Sample records for stress induces g2

  1. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells.

    PubMed

    Bosquet, Alba; Guaita-Esteruelas, Sandra; Saavedra, Paula; Rodríguez-Calvo, Ricardo; Heras, Mercedes; Girona, Josefa; Masana, Lluís

    2016-06-01

    Fatty acid binding protein 4 (FABP4) is an intracellular fatty acid (FA) carrier protein that is, in part, secreted into circulation. Circulating FABP4 levels are increased in obesity, diabetes and other insulin resistance (IR) diseases. FAs contribute to IR by promoting endoplasmic reticulum stress (ER stress) and altering the insulin signaling pathway. The effect of FABP4 on ER stress in the liver is not known. The aim of this study was to investigate whether exogenous FABP4 (eFABP4) is involved in the lipid-induced ER stress in the liver. HepG2 cells were cultured with eFABP4 (40 ng/ml) with or without linoleic acid (LA, 200 μM) for 18 h. The expression of ER stress-related markers was determined by Western blotting (ATF6, EIF2α, IRE1 and ubiquitin) and real-time PCR (ATF6, CHOP, EIF2α and IRE1). Apoptosis was studied by flow cytometry using Annexin V-FITC and propidium iodide staining. eFABP4 increased the ER stress markers ATF6 and IRE1 in HepG2 cells. This effect led to insulin resistance mediated by changes in AKT and JNK phosphorylation. Furthermore, eFABP4 significantly induced both apoptosis, as assessed by flow cytometry, and CHOP expression, without affecting necrosis and ubiquitination. The presence of LA increased the ER stress response induced by eFABP4. eFABP4, per se, induces ER stress and potentiates the effect of LA in HepG2 cells, suggesting that FABP4 could be a link between obesity-associated metabolic abnormalities and hepatic IR mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    PubMed

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  3. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    USGS Publications Warehouse

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  4. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    PubMed Central

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  6. Protective effects of quercetin on nicotine induced oxidative stress in 'HepG2 cells'.

    PubMed

    Yarahmadi, Amir; Zal, Fatemeh; Bolouki, Ayeh

    2017-10-01

    Nicotine is a natural component of tobacco plants and is responsible for the addictive properties of tobacco. Nicotine has been recognized to result in oxidative stress by inducing the generation of reactive oxygen species (ROS). The purpose of this work was to estimate the hepatotoxicity effect of nicotine on viability and on antioxidant defense system in cultures of HepG2 cell line and the other hand, ameliorative effect of quercetin (Q) as an antioxidant was analyzed. Nicotine induced concentration dependent loss in HepG2 cell line viability. The results indicated that nicotine decreased activity of superoxide dismutase (SOD) and glutathione reductase (GR) and increased activities of catalase (CAT) and glutathione peroxidase (GPx) and glutathione (GSH) content in the HepG2 cells. Q significantly increased activity of SOD, GR and GSH content and decreased activity of GPX in nicotine + Q groups. Our data demonstrate that Q plays a protective role against the imbalance elicited by nicotine between the production of free radicals and antioxidant defense systems, and suggest that administration of this antioxidant may find clinical application where cellular damage is a consequence of ROS.

  7. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells.

    PubMed

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-11-13

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer's disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.

  8. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells.

    PubMed

    Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa

    2018-05-23

    In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.

  9. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    PubMed

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  10. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. © The Author(s) 2013.

  11. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro

    PubMed Central

    Yang, Jing