    2010-01-01

    The main aim of my research: to determine the frequency of colonisation Streptococcus agalactiae from productive women's vagina, an evaluation of usefulness microbiological diagnostic methods to detect GBS, to define serotype of analysed strains of S. agalactiae. After all, I tried to define fenotypic differential, biochemical and antimicrobial susceptibility between GBS with and without hemolysis. All of strains S. agalactiae (n = 380) belong to bacteria Gram(+), they had B serologic group and didn't produce catalase. On the basis of TSA+5% sheep blood streptococcus with beta-hemolysis grew like a small, grey and shiny colonies with a narrow, bright ring. On the same base we had S. agalactiae without beta-hemolysis, in examine material--6% (n = 22). On the basis of Strepto B ID S. agalactiae grew like a small, round red colonies and on the base Granada agar like an orange, white colonies. The level of colonisation S. agalactiae was 22% (380GBS/1727women). Identification of analysed strains of S. agalactiae was made by test API 20 Strep. The susceptibility was examined to ampicilin, azithromycin, erythromycin, clindamycin, chloramphenicol, doxycyclin, cotrimoxasol, ciprofloxacin. Serotypes III (50%), Ia (18%) and V (14%) prevailed. PMID:20873487

  8. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  9. Streptococcus agalactiae infection in cancer patients: a five-year study.

    PubMed

    Pimentel, B A S; Martins, C A S; Mendonça, J C; Miranda, P S D; Sanches, G F; Mattos-Guaraldi, A L; Nagao, P E

    2016-06-01

    Although the highest burden of Streptococcus agalactiae infections has been reported in industrialized countries, studies on the characterization and epidemiology are still limited in developing countries and implementation of control strategies remains undefined. The aim of this retrospective study was to assess the epidemiological, clinical, and microbiological aspects of S. agalactiae infections in cancer patients treated at a Reference Brazilian National Cancer Institute - INCA, Rio de Janeiro, Brazil. We reviewed the clinical and laboratory records of all cancer patients identified as having invasive S. agalactiae disease during 2010-2014. The isolates were identified by biochemical analysis and tested for antimicrobial susceptibility. A total of 263 strains of S. agalactiae were isolated from cancer patients who had been clinically and microbiologically classified as infected. S. agalactiae infections were mostly detected among adults with solid tumors (94 %) and/or patients who have used indwelling medical devices (77.2 %) or submitted to surgical procedures (71.5 %). Mortality rates (in-hospital mortality during 30 days after the identification of S. agalactiae) related to invasive S. agalactiae infections (n = 28; 31.1 %) for the specific category of neoplasic diseases were: gastrointestinal (46 %), head and neck (25 %), lung (11 %), hematologic (11 %), gynecologic (4 %), and genitourinary (3 %). We also found an increase in S. agalactiae resistance to erythromycin and clindamycin and the emergence of penicillin-less susceptible isolates. A remarkable number of cases of invasive infections due to S. agalactiae strains was identified, mostly in adult patients. Our findings reinforce the need for S. agalactiae control measures in Brazil, including cancer patients. PMID:26993288

  10. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    PubMed

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  11. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    PubMed

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B

  12. Could β-hemolytic, group B Enterococcus faecalis be mistaken for Streptococcus agalactiae?

    PubMed

    Savini, Vincenzo; Gherardi, Giovanni; Marrollo, Roberta; Franco, Alessia; Pimentel De Araujo, Fernanda; Dottarelli, Samuele; Fazii, Paolo; Battisti, Antonio; Carretto, Edoardo

    2015-05-01

    A β-hemolytic Enterococcus faecalis strain agglutinating Lancefield group A, B, C, D, F, and G antisera was observed from a rectovaginal swab, in the context of antenatal screening for Streptococcus agalactiae (group B Streptococcus [GBS]). This is the first multi-Lancefield antisera-agglutinating isolate of this species, and it raised particular concern, as it may mimic GBS, leading to false reporting and useless receipt of intrapartum antibiotics. PMID:25766004

  13. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia.

    PubMed

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites; Pereira, Ulisses Pádua

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  14. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia

    PubMed Central

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  15. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia aquaculture is one of the fastest growing segments of fish production in Brazil. Nile tilapia (Oreochromis niloticus) is largely cultivated in the state of Parana, where Streptococcus agalactiae is the cause of severe disease outbreaks. The objective of this paper was to evaluate an inactiva...

  16. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from disease Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a virulent Streptococcus agalactiae strain 138P is 1838701 bp in size, containing 1831 genes. The genome has 1593 coding sequences, 152 pseudo genes, 16 rRNAs, 69 tRNAs, and 1 non-coding RNA. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipel...

  17. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  18. Genome Sequence of Streptococcus agalactiae Strain 09mas018883, Isolated from a Swedish Cow.

    PubMed

    Zubair, S; de Villiers, E P; Fuxelius, H H; Andersson, G; Johansson, K-E; Bishop, R P; Bongcam-Rudloff, E

    2013-01-01

    We announce the complete genome sequence of Streptococcus agalactiae strain 09mas018883, isolated from the milk of a cow with clinical mastitis. The availability of this genome may allow identification of candidate genes, leading to discovery of antigens that might form the basis for development of a vaccine as an alternative means of mastitis control. PMID:23846269

  19. GC-MS-Based Metabolome and Metabolite Regulation in Serum-Resistant Streptococcus agalactiae.

    PubMed

    Wang, Zhe; Li, Min-Yi; Peng, Bo; Cheng, Zhi-Xue; Li, Hui; Peng, Xuan-Xian

    2016-07-01

    Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC-MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites. PMID:27251450

  20. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  1. Annual incidence, prevalence and transmission characteristics of Streptococcus agalactiae in Danish dairy herds.

    PubMed

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2012-10-01

    Contagious mastitis pathogens continue to pose an economic threat to the dairy industry. An understanding of their frequency and transmission dynamics is central to evaluating the effectiveness of control programmes. The objectives of this study were twofold: (1) to estimate the annual herd-level incidence rates and apparent prevalences of Streptococcus agalactiae (S. agalactiae) in the population of Danish dairy cattle herds over a 10-year period from 2000 to 2009 inclusive and (2) to estimate the herd-level entry and exit rates (demographic parameters), the transmission parameter, β, and recovery rate for S. agalactiae infection. Data covering the specified period, on bacteriological culture of all bulk tank milk samples collected annually as part of the mandatory Danish S. agalactiae surveillance scheme, were extracted from the Danish Cattle Database and subsequently analysed. There was an increasing trend in both the incidence and prevalence of S. agalactiae over the study period. Per 100 herd-years the value of β was 54.1 (95% confidence interval [CI] 46.0-63.7); entry rate 0.3 (95% CI 0.2-0.4); infection-related exit rate 7.1 (95% CI 5.6-8.9); non-infection related exit rate 9.2 (95% CI 7.4-11.5) and recovery rate 40.0 (95% CI 36.8-43.5). This study demonstrates a need to tighten the current controls against S. agalactiae in order to lower its incidence. PMID:22560559

  2. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is an emerging pathogen of fish and has caused significant morbidity amd mortality worldwide. The work in this study assessed whether pathogenic differences exist among isolates from different geographic locations. Nile tilapia (Oreochromis niloticus L.) were administered an...

  3. INFLUENCE OF NATURAL TRICHODINA SP.PARASITISM ON EXPERIMENTAL STREPTOCOCCUS INIAE OR Streptococcus AGALACTIAE INFECTION AND SURVIVAL OF YOUNG CHANNEL CATFISH ICTALURUS PUNCTATUS (RAFINESQUE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are usually not considered pathogens of channel catfish, Ictalurus punctatus, though concurrent infections may decrease catfish survival when infected with streptococcal organisms. Non-parasitized or naturally-parasitized channel catfish fry were challenged wit...

  4. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells.

    PubMed

    Gutekunst, Heike; Eikmanns, Bernhard J; Reinscheid, Dieter J

    2004-06-01

    Streptococcus agalactiae is a major cause of bacterial sepsis and meningitis in human newborns. The interaction of S. agalactiae with host proteins and the entry into host cells thereby represent important virulence traits of these bacteria. The present report describes the identification of the fbsB gene, encoding a novel fibrinogen-binding protein that plays a crucial role in the invasion of S. agalactiae into human cells. In Western blots and enzyme-linked immunosorbent assay (ELISA) experiments, the FbsB protein was demonstrated to interact with soluble and immobilized fibrinogen. Binding studies showed the N-terminal 388 residues of FbsB and the Aalpha-subunit of human fibrinogen to recognize each other. By reverse transcription (RT)-PCR, the fbsB gene was shown to be cotranscribed with the gbs0851 gene in S. agalactiae. Deletion of the fbsB gene in the genome of S. agalactiae did not influence the binding of the bacteria to fibrinogen, suggesting that FbsB does not participate in the attachment of S. agalactiae to fibrinogen. In tissue culture experiments, however, the fbsB deletion mutant was severely impaired in its invasion into lung epithelial cells. Bacterial invasion could be reestablished by introducing the fbsB gene on a shuttle plasmid into the fbsB deletion mutant. Furthermore, treatment of lung epithelial cells with FbsB fusion protein blocked S. agalactiae invasion of epithelial cells in a dose-dependent fashion. These results suggest an important role of the FbsB protein in the overall process of host cell entry by S. agalactiae. PMID:15155657

  5. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia

    PubMed Central

    Sun, Jiufeng; Fang, Wei; Ke, Bixia; He, Dongmei; Liang, Yuheng; Ning, Dan; Tan, Hailing; Peng, Hualin; Wang, Yunxin; Ma, Yazhou; Ke, Changwen; Deng, Xiaoling

    2016-01-01

    We report on inapparent infections in adult/commercial tilapia in major tilapia fish farms in Guangdong. A total of 146 suspected isolates were confirmed to be S. agalactiae using an API 20 Strep system and specific PCR amplification. All isolates were identified as serotype Ia using multiplex serotyping PCR. An MLST assay showed single alleles of adhP (10), atr (2), glcK (2), glnA (1), pheS (1), sdhA (3) and tkt (2), and this profile was designated ‘unique ST 7’. The analysis of virulence genes resulted in 10 clusters, of which dltr-bca-sodA-spb1-cfb-bac (62, 42.47%) was the predominant virulence gene profile. The PFGE analysis of S. agalactiae yielded 6 distinct PFGE types (A, B, C, D, F and G), of which Pattern C (103) was the predominant type, accounting for approximately 70.55% (103/146) of the total S. agalactiae strains. Therefore, unlike what has been found in juvenile tilapia, in which PFGE pattern D/F is the major prevalent pattern, we found that pattern C was the major prevalent pattern in inapparent infected adult/commercial tilapia in Guangdong, China. In conclusion, we close a gap in the current understanding of S. agalactiae epidemiology and propose that researchers should be alert for inapparent S. agalactiae infections in adult/commercial tilapia to prevent a potential threat to food safety. PMID:27215811

  6. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia.

    PubMed

    Sun, Jiufeng; Fang, Wei; Ke, Bixia; He, Dongmei; Liang, Yuheng; Ning, Dan; Tan, Hailing; Peng, Hualin; Wang, Yunxin; Ma, Yazhou; Ke, Changwen; Deng, Xiaoling

    2016-01-01

    We report on inapparent infections in adult/commercial tilapia in major tilapia fish farms in Guangdong. A total of 146 suspected isolates were confirmed to be S. agalactiae using an API 20 Strep system and specific PCR amplification. All isolates were identified as serotype Ia using multiplex serotyping PCR. An MLST assay showed single alleles of adhP (10), atr (2), glcK (2), glnA (1), pheS (1), sdhA (3) and tkt (2), and this profile was designated 'unique ST 7'. The analysis of virulence genes resulted in 10 clusters, of which dltr-bca-sodA-spb1-cfb-bac (62, 42.47%) was the predominant virulence gene profile. The PFGE analysis of S. agalactiae yielded 6 distinct PFGE types (A, B, C, D, F and G), of which Pattern C (103) was the predominant type, accounting for approximately 70.55% (103/146) of the total S. agalactiae strains. Therefore, unlike what has been found in juvenile tilapia, in which PFGE pattern D/F is the major prevalent pattern, we found that pattern C was the major prevalent pattern in inapparent infected adult/commercial tilapia in Guangdong, China. In conclusion, we close a gap in the current understanding of S. agalactiae epidemiology and propose that researchers should be alert for inapparent S. agalactiae infections in adult/commercial tilapia to prevent a potential threat to food safety. PMID:27215811

  7. Brachial Plexus Neuritis Associated With Streptococcus agalactiae Infection: A Case Report.

    PubMed

    Seo, Yu Jung; Lee, Yu Jin; Kim, Joon Sung; Lim, Seong Hoon; Hong, Bo Young

    2014-08-01

    Brachial plexus neuritis is reportedly caused by various factors; however, it has not been described in association with Streptococcus agalactiae. This is a case report of a patient diagnosed with brachial plexus neuritis associated with pyogenic arthritis of the shoulder. A 57-year-old man visited the hospital complaining of sudden weakness and painful swelling of the left arm. The diagnosis was pyogenic arthritis of the left shoulder, and the patient was treated with open irrigation and debridement accompanied by intravenous antibiotic therapy. S. agalactiae was isolated from a wound culture, and an electrodiagnostic study showed brachial plexopathy involving the left upper and middle trunk. Nine weeks after onset, muscle strength improved in most of the affected muscles, and an electrodiagnostic study showed signs of reinnervation. In conclusion, S. agalactiae infection can lead to various complications including brachial plexus neuritis. PMID:25229037

  8. Brachial Plexus Neuritis Associated With Streptococcus agalactiae Infection: A Case Report

    PubMed Central

    Seo, Yu Jung; Lee, Yu Jin; Kim, Joon Sung; Lim, Seong Hoon

    2014-01-01

    Brachial plexus neuritis is reportedly caused by various factors; however, it has not been described in association with Streptococcus agalactiae. This is a case report of a patient diagnosed with brachial plexus neuritis associated with pyogenic arthritis of the shoulder. A 57-year-old man visited the hospital complaining of sudden weakness and painful swelling of the left arm. The diagnosis was pyogenic arthritis of the left shoulder, and the patient was treated with open irrigation and debridement accompanied by intravenous antibiotic therapy. S. agalactiae was isolated from a wound culture, and an electrodiagnostic study showed brachial plexopathy involving the left upper and middle trunk. Nine weeks after onset, muscle strength improved in most of the affected muscles, and an electrodiagnostic study showed signs of reinnervation. In conclusion, S. agalactiae infection can lead to various complications including brachial plexus neuritis. PMID:25229037

  9. Evaluation of two iodophor teat germicides: activity against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1997-08-01

    Two germicides containing 0.5 and 1% titratable iodine were tested for efficacy against the development of new intramammary infections (IMI) caused by Staphylococcus aureus and Streptococcus agalactiae. The two trials for postmilking teat dip used a model for experimental challenge that was recommended by the National Mastitis Council. The 0.5% iodine formulation reduced new Staph. aureus IMI by 78.2% and reduced new Strep. agalactiae IMI by 73.2%. The 1% iodine product reduced new Staph. aureus IMI by 43.5% and reduced new Strep. agalactiae IMI by 46.4%. No adverse effects on the condition of teat skin or on teat ends were observed over the course of the trials. At the completion of each trial, the teat skin of dipped quarters was characterized as normal, smooth skin that was free from scales, cracks, or chapping; the teat orifice was characterized as smooth without evidence of irritation. PMID:9276825

  10. Development of an indirect ELISA for bovine mastitis using Sip protein of Streptococcus agalactiae

    PubMed Central

    Bu, R. E; Wang, J. L; DebRoy, C; Wu, J. H; Xi, L. G. W; Liu, Y; Shen, Z. Q

    2015-01-01

    The sip gene encoding for a conserved highly immunogenic surface protein of Streptococcus agalactiae was amplified using polymerase chain reaction (PCR) and subcloned into prokaryotic expression vector pET32a (+) and expressed as a recombinant protein in E. coli BL21 (DE3). An indirect enzyme linked immunosorbent assay (ELISA) was developed using the purified Sip protein as a coating antigen, which could identify S. agalactiae specific antibody in sera. The coating antigen at a concentration of 3.125 μg/ml, serum diluted to 1:160, and HRP-conjugated secondary antibody concentration at 1:4000 was found to be most effective in exhibiting positive result. The ELISA was found to be highly specific for S. agalactiae that may be used for the detection of the pathogen in mastitis cases, for epidemiological studies and for surveillance. PMID:27175190

  11. Herd prevalence and incidence of Streptococcus agalactiae in the dairy industry of Prince Edward Island.

    PubMed

    Keefe, G P; Dohoo, I R; Spangler, E

    1997-03-01

    Herd prevalence and incidence of mastitis caused by Streptococcus agalactiae was determined for dairy cattle on Prince Edward Island during December 1992 and June 1994. For each census, bulk tank milk samples from all dairy herds (n = 452) in the province were tested on two occasions, and the results were interpreted in parallel. The combined sensitivity of the testing protocol was estimated to be 91%. The confirmatory latex agglutination test had previously reported specificities approaching 100%. Therefore, the estimated specificity of the testing protocol was assumed to be 100%. The apparent prevalence of S. agalactiae in December 1992 and in June 1994 was 17.7 and 13.1%, respectively. Based on the characteristics of the test, the estimated true prevalence was 18.9% in December 1992 and 14.4% in June 1994. Infection with S. agalactiae was associated with elevated bulk tank somatic cell count (SCC) and elevated standard plate counts. Economic losses associated with S. agalactiae were attributed to production losses (associated with bulk tank SCC), milk quality penalties (associated with bulk tank SCC and standard plate count), and decreases in milk quality (associated with bulk tank SCC). For herds that had been negative for S. agalactiae in December 1992, evaluation in June 1994 yielded an incidence of new infections of 3.51 per 100 herds per year. PMID:9098795

  12. Streptococcus agalactiae Septic Arthritis of the Shoulder and the Sacroiliac Joints: A Case Report

    PubMed Central

    Imam, Yahia Z.; Sarakbi, Housam Aldeen; Abdelwahab, Nagui; Mattar, Issa

    2012-01-01

    Invasive group beta-streptococcal arthritis is being increasingly diagnosed as suggested by recent data. We report a case of a middle-aged lady from Sri Lanka who developed septic arthritis of the right shoulder and the left sacroiliac joint as well as an iliopsoas collection caused by Streptococcus agalactiae shortly after labor at Hamad General Hospital in Doha, Qatar. We conclude that Streptococcus agalactiae septic arthritis is rare. It can present with invasive disease in adults. It usually targets older females and immuno compromised patients especially those with risk factors for bacteraemia. Therefore a high index of suspicion is needed. Shoulder and sacroiliac joint affection is not uncommon for unknown reasons. Utilizing imaging modalities such as ultrasonography and magnetic resonance imaging is helpful. PMID:22937455

  13. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    PubMed Central

    Wang, Deguo; Liu, Yanhong

    2015-01-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  14. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-06-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  15. Diversity of Prophage DNA Regions of Streptococcus agalactiae Clonal Lineages from Adults and Neonates with Invasive Infectious Disease

    PubMed Central

    Salloum, Mazen; van der Mee-Marquet, Nathalie; Valentin-Domelier, Anne-Sophie; Quentin, Roland

    2011-01-01

    The phylogenetic position and prophage DNA content of the genomes of 142 S. agalactiae (group-B streptococcus, GBS) isolates responsible for bacteremia and meningitis in adults and neonates were studied and compared. The distribution of the invasive isolates between the various serotypes, sequence types (STs) and clonal complexes (CCs) differed significantly between adult and neonatal isolates. Use of the neighbor-net algorithm with the PHI test revealed evidence for recombination in the population studied (PHI, P = 2.01×10−6), and the recombination-mutation ratio (R/M) was 6∶7. Nevertheless, the estimated R/M ratio differed between CCs. Analysis of the prophage DNA regions of the genomes of the isolates assigned 90% of the isolates to five major prophage DNA groups: A to E. The mean number of prophage DNA fragments amplified per isolate varied from 2.6 for the isolates of prophage DNA group E to 4.0 for the isolates of prophage DNA group C. The isolates from adults and neonates with invasive diseases were distributed differently between the various prophage DNA groups (P<0.00001). Group C prophage DNA fragments were found in 52% of adult invasive isolates, whereas 74% of neonatal invasive isolates had prophage DNA fragments of groups A and B. Differences in prophage DNA content were also found between serotypes, STs and CCs (P<0.00001). All the ST-1 and CC1 isolates, mostly of serotype V, belonged to the prophage DNA group C, whereas 84% of the ST-17 and CC17 isolates, all of serotype III, belonged to prophage DNA groups A and B. These data indicate that the transduction mechanisms, i.e., gene transfer from one bacterium to another by a bacteriophage, underlying genetic recombination in S. agalactiae species, are specific to each intraspecies lineage and population of strains responsible for invasive diseases in adults and neonates. PMID:21633509

  16. Streptococcus agalactiae in the environment of bovine dairy herds--rewriting the textbooks?

    PubMed

    Jørgensen, H J; Nordstoga, A B; Sviland, S; Zadoks, R N; Sølverød, L; Kvitle, B; Mørk, T

    2016-02-29

    Many free-stall bovine dairy herds in Norway fail to eradicate Streptococcus agalactiae despite long-term control measures. In a longitudinal study of 4 free-stall herds with automatic milking systems (AMS), milk and extramammary sites were sampled 4 times with 1-2 month intervals. Composite milk, rectal- and vaginal swabs were collected from dairy cows; rectal swabs from heifers and young stock; rectal- and tonsillar swabs from calves; and environmental swabs from the AMS, the floors, cow beds, watering and feeding equipment. A cross sectional study of 37 herds was also conducted, with 1 visit for environmental sampling. Fifteen of the herds were known to be infected with S. agalactiae while the remaining 22 had not had evidence of S. agalactiae mastitis in the preceding 2 years. All samples were cultured for S. agalactiae, and selected isolates (n=54) from positive herds were genotyped by Multi Locus Sequence Typing (MLST). Results show that the bovine gastrointestinal tract and the dairy cow environment are reservoirs of S. agalactiae, and point to the existence of 2 transmission cycles; a contagious transmission cycle via the milking machine and an oro-fecal transmission cycle, with drinking water as the most likely vehicle for transmission. Ten sequence types were identified, and results suggest that strains differ in their ability to survive in the environment and transmit within dairy herds. Measures to eradicate S. agalactiae from bovine dairy herds should take into account the extra-mammary reservoirs and the potential for environmental transmission of this supposedly exclusively contagious pathogen. PMID:26854346

  17. Discovery and Characterization of Human-Urine Utilization by Asymptomatic-Bacteriuria-Causing Streptococcus agalactiae

    PubMed Central

    Ipe, Deepak S.; Ben Zakour, Nouri L.; Sullivan, Matthew J.; Beatson, Scott A.; Ulett, Kimberly B.; Benjamin, William H.; Davies, Mark R.; Dando, Samantha J.; King, Nathan P.; Cripps, Allan W.; Dougan, Gordon

    2015-01-01

    Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU. PMID:26553467

  18. Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    PubMed Central

    Fernandez, Annabelle; Lechardeur, Delphine; Derré-Bobillot, Aurélie; Couvé, Elisabeth; Gaudu, Philippe; Gruss, Alexandra

    2010-01-01

    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host. PMID:20421944

  19. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China.

    PubMed

    Yang, Yongchun; Liu, Yinglong; Ding, Yunlei; Yi, Li; Ma, Zhe; Fan, Hongjie; Lu, Chengping

    2013-01-01

    One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae. PMID:23874442

  20. Efficacy of teat dips containing a hypochlorous acid germicide against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1996-09-01

    Two teat dip formulations containing sodium dichloroisocyanurate, which released hypochlorous acid (2800 ppm) as the active ingredient, were tested for efficacy against new Staphylococcus aureus and Streptococcus agalactiae IMI using an experimental challenge model. Product 1 reduced the number of new Staph. aureus IMI by 73.6% and reduced the number of new Strep. agalactiae IMI by 65.1%. Product 2 reduced the number of new Staph. aureus IMI by 69.0% and reduced the number of new Strep. agalactiae IMI by 63.5%. No adverse effects on teat skin condition were observed over the course of the studies. PMID:8899537

  1. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.

    PubMed

    Richards, Vincent P; Lang, Ping; Bitar, Paulina D Pavinski; Lefébure, Tristan; Schukken, Ynte H; Zadoks, Ruth N; Stanhope, Michael J

    2011-08-01

    In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p<0.0001). The majority of the bovine strain-specific genes (∼ 85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150

  2. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  3. Streptococcus agalactiae septicemia in a patient with diabetes and hepatic cirrhosis

    PubMed Central

    Ferreira, Cristiane Rúbia

    2015-01-01

    Streptococcus agalactiae is a well-known pathogen during pregnancy and in neonates. Among non-pregnant adults, invasive infection, although rare, is showing increasing frequency, especially in chronically ill, immunosuppressed, or older patients. Although rare, the clinical features of meningeal infection caused by S. agalactiae are similar to other bacterial meningitis. The authors report the case of a middle-aged man previously diagnosed with hypertension, diabetes mellitus, and alcoholic liver cirrhosis, who was admitted at the emergency department with a Glasgow Coma Scale of 11/12, generalized spasticity, bilateral Babinski sign, and hypertension. The clinical outcome was bad, with refractory shock and death within 24 hours of hospitalization. The bacteriological work-up isolated S. agalactiae in the cerebral spinal fluid (CSF), blood, and urine. An autopsy revealed meningoencephalitis, acute myocardial infarction, and pyelonephritis due to septic emboli. The authors point out the atypical CSF findings, the rapid fatal outcome, and the importance of including this pathogen among the etiologic possibilities of invasive infections in this group of patients. PMID:26894044

  4. Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish.

    PubMed

    Delannoy, C M J; Zadoks, R N; Crumlish, M; Rodgers, D; Lainson, F A; Ferguson, H W; Turnbull, J; Fontaine, M C

    2016-01-01

    Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10(7) cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment. PMID:25399660

  5. Efficacy of two barrier teat dips containing chlorous acid germicides against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Kemp, G K

    1994-10-01

    Two postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. Both dips contained chlorous acid as the primary germicidal agent and lactic acid or mandelic acid as the chlorous acid activator. The dip activated with mandelic acid significantly reduced new IMI by Staph. aureus and Strep. agalactiae. The IMI rate was reduced 68.7% for Staph. aureus and 56.4% for Strep. agalactiae. The dip activated with lactic acid significantly reduced new Staph. aureus IMI by 69.3% but did not significantly reduce new Strep. agalactiae IMI (35.2% reduction) through the full 11-wk study period. Teat skin condition did not change from pretrial status after using either teat dip during the study. PMID:7836608

  6. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline.

    PubMed

    Da Cunha, Violette; Davies, Mark R; Douarre, Pierre-Emmanuel; Rosinski-Chupin, Isabelle; Margarit, Immaculada; Spinali, Sebastien; Perkins, Tim; Lechat, Pierre; Dmytruk, Nicolas; Sauvage, Elisabeth; Ma, Laurence; Romi, Benedetta; Tichit, Magali; Lopez-Sanchez, Maria-José; Descorps-Declere, Stéphane; Souche, Erika; Buchrieser, Carmen; Trieu-Cuot, Patrick; Moszer, Ivan; Clermont, Dominique; Maione, Domenico; Bouchier, Christiane; McMillan, David J; Parkhill, Julian; Telford, John L; Dougan, Gordan; Walker, Mark J; Holden, Matthew T G; Poyart, Claire; Glaser, Philippe

    2014-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates. PMID:25088811

  7. Macrolide Resistance Gene mreA of Streptococcus agalactiae Encodes a Flavokinase

    PubMed Central

    Clarebout, Gervais; Villers, Corinne; Leclercq, Roland

    2001-01-01

    The mreA gene from Streptococcus agalactiae COH31 γ/δ, resistant to macrolides and clindamycin by active efflux, has recently been cloned in Escherichia coli, where it was reported to confer macrolide resistance (J. Clancy, F. Dib-Hajj, J. W. Petitpas, and W. Yuan, Antimicrob. Agents Chemother. 41:2719–2723, 1997). Cumulative data suggested that the mreA gene was located on the chromosome of S. agalactiae COH31 γ/δ. Analysis of the deduced amino acid sequence of mreA revealed significant homology with several bifunctional flavokinases/(flavin adenine dinucleotide (FAD) synthetases, which convert riboflavin to flavin mononucleotide (FMN) and FMN to FAD, respectively. High-performance liquid chromatography experiments showed that the mreA gene product had a monofunctional flavokinase activity, similar to that of RibR from Bacillus subtilis. Sequences identical to those of the mreA gene and of a 121-bp upstream region containing a putative promoter were detected in strains of S. agalactiae UCN4, UCN5, and UCN6 susceptible to macrolides. mreA and its allele from S. agalactiae UCN4 were cloned on the shuttle vector pAT28. Both constructs were introduced into E. coli, where they conferred a similar two- to fourfold increase in the MICs of erythromycin, spiramycin, and clindamycin. The MICs of a variety of other molecules, including crystal violet, acriflavin, sodium dodecyl sulfate, and antibiotics, such as certain cephalosporins, chloramphenicol, doxycycline, nalidixic acid, novobiocin, and rifampin, were also increased. In contrast, resistance to these compounds was not detected when the constructs were introduced into E. faecalis JH2–2. In conclusion, the mreA gene was probably resident in S. agalactiae and may encode a metabolic function. We could not provide any evidence that it was responsible for macrolide resistance in S. agalactiae COH31 γ/δ; broad-spectrum resistance conferred by the gene in E. coli could involve multidrug efflux pumps by a mechanism

  8. Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia.

    PubMed

    Wang, E L; Wang, K Y; Chen, D F; Geng, Y; Huang, L Y; Wang, J; He, Y

    2015-01-01

    Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the neuA gene, can catalyze the activation of sialic acid with CMP, and plays an important role in Streptococcus agalactiae infection pathogenesis. To study the structure and function of the S. agalactiae neuA gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the neuA nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the neuA nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_tranf_GTA_type superfamily and an SGNH_hydrolase superfamily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against S. agalactiae infection. The codon usage frequency of neuA differed greatly in Escherichia coli and Homo sapiens genes, and neuA may be more efficiently expressed in eukaryotes (yeast). S. agalactiae neuA from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria. PMID:26125800

  9. Molecular epidemiology and strain-specific characteristics of Streptococcus agalactiae at the herd and cow level.

    PubMed

    Mahmmod, Y S; Klaas, I C; Katholm, J; Lutton, M; Zadoks, R N

    2015-10-01

    Host-adaptation of Streptococcus agalactiae subpopulations has been described whereby strains that are commonly associated with asymptomatic carriage or disease in people differ phenotypically and genotypically from those causing mastitis in dairy cattle. Based on multilocus sequence typing (MLST), the most common strains in dairy herds in Denmark belong to sequence types (ST) that are also frequently found in people. The aim of this study was to describe epidemiological and diagnostic characteristics of such strains in relation to bovine mastitis. Among 1,199 cattle from 6 herds, cow-level prevalence of S. agalactiae was estimated to be 27.4% based on PCR and 7.8% based on bacteriological culture. Quarter-level prevalence was estimated at 2.8% based on bacteriological culture. Per herd, between 2 and 26 isolates were characterized by pulsed-field gel electrophoresis (PFGE) and MLST. Within each herd, a single PFGE type and ST predominated, consistent with a contagious mode of transmission or point source infection within herds. Evidence of within-herd evolution of S. agalactiae was detected with both typing methods, although ST belonged to a single clonal complex (CC) per herd. Detection of CC23 (3 herds) was associated with significantly lower approximate count (colony-forming units) at the quarter level and significantly lower cycle threshold value at the cow level than detection of CC1 (2 herds) or CC19 (1 herd), indicating a lower bacterial load in CC23 infections. Median values for the number of infected quarters and somatic cell count (SCC) were numerically but not significantly lower for cows infected with CC23 than for cows with CC1 or CC19. For all CC, an SCC threshold of 200,000 cells/mL was an unreliable indicator of infection status, and prescreening of animals based on SCC as part of S. agalactiae detection and eradication campaigns should be discouraged. PMID:26233443

  10. Evaluation of two herd-level diagnostic tests for Streptococcus agalactiae using a latent class approach.

    PubMed

    Mweu, Marshal M; Toft, Nils; Katholm, Jørgen; Nielsen, Søren S

    2012-09-14

    Streptococcus agalactiae mastitis persists as a significant economic problem for the dairy industry in many countries. In Denmark, the annual surveillance programme for this mastitis pathogen initially based only on bacteriological culture of bulk tank milk (BTM) samples, has recently incorporated the use of the real-time PathoProof Mastitis PCR assay with the goal of improving detection of infected herds. The objective of our study was to estimate the herd sensitivity (Se) and specificity (Sp) of both tests of BTM samples using latent class models in a Bayesian analysis while evaluating the effect of herd-level covariates on the Se and Sp of the tests. BTM samples were collected from all 4258 Danish dairy herds in 2009 and screened for the presence of S. agalactiae using both tests. The highest Se of PCR was realized at a cycle threshold (Ct) cut-off value of 40. At this cut-off, the Se of the PCR was significantly higher (95.2; 95% posterior credibility interval [PCI] [88.2; 99.8]) than that of bacteriological culture (68.0; 95% PCI [55.1; 90.0]). However, culture had higher Sp (99.7; 95% PCI [99.3; 100.0]) compared to PCR (98.8; 95% PCI [97.2; 99.9]). The accuracy of the tests was unaffected by the herd-level covariates. We propose that screenings of BTM samples for S. agalactiae be based on the PCR assay with Ct readings of <40 considered as positive. However, for higher Ct values, confirmation of PCR test positive herds by bacteriological culture is advisable especially when the between-herd prevalence of S. agalactiae is low. PMID:22542270

  11. Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination.

    PubMed

    Yao, Kaihu; Poulsen, Knud; Maione, Domenico; Rinaudo, C Daniela; Baldassarri, Lucilla; Telford, John L; Sørensen, Uffe B Skov; Kilian, Mogens

    2013-02-01

    We evaluated three different PCR-based capsular gene typing methods applied to 312 human and bovine Streptococcus agalactiae (group B Streptococcus [GBS]) isolates and compared the results to serotyping results obtained by latex agglutination. Among 281 human isolates 27% could not be typed by latex agglutination. All 312 isolates except 5 could be typed by the three PCR methods combined. Two of these methods were multiplex assays. Among the isolates that were typeable by both latex agglutination and capsular gene typing, 94% showed agreement between the two methods. However, each of the PCR methods showed limitations. One of the methods did not include all 10 recognized serotypes, one misidentified eight isolates of serotypes Ib and IV as serotype Ia, and one did not distinguish between serotypes VII and IX. For five isolates that showed aberrant patterns in the capsular gene typing, long-range PCR targeting the cps operon disclosed large insertions or deletions affecting the cps gene cluster. A sensitive flow cytometric assay based on serotype-specific antibodies applied to 76 selected isolates that were nontypeable by latex agglutination revealed that approximately one-half of these did express capsular polysaccharide. A procedure for convenient and reliable capsular gene typing to be included in epidemiological and surveillance studies of S. agalactiae is proposed. PMID:23196363

  12. A TRANSPORT SYSTEM FOR THE MAINTENANCE OF VIABILITY OF ACINETOBACTER CALCOACETICUS, STREPTOCOCCUS INIAE, AND S. AGALACTIAE OVER VARYING TIME PERIODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the utility of Bacti-Swab NPG Modified Stuart's medium (Remel)in maintaining viable Gram negative (Acinetobacter calcoaceticus) and Gram positive bacteria (Streptococcus iniae and S. agalactiae) for up to 10 days. In the first experiment, qualitative assessment of the viability of S. i...

  13. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages.

    PubMed

    Romero, Patricia; Croucher, Nicholas J; Hiller, N Luisa; Hu, Fen Z; Ehrlich, Garth D; Bentley, Stephen D; García, Ernesto; Mitchell, Tim J

    2009-08-01

    Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them. PMID:19502408

  14. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China.

    PubMed

    Geng, Y; Wang, K Y; Huang, X L; Chen, D F; Li, C W; Ren, S Y; Liao, Y T; Zhou, Z Y; Liu, Q F; Du, Z J; Lai, W M

    2012-08-01

    Streptococcus agalactiae (Group B streptococcus) has emerged as an important pathogen that affects humans and animals, including aquatic species. S. agalactiae infections are becoming an increasing problem in aquaculture and have been reported worldwide in a variety of fish species, especially those living in warm water. Recently, a very serious infectious disease of unknown aetiology broke out in ya-fish (Schizothorax prenanti) farms in Sichuan Province. A Gram-positive, chain-forming coccus was isolated from moribund cultured ya-fish. The goals of this study were to identify the bacterial strains isolated from diseased fish between 2009 and 2011 in Sichuan Province, China, to evaluate the pathogenicity of the pathogen in ya-fish, crucian carp (Carassius carassius) and the Nile tilapia (Oreochromis niloticus); and to determine the susceptibility of the pathogen strains to many currently available anti-microbial agents. The virulence tests were conducted by intraperitoneal injection of bacterial suspensions. In this study, four strains of a Gram-positive, chain-forming coccus were isolated from moribund cultured ya-fish (S. prenanti). The coccoid microorganism was identified as S. agalactiae using a commercial streptococcal grouping kit and 16S rDNA sequencing analysis. Susceptibility of the isolates to 22 antibiotics was tested using the disc diffusion method. All isolates showed a similar antibiotic susceptibility, which were sensitive to amoxicillin, ciprofloxacin, lomefloxacin, chloramphenicol, rifampin, vancomycin, azithromycin, florfenicol, cefalexin, cefradine and deoxycycline and resistant to gentamicin, sinomin (SMZ/TMP), penicillin, tenemycin, fradiomycin and streptomycin. Furthermore, the virulence tests were conducted by intraperitoneal injection of the isolated strain GY101 in ya-fish, crucian carp and the Nile tilapia. This coccus was lethal to ya-fish, Nile tilapia and crucian carp. The mortality rates of infected ya-fish were 100%, 100%, 60% and 20

  15. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production

    PubMed Central

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  16. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.

    PubMed

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  17. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  18. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development.

    PubMed

    Li, Wei; Wang, Hai-Qing; He, Run-Zhen; Li, Yan-Wei; Su, You-Lu; Li, An-Xing

    2016-08-01

    Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel

  19. Efficacy of .18% iodine teat dip against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1989-04-01

    Effective postmilking teat dip products with lower iodine concentrations are being formulated as concern increases about iodine residues in milk. Increased free iodine concentration with greater germicidal activity in teat dip products is also possible with special formulation procedures. Low iodine concentration dips are cheaper and have reduced teat irritation. A concentrated iodine teat dip containing .18% iodine and 8 ppm free iodine upon dilution was evaluated under experimental bacterial challenge to determine efficacy for prevention of new intramammary infections. The undiluted product also contained 15% collagen protein emollient as a teat skin conditioner. Efficacy of the teat dip was 93.6 and 51. 7% for Staphylococcus aureus (Newbould 305) and Streptococcus agalactiae (McDonald 44). No adverse effects of the dip on teat skin were noted. PMID:2663939

  20. Efficacies of chlorine dioxide and lodophor teat dips during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Adkinson, R W

    2000-12-01

    We tested two postmilking teat dips for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. The chlorine dioxide teat dip that contained 0.7% sodium chlorite reduced the number of new intramammary infections (IMI) caused by Staph. aureus by 86.6% and reduced new IMI caused by Strep. agalactiae by 88.4%. The 0.5% iodophor teat dip reduced the number of new IMI caused by Staph. aureus by 92.9% and reduced the number of new IMI caused by Strep. agalactiae by 43.4%. Teat skin and teat end conditions were evaluated before and after the study, and no deleterious effects were noted among dipped quarters compared with undipped control quarters for either teat dip. PMID:11132869

  1. In silico prediction of conserved vaccine targets in Streptococcus agalactiae strains isolated from fish, cattle, and human samples.

    PubMed

    Pereira, U P; Soares, S C; Blom, J; Leal, C A G; Ramos, R T J; Guimarães, L C; Oliveira, L C; Almeida, S S; Hassan, S S; Santos, A R; Miyoshi, A; Silva, A; Tauch, A; Barh, D; Azevedo, V; Figueiredo, H C P

    2013-01-01

    Streptococcus agalactiae (Lancefield group B; group B streptococci) is a major pathogen that causes meningoencephalitis in fish, mastitis in cows, and neonatal sepsis and meningitis in humans. The available prophylactic measures for conserving human and animal health are not totally effective and have limitations. Effective vaccines against the different serotypes or genotypes of pathogenic strains from the various hosts would be useful. We used an in silico strategy to identify conserved vaccine candidates in 15 genomes of group B streptococci strains isolated from human, bovine, and fish samples. The degree of conservation, subcellular localization, and immunogenic potential of S. agalactiae proteins were investigated. We identified 36 antigenic proteins that were conserved in all 15 genomes. Among these proteins, 5 and 23 were shared only by human or fish strains, respectively. These potential vaccine targets may help develop effective vaccines that will help prevent S. agalactiae infection. PMID:24065646

  2. Complete genome sequence of Streptococcus agalactiae strain GBS85147 serotype of type Ia isolated from human oropharynx.

    PubMed

    de Aguiar, Edgar Lacerda; Mariano, Diego César Batista; Viana, Marcus Vinícius Canário; Benevides, Leandro de Jesus; de Souza Rocha, Flávia; de Castro Oliveira, Letícia; Pereira, Felipe Luiz; Dorella, Fernanda Alves; Leal, Carlos Augusto Gomes; de Carvalho, Alex Fiorini; Santos, Gabriela Silva; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy; de Castro Soares, Siomar; Hassan, Syed Shah; Pinto, Anne Cybele; Figueiredo, Henrique César Pereira; Azevedo, Vasco

    2016-01-01

    Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %. PMID:27274785

  3. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. PMID:25858765

  4. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors

    PubMed Central

    Rosini, Roberto; Margarit, Immaculada

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail. PMID:25699242

  5. Chromosomally and Extrachromosomally Mediated High-Level Gentamicin Resistance in Streptococcus agalactiae.

    PubMed

    Sendi, Parham; Furitsch, Martina; Mauerer, Stefanie; Florindo, Carlos; Kahl, Barbara C; Shabayek, Sarah; Berner, Reinhard; Spellerberg, Barbara

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in nonpregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown in vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to the loss of a synergistic effect. We therefore performed a multicenter study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centers in four countries, 1,128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried the aacA-aphD gene, typically conferring HLGR. However, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon designated Tn3706. For the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to confer HLGR was proven by transfer into an Enterococcus faecalis isolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformed E. faecalis strain from the plasmid. This is the first report showing plasmid-mediated HLGR in GBS. Thus, in our clinical GBS isolates, HLGR is mediated both chromosomally and extrachromosomally. PMID:26729498

  6. Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China

    PubMed Central

    Jiang, Haoqin; Chen, Mingliang; Li, Tianming; Liu, Hong; Gong, Ye; Li, Min

    2016-01-01

    Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control. PMID:27625635

  7. Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China.

    PubMed

    Jiang, Haoqin; Chen, Mingliang; Li, Tianming; Liu, Hong; Gong, Ye; Li, Min

    2016-01-01

    Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control. PMID:27625635

  8. Complete Atrioventricular Block Complicating Mitral Infective Endocarditis Caused by Streptococcus Agalactiae.

    PubMed

    Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Astushi

    2016-01-01

    BACKGROUND Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). CASE REPORT A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient's heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient's condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. CONCLUSIONS This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block. PMID:27604147

  9. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  10. High Incidence of Macrolide and Tetracycline Resistance among Streptococcus Agalactiae Strains Isolated from Clinical Samples in Tehran, Iran

    PubMed Central

    EMANEINI, Mohammad; MIRSALEHIAN, Akbar; BEIGVIERDI, Reza; FOOLADI, Abbas Ali Imani; ASADI, Fatemeh; JABALAMELI, Fereshteh; TAHERIKALANI, Morovat

    2014-01-01

    Background: Streptococcus agalactiae or Group B Streptococci (GBS) is an important bacterial pathogen that causes a wide range of infections including neonatal sepsis, meningitis, pneumonia and soft tissue or urinary tract infections. Material and methods: One hundred and fifteen isolates of Streptococcus agalactiae collected from urine specimens of patients attending a hospital in Tehran. All isolates were screened for their capsular types and genes encoding resistance to the macrolide and tetracycline antibiotics by PCR and multiplex PCR–based methods. Results: Most of isolates belonged to capsular types III (49%), V (19%), II (16%), and Ib (6%). Twelve isolates (10%) were nontypable. All isolates were susceptible to penicillin and Quinupristin-dalfopristin, but were resistant to clindamycin (35%), chloramphenicol (45%), erythromycin (35%), linezolid (1%) and tetracycline (96%). The most prevalent antimicrobial resistance gene was tetM found in 93% of the isolates followed by ermTR, ermB, and tetK, found in 23%, 16%, and 16% of isolates, respectively. The genes, tetL, tetO, ermA, ermC and mefA were not detected in any of the S. agalactiae isolates. Of the 110 tetracycline resistant S. agalactiae, 89 isolates harbored the tetM gene alone and eighteen isolates carried the tetM gene with the tetK gene. All erythromycin-resistant isolates exhibited cMLSB resistance phenotype, 22 isolates harbored the ermTR gene alone and five isolates carried the ermTR gene with the ermB gene. The rate of coexistence of genes encoding the erythromycin and tetracycline resistance determinants was 34%. Conclusion: The present study demonstrated that S. agalactiae isolates obtained from urine samples showed a high rate of resistance to tetracycline, chloramphenicol and macrolide antibiotics and were commonly associated with the resistance genes temM, ermTR or ermB. PMID:25705271

  11. Serotypes, Antibiotic Susceptibilities, and Multi-Locus Sequence Type Profiles of Streptococcus agalactiae Isolates Circulating in Beijing, China

    PubMed Central

    Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong

    2015-01-01

    Background To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. Methods All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. Results In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. Conclusion S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB. PMID:25781346

  12. Spatiotemporal patterns, annual baseline and movement-related incidence of Streptococcus agalactiae infection in Danish dairy herds: 2000-2009.

    PubMed

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2014-02-01

    Several decades after the inception of the five-point plan for the control of contagious mastitis pathogens, Streptococcus agalactiae (S. agalactiae) persists as a fundamental threat to the dairy industry in many countries. A better understanding of the relative importance of within- and between-herd sources of new herd infections coupled with the spatiotemporal distribution of the infection, may aid in effective targeting of control efforts. Thus, the objectives of this study were: (1) to describe the spatiotemporal patterns of infection with S. agalactiae in the population of Danish dairy herds from 2000 to 2009 and (2) to estimate the annual herd-level baseline and movement-related incidence risks of S. agalactiae infection over the 10-year period. The analysis involved registry data on bacteriological culture of all bulk tank milk samples collected as part of the mandatory Danish S. agalactiae surveillance scheme as well as live cattle movements into dairy herds during the specified 10-year period. The results indicated that the predicted risk of a herd becoming infected with S. agalactiae varied spatiotemporally; the risk being more homogeneous and higher in the period after 2005. Additionally, the annual baseline risks yielded significant yet distinctive patterns before and after 2005 - the risk of infection being higher in the latter phase. On the contrary, the annual movement-related risks revealed a non-significant pattern over the 10-year period. There was neither evidence for spatial clustering of cases relative to the population of herds at risk nor spatial dependency between herds. Nevertheless, the results signal a need to beef up within-herd biosecurity in order to reduce the risk of new herd infections. PMID:24269038

  13. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation.

    PubMed

    Chuzeville, Sarah; Dramsi, Shaynoor; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2015-11-01

    Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species. PMID:26232503

  14. Two Novel Functions of Hyaluronidase from Streptococcus agalactiae Are Enhanced Intracellular Survival and Inhibition of Proinflammatory Cytokine Expression

    PubMed Central

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping

    2014-01-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564

  15. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    PubMed

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. PMID:26778303

  16. Molecular investigation of Streptococcus agalactiae isolates from environmental samples and fish specimens during a massive fish kill in Kuwait Bay.

    PubMed

    Jafar, Qasem A; Sameer, Al-Zinki; Salwa, Al-Mouqati; Samee, Al-Amad; Ahmed, Al-Marzouk; Al-Sharifi, Faisal

    2008-11-01

    This study was undertaken to identify and characterize bacterial isolates obtained simultaneously from dead fish samples during a massive fish kill in Kuwait Bay and sewage-water samples running into Kuwait Bay using conventional and molecular techniques. Of the 71 bacterial isolates studied; 66 were recovered from 7 different fish species and 5 strains were isolated from sewage samples. The species-specific identity of the isolates was established by phenotypic characteristics and by PCR amplification of 16S rRNA by using Streptococcus agalactiae-specific primers. The genotyping of 12 isolates from fish samples and all 5 isolates from sewage samples was performed by random amplification of polymorphic DNA (RAPD) analysis. Culture methods identified 44 of 66 (67%) and 4 of 5 (80%) isolates obtained from fish and sewage samples, respectively, as S. agalactiae. The PCR amplification of 16S rRNA not only confirmed the results of conventional methods but also resulted in additional identification of 14 of 66 (21%) isolates obtained from fish samples and the remaining isolate recovered from sewage sample, as S. agalactiae. A total of 9 RAPD patterns were observed among the 17 isolates studied; these RAPD patterns were grouped into three clusters. Interestingly, four of the isolates recovered from sewage samples produced nearly identical RAPD band patterns (85-100% similarity) with some of the S. agalactiae strains isolated from Mullet kidney and brain indicting the possibility of sewage being the source of infection. PMID:19205271

  17. The effect of pre-enrichment on recovery of Streptococcus agalactiae, Staphylococcus aureus and mycoplasma from bovine milk.

    PubMed Central

    Thurmond, M. C.; Tyler, J. W.; Luiz, D. M.; Holmberg, C. A.; Picanso, J. P.

    1989-01-01

    The study was conducted to determine whether pre-enrichment would increase sensitivity of detecting Streptococcus (Str.) agalactiae, Staphylococcus (S.) aureus, and mycoplasma in bovine milk. Two procedures were followed, one involving direct inoculation of milk on bovine blood agar, and the other involving preenrichment in broth followed by inoculation on agar. Logistic regression was used to predict the probability of isolation as a function of culture procedure and two additional covariates, the California Mastitis Test (CMT) score of the milk and the type of sample (indicating sample storage temperature and herd mastitis status). A total of 13778 milk samples was cultured for each of the three bacteria. By using results of both direct inoculation and pre-enrichment, the probability of isolation compared to use of direct inoculation only and adjusted for effects of other variables was increased 3.6-fold for Str. agalactiae, 1.6-fold for S. aureus and 1.7-fold for mycoplasma. The probability of isolation for all three bacteria increased as the CMT score increased. For Str. agalactiae, there was a statistical interaction predicting that enrichment improved the odds of isolation more from milk with high CMT scores than from milk with low scores. Results indicate that pre-enrichment can substantially increase the sensitivity of bacteriological screening of dairy cows for mastitis caused by Str. agalactiae, S. aureus, and mycoplasma. PMID:2691266

  18. vanG Element Insertions within a Conserved Chromosomal Site Conferring Vancomycin Resistance to Streptococcus agalactiae and Streptococcus anginosus

    PubMed Central

    Srinivasan, Velusamy; Metcalf, Benjamin J.; Knipe, Kristen M.; Ouattara, Mahamoudou; McGee, Lesley; Shewmaker, Patricia L.; Glennen, Anita; Nichols, Megin; Harris, Carol; Brimmage, Mary; Ostrowsky, Belinda; Park, Connie J.; Schrag, Stephanie J.; Frace, Michael A.; Sammons, Scott A.

    2014-01-01

    ABSTRACT Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and 44,680-bp integrative conjugative element (ICE)-like sequences, designated ICE-r, that were nearly identical in the two group B streptococcal (GBS) strains. The dual vanG and ICE-r elements from both GBS strains were inserted at the same position, between bases 1328 and 1329, within the identical RNA methyltransferase (rumA) genes. A GenBank search revealed that although most GBS strains contained insertions within this specific site, only sequence type 22 (ST22) GBS strains contained highly related ICE-r derivatives. The vanG-1 element in Sa was also inserted within this position corresponding to its rumA homolog adjacent to an ICE-r derivative. vanG-1 insertions were previously reported within the same relative position in the E. faecalis rumA homolog. An ICE-r sequence perfectly conserved with respect to its counterpart in GBS-NY was apparent within the same site of the rumA homolog of a Streptococcus dysgalactiae subsp. equisimilis strain. Additionally, homologous vanG-like elements within the conserved rumA target site were evident in Roseburia intestinalis. PMID:25053786

  19. FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions*

    PubMed Central

    Buscetta, Marco; Papasergi, Salvatore; Firon, Arnaud; Pietrocola, Giampiero; Biondo, Carmelo; Mancuso, Giuseppe; Midiri, Angelina; Romeo, Letizia; Teti, Giuseppe; Speziale, Pietro; Trieu-Cuot, Patrick; Beninati, Concetta

    2014-01-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine. PMID:24904056

  20. Antigenic distribution of Streptococcus agalactiae isolates from pregnant women at Garankuwa hospital – South Africa

    PubMed Central

    Chukwu, Martina O; Mavenyengwa, Rooyen Tinago; Monyama, Charles M; Bolukaoto, John Y; Lebelo, Sogolo L; Maloba, Motlatji RB; Nchabeleng, Maphoshane; Moyo, Sylvester Rogers

    2015-01-01

    Introduction Streptococcus agalactiae (group B streptococcus; GBS) is globally recognised as one of the leading causes of neonatal sepsis and meningitis. It also causes adverse pregnancy outcomes such as stillbirth and miscarriages. Incidence of invasive disease is increasing in non-pregnant adults with underlying medical conditions (e.g., diabetes mellitus). Epidemiological studies of GBS infections are based on capsular serotyping. Genotyping of the surface anchored protein genes is also becoming an important tool for GBS studies. Currently ten different GBS serotypes have been identified. This study was performed to determine the prevalence of GBS capsular types (CTs) and surface anchored protein genes in isolates from colonized pregnant women attending antenatal clinic, at Dr George Mukhari Academic Hospital, Garankuwa, Pretoria, South Africa. Methods The samples were collected over 11 months and cultured on selective media. GBS was identified using different morphological and biochemical tests. Capsular typing was done using latex agglutination test and conventional PCR. Multiplex PCR with specific primers was used to detect the surface anchored protein genes. Results Of the 413 pregnant women recruited, 128 (30.9%) were colonized with GBS. The capsular polysaccharide (CPS) typing test showed that CPS type III (29.7%) was the most prevalent capsular type followed by CPS type Ia (25.8%), II (15.6%), IV (8.6%), V (10.9%) and Ib (8.6%); 0.7% of the isolates were nontypeable. Multiplex PCR revealed that the surface proteins genes were possessed by all the capsular types: rib (44.5%), bca (24.7%), alp2/3 (17.9%), epsilon (8.6%) and alp4 (4.7%). Conclusion The common capsular types found in this study are Ia, III, and II. The most common protein genes identified were rib and bca, and the distribution of the surface protein genes among the isolates of different capsular types showed similar trends to the distribution reported from previous studies. PMID:26716101

  1. Maternal colonization with Streptococcus agalactiae and associated stillbirth and neonatal disease in coastal Kenya.

    PubMed

    Seale, Anna C; Koech, Angela C; Sheppard, Anna E; Barsosio, Hellen C; Langat, Joyce; Anyango, Emily; Mwakio, Stella; Mwarumba, Salim; Morpeth, Susan C; Anampiu, Kirimi; Vaughan, Alison; Giess, Adam; Mogeni, Polycarp; Walusuna, Leahbell; Mwangudzah, Hope; Mwanzui, Doris; Salim, Mariam; Kemp, Bryn; Jones, Caroline; Mturi, Neema; Tsofa, Benjamin; Mumbo, Edward; Mulewa, David; Bandika, Victor; Soita, Musimbi; Owiti, Maureen; Onzere, Norris; Walker, A Sarah; Schrag, Stephanie J; Kennedy, Stephen H; Fegan, Greg; Crook, Derrick W; Berkley, James A

    2016-01-01

    Streptococcus agalactiae (group B streptococcus, GBS) causes neonatal disease and stillbirth, but its burden in sub-Saharan Africa is uncertain. We assessed maternal recto-vaginal GBS colonization (7,967 women), stillbirth and neonatal disease. Whole-genome sequencing was used to determine serotypes, sequence types and phylogeny. We found low maternal GBS colonization prevalence (934/7,967, 12%), but comparatively high incidence of GBS-associated stillbirth and early onset neonatal disease (EOD) in hospital (0.91 (0.25-2.3)/1,000 births and 0.76 (0.25-1.77)/1,000 live births, respectively). However, using a population denominator, EOD incidence was considerably reduced (0.13 (0.07-0.21)/1,000 live births). Treated cases of EOD had very high case fatality (17/36, 47%), especially within 24 h of birth, making under-ascertainment of community-born cases highly likely, both here and in similar facility-based studies. Maternal GBS colonization was less common in women with low socio-economic status, HIV infection and undernutrition, but when GBS-colonized, they were more probably colonized by the most virulent clone, CC17. CC17 accounted for 267/915 (29%) of maternal colonizing (265/267 (99%) serotype III; 2/267 (0.7%) serotype IV) and 51/73 (70%) of neonatal disease cases (all serotype III). Trivalent (Ia/II/III) and pentavalent (Ia/Ib/II/III/V) vaccines would cover 71/73 (97%) and 72/73 (99%) of disease-causing serotypes, respectively. Serotype IV should be considered for inclusion, with evidence of capsular switching in CC17 strains. PMID:27572968

  2. Functional Analysis of the CpsA Protein of Streptococcus agalactiae

    PubMed Central

    Hanson, Brett R.; Runft, Donna L.; Streeter, Cale; Kumar, Abhin; Carion, Thomas W.

    2012-01-01

    Streptococcal pathogens, such as the group B streptococcus (GBS) Streptococcus agalactiae, are an important cause of systemic disease, which is facilitated in part by the presence of a polysaccharide capsule. The CpsA protein is a putative transcriptional regulator of the capsule locus, but its exact contribution to regulation is unknown. To address the role of CpsA in regulation, full-length GBS CpsA and two truncated forms of the protein were purified and analyzed for DNA-binding ability. Assays demonstrated that CpsA is able to bind specifically to two putative promoters within the capsule operon with similar affinity, and full-length protein is required for specificity. Functional characterization of CpsA confirmed that the ΔcpsA strain produced less capsule than did the wild type and demonstrated that the production of full-length CpsA or the DNA-binding region of CpsA resulted in increased capsule levels. In contrast, the production of a truncated form of CpsA lacking the extracellular LytR domain (CpsA-245) in the wild-type background resulted in a dominant-negative decrease in capsule production. GBS expressing CpsA-245, but not the ΔcpsA strain, was attenuated in human whole blood. However, the ΔcpsA strain showed significant attenuation in a zebrafish infection model. Furthermore, chain length was observed to be variable in a CpsA-dependent manner, but could be restored to wild-type levels when grown with lysozyme. Taken together, these results suggest that CpsA is a modular protein influencing multiple regulatory functions that may include not only capsule synthesis but also cell wall associated factors. PMID:22287515

  3. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    PubMed

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  4. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae.

    PubMed

    Rego, Sara; Heal, Timothy J; Pidwill, Grace R; Till, Marisa; Robson, Alice; Lamont, Richard J; Sessions, Richard B; Jenkinson, Howard F; Race, Paul R; Nobbs, Angela H

    2016-07-29

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  5. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles

    PubMed Central

    Perugini Biasi-Garbin, Renata; Saori Otaguiri, Eliane; Fernandes da Silva, Mayara; Belotto Morguette, Ana Elisa; Armando Contreras Lancheros, César; Kian, Danielle; Perugini, Márcia Regina Eches; Durán, Nelson; Nakamura, Celso Vataru; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2015-01-01

    Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections. PMID:25945115

  6. Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae

    PubMed Central

    Khosa, Sakshi; Frieg, Benedikt; Mulnaes, Daniel; Kleinschrodt, Diana; Hoeppner, Astrid; Gohlke, Holger; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resistance protein from Streptococcus agalactiae (SaNSR) at 2.2 Å resolution. It contains an N-terminal helical bundle, and protease cap and core domains. The latter harbors the highly conserved TASSAEM region, which lies in a hydrophobic tunnel formed by all domains. By integrative modeling, mutagenesis studies, and genetic engineering of nisin variants, a model of the SaNSR/nisin complex is generated, revealing that SaNSR recognizes the last C-terminally located lanthionine ring of nisin. This determines the substrate specificity of SaNSR and ensures the exact coordination of the nisin cleavage site at the TASSAEM region. PMID:26727488

  7. Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections.

    PubMed

    Piccinelli, Giorgio; Biscaro, Valeria; Gargiulo, Franco; Caruso, Arnaldo; De Francesco, Maria Antonia

    2015-08-01

    Streptococcus agalactiae (GBS) has been implicated in urinary tract infections but the microbiological characteristics and antimicrobial susceptibility of these strains are poorly investigated. In this study, 87 isolates recovered from urine samples of patients who had attended the Spedali Civili of Brescia (Italy) and had single organism GBS cultured were submitted to antimicrobial susceptibility testing, molecular characterization of macrolide and levofloxacin resistance, PCR-based capsular typing and analysis of surface protein genes. By automated broth microdilution method, all isolates were susceptible to penicillin, cefuroxime, cefaclor, and ceftriaxone; 80%, 19.5% and 3.4% of isolates were non-susceptible to tetracycline, erythromycin, and levofloxacin, respectively. Macrolide resistance determinants were iMLS(B) (n=1), cMLS(B) (n=10) and M (n=5), associated with ermTR, ermB and mefA/E. Levofloxacin resistance was linked to mutations in gyrA and parC genes. Predominant capsular types were III, Ia, V, Ib and IX. Type III was associated with tetracycline resistance, while type Ib was associated with levofloxacin resistance. Different capsular type-surface protein gene combinations (serotype V-alp2, 3; serotype III-rib; serotype Ia-epsilon) were detected. A variety of capsular types are involved in significant bacteriuria. The emergence of multidrug resistant GBS may become a significant public health concern and highlights the importance of careful surveillance to prevent the emergence of these virulent GBS. PMID:26144658

  8. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae.

    PubMed

    Yunis-Aguinaga, Jefferson; Claudiano, Gustavo S; Marcusso, Paulo F; Manrique, Wilson Gómez; de Moraes, Julieta R Engrácia; de Moraes, Flávio R; Fernandes, João B K

    2015-11-01

    Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia. PMID:26434713

  9. Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations.

    PubMed

    Oettl, Martin; Hoechstetter, Julia; Asen, Iris; Bernhardt, Günther; Buschauer, Armin

    2003-03-01

    Although bovine testicular hyaluronidase (BTH) has been used in several medical fields for many years, these drugs are poorly characterized. We compared pharmaceutical BTH preparations (Neopermease, Hylase "Dessau") and a hyaluronate lyase from Streptococcus agalactiae. The BTH preparations were complex mixtures of proteins (SDS-PAGE, gel filtration) with enzymatic activity in different fractions. In the case of Neopermease the highest specific activity was found in the 58 kDa fraction (optimum at pH 3.6), whereas the 77 and 33 kDa fractions showed markedly lower specific activities at an optimal pH of 6.2. Maximum specific activity of the bacterial enzyme (approx. 1000 micromol min(-1) mg(-1)) was found at pH 5.0, being 410- and 5100-times higher compared to Neopermease and Hylase "Dessau", respectively. The hyaluronate lyase preparation was separated into two main proteins [100 kDa (pI=8.9) and 85 kDa (pI=9.2)] which were enzymatically active in SDS substrate-PAGE. Zymography after limited proteolysis of the bacterial enzyme with trypsin revealed active fragments (75-50 kDa). Our results suggest that hyaluronate lyase is an alternative for BTH, of which there has been a shortage, since companies have stopped the production of BTH preparations due to the risk of BSE. PMID:12659938

  10. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae.

    PubMed

    Pinto, Tatiana Castro Abreu; Costa, Natália Silva; Corrêa, Ana Beatriz de Almeida; de Oliveira, Ivi Cristina Menezes; de Mattos, Marcos Correa; Rosado, Alexandre Soares; Benchetrit, Leslie Claude

    2014-01-01

    Streptococcus agalactiae (GBS) is a major source of human perinatal diseases and bovine mastitis. Erythromycin (Ery) and tetracycline (Tet) are usually employed for preventing human and bovine infections although resistance to such agents has become common among GBS strains. Ery and Tet resistance genes are usually carried by conjugative transposons (CTns) belonging to the Tn916 family, but their presence and transferability among GBS strains have not been totally explored. Here we evaluated the presence of Tet resistance genes (tetM and tetO) and CTns among Ery-resistant (Ery-R) and Ery-susceptible (Ery-S) GBS strains isolated from human and bovine sources; and analyzed the ability for transferring resistance determinants between strains from both origins. Tet resistance and int-Tn genes were more common among Ery-R when compared to Ery-S isolates. Conjugative transfer of all resistance genes detected among the GBS strains included in this study (ermA, ermB, mef, tetM and tetO), in frequencies between 1.10(-7) and 9.10(-7), was possible from bovine donor strains to human recipient strain, but not the other way around. This is, to our knowledge, the first report of in vitro conjugation of Ery and Tet resistance genes among GBS strains recovered from different hosts. PMID:25477908

  11. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish.

    PubMed

    Sebastião, Fernanda de A; Lemos, Eliana G M; Pilarski, Fabiana

    2015-12-01

    Streptococcus agalactiae (GBS) are Gram-positive cocci responsible for substantial losses in tilapia fish farms in Brazil and worldwide. It causes septicemia, meningoencephalitis and mortality of whole shoals that can occur within 72 h. Thus, diagnostic methods are needed that are rapid, specific and sensitive. In this study, a pair of specific primers for GBS was generated based on the cfb gene sequence and initially evaluated by conventional PCR. The protocols for absolute quantitative real-time PCR (qPCR) were then adapted to validate the technique for the identification and quantification of GBS isolated by real-time detection of amplicons using fluorescence measurements. Finally, an infectivity test was conducted in tilapia infected with GBS strains. Total DNA from the host brain was subjected to the same technique, and the strains were re-isolated to validate Koch's postulates. The assay showed 100% specificity for the other bacterial species evaluated and a sensitivity of 367 gene copies per 20 mg of brain tissue within 4 h, making this test a valuable tool for health monitoring programs. PMID:26519771

  12. Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis

    PubMed Central

    Chapot-Chartier, Marie-Pierre; Courtin, Pascal; Kulakauskas, Saulius; Péchoux, Christine; Trieu-Cuot, Patrick; Mistou, Michel-Yves

    2012-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta –hemolytic streptococci. PMID:22719253

  13. Prevalence and mechanisms of erythromycin resistance in Streptococcus agalactiae from healthy pregnant women.

    PubMed

    Pinheiro, Sandra; Radhouani, Hajer; Coelho, Céline; Gonçalves, Alexandre; Carvalho, Eulália; Carvalho, José António; Ruiz-Larrea, Fernanda; Torres, Carmen; Igrejas, Gilberto; Poeta, Patrícia

    2009-06-01

    We sought to determine the resistance phenotypes for erythromycin and clindamycin and the mechanisms implicated in 93 Streptococcus agalactiae isolates recovered from healthy pregnant women. Susceptibility testing for erythromycin, clindamycin, penicillin, cefotaxime, vancomycin, quinupristin-dalfopristin, choramphenicol, ofloxacin, and meropenen was carried out by disc-diffusion test, and the E-test was also applied for erythromycin and clindamycin. The constitutive MLS(B) resistance (cMLS(B)) and inducible MLS(B) resistance (iMLS(B)) phenotypes, respectively, as well as the M resistance phenotype were determined by the erythromycin-clindamycin double-disc test. The presence of ermA, ermB, ermC, msrA, and mef(A/E) macrolide resistance genes was studied by PCR. Resistance to erythromycin and clindamycin was found in 15% and 9.6% of the isolates, respectively. The resistance phenotypes detected among the 14 erythromycin-resistant isolates were as follows (number of isolates): cMLS(B) (9), iMLS(B) (3), and M (2). The MICs for erythromycin and clindamycin were as follows: cMLS(B) isolates (128-256 and >or=32 mg/L, respectively), iMLS(B) isolates (16-256 and 1 mg/L), and M isolates (2-8 and 1 mg/L). The following combination of genes were detected among isolates with cMLS(B) or iMLS(B) phenotypes: erm(B) (6 isolates), ermA + ermTR (3), ermA + ermB + ermTR (1), and none of these genes (2). The two isolates with M phenotype harbored the mef(A/E), and msrA gene was also found in one of them. PMID:19432524

  14. Characterization of two novel gadd45a genes in hybrid tilapia and their responses to the infection of Streptococcus agalactiae.

    PubMed

    Shen, Yubang; Ma, Keyi; Liu, Feng; Yue, Gen Hua

    2016-07-01

    Diseases are one of the major challenges in tilapia aquaculture. Identification of DNA markers associated with disease resistance may facilitate the acceleration of the selection for disease resistance. Gadd45a (growth arrest and DNA damage 45 A), a stress-inducible gene in humans and mice, has not been studied in fish. We characterized the two prologues of Gadd45a genes in hybrid tilapia. Gadd45a1 and Gadd45a2 shared an identical gene structure and showed an amino acid sequence identity of 73.8%. Their expressions were detected in all 10 tissues examined, with the kidney and gill having high transcriptional expressions. The expression levels of Gadd45a1 were significantly lower than those of Gadd45a2 in all examined tissues. After a challenge with a bacterial pathogen Streptococcus agalactiae, the expressions of the two genes were up-regulated significantly in the spleen, kidney, liver and intestine. These findings suggest that the two Gadd45a genes play an important role in the resistance to S. agalactiae in tilapia. We identified 10 SNPs in the two genes. The SNP markers in the two Gadd45a genes could be used to examine whether they are associated with resistance to S. agalactiae. PMID:27103004

  15. Evaluation of the efficacy of intramuscular versus intramammary treatment of subclinical Streptococcus agalactiae mastitis in dairy cows in Colombia.

    PubMed

    Reyes, J; Chaffer, M; Sanchez, J; Torres, G; Macias, D; Jaramillo, M; Duque, P C; Ceballos, A; Keefe, G P

    2015-08-01

    A randomized controlled trial was performed in 17 Colombian dairy herds to determine the cure risk among cows subclinically infected with Streptococcus agalactiae exposed to 2 antibiotic therapies. Composite milk samples were collected before milking at the onset of the trial (pretreatment) and 2 subsequent times over a period of approximately 63 d. The intramammary application (IMM) of ampicillin-cloxacillin was compared with the intramuscular application (IM) of penethamate hydriodide, and cure risks after an initial and retreatment application were assessed. Cure risk after the initial treatment was higher (82.4%) for the IMM treatment than for IM therapy (65.8%). However, no difference was observed in the cure risk of refractory cases after retreatment (IMM=52.6% vs. IM=51.2%). The cumulative cure risk (both initial and retreatment) was 90.4 and 82.9% for the IMM and IM products, respectively. A 2-level random effects logistic model that controlled for pretreatment cow-level somatic cell count, indicated that IM treatment (odds ratio=0.37) had a lower cure risk than IMM and a tendency for a lower cure risk with increasing baseline somatic cell count. Our findings suggest that both products and administration routes can reduce the prevalence of S. agalactiae in affected herds, but the IMM product had a better efficacy in curing the infection. In addition to the treatment protocol, the cow somatic cell count should be considered when making management decisions for cows infected with S. agalactiae. PMID:26074229

  16. Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt.

    PubMed

    Elhaig, Mahmoud Mohey; Selim, Abdelfattah

    2015-02-01

    A study was carried out to establish the prevalence of subclinical mastitis (SCM) in smallholder dairy farms in Ismailia, Egypt. A total of 340 milking cows and buffaloes were sampled from 60 farms, and 50 nasal swabs were collected from consenting farm workers. Milk samples were subjected to California mastitis test (CMT) and the positive samples were examined by bacterial culture and PCR to identify etiological agents. Based on CMT, the prevalence of SCM was 71.6 % in cattle and 43.5 % in buffaloes while the prevalence was 25.2 % at cow-quarter level and 21.7 % at buffaloes-quarter level. Bacteriological analysis showed that the most frequently identified bacteria were Staphylococcus (S.) aureus (38.3 %) and Streptococcus (Str.) agalactiae (20 %). The diagnostic sensitivity of PCR compared to bacterial culture was superior with S. aureus and Str. agalactiae detection being 41 and 22.6 %, respectively. Furthermore, methicillin-resistant S. aureus (MRSA) strains occurred in 52.2 and 45 % of isolates of animals and workers, respectively. Subclinical mastitis due to S. aureus and Str. agalactiae is endemic in smallholder dairy herds in Ismailia. The occurrence of MRSA in animals and workers highlights a need for wide epidemiological studies of MRSA and adopting control strategies. PMID:25374070

  17. Short communication: Lipolytic activity on milk fat by Staphylococcus aureus and Streptococcus agalactiae strains commonly isolated in Swedish dairy herds.

    PubMed

    Vidanarachchi, Janak K; Li, Shengjie; Lundh, Åse Sternesjö; Johansson, Monika

    2015-12-01

    The objective of this study was to determine the lipolytic activity on milk fat of 2 bovine mastitis pathogens, that is, Staphylococcus aureus and Streptococcus agalactiae. The lipolytic activity was determined by 2 different techniques, that is, thin-layer chromatography and an extraction-titration method, in an experimental model using the most commonly occurring field strains of the 2 mastitic bacteria isolated from Swedish dairy farms. The microorganisms were inoculated into bacteria-free control milk and incubated at 37°C to reflect physiological temperatures in the mammary gland. Levels of free fatty acids (FFA) were analyzed at time of inoculation (t=0) and after 2 and 6h of incubation, showing significant increase in FFA levels. After 2h the FFA content had increased by approximately 40% in milk samples inoculated with Staph. aureus and Strep. agalactiae, and at 6h the pathogens had increased FFA levels by 47% compared with the bacteria-free control milk. Changes in lipid composition compared with the bacteria-free control were investigated at 2 and 6h of incubation. Diacylglycerols, triacylglycerols, and phospholipids increased significantly after 6h incubation with the mastitis bacteria, whereas cholesterol and sterol esters decreased. Our results suggest that during mammary infections with Staph. aureus and Strep. agalactiae, the action of lipases originating from the mastitis pathogens will contribute significantly to milk fat lipolysis and thus to raw milk deterioration. PMID:26409975

  18. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease.

    PubMed

    Landwehr-Kenzel, Sybille; Henneke, Philipp

    2014-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood-brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  19. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease

    PubMed Central

    Landwehr-Kenzel, Sybille; Henneke, Philipp

    2014-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are

  20. Successful off-label use of the Cepheid Xpert GBS in a late-onset neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Savini, Vincenzo; Marrollo, Roberta; Coclite, Eleonora; Fusilli, Paola; D'Incecco, Carmine; Fazii, Paolo

    2014-01-01

    We report the case of a late-onset neonatal meningitis by Streptococcus agalactiae (group B Streptococcus - GBS) that was diagnosed with a latex agglutination assay (on cerebrospinal fluid, CSF), as well as by using, for the first time, Xpert GBS (Cepheid, US) on CSF. Due to empirical antibiotics given before sampling, both CSF and blood culture were negative, so the abovementioned diagnostics was crucial. Moreover, the Xpert GBS assay, performed according to an off-label, modified protocol (the system is designed for GBS-carriage intrapartum screening, based on a completely automated real time-Polymerase Chain Reaction) quickly detected the organism's genome target. Although further investigation on this test's performace on CSF is required, then, we trust it may be a promising, quick and precise diagnostic method for infections in newborns. PMID:25197396

  1. Reactive oxygen species involved in apoptosis induction of human respiratory epithelial (A549) cells by Streptococcus agalactiae.

    PubMed

    da Costa, Andréia Ferreira Eduardo; Moraes, João Alfredo; de Oliveira, Jessica Silva Santos; dos Santos, Michelle Hanthequeste Bittencourt; Santos, Gabriela da Silva; Barja-Fidalgo, Christina; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus; GBS) is an important pathogen and is associated with pneumonia, sepsis and meningitis in neonates and adults. GBS infections induce cytotoxicity of respiratory epithelial cells (A549) with generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (ψm). The apoptosis of A549 cells by GBS was dependent on the activation of caspase-3 and caspase-9 with increased pro-apoptotic Bim and Bax molecules and decreased Bcl-2 pro-survival protein. Treatment of infected A549 cells with ROS inhibitors (diphenyleniodonium chloride or apocynin) prevented intracellular ROS production and apoptosis. Consequently, oxidative stress is included among the cellular events leading to apoptosis during GBS human invasive infections. PMID:26490153

  2. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili assembly and host interactions

    SciTech Connect

    Krishnan, Vengadesan; Dwivedi, Prabhat; Kim, Brandon J.; Samal, Alexandra; Macon, Kevin; Ma, Xin; Mishra, Arunima; Doran, Kelly S.; Ton-That, Hung; Narayana, Sthanam V. L.

    2013-06-01

    The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding.

  3. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae.

    PubMed

    Faikoh, Elok Ning; Hong, Yong-Han; Hu, Shao-Yang

    2014-05-01

    Cinnamaldehyde, which is extracted from cinnamon, is a natural compound with activity against bacteria and a modulatory immune function. However, the antibacterial activity and immunostimulation of cinnamaldehyde in fish has not been well investigated due to the compound's poor water solubility. Thus, liposome-encapsulated cinnamaldehyde (LEC) was used to evaluate the effects of cinnamaldehyde on in vitro antibacterial activity against aquatic pathogens and in vivo immunity and protection parameters against Vibrio vulnificus and Streptococcus agalactiae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as bactericidal agar plate assay results demonstrated the effective bacteriostatic and bactericidal potency of LEC against Aeromonas hydrophila, V. vulnificus, and S. agalactiae, as well as the antibiotic-resistant Vibrio parahaemolyticus and Vibrio alginolyticus. Bacteria challenge test results demonstrated that LEC significantly enhances the survival rate and inhibits bacterial growth in zebrafish infected with A. hydrophila, V. vulnificus, and S. agalactiae. A gene expression study using a real-time PCR showed that LEC immersion-treated zebrafish had increased endogenous interleukin (IL)-1β, IL-6, IL-15, IL-21, tumor necrosis factor (TNF)-α, and interferon (INF)-γ expression in vivo. After the zebrafish were infected with V. vulnificus or S. agalactiae, the LEC immersion treatment suppressed the expression of the inflammatory cytokines IL-1β, IL-6, IL-15, NF-κb, and TNF-α and induced IL-10 and C3b expression. These findings demonstrate that cinnamaldehyde exhibits antimicrobial activity against aquatic pathogens, even antibiotic-resistant bacterial strains and immune-stimulating effects to protect the host's defenses against pathogen infection in bacteria-infected zebrafish. These results suggest that LEC could be used as an antimicrobial agent and immunostimulant to protect bacteria-infected fish in aquaculture

  4. Infection and pathology in Queensland grouper, Epinephelus lanceolatus, (Bloch), caused by exposure to Streptococcus agalactiae via different routes.

    PubMed

    Delamare-Deboutteville, J; Bowater, R; Condon, K; Reynolds, A; Fisk, A; Aviles, F; Barnes, A C

    2015-12-01

    Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae. PMID:25117665

  5. Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    SciTech Connect

    Khare, B.; Krishnan, V.; Rajashankar, K.R.; I-Hsiu, H.; Xin, M.; Ton-That, H.; Narayana, S.V.

    2011-10-21

    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

  6. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    PubMed Central

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  7. The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae*

    PubMed Central

    Lechardeur, Delphine; Fernandez, Annabelle; Robert, Bruno; Gaudu, Philippe; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra

    2010-01-01

    Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a Kd of 0.5 μm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein. PMID:20332091

  8. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Tang, Jufen; Lu, Yishan; Jian, JiChang; Wu, Zaohe; Nie, Pin

    2016-03-01

    The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia. PMID:26804651

  9. Streptococcus agalactiae infective endocarditis complicated by large vegetations at aortic valve cusps along with intracoronary extension: An autopsy case report.

    PubMed

    Ro, Ayako

    2016-01-01

    Streptococcus agalactiae infective endocarditis is a rare condition with high mortality owing to complications of large vegetations and systemic emboli. A 49-year-old man was found dead in his house. He had a history of hepatic cirrhosis and had been diagnosed with type 2 diabetes 2years previously. He had presented with a high fever 10days before his death. An autopsy revealed 50mL of purulent pericardial effusion, and S. agalactiae was detected from the culture of this pericardial effusion. Two slender rope-like vegetations were present at the right aortic valve cusp and noncoronary aortic valve cusp. The vegetation at the right aortic valve cusp extended into the right coronary artery. The right coronary artery was broadly occluded by white rod-like material. The mitral valves were also affected, and the posterior papillary muscle was ruptured. Myocardial infarction was not observed. Systemic microscopic Gram-positive bacterial masses were observed in several organs. The death was attributed to acute myocardial ischemia caused by occlusive intracoronary extension of the vegetation at the proximal right coronary artery. PMID:26926519

  10. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance

    PubMed Central

    Khosa, Sakshi; Hoeppner, Astrid; Gohlke, Holger; Schmitt, Lutz; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding. PMID:26930060

  11. Overexpression, purification, crystallization and preliminary X-ray diffraction of the nisin resistance protein from Streptococcus agalactiae.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-06-01

    Nisin is a 34-amino-acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram-positive bacteria, including some human-pathogenic strains. However, there are some nisin-non-producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method in hanging and sitting drops, resulting in crystals that diffracted X-rays to 2.8 and 2.2 Å, respectively. PMID:26057793

  12. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Gohlke, Holger; Schmitt, Lutz; Smits, Sander H J

    2016-01-01

    Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding. PMID:26930060

  13. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran

    PubMed Central

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases. PMID:25568683

  14. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran.

    PubMed

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases. PMID:25568683

  15. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows.

    PubMed

    Pongthaisong, Pongphol; Katawatin, Suporn; Thamrongyoswittayakul, Chaiyapas; Roytrakul, Sittiruk

    2016-01-01

    The objective of this study was to investigate the milk protein profiles of normal milk and those of milk during the course of subclinical mastitis, caused by natural Streptococcus agalactiae infection. Two-dimensional gel electrophoresis and liquid chromatography mass spectrometry were used to assess protein profiles and to identify the proteins. The results showed that S. agalactiae subclinical mastitis altered the protein profiles of milk. Following Mascot database matching, 11 and 12 protein types were identified in the milk collected from healthy and S. agalactiae subclinical mastitic udders, respectively. The distinct presence of the antibacterial protein cathelicidin-1 was detected in infected milk samples, which in turn was highly correlated to the severity of subclinical mastitis as represented by the milk somatic cell count (r = 0.616), but not the bacterial count. The protein profile of milk reveals changes in the host response to S. agalactiae intramammary infection; cathelicidin-1 could therefore serve as a biomarker for the detection of subclinical mastitis in dairy cows. PMID:26632331

  16. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Kondo, Hidehiro; Hirono, Ikuo; Rodkhum, Channarong

    2015-12-01

    Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts. PMID:26455417

  17. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia.

    PubMed

    Bowater, R O; Forbes-Faulkner, J; Anderson, I G; Condon, K; Robinson, B; Kong, F; Gilbert, G L; Reynolds, A; Hyland, S; McPherson, G; Brien, J O'; Blyde, D

    2012-03-01

    Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Rüppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S. agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S. agalactiae; genotyping of selected S. agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S. agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia. PMID:22324342

  18. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis.

    PubMed

    Keefe, Greg

    2012-07-01

    The primary method of spread for S agalactiae and S aureus is from cow to cow, so prevention focuses on within and between herd biosecurity to reduce or eliminate the reservoir of infection. S agalactiae is an obligate pathogen of the mammary gland, whereas S aureus is more widespread on other cow body sites and in the environment. Both organisms cause persistent infections, with S agalactiae typically causing higher SCC and bacteria counts in milk. Conventional methods of detection through culture perform well at the cow level. In bulk tanks, augmented procedures should be considered. PCR methods show promise of high sensitivity and specificity, at both the cow and bulk tank level. In developed dairy industries, prevalence of infection has decreased dramatically over the past 30 years for S agalactiae. For S aureus, the herd level of infection remains very high, although with rigorous, consistent application of control measures, within-herd prevalence has decreased. Because the milking time is the primary period for new IMI, it is the focal point of most prevention activities. Premilking and postmilking teat disinfection and proper stimulation and milk-out with adequately functioning equipment are key factors. There is growing evidence that the use of milking gloves is an integral part of contagious mastitis control and the production of high-quality milk. Treatment success is dramatically different between the 2 pathogens. For S agalactiae, eradication can be completed rapidly through a culture and treatment program with minimal culling. For S aureus, treatment success, particularly during lactation, is often disappointing and depends on cow, pathogen, and treatment factors. These factors should be reviewed prior to initiating any treatment to determine the potential for cure. Blanket dry cow therapy and strategic culling are important control procedures for contagious mastitis pathogens. Maintaining a closed herd or, at minimum, adhering to clearly defined

  19. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions.

    PubMed

    Shabayek, Sarah; Bauer, Richard; Mauerer, Stefanie; Mizaikoff, Boris; Spellerberg, Barbara

    2016-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages. PMID:27150893

  20. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    SciTech Connect

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  1. Germicidal activity of a chlorous acid-chlorine dioxide teat dip and a sodium chlorite teat dip during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Adkinson, R W

    1998-08-01

    Three postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae in two separate studies using experimental challenge procedures that were recommended by the National Mastitis Council. The first study evaluated a barrier teat dip product containing chlorous acid-chlorine dioxide as the germicidal agent, and the second study evaluated a sodium chlorite product with a barrier component as well as a sodium chlorite product without a barrier component. The chlorous acid-chlorine dioxide teat dip reduced new intramammary infections (IMI) caused by Staph. aureus by 91.5% and reduced new IMI caused by Strep. agalactiae by 71.7%. The barrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus and Strep. agalactiae by 41.0 and 0%, respectively. The nonbarrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus by 65.6% and reduced new IMI caused by Strep. agalactiae by 39.1%. Teat skin and teat end conditions were evaluated before and after the second study; no deleterious effects among dipped quarters compared with control quarters were noted for the two sodium chlorite products. PMID:9749396

  2. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae.

    PubMed

    Gan, Zhen; Chen, Shannan; Hou, Jing; Huo, Huijun; Zhang, Xiaolin; Ruan, Baiye; Laghari, Zubair Ahmed; Li, Li; Lu, Yishan; Nie, Pin

    2016-07-01

    PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia. PMID:27033804

  3. Reduction of mastitis caused by experimental challenge with Staphylococcus aureus and Streptococcus agalactiae by use of a quaternary ammonium and halogen-mixture teat dip.

    PubMed

    Boddie, R L; Nickerson, S C

    2002-01-01

    A teat-dip formulation containing sodium dichloro isocyanuric acid, bronopol, and quaternary ammonium was tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae intramammary infections (IMI) using an experimental challenge model. Sixty-two Jersey cows from the Hill Farm Research Station (Homer, LA) were used in an 8-wk controlled infection trial to evaluate the teat dip. During the afternoon milking, Monday through Friday for 8 wk, all teats of each cow were immersed to a depth of approximately 25 mm in a challenge suspension containing approximately 5 x 10(7) cfu of Staphylococcus aureus and approximately 5 x 10(7) cfu of Streptococcus agalactiae immediately after milking machines were removed. Immediately after challenge, the distal 25 mm of two contralateral teats were dipped with the experimental teat dip; the remaining two teats served as undipped controls. The experimental teat dip reduced the number of new Staph. aureus IMI by 70.9% and reduced the number of new Strep. agalactiae IMI by 60.0%. Teat end and teat skin condition were characterized as normal and without irritation at the completion of the study. The combination of the three germicides in this experimental teat dip is unique and an effective formulation without adverse effects on condition of teat ends or teat skin. PMID:11860119

  4. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316.

    PubMed

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P2₁ and P2₁2₁2₁, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  5. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  6. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili assembly and host interactions

    PubMed Central

    Krishnan, Vengadesan; Dwivedi, Prabhat; Kim, Brandon J.; Samal, Alexandra; Macon, Kevin; Ma, Xin; Mishra, Arunima; Doran, Kelly S.; Ton-That, Hung; Narayana, Sthanam V. L.

    2013-01-01

    The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding. PMID:23695252

  7. Molecular Characterization of Streptococcus agalactiae Isolates From Pregnant and Non-Pregnant Women at Yazd University Hospital, Iran

    PubMed Central

    Sadeh, Maryam; Firouzi, Roya; Derakhshandeh, Abdollah; Bagher Khalili, Mohammad; Kong, Fanrong; Kudinha, Timothy

    2016-01-01

    Background: Streptococcus agalactiae (Group B streptococcus, GBS) that colonize the vaginas of pregnant women may occasionally cause neonatal infections. It is one of the most common causes of sepsis and meningitis in neonates and of invasive diseases in pregnant women. It can also cause infectious disease among immunocompromised individuals. The distribution of capsular serotypes and genotypes varies over time and by geographic era. The serotyping and genotyping data of GBS in Iranian pregnant and non-pregnant women seems very limited. Objectives: The aim of this study was to investigate the GBS ‎molecular capsular serotype ‎and genotype distribution of pregnant and non-pregnant carrier ‎women at Yazd university hospital, in Iran.‎ Patients and Methods: In this cross-sectional study, a total of 100 GBS strains isolated from 237 pregnant and 413 non-pregnant women were investigated for molecular capsular serotypes and surface protein genes using the multiplex PCR assay. The Chi-square method was used for statistical analysis. Results: Out of 650 samples, 100 (15.4%) were identified as GBS, with a predominance of capsular serotypes III (50%) [III-1 (49), III-3 (1)], followed by II (25%), Ia (12%), V (11%), and Ib (2%), which was similar with another study conducted in Tehran, Iran, but they had no serotype Ia in their report. The surface protein antigen genes distribution was rib (53%), epsilon (38%), alp2/3 (6%), and alpha-c (3%). Conclusions: The determination of serotype and surface proteins of GBS strains distribution would ‎be ‎relevant ‎for the future possible formulation of a GBS vaccine. PMID:27127592

  8. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

    PubMed Central

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain’s cDNA is composed of 3347 bp with a 31 bp of 5′-UTR, 3015 bp open reading frame (ORF) and 301 bp 3′-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  9. Structure of KRT4 binding domain of Srr-1 from Streptococcus agalactiae reveals a novel β-sheet complementation.

    PubMed

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2015-04-01

    The serine rich repeat protein-1 (Srr-1) is an adhesive protein of Streptococcus agalactiae. It is the first bacterial protein identified to interact with human keratin 4 (K4 or KRT4). Within Srr-1, the residues 311-641 constitute the non-repeat ligand binding region (Srr-1-BR(311-641)). The C-terminal part of Srr-1-BR(311-641), comprising of residues 485-642 (termed Srr-1-K4BD), have been identified to bind to K4. Here we report the crystal structure of recombinant Srr-1-K4BD(485-642) and its possible mode of interaction with K4 through docking studies. The dimeric structure of Srr-1-K4BD(485-642) reveals a novel two way "slide lock" parallel β-sheet complementation where the C-terminal strand of one monomer is positioned anti-parallel to the N-terminal strand of the adjacent monomer and this arrangement is not seen so far in any of the homologous structures. The dimerization of Srr-1-K4BD(485-642) observed both in the crystal structure and in solution suggests that similar domain association could also be possible in in vivo and we propose this association would likely generate a new binding site for another host molecule. It is likely that the adhesin can recognize multiple ligands using its ligand binding sub-domains through their intra and inter domain association with one another. PMID:25603146

  10. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus.

    PubMed

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain's cDNA is composed of 3347 bp with a 31 bp of 5'-UTR, 3015 bp open reading frame (ORF) and 301 bp 3'-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  11. Detection and Enumeration of Streptococcus agalactiae from Bovine Milk Samples by Real-Time Polymerase Chain Reaction.

    PubMed

    de Carvalho, Nara Ladeira; Gonçalves, Juliano Leonel; Botaro, Bruno Garcia; Silva, Luis Felipe de Prada E; dos Santos, Marcos Veiga

    2015-09-01

    The aim of this study was to evaluate the use of real-time polymerase chain reaction (qPCR) combined with DNA extraction directly from composite milk and bulk tank samples for detection and enumeration of Streptococcus agalactiae (SAG) causing subclinical mastitis. Dilutions of sterile reconstituted skim milk inoculated with SAG ATCC 13813 were used to establish a standard curve (cfu/mL) for the qPCR assay targeting SAG. The analytical sensitivity and repeatability of the qPCR assay were determined. Bulk tank (BTM; n = 38) and composite milk samples (CM; n = 26) collected from lactating cows with positive isolation of SAG were submitted to the qPCR protocol and SAG plate counting, with results from both methods compared. Amplification of DNA was not possible in two out of 64 samples, indicating that qPCR was able to detect SAG in 96 and 97% of BTM and CM samples, respectively. The inter-assay coefficient of variation was <5%, showing that the technique had adequate repeatability. The qPCR protocol can be a high-throughput and rapid diagnostic assay to accurately detect SAG from BTM and CM samples compared with conventional microbiological culture method. However, the evaluated qPCR protocol is not accurate for enumerating SAG in milk samples, probably due to quantification of DNA of non-viable cells. PMID:26134534

  12. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BioStar STREPT B Optical ImmunoAssay (OIA) (BioStar® OIA® Strep B Assay Kit; Biostar Incorporation; Louisville, CO, USA) was used to identify 32 known group B streptococcus (GBS) isolates of fish, dolphin, bovine, and human origin. Thirteen non-GBS isolates from fish and other animals were test...

  13. Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data

    PubMed Central

    Vaughan, Alison; Jones, Nicola; Turner, Paul; Turner, Claudia; Efstratiou, Androulla; Patel, Darshana; Walker, A. Sarah; Berkley, James A.; Crook, Derrick W.

    2016-01-01

    Group B streptococcus (GBS) capsular serotypes are major determinants of virulence and affect potential vaccine coverage. Here we report a whole-genome-sequencing-based method for GBS serotype assignment. This method shows strong agreement (kappa of 0.92) with conventional methods and increased serotype assignment (100%) to all 10 capsular types. PMID:26962081

  14. Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand.

    PubMed

    Areechon, Nontawith; Kannika, Korntip; Hirono, Ikuo; Kondo, Hidehiro; Unajak, Sasimanas

    2016-01-01

    Streptococcus agalactiaeserotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscineS. agalactiaeserotypes Ia and III. PMID:27013037

  15. Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data.

    PubMed

    Sheppard, Anna E; Vaughan, Alison; Jones, Nicola; Turner, Paul; Turner, Claudia; Efstratiou, Androulla; Patel, Darshana; Walker, A Sarah; Berkley, James A; Crook, Derrick W; Seale, Anna C

    2016-05-01

    Group B streptococcus (GBS) capsular serotypes are major determinants of virulence and affect potential vaccine coverage. Here we report a whole-genome-sequencing-based method for GBS serotype assignment. This method shows strong agreement (kappa of 0.92) with conventional methods and increased serotype assignment (100%) to all 10 capsular types. PMID:26962081

  16. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  17. Streptococcus agalactiae Meningitis in Adult Patient: A Case Report and Literature Review

    PubMed Central

    Khan, Fahmi Yousef

    2016-01-01

    We report a case of group B streptococcus meningitis in a 72-year-old female patient who was admitted in our hospital with a 21-day history of bilateral lower thigh pain and swelling associated with fever, headache, and vomiting. Her past medical history was remarkable for DM type 2, hypertension, and hypothyroidism. Upon admission, examination showed bilateral warmth and tender soft tissue swelling around the knees and MRI showed cellulitis of distal thirds of both thighs. The next day, the patient became drowsy. Neurologic examination showed neck rigidity and right sided hemiparesis. Cerebrospinal fluid and blood cultures yielded group B streptococcus sensitive to ceftriaxone, penicillin G, and vancomycin. The patient received ceftriaxone for a total of 14 days after which she improved and was discharged from the hospital with right sided weakness. PMID:26904325

  18. Streptococcus agalactiae Meningitis in Adult Patient: A Case Report and Literature Review.

    PubMed

    Khan, Fahmi Yousef

    2016-01-01

    We report a case of group B streptococcus meningitis in a 72-year-old female patient who was admitted in our hospital with a 21-day history of bilateral lower thigh pain and swelling associated with fever, headache, and vomiting. Her past medical history was remarkable for DM type 2, hypertension, and hypothyroidism. Upon admission, examination showed bilateral warmth and tender soft tissue swelling around the knees and MRI showed cellulitis of distal thirds of both thighs. The next day, the patient became drowsy. Neurologic examination showed neck rigidity and right sided hemiparesis. Cerebrospinal fluid and blood cultures yielded group B streptococcus sensitive to ceftriaxone, penicillin G, and vancomycin. The patient received ceftriaxone for a total of 14 days after which she improved and was discharged from the hospital with right sided weakness. PMID:26904325

  19. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae.

    PubMed

    Rajagopal, Lakshmi; Vo, Anthony; Silvestroni, Aurelio; Rubens, Craig E

    2006-11-01

    Signal transducing mechanisms are essential for regulation of gene expression in both prokaryotic and eukaryotic organisms. Regulation of gene expression in eukaryotes is accomplished by serine/threonine and tyrosine kinases and cognate phosphatases. In contrast, gene expression in prokaryotes is controlled by two-component systems that comprise a sensor histidine kinase and a cognate DNA binding response regulator. Pathogenic bacteria utilize two-component systems to regulate expression of their virulence factors and for adaptive responses to the external environment. We have previously shown that the human pathogen Streptococcus agalactiae (Group B Streptococci, GBS) encodes a single eukaryotic-type serine/threonine kinase Stk1, which is important for virulence of the organism. In this study, we aimed to understand how Stk1 contributes to virulence of GBS. Our results indicate that Stk1 expression is important for resistance of GBS to human blood, neutrophils and oxidative stress. Consistent with these observations, Stk1 positively regulates transcription of a cytotoxin, beta-haemolysin/cytolysin (beta-H/C) that is critical for survival of GBS in the bloodstream and for resistance to oxidative stress. Interestingly, positive regulation of beta-H/C by Stk1 requires the two-component regulator CovR. Further, we show that Stk1 can negatively regulate transcription of CAMP factor in a CovR-dependent manner. As Stk1 phosphorylates CovR in vitro, these data suggest that serine/threonine phosphorylation impacts CovR-mediated regulation of GBS gene expression. In summary, our studies provide novel information that a eukaryotic-type serine/threonine kinase regulates two-component-mediated expression of GBS cytotoxins. PMID:17005013

  20. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Katagiri, Takayuki; Hirono, Ikuo; Rodkhum, Channarong

    2014-05-19

    Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 (n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 (n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns (cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia (Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria. PMID:24842288

  1. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen.

    PubMed

    Seo, Ho Seong; Xiong, Yan Q; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S; Sullam, Paul M

    2010-01-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aalpha and Bbeta chains of fibrinogen, but not the gamma subunit. Binding of lysin to the Bbeta chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83+/-3.1% reduction (mean +/- SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. PMID:20714354

  2. Distribution of serotypes and evaluation of antimicrobial susceptibility among human and bovine Streptococcus agalactiae strains isolated in Brazil between 1980 and 2006.

    PubMed

    Pinto, Tatiana Castro Abreu; Costa, Natália Silva; Vianna Souza, Aline Rosa; Silva, Ligia Guedes da; Corrêa, Ana Beatriz de Almeida; Fernandes, Flavio Gimenis; Oliveira, Ivi Cristina Menezes; Mattos, Marcos Corrêa de; Rosado, Alexandre Soares; Benchetrit, Leslie Claude

    2013-01-01

    Streptococcus agalactiae is a common agent of clinical and subclinical bovine mastitis and an important cause of human infections, mainly among pregnant women, neonates and nonpregnant adults with underlying diseases. The present study describes the genetic and phenotypic diversity among 392 S. agalactiae human and bovine strains isolated between 1980 and 2006 in Brazil. The most prevalent serotypes were Ia, II, III and V and all the strains were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampicin and tetracycline was observed. Among the erythromycin resistant strains, mefA/E, ermA and, mainly, ermB gene were detected, and a shift of prevalence from the macrolide resistance phenotype to the macrolide-lincosamide-streptogramin B resistance phenotype over the years was observed. The 23 macrolide-resistant strains showed 19 different pulsed-field gel electrophoresis profiles. Regarding macrolide resistance, a major concern in S. agalactiae epidemiology, the present study describes an increase in erythromycin resistance from the 80s to the 90s followed by a decrease in the 2000-2006 period. Also, the genetic heterogeneity described points out that erythromycin resistance in Brazil is rather due to horizontal gene transmission than to spreading of specific macrolide-resistant clones. PMID:23453948

  3. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples.

    PubMed

    Zanardi, G; Caminiti, A; Delle Donne, G; Moroni, P; Santi, A; Galletti, G; Tamba, M; Bolzoni, G; Bertocchi, L

    2014-09-01

    For more than 30 yr, a control plan for Streptococcus agalactiae and Staphylococcus aureus has been carried out in more than 1,500 dairy herds of the province of Brescia (northern Italy). From 2010 to 2011, the apparent prevalence of Strep. agalactiae has been relatively stable around 10%, but the apparent prevalence of Staph. aureus has been greater than 40% with an increasing trend. The aim of this paper was to estimate and compare the diagnostic accuracy of 3 assays for the detection of Strep. agalactiae and Staph. aureus in bulk-tank milk samples (BTMS) in field conditions. The assays were a qualitative and a quantitative bacteriological culture (BC) for each pathogen and a homemade multiplex real-time PCR (rt-PCR). Because a gold standard was not available, the sensitivities (Se) and specificities (Sp) were evaluated using a Bayesian latent class approach. In 2012 we collected one BTMS from 165 dairy herds that were found positive for Strep. agalactiae in the previous 2-yr campaigns of eradication plan. In most cases, BTMS collected in these herds were positive for Staph. aureus as well, confirming the wide spread of this pathogen. At the same time we also collected composite milk samples from all the 8,624 lactating cows to evaluate the within-herd prevalence of Strep. agalactiae. Streptococcus agalactiae samples were cultured using a selective medium Tallium Kristalviolette Tossin, whereas for Staph. aureus, we used Baird Parker modified medium with added Rabbit Plasma Fibrinogen ISO-Formulation. In parallel, BTMS were tested using the rt-PCR. Regarding Strep. agalactiae, the posterior median of Se and Sp of the 2 BC was similar [qualitative BC: Se=98%, posterior credible interval (95%PCI): 94-100%, and Sp=99%, 95%PCI: 96-100%; quantitative BC: Se=99%, 95%PCI: 96-100%, and Sp=99%, 95%PCI: 95-100%] and higher than those of the rt-PCR (at 40 cycle threshold, Se=92%, 95%PCI: 85-97%; Sp=94%, 95%PCI: 88-98%). Also in case of Staph. aureus, the posterior medians

  4. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) causes of infections in multiple animals. This study examined the genetic relatedness of piscine, dolphin, and human GBS isolates and bovine GBS reference strains from different geographical regions using serological and multilocus sequence typing (MLST) techni...

  5. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens.

    PubMed

    Evans, Joyce J; Pasnik, David J; Klesius, Phillip H

    2010-08-26

    The BioStar STREP B Optical ImmunoAssay (STREP B OIA) (BioStar OIA Strep B Assay Kit; BioStar Incorporation, Louisville, CO, USA), commonly used for diagnosis of human maternal group B streptococcus (GBS) colonization, was evaluated for its diagnostic and analytical sensitivity and specificity to aquatic animal GBS isolates, cross-reactivity, and diagnosis and recovery of GBS directly from clinically- infected fish swabs. STREP B OIA identified 25 known fish and dolphin GBS isolates. Thirteen non-GBS negative control isolates from fish and other animals were negative, giving 100% analytical specificity and no cross-reactivity. Three groups of 6 Nile tilapia (Oreochromis niloticus) (mean weight of 40.60+/-1.70 g) each were inoculated intraperitoneally with either 10(6) colony-forming units (cfu) GBS/fish, 10(6) cfu Streptococcus iniae/fish or 100 microL of tryptic soy broth (TSB) and observed for mortality for 7 days. The nare and brain of all fish were swabbed and subjected to the STREP B OIA for detection of GBS antigen immediately after swabbing (0 h) or 24, 48 and 72 h post-swabbing and compared to conventional culture on trypticase soy agar with 5% sheep blood. The STREP B OIA method demonstrated a diagnostic sensitivity of 75.0% and a diagnostic specificity of 69.2% compared to direct TSA. The percent agreement between OIA and culture was 100%. GBS antigen could be retrieved by OIA following 72-h storage of swabs. These results demonstrate the utility of the STREP B OIA to identify GBS from culture and directly from swabs of clinically- infected fish. PMID:20430538

  6. Emergence of the First Levofloxacin-Resistant Strains of Streptococcus agalactiae Isolated in Italy

    PubMed Central

    Piccinelli, G.; Gargiulo, F.; Corbellini, S.; Ravizzola, G.; Bonfanti, C.; Caruso, A.

    2015-01-01

    Of 901 group B streptococcus strains analyzed, 13 (1.4%) were resistant to levofloxacin (MICs of >32 μg/ml for seven isolates, 2 μg/ml for four isolates, and 1.5 μg/ml for four isolates). Mutations in the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV were identified. A double mutation involving the Ser-81 change to Leu for gyrA and the Ser-79 change to Phe or to Tyr for parC was linked to a high level of fluoroquinolone resistance. In addition, two other mutational positions in parC were observed, resulting in an Asp-83-to-Tyr substitution and an Asp-83-to-Asn substitution. Different mutations were also observed in gyrB, with unknown significance. Most levofloxacin-resistant GBS strains were of serotype Ib and belonged to sequence type 19 (ST19) and clonal complex 19 (CC-19). Most of them exhibited the epsilon gene. PMID:25666148

  7. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae at routine milk recordings.

    PubMed

    Mahmmod, Yasser S; Mweu, Marshal M; Nielsen, Søren S; Katholm, Jørgen; Klaas, Ilka C

    2014-03-01

    The use of PCR tests as diagnostics for intramammary infections (IMI) based on composite milk samples collected in a non-sterile manner at milk recordings is increasing. Carryover of sample material between cows and non-aseptic PCR sampling may be incriminated for misclassification of IMI with Streptococcus agalactiae (S. agalactiae) in dairy herds with conventional milking parlours. Misclassification may result in unnecessary costs for treatment and culling. The objectives of this study were to (1) determine the effect of carryover on PCR-positivity for S. agalactiae at different PCR cycle threshold (Ct) cut-offs by estimating the between-cow correlation while accounting for the milking order, and (2) evaluate the effect of aseptic presampling procedures (PSP) on PCR-positivity at the different Ct-value cut-offs. The study was conducted in four herds with conventional milking parlours at routine milk recordings. Following the farmers' routine pre-milking preparation, 411 of 794 cows were randomly selected for the PSP treatment. These procedures included removing the first streams of milk and 70% alcohol teat disinfection. Composite milk samples were then collected from all cows and tested using PCR. Data on milking order were used to estimate the correlation between consecutively milked cows in each milking unit. Factors associated with the PCR-positivity for S. agalactiae were analyzed using generalized estimating equations assuming a binomially-distributed outcome with a logit link function. Presampling procedures were only significant using cut-off 37. A first-order autoregressive correlation structure provided the best correlation between consecutively milked cows. The correlation was 13%, 11%, 9% at cut-offs <40, 37, and 34, respectively. PSP did not reduce the odds of cows being PCR-positive for S. agalactiae. In conclusion, carryover and non-aseptic sampling affected the PCR results and should therefore be considered when samples from routine milk

  8. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique

    PubMed Central

    Euler, Chad W.; Juncosa, Barbara; Ryan, Patricia A.; Deutsch, Douglas R.; McShan, W. Michael; Fischetti, Vincent A.

    2016-01-01

    Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and

  9. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique.

    PubMed

    Euler, Chad W; Juncosa, Barbara; Ryan, Patricia A; Deutsch, Douglas R; McShan, W Michael; Fischetti, Vincent A

    2016-01-01

    Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and

  10. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  11. In vitro antimicrobial activity of Combretum molle (Combretaceae) against Staphylococcus aureus and Streptococcus agalactiae isolated from crossbred dairy cows with clinical mastitis.

    PubMed

    Regassa, Fekadu; Araya, Mengistu

    2012-08-01

    Following the rapidly expanding dairy enterprise, mastitis has remained the most economically damaging disease. The objective of this study was mainly to investigate the in vitro antibacterial activities of ethanol extracts of Combretum molle (R.Br.Ex.G.Don) Engl & Diels (Combretaceae) against antibiotic-resistant and susceptible Staphylococcus aureus and Streptococcus agalactiae isolated from clinical cases of bovine mastitis using agar disc diffusion method. The leaf and bark extracts showed antibacterial activity against S. aureus at concentrations of 3 mg/ml while the stem and seed extract did not show any bioactivity. Although both leaf and bark extracts were handled in the same manner, the antibacterial activity of the bark extract against the bacterial strains had declined gradually to a lower level as time advanced after extraction. The leaf extract had sustained bioactivity for longer duration. The susceptibility of the bacteria to the leaf extract is not obviously different between S. aureus and S. agalactiae. Also, there was no difference in susceptibility to the leaf extract between the antibiotic-resistant and antibiotic-sensitive bacteria. Further phytochemical and in vivo efficacy and safety studies are required to evaluate the therapeutic value of the plant against bovine mastitis. PMID:22207479

  12. Estimation of test characteristics of real-time PCR and bacterial culture for diagnosis of subclinical intramammary infections with Streptococcus agalactiae in Danish dairy cattle in 2012 using latent class analysis.

    PubMed

    Mahmmod, Yasser S; Toft, Nils; Katholm, Jørgen; Grønbæk, Carsten; Klaas, Ilka C

    2013-05-01

    The misdiagnosis of intramammary infections (IMI) with Streptococcus agalactiae (S. agalactiae) could lead farmers to treat or cull animals unnecessarily. The objective of this field study was to estimate the sensitivity (Se) and specificity (Sp) of real-time PCR at different cut-offs for cycle threshold (Ct) values against bacterial culture (BC) for diagnosis of S. agalactiae IMI using latent class analysis to avoid the assumption of a perfect reference test. A total of 614 dairy cows were randomly selected from 6 herds with bulk tank PCR Ct value ≤ 39 for S. agalactiae and S. aureus. At milk recording, 2456 quarter milk samples were taken aseptically for BC and the routinely taken cow level milk samples were analyzed by PCR. Results showed that 53 cows (8.6%) were positive for S. agalactiae IMI by BC. Sensitivity of PCR at cut-offs; ≤ 39, ≤ 37, ≤ 34, and ≤ 32, was 96.2%, 91.9%, 87.2% and 73.9%, while Se of BC was 25.7%, 29.9%, 59.9% and 72.1%. Specificity of PCR at cut-offs; ≤ 39, ≤ 37, ≤ 34, and ≤ 32, was 96.8%, 96.9%, 96.7%, and 97.22%, while Sp of BC was 99.7%, 99.5%, 99.2%, and 98.9%. The estimated prevalence of S. agalactiae IMI by PCR was higher than the apparent prevalence at the tested cut-offs, indicating under estimation of S. agalactiae IMI in the examined dairy cows. In conclusion, Se of PCR is always higher than Se of BC at all tested cut-offs. The lower cut-off, the more comparable becomes Se of PCR and Se of BC. The changes in Se in both PCR and BC at different Ct-value cut-offs may indicate a change in the definition of the latent infection. The similar Se of both tests at cut-off ≤ 32 may indicate high concentrations of S. agalactiae viable cells, representing a cow truly/heavily infected with S. agalactiae and thus easier to detect with BC. At cut-off ≤ 39 the latent definition of infection may reflect a more general condition of cows being positive for S. agalactiae. Our findings indicate that PCR Ct-value cut-offs should

  13. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages.

    PubMed

    Campisi, Edmondo; Rinaudo, C Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S; Baker, Carol J; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  14. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages

    PubMed Central

    Campisi, Edmondo; Rinaudo, C. Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S.; Baker, Carol J.; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  15. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element

    PubMed Central

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa. PMID:24083845

  16. Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene.

    PubMed

    Puymège, Aurore; Bertin, Stéphane; Guédon, Gérard; Payot, Sophie

    2015-10-01

    Streptococcus agalactiae is the first cause of invasive infections in human neonates and is also a major bovine and fish pathogen. High genomic diversity was observed in this species that hosts numerous mobile genetic elements, in particular elements transferable by conjugation. This works aims to evaluate the contribution of these elements to GBS genome diversity. Focusing on genomic islands integrated in the tRNA(Lys) (CTT) gene, a known hotspot of recombination, an extensive in silico search was performed on the sequenced genome of 303 strains of S. agalactiae isolated from different hosts. In all the isolates (except 9), whatever their origin (human, bovine, camel, dog, gray seal, dolphin, fish species or bullfrog), this locus carries highly diverse genomic islands transferable by conjugation such as integrative and conjugative elements (ICEs), integrative and mobilizable elements (IMEs), CIs-mobilizable elements (CIMEs) or composite elements. Transfer of an ICE from an ST67 bovine strain to a phylogenetically distant ST23 human isolate was obtained experimentally indicating that there was no barrier to ICE transfer between strains from different hosts. Interestingly, a novel family of putative IMEs that site-specifically integrate in the nic site of oriT of ICEs belonging to Tn916/ICESt3 superfamily was detected in silico. These elements carry an antibiotic resistance gene (lsa(C)) already described to confer cross-resistance to lincosamides, streptogramins A and pleuromutilins. Further work is needed to evaluate the impact of these IMEs on the transfer of targeted ICEs and the mobility and the dissemination of these IMEs. PMID:25832353

  17. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection.

    PubMed

    Kareem, Zana H; Abdelhadi, Yasser M; Christianus, Annie; Karim, Murni; Romano, Nicholas

    2016-04-01

    A 90-day feeding trial was conducted on the growth performance, feeding efficacy, body indices, various hematological and plasma biochemical parameters, and histopathological examination of the gonads from male and female Nile tilapia fingerlings when fed different crude plant extracts from Cinnamomum camphora, Euphorbia hirta, Azadirachta indica, or Carica papaya at 2 g kg(-1) compared to a control diet. This was followed by a 14-day challenge to Streptococcus agalactiae. All treatments were triplicated, and each treatment consisted of 30 fish. Results showed that C. papaya extracts were the most effective at delaying gonadal maturation to both male and female tilapia, as well as significantly increasing (P < 0.05) growth performance compared to the control treatment. Similarly, dietary C. camphora and E. hirta extracts also significantly improved growth, while no significant growth effect was detected between the A. indica and control treatments (P > 0.05). Further, crude body lipid was lower in the C. camphora, E. hirta and C. papaya treatments, but was only significantly lower for the E. hirta treatment compared to the control. Meanwhile, none of the hematological or biochemical parameters were significantly affected, although plasma ALT was significantly lower for tilapia fed A. indica compared to the control. After the 14-day bacterial challenge, tilapia fed C. camphora supplementation had significantly higher survival, compared to the control, but was not significantly higher than the other supplemented diets. Results indicate that dietary C. papaya extract can significantly promote growth and delay gonadal maturation to both male and female tilapia, while C. camphora was the most effective prophylactic to S. agalactiae and may be a cost-effective and eco-friendly alternative to antibiotics. PMID:26643907

  18. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing.

    PubMed

    Wang, Bei; Gan, Zhen; Cai, Shuanghu; Wang, Zhongliang; Yu, Dapeng; Lin, Ziwei; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2016-07-01

    MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions. PMID:27050313

  19. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages

    PubMed Central

    Lier, Clément; Baticle, Elodie; Horvath, Philippe; Haguenoer, Eve; Valentin, Anne-Sophie; Glaser, Philippe; Mereghetti, Laurent; Lanotte, Philippe

    2015-01-01

    CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) are found in 90% of archaea and about 40% of bacteria. In this original system, CRISPR arrays comprise short, almost unique sequences called spacers that are interspersed with conserved palindromic repeats. These systems play a role in adaptive immunity and participate to fight non-self DNA such as integrative and conjugative elements, plasmids, and phages. In Streptococcus agalactiae, a bacterium implicated in colonization and infections in humans since the 1960s, two CRISPR-Cas systems have been described. A type II-A system, characterized by proteins Cas9, Cas1, Cas2, and Csn2, is ubiquitous, and a type I–C system, with the Cas8c signature protein, is present in about 20% of the isolates. Unlike type I–C, which appears to be non-functional, type II-A appears fully functional. Here we studied type II-A CRISPR-cas loci from 126 human isolates of S. agalactiae belonging to different clonal complexes that represent the diversity of the species and that have been implicated in colonization or infection. The CRISPR-cas locus was analyzed both at spacer and repeat levels. Major distinctive features were identified according to the phylogenetic lineages previously defined by multilocus sequence typing, especially for the sequence type (ST) 17, which is considered hypervirulent. Among other idiosyncrasies, ST-17 shows a significantly lower number of spacers in comparison with other lineages. This characteristic could reflect the peculiar virulence or colonization specificities of this lineage. PMID:26124774

  20. Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity.

    PubMed Central

    Hynes, W L; Hancock, L; Ferretti, J J

    1995-01-01

    The hyaluronidase gene (hylP2) from a second group A streptococcal bacteriophage was isolated from ATCC T-type-22 hyaluronidase-producing strain 10403, a strain known to produce increased amounts of extracellular hyaluronidase. Sequence analysis of hylP2 and alignment with the previously described bacteriophage hyaluronidase gene (hylP) showed a high degree of similarity; however, hylP2 had deletions of regions specifying 34 amino acids. Twenty-eight of the deleted amino acids were in a region of HylP containing a series of collagen-like Gly-X-Y repeating units. By employing primers for both hylP and hylP2, PCR amplification resulted in fragments of appropriate sizes in 97% of the strains tested, with some strains producing two fragments, indicating the presence of at least two phages. When the hylP2 gene was introduced via a plasmid vector into a non-hyaluronidase-producing Streptococcus pyogenes strain, this strain was still unable to produce extracellular hyaluronidase, although intracellular hyaluronidase was present. These results, along with the absence of a typical N-terminal signal peptide, indicate that HylP2 is unable to be secreted into the extracellular milieu. Examination of more than 100 strains for production of hyaluronidase showed that only 23% of the strains produced extracellular hyaluronidase. One of these strains (strain 10403) contains a single bacteriophage hyaluronidase gene (hylP2) which, when inactivated by allelic replacement, still produces large amounts of extracellular hyaluronidase. These results suggest the presence of a different hyaluronidase gene encoding a protein that is actively secreted into the extracellular milieu. PMID:7622224

  1. Molecular epidemiology and distribution of serotypes, genotypes, and antibiotic resistance genes of Streptococcus agalactiae clinical isolates from Guelma, Algeria and Marseille, France.

    PubMed

    Bergal, A; Loucif, L; Benouareth, D E; Bentorki, A A; Abat, C; Rolain, J-M

    2015-12-01

    This study describes, for the first time, the genetic and phenotypic diversity among 93 Streptococcus agalactiae (group B Streptococcus, GBS) isolates collected from Guelma, Algeria and Marseille, France. All strains were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The molecular support of antibiotic resistance and serotyping were investigated by polymerase chain reaction (PCR). The phylogenetic lineage of each GBS isolate was determined by multilocus sequence typing (MLST) and grouped into clonal complexes (CCs) using eBURST. The isolates represented 37 sequence types (STs), 16 of which were novel, grouped into five CCs, and belonging to seven serotypes. Serotype V was the most prevalent serotype in our collection (44.1%). GBS isolates of each serotype were distributed among multiple CCs, including cps III/CC19, cps V/CC1, cps Ia/CC23, cps II/CC10, and cps III/CC17. All isolates presented susceptibility to penicillin, whereas resistance to erythromycin was detected in 40% and tetracycline in 82.2% of isolates. Of the 37 erythromycin-resistant isolates, 75.7% showed the macrolide-lincosamide-streptogramin B (MLSB)-resistant phenotype and 24.3% exhibited the macrolide (M)-resistant phenotype. Constitutive MLSB resistance (46%) mediated by the ermB gene was significantly associated with the Guelma isolates, whereas the M resistance phenotype (24.3%) mediated by the mefA/E gene dominated among the Marseille isolates and belonged to ST-23. Tetracycline resistance was predominantly due to tetM, which was detected alone (95.1%) or associated with tetO (3.7%). These results provide epidemiological data in these regions that establish a basis for monitoring increased resistance to erythromycin and also provide insight into correlations among clones, serotypes, and resistance genes. PMID:26415872

  2. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: Nine-year perspective.

    PubMed

    Dangwetngam, Machalin; Suanyuk, Naraid; Kong, Fanrong; Phromkunthong, Wutiporn

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus, GBS) infection remains a major problem associated with high mortality of cultured tilapia worldwide. The present study reports the serotype distribution and antimicrobial susceptibilities of GBS isolated from infected tilapia cultured in Thailand. One hundred and forty-four GBS isolates were identified by biochemical, serological and molecular analyses. Of these 144 GBS isolates, 126 were serotype Ia and 18 were serotype III. Antimicrobial susceptibilities of the 144 GBS isolates were determined by the disc diffusion method. Most GBS isolates were susceptible to lincomycin, norfloxacin, oxytetracycline, ampicillin, erythromycin and chloramphenicol, but resistant to oxolinic acid, gentamicin, sulfamethoxazole and trimethoprim. However, 17 isolates displayed an oxytetracycline-resistant phenotype and harboured the tet(M) gene. The broth microdilution method was used to determine the minimal inhibitory concentrations (MICs) of 17 oxytetracycline-resistant GBS isolates, and then minimal bactericidal concentrations (MBCs) of these isolates were evaluated. Oxytetracyline-resistant isolates were found to be susceptible to ampicillin, lincomycin, norfloxacin, erythromycin and chloramphenicol, with the MIC and MBC ranging from ≤ 0.125 to 0.5 μg ml- 1 and ≤ 0.125 to 2 μg ml- 1, respectively. Moreover, all 17 oxytetracycline-resistant isolates demonstrated resistance to trimethoprim, oxolinic acid, gentamicin, sulfamethoxazole and oxytetracycline, with the MIC and MBC ranging from 16 to ≥ 128 μg ml- 1 and ≥ 128 μg ml- 1, respectively. These findings are useful information for antibiotic usage in fish aquaculture. PMID:26701807

  3. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Barichello, Tatiana; Lemos, Joelson C; Generoso, Jaqueline S; Carradore, Mirelle M; Moreira, Ana Paula; Collodel, Allan; Zanatta, Jessiele R; Valvassori, Samira S; Quevedo, João

    2013-03-01

    Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons. Neonate Wistar rats, received either 10μL of sterile saline as a placebo or an equivalent volume of GBS suspension at a concentration of 1×10(6)cfu/mL. Sixty days after induction of meningitis, the animals underwent behavioral tests, after were killed and the hippocampus and cortex were retired for analyze of the BDNF and NGF levels. In the open-field demonstrated no difference in motor, exploratory activity and habituation memory between the groups. The step-down inhibitory avoidance, when we evaluated the long-term memory at 24h after training session, we found that the meningitis group had a decrease in aversive memory when compared with the long-term memory test of the sham group. BDNF levels decreased in hippocampus and cortex; however the NGF levels decreased only in hippocampus. These findings suggest that the meningitis model could be a good research tool for the study of the biological mechanisms involved in the behavioral alterations secondary to GBS meningitis. PMID:22683802

  4. RNA-Seq revealed the impairment of immune defence of tilapia against the infection of Streptococcus agalactiae with simulated climate warming.

    PubMed

    Wang, Le; Liu, Peng; Wan, Zi Yi; Huang, Shu Qing; Wen, Yan Fei; Lin, Grace; Yue, Gen Hua

    2016-08-01

    Global warming is one of the causes of disease outbreaks in fishes. Understanding its mechanisms is critical in aquaculture and fisheries. We used tilapia to study the effects of a high temperature on the infection of a bacterial pathogen Streptococcus agalactiae using RNA-Seq. We found that the dissolved oxygen level in water at 32 °C is lower than at 22 °C, and tilapia infected with the pathogen died more rapidly at 32 °C. The gene expression profiles showed significant differences in fish raised under different conditions. We identified 126 and 576 differentially expressed genes (DEGs) at 4 and 24 h post infection at 22 °C, respectively, whereas at 32 °C, the data were 312 and 1670, respectively. Almost all responding pathways at 22 °C were involved in the immune responses, whereas at 32 °C, the enriched pathways were not only involved in immune responses but also involved in oxygen and energy metabolisms. We identified significant signals of immunosuppression of immune responses at 32 °C. In addition, many of the enriched transcription factors and DEGs under positive selection were involved in immune responses, oxygen and/or energy metabolisms. Our results suggest that global warming could reduce the oxygen level in water and impair the defence of tilapia against bacterial infection. PMID:27377027

  5. Genetic diversity of rRNA operons of unrelated Streptococcus agalactiae strains isolated from cerebrospinal fluid of neonates suffering from meningitis.

    PubMed Central

    Chatellier, S; Huet, H; Kenzi, S; Rosenau, A; Geslin, P; Quentin, R

    1996-01-01

    The genetic diversity of a collection of 54 unrelated Streptococcus agalactiae strains isolated from the cerebrospinal fluid of neonates and of 60 unrelated carrier strains was evaluated by investigating the restriction fragment length polymorphism of the rRNA gene region. Three restriction enzymes were selected for use: PstI, HindIII, and CfoI. Clustering analysis revealed two phylogenetic groups of strains with 40% divergence. Group I contained two clusters, A and B, and group II contained three clusters, C, D, and E. Strains of serotype Ia were mostly distributed in cluster A, and strains of serotype Ib were mostly distributed in cluster E. Serotype III isolates did not cluster. Nevertheless, 37 of 39 isolates belonging to cluster B were serotype III. With HindIII, two rRNA gene banding patterns characterized 38 of the 39 strains of cluster B, which represents a high-virulence group. In addition, two rRNA gene banding patterns with each enzyme and/or a pair of CfoI fragments of 905 and 990 bp identified 81% of the invasive strains. On account of the genetic homogeneity of the cerebrospinal fluid strains, ribotyping is a powerful typing method for investigation of nosocomial or epidemic invasive infections only when all three enzymes are used or when PstI and HindIII or PstI and CfoI are combined with serotyping (index of discrimination, > 0.95). PMID:8897176

  6. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-01

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality. PMID:24856132

  7. Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway.

    PubMed

    Maeland, Johan A; Radtke, Andreas

    2013-12-27

    Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations. PMID:24120184

  8. Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci

    PubMed Central

    Chuzeville, Sarah; Puymège, Aurore; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2012-01-01

    Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs) that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3′ end of a tRNALys encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNALys) is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II) in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor) and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNALys gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species. PMID:23152820

  9. A Novel Use of a Bacteriophage Lysin, PlyC, as a Disinfectant against Streptococcus equi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus equi is the causative agent of a purulent infection in horses known as equine strangles and is transmitted through shedding of live bacteria from nasal secretions and abscess drainage. There are no accepted cures for equine strangles with conventional antibiotics being only partially ...

  10. Use of a bacteriophage lysin for barnyard decontamination of Streptococcus equi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine strangles is a highly contagious purulent lymphadenitis of the head and neck that is caused by Streptococcus equi (S. equi subsp. equi). Acute swelling and subsequent abscess formation is found in the submaxillary, submandibular, and retropharyngeal lymph nodes causing a “strangling” of the ...

  11. The interactome of Streptococcus pneumoniae and its bacteriophages show highly specific patterns of interactions among bacteria and their phages.

    PubMed

    Mariano, Rachelle; Wuchty, Stefan; Vizoso-Pinto, Maria G; Häuser, Roman; Uetz, Peter

    2016-01-01

    Although an abundance of bacteriophages exists, little is known about interactions between their proteins and those of their bacterial hosts. Here, we experimentally determined the phage-host interactomes of the phages Dp-1 and Cp-1 and their underlying protein interaction network in the host Streptococcus pneumoniae. We compared our results to the interaction patterns of E. coli phages lambda and T7. Dp-1 and Cp-1 target highly connected host proteins, occupy central network positions, and reach many protein clusters through the interactions of their targets. In turn, lambda and T7 targets cluster to conserved and essential proteins in E. coli, while such patterns were largely absent in S. pneumoniae. Furthermore, targets in E. coli were mutually strongly intertwined, while targets of Dp-1 and Cp-1 were strongly connected through essential and orthologous proteins in their immediate network vicinity. In both phage-host systems, the impact of phages on their protein targets appears to extend from their network neighbors, since proteins that interact with phage targets were located in central network positions, have a strong topologically disruptive effect and touch complexes with high functional heterogeneity. Such observations suggest that the phages, biological impact is accomplished through a surprisingly limited topological reach of their targets. PMID:27103053

  12. The interactome of Streptococcus pneumoniae and its bacteriophages show highly specific patterns of interactions among bacteria and their phages

    PubMed Central

    Mariano, Rachelle; Wuchty, Stefan; Vizoso-Pinto, Maria G.; Häuser, Roman; Uetz, Peter

    2016-01-01

    Although an abundance of bacteriophages exists, little is known about interactions between their proteins and those of their bacterial hosts. Here, we experimentally determined the phage-host interactomes of the phages Dp-1 and Cp-1 and their underlying protein interaction network in the host Streptococcus pneumoniae. We compared our results to the interaction patterns of E. coli phages lambda and T7. Dp-1 and Cp-1 target highly connected host proteins, occupy central network positions, and reach many protein clusters through the interactions of their targets. In turn, lambda and T7 targets cluster to conserved and essential proteins in E. coli, while such patterns were largely absent in S. pneumoniae. Furthermore, targets in E. coli were mutually strongly intertwined, while targets of Dp-1 and Cp-1 were strongly connected through essential and orthologous proteins in their immediate network vicinity. In both phage-host systems, the impact of phages on their protein targets appears to extend from their network neighbors, since proteins that interact with phage targets were located in central network positions, have a strong topologically disruptive effect and touch complexes with high functional heterogeneity. Such observations suggest that the phages, biological impact is accomplished through a surprisingly limited topological reach of their targets. PMID:27103053

  13. Characterization of Streptococcus agalactiae strains by multilocus enzyme genotype and serotype: identification of multiple virulent clone families that cause invasive neonatal disease.

    PubMed Central

    Quentin, R; Huet, H; Wang, F S; Geslin, P; Goudeau, A; Selander, R K

    1995-01-01

    The chromosomal genotypes of 277 isolates of 16 serotypes of Streptococcus agalactiae were characterized by analysis of electrophoretically demonstrable allele profiles at 12 metabolic enzyme loci. The collection comprised the type strain and 276 strains recovered from French symptomatic and asymptomatic subjects. Sixty-one distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Cluster analysis of the ETs revealed two primary phylogenetic divisions separated by a genetic distance of 0.62, Division I contained 67 isolates which could be assigned to 13 ETs. Twenty-seven of these isolates were from samples of cerebrospinal fluid (CSF) from neonatal meningitis patients. Two ETs, separated by a genetic distance of 0.217, contained 26 of these 27 isolates. Division II contained 210 isolates, of which 27 were isolated from CSF. This division was more polymorphic and included 48 ETs. Spanning a genetic distance of 0.3, three clusters and one ET were identified within this group. Twenty-four of 27 strains isolated from CSF belonged to one cluster, and 19 of them belonged to two adjacent ETs with a genetic distance of 0.083. Fifty-five of the 68 serotype Ia strains and 24 of the 26 serotype Ib strains were each confined to one of the evolutionary lineages, and 85 of the 86 strains which carried protein antigen c belonged to phylogenetic division II. Most of the type III organisms were assigned to two clone families. The characteristics of this French population argue for the existence of particular groups of strains responsible for neonatal meningitis and demonstrate that serotyping can supply information about the genetic distribution of strains. PMID:8567885

  14. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316

    PubMed Central

    Morello, Eric; Mallet, Adeline; Konto-Ghiorghi, Yoan; Chaze, Thibault; Mistou, Michel-Yves; Oliva, Giulia; Oliveira, Liliana; Di Guilmi, Anne-Marie; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2015-01-01

    Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host. PMID:26407005

  15. Isolated Streptococcus agalactiae tricuspid endocarditis in elderly patient without known predisposing factors: Case report and review of the literature.

    PubMed

    Abid, Leila; Charfeddine, Salma; Kammoun, Samir

    2016-04-01

    Group B streptococcal (GBS) tricuspid infective endocarditis is a very rare clinical entity. It affects intravenous drug users, pregnant, postpartum women, and the elderly. We report the case of a 68-year-old patient without known predisposing factors who presented a GBS tricuspid endocarditis treated by penicillin and aminoglycosides with no response. The patient was operated with a good evolution. Our case is the 25th reported in the literature. GBS disease is increasing in the elderly and is mainly associated to comorbid conditions. Tricuspid infective endocarditis with Group B streptococcus predominantly presents as a persistent fever with respiratory symptoms due to pulmonary embolism. Therefore, it requires a medicosurgical treatment and close follow-up. PMID:27053903

  16. Nile Tilapia Infectivity by Genomically Diverse Streptoccocus agalactiae Isolates from Multiple Hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...

  17. IDENTIFICATION AND EPIDEMIOLOGY OF STREPTOCCOCUS INIAE AND S. AGALACTIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being known mainly as mammalian disease agents, Streptococcus iniae and S. agalactiae have become recognized as emerging pathogens of wild and cultured fish. The worldwide economic impact of S. iniae and S. agalactiae to the aquaculture industry is estimated in hundreds of millions annually...

  18. Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a province of Argentina

    PubMed Central

    Oviedo, P; Pegels, E; Laczeski, M; Quiroga, M; Vergara, M

    2013-01-01

    Group B Streptococcus (GBS) is the leading cause of neonatal infections. Our purpose was to characterize GBS colonization in pregnant women, current serotypes, resistance phenotypes and genes associated with virulence. In Misiones, Argentina, there are no previous data on this topic. Vaginal-rectal swabs from 3125 pregnant women were studied between 2004 and 2010. GBS strains were identified by conventional and serological methods (Phadebact Strep B Test, ETC International, Bactus AB, Sweden). Serotypes were detected using Strep-B Latex (Statens Serum Institut, Denmark). Resistance phenotypes were determined by the double-disk test. Genes were studied by PCR. Maternal colonization was 9.38%. Resistance to erythromycin was 11.6%, and the constitutive phenotype was the predominant one. Serotype Ia was the most frequent, whereas serotypes IV, VI, VII and VIII were not detected. The lmb, bca and hylB genes were detected in more than 79% of the strains. In this study, the colonization rate with GBS and the serotype distribution were compared with studies reported in other areas of the country. The high resistance to erythromycin in Misiones justifies performing antibiotic susceptibility testing. The serotype distribution, the genes encoding putative virulence factors, and the patterns of resistance phenotypes of GBS may vary in different areas. They thus need to be evaluated in each place to devise strategies for prevention. PMID:24159312

  19. Streptococcus agalactiae isolates of serotypes Ia, III and V from human and cow are able to infect tilapia.

    PubMed

    Chen, Ming; Wang, Rui; Luo, Fu-Guang; Huang, Yan; Liang, Wan-Wen; Huang, Ting; Lei, Ai-Ying; Gan, Xi; Li, Li-Ping

    2015-10-22

    Recent studies have shown that group B streptococcus (GBS) may be infectious across hosts. The purpose of this study is to investigate the pathogenicity of clinical GBS isolates with serotypes Ia, III and V from human and cow to tilapia and the evolutionary relationship among these GBS strains of different sources. A total of 27 clinical GBS isolates from human (n=10), cow (n=2) and tilapia (n=15) were analyzed using serotyping, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Among them, 15 isolates were tested for their pathogenicity to tilapia. The results showed that five human GBS strains (2 serotype III, 2 serotype Ia and 1 serotype V) infected tilapia with mortality rate ranging from 56.67% to 100%, while the other five human GBS strains tested were unable to infect tilapia. In addition, two cow GBS strains C001 and C003 of serotype III infected tilapia. However, they had significantly lower pathogenicity than the five human strains. Furthermore, human GBS strains H005 and H008, which had very strong ability to infect tilapia, had the same PFGE pattern. MLST analysis showed that the five human and the two cow GBS strains that were able to infect tilapia belonged to clonal complexes CC19, CC23 and CC103. The study for the first time confirmed that human or cow GBS clonal complexes CC19, CC23 and CC103 containing strains with serotypes Ia, III and V could infect tilapia and induce clinical signs under experimental conditions. PMID:26255553

  20. Characterization of Isolates of Streptococcus agalactiae from Diseased Farmed and Wild Marine Fish from the U.S. Gulf Coast, Latin America, and Thailand.

    PubMed

    Soto, Esteban; Wang, Rui; Wiles, Judy; Baumgartner, Wes; Green, Christopher; Plumb, John; Hawke, John

    2015-06-01

    We examined Lancefield serogroup B Streptococcus isolates recovered from diseased, cultured hybrid Striped Bass (Striped Bass Morone saxatilis × White Bass M. chrysops) and wild and cultured Gulf Killifish Fundulus grandis from coastal waters of the U.S. Gulf of Mexico (Gulf coast) and compared those isolates to strains from tilapias Oreochromis spp. reared in Mississippi, Thailand, Ecuador, and Honduras and to the original Gulf coast strain identified by Plumb et al. ( 1974 ). The isolates were subjected to phylogenetic, biochemical, and antibiotic susceptibility analyses. Genetic analysis was performed using partial sequence comparison of (1) the 16S ribosomal RNA (rRNA) gene; (2) the sipA gene, which encodes a surface immunogenic protein; (3) the cspA gene, which encodes a cell surface-associated protein; and (4) the secY gene, which encodes components of a general protein secretion pathway. Phylogenies inferred from sipA, secY, and cspA gene sequence comparisons were more discriminating than that inferred from the 16S rRNA gene sequence comparison. The U.S. Gulf coast strains showed a high degree of similarity to strains from South America and Central America and belonged to a unique group that can be distinguished from other group B streptococci. In agreement with the molecular findings, biochemical and antimicrobial resistance analyses demonstrated that the isolates recovered from the U.S. Gulf coast and Latin America were more similar to each other than to isolates from Thailand. Three laboratory challenge methods for inducing streptococcosis in Gulf Killifish were evaluated-intraperitoneal (IP) injection, immersion (IMM), and immersion plus abrasion (IMMA)-using serial dilutions of S. agalactiae isolate LADL 97-151, a representative U.S. Gulf coast strain. The dose that was lethal to 50% of test fish by 14 d postchallenge was approximately 2 CFU/fish via IP injection. In contrast, the fish that were challenged via IMM or IMMA presented cumulative mortality

  1. Effect of Lactose Concentration on the Efficiency of Plating of Bacteriophages on Streptococcus cremoris

    PubMed Central

    Terzaghi, Eric A.; Terzaghi, Betty E.

    1978-01-01

    The efficiency of plating of phages derived by ultraviolet induction of, or by lytic growth on, certain strains of Streptococcus cremoris was found to vary by as much as 105 depending on the lactose concentration of the medium in which the indicator bacteria were grown and the length of time the stationary-phase indicator cultures were aged. This effect was noted only when the culture was used as an indicator for phages that had previously grown on an apparently unrelated strain of bacteria. Conditions of culturing and aging had no detectable effect upon the ability of a strain to serve as an indicator for phage that had previously been cultured on the same strain. These observations suggest the presence of some kind of physiologically labile restriction system in strains of S. cremoris. The implications of this finding for increasing the sensitivity of the host range test in determining phage susceptibility, whether from induced lysates, whey, or lytic phage stocks, are discussed. It is recommended that, for all such testing, the concentration of lactose in buffered media be increased to such levels as required to obtain a final pH similar to that of a freshly coagulated milk culture, namely, below pH 5.0. PMID:16345285

  2. Acquisition of the Sda1-encoding bacteriophage does not enhance virulence of the serotype M1 Streptococcus pyogenes strain SF370.

    PubMed

    Venturini, Carola; Ong, Cheryl-Lynn Y; Gillen, Christine M; Ben-Zakour, Nouri L; Maamary, Peter G; Nizet, Victor; Beatson, Scott A; Walker, Mark J

    2013-06-01

    The resurgence of invasive disease caused by Streptococcus pyogenes (group A Streptococcus [GAS]) in the past 30 years has paralleled the emergence and global dissemination of the highly virulent M1T1 clone. The GAS M1T1 clone has diverged from the ancestral M1 serotype by horizontal acquisition of two unique bacteriophages, encoding the potent DNase Sda1/SdaD2 and the superantigen SpeA, respectively. The phage-encoded DNase promotes escape from neutrophil extracellular traps and is linked to enhanced virulence of the M1T1 clone. In this study, we successfully used in vitro lysogenic conversion to transfer the Sda1-encoding phage from the M1T1 clonal strain 5448 to the nonclonal M1 isolate SF370 and determined the impact of this horizontal gene transfer event on virulence. Although Sda1 was expressed in SF370 lysogens, no capacity of the phage-converted strain to survive human neutrophil killing, switch to a hyperinvasive covRS mutant form, or cause invasive lethal infection in a humanized plasminogen mouse model was observed. This work suggests that the hypervirulence of the M1T1 clone is due to the unique synergic effect of the M1T1 clone bacteriophage-specific virulence factor Sda1 acting in concert with the M1T1 clone-specific genetic scaffold. PMID:23529618

  3. Acquisition of the Sda1-Encoding Bacteriophage Does Not Enhance Virulence of the Serotype M1 Streptococcus pyogenes Strain SF370

    PubMed Central

    Venturini, Carola; Ong, Cheryl-lynn Y.; Gillen, Christine M.; Ben-Zakour, Nouri L.; Maamary, Peter G.; Nizet, Victor; Beatson, Scott A.

    2013-01-01

    The resurgence of invasive disease caused by Streptococcus pyogenes (group A Streptococcus [GAS]) in the past 30 years has paralleled the emergence and global dissemination of the highly virulent M1T1 clone. The GAS M1T1 clone has diverged from the ancestral M1 serotype by horizontal acquisition of two unique bacteriophages, encoding the potent DNase Sda1/SdaD2 and the superantigen SpeA, respectively. The phage-encoded DNase promotes escape from neutrophil extracellular traps and is linked to enhanced virulence of the M1T1 clone. In this study, we successfully used in vitro lysogenic conversion to transfer the Sda1-encoding phage from the M1T1 clonal strain 5448 to the nonclonal M1 isolate SF370 and determined the impact of this horizontal gene transfer event on virulence. Although Sda1 was expressed in SF370 lysogens, no capacity of the phage-converted strain to survive human neutrophil killing, switch to a hyperinvasive covRS mutant form, or cause invasive lethal infection in a humanized plasminogen mouse model was observed. This work suggests that the hypervirulence of the M1T1 clone is due to the unique synergic effect of the M1T1 clone bacteriophage-specific virulence factor Sda1 acting in concert with the M1T1 clone-specific genetic scaffold. PMID:23529618

  4. Genome-Wide Mapping of Cystitis Due to Streptococcus agalactiae and Escherichia coli in Mice Identifies a Unique Bladder Transcriptome That Signifies Pathogen-Specific Antimicrobial Defense against Urinary Tract Infection

    PubMed Central

    Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.

    2012-01-01

    The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575

  5. Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples.

    PubMed

    Chiang, Yu-Cheng; Tsen, Hau-Yang; Chen, Hsin-Yen; Chang, Yu-Hsin; Lin, Chien-Ku; Chen, Chih-Yuan; Pai, Wan-Yu

    2012-01-01

    Food products, such as milk and meat products including cheese, milk powder, fermented milk, sausage, etc. are susceptible to the contamination by pathogenic and deteriorative bacteria. These bacteria include Listeria monocytogens, Staphylococcus aureus, Enterobacter sakazakii, Escherichia coli O157:H7, Salmonella spp., Vibrio parahaemolyticus, Streptococcus agalactiae and Pseudomonas fluorescens, etc. Traditional methods for the detection of these microorganisms are laborious and time consuming. Therefore, rapid and accurate diagnostic methods are needed. In this study, we designed the DNA probes and PCR primers for the detection of aforementioned microorganisms. By using two sets of multiplex PCR, followed by a chromogenic macroarray system, these organisms in milk or other food products could be simultaneously detected. When the system was used for the inspection of milk or meat homogenate containing 10(0) target cells per milliliter or gram of the sample, all these bacterial species could be identified after an 8h pre-enrichment step. The system consisting of a multiplex PCR step followed by macroarray allowed us to detect multiple target bacterial species simultaneously without the use of agarose gel electrophoresis. Compared to the commonly used multiplex PCR method, this approach has the additional advantage of detecting more bacterial strains because some bacterial strains generate PCR products with the same molecular sizes which can be differentiated by macroarray but not by electrophoresis. PMID:22101309

  6. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.

    PubMed

    Li, Wan; Bian, Xin; Evivie, Smith Etareri; Huo, Gui-Cheng

    2016-09-01

    The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers' insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria. PMID:27378131

  7. Multicenter Study of the Mechanisms of Resistance and Clonal Relationships of Streptococcus agalactiae Isolates Resistant to Macrolides, Lincosamides, and Ketolides in Spain

    PubMed Central

    Gonzalez, J. J.; Andreu, A.

    2005-01-01

    Macrolide, lincosamide, and ketolide mechanisms of resistance and clonal relationships were characterized in a collection of 79 resistant group B streptococcus isolates obtained from neonates or pregnant women. The erm(B), erm(TR), and mef(A) genes were present in 62%, 30.4%, and 3.8% of the isolates, respectively. There was considerable clonal diversity among them. PMID:15917563

  8. Genomic Diversity of Streptoccocus agalactiae Isolates from Multiple Hosts and Their Infectivity in Nile Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), has a broad host range and can be pathogenic to numerous animals, including fish. GBS is most recognized for causing cattle mastitis and human neonatal meningitis, it also causes fatal meningo-encephalitis in fish. We investigat...

  9. AN OVERVIEW STREPTOCOCCUS IN WARM-WATER FISH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being known mainly as mammalian disease agents, Streptococcus iniae and S. agalactiae have become recognized as emerging pathogens of wild and cultured fish. The worldwide economic impact of S. iniae and S. agalactiae to the aquaculture industry is estimated in hundreds of millions annually...

  10. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis

    PubMed Central

    Ward, Philip N; Holden, Matthew TG; Leigh, James A; Lennard, Nicola; Bignell, Alexandra; Barron, Andy; Clark, Louise; Quail, Michael A; Woodward, John; Barrell, Bart G; Egan, Sharon A; Field, Terence R; Maskell, Duncan; Kehoe, Michael; Dowson, Christopher G; Chanter, Neil; Whatmore, Adrian M; Bentley, Stephen D; Parkhill, Julian

    2009-01-01

    Background Streptococcus uberis, a Gram positive bacterial pathogen responsible for a significant proportion of bovine mastitis in commercial dairy herds, colonises multiple body sites of the cow including the gut, genital tract and mammary gland. Comparative analysis of the complete genome sequence of S. uberis strain 0140J was undertaken to help elucidate the biology of this effective bovine pathogen. Results The genome revealed 1,825 predicted coding sequences (CDSs) of which 62 were identified as pseudogenes or gene fragments. Comparisons with related pyogenic streptococci identified a conserved core (40%) of orthologous CDSs. Intriguingly, S. uberis 0140J displayed a lower number of mobile genetic elements when compared with other pyogenic streptococci, however bacteriophage-derived islands and a putative genomic island were identified. Comparative genomics analysis revealed most similarity to the genomes of Streptococcus agalactiae and Streptococcus equi subsp. zooepidemicus. In contrast, streptococcal orthologs were not identified for 11% of the CDSs, indicating either unique retention of ancestral sequence, or acquisition of sequence from alternative sources. Functions including transport, catabolism, regulation and CDSs encoding cell envelope proteins were over-represented in this unique gene set; a limited array of putative virulence CDSs were identified. Conclusion S. uberis utilises nutritional flexibility derived from a diversity of metabolic options to successfully occupy a discrete ecological niche. The features observed in S. uberis are strongly suggestive of an opportunistic pathogen adapted to challenging and changing environmental parameters. PMID:19175920

  11. CONCURRENT EXPERIMENTAL Streptococcus SPP. INFECTIONS AND NATURAL PARASITISM IN CHANNEL CATFISH Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are usually not considered pathogens of channel catfish, Ictalurus punctatus, though concurrent infections may decrease catfish survival when infected with streptococcal organisms. Non-parasitized or naturally-parasitized channel catfish fry were challenged wit...

  12. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  13. Chlamydia bacteriophages.

    PubMed

    Śliwa-Dominiak, Joanna; Suszyńska, Ewa; Pawlikowska, Małgorzata; Deptuła, Wiesław

    2013-11-01

    Phages are called "good viruses" due to their ability to infect and kill pathogenic bacteria. Chlamydia are small, Gram-negative (G-) microbes that can be dangerous to human and animals. In humans, these bacteria are etiological agents of diseases such as psittacosis or respiratory tract diseases, while in animals, the infection may result in enteritis in cattle and chronic bowel diseases, as well as miscarriages in sheep. The first-known representative of chlamydiaphages was Chp1. It was discovered in Chlamydia psittaci isolates. Since then, four more species of chlamydiaphages have been identified [Chp2, Chp3, φCPG1 φCPAR39 (φCpn1) and Chp4]. All of them were shown to infect Chlamydia species. This paper described all known chlamydiaphages. They were characterised in terms of origin, host range, and their molecular structure. The review concerns the characterisation of bacteriophages that infects pathogenic and dangerous bacteria with unusual, intracellular life cycles that are pathogenic. In the era of antibiotic resistance, it is difficult to cure chlamydophilosis. Those bacteriophages can be an alternative to antibiotics, but before this happens, we need to get to know chlamydiaphages better. PMID:23903989

  14. Streptococcus: A World-Wide Fish Health Problem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are important emergent-epizootic pathogens which affect many fish species world-wide, especially in warm-water regions. Further, these Gram-positive bacteria cause significant economic losses in marine and freshwater aquaculture systems with an estimated loss i...

  15. BACTERIOPHAGE: BIOLOGY AND GENETICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage are viruses that infect bacteria. Bacteriophage are very small and made up of a protein coat with an inner core containing their genetic material. They infect bacterium, by attaching to the bacterial cell and injecting their nucleic acids into the bacteria. The phages then use the bac...

  16. Bacteriophages Infecting Propionibacterium acnes

    PubMed Central

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed. PMID:23691509

  17. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  18. PULSED FIELD FINGERPRINTING OF VAGINAL GROUP B STREPTOCOCCUS IN PREGNANCY: CORRELATION OF RESTRICTION PROFILES WITH SEROTYPE.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management protocols for vaginal group B beta-hemolytic streptococci (GBS; Streptococcus agalactiae) infection during pregnancy focus on treatment after an infection is identified. However, there is more to be learned about the epidemiology of GBS infections during pregnancy. In this study, we compa...

  19. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12.

    PubMed Central

    Weeks, C R; Ferretti, J J

    1984-01-01

    The infection of Streptococcus pyogenes T25(3) with the temperate bacteriophage T12 results in the conversion of the nontoxigenic strain to type A streptococcal exotoxin (erythrogenic toxin) production. Although previous research has established that integration of the bacteriophage genome into the host chromosome is not essential for exotoxin production, the location of the gene on the bacteriophage or bacterial chromosome had not been determined. In the present investigation, recombinant DNA techniques were used to determine whether the gene specifying type A streptococcal exotoxin (speA) production is located on the bacteriophage chromosome. Bacteriophage T12 was obtained from S. pyogenes T25(3)(T12) by induction with mitomycin C, and after isolation of bacteriophage DNA by phenol-chloroform extraction, the DNA was digested with restriction enzymes and ligated with Escherichia coli plasmid pHP34 or the Streptococcus-E. coli shuttle vector pSA3. Transformation of E. coli HB101 with the recombinant molecules allowed selection of E. coli clones containing bacteriophage T12 genes. Immunological assays with specific antibody revealed the presence of type A streptococcal exotoxin in sonicates of E. coli transformants. Subcloning experiments localized the speA gene to a 1.7-kilobase segment of the bacteriophage T12 genome flanked by SalI and HindIII sites. Introduction of the pSA3 vector containing the speA gene into Streptococcus sanguis (Challis) resulted in transformants that secreted the type A exotoxin. Immunological analysis showed that the type A streptococcal exotoxin produced by E. coli and S. sanguis transformants was identical to the type A exotoxin produced by S. pyogenes T25(3)(T12). Southern blot hybridizations with the cloned fragment confirmed its presence in the bacteriophage T12 genome and its absence in the T25(3) nonlysogen. Therefore, the gene for type A streptococcal exotoxin is located in the bacteriophage genome, and conversion of S. pyogenes T

  20. Bacteriophage replication modules.

    PubMed

    Weigel, Christoph; Seitz, Harald

    2006-05-01

    Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online). PMID:16594962

  1. Bacteriophage therapy against Enterobacteriaceae.

    PubMed

    Xu, Youqiang; Liu, Yong; Liu, Yang; Pei, Jiangsen; Yao, Su; Cheng, Chi

    2015-02-01

    The Enterobacteriaceae are a class of gram-negative facultative anaerobic rods, which can cause a variety of diseases, such as bacteremia, septic arthritis, endocarditis, osteomyelitis, lower respiratory tract infections, skin and soft-tissue infections, urinary tract infections, intra-abdominal infections and ophthalmic infections, in humans, poultry, animals and fish. Disease caused by Enterobacteriaceae cause the deaths of millions of people every year, resulting in enormous economic loss. Drug treatment is a useful and efficient way to control Enterobacteriaceae infections. However, with the abuse of antibiotics, drug resistance has been found in growing number of Enterobacteriaceae infections and, as such, there is an urgent need to find new methods of control. Bacteriophage therapy is an efficient alternative to antibiotics as it employs a different antibacterial mechanism. This paper summarizes the history of bacteriophage therapy, its bacterial lytic mechanisms, and the studies that have focused on Enterobacteriaceae and bacteriophage therapy. PMID:25662887

  2. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  3. Hyperexpansion of RNA Bacteriophage Diversity.

    PubMed

    Krishnamurthy, Siddharth R; Janowski, Andrew B; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-03-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  4. Bacteriophages of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  5. BACTERIOPHAGE THERAPY AND CAMPYLOBACTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter reports efforts to exploit Campylobacter-specific bacteriophages to reduce the numbers of Campylobacter jejuni and C. coli colonizing poultry and contaminating poultry meat products. Controlling campylobacters in poultry represents one of the greatest challenges to the agriculture a...

  6. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization

    PubMed Central

    Patras, Kathryn A.; Wescombe, Philip A.; Rösler, Berenice; Hale, John D.; Tagg, John R.

    2015-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy. PMID:26077762

  7. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Wescombe, Philip A; Rösler, Berenice; Hale, John D; Tagg, John R; Doran, Kelly S

    2015-09-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy. PMID:26077762

  8. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  9. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  10. PlyC, a bacteriophage endolysin that is internalized by epithelial cells and retains bacteriolytic activity against intracellular streptococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial...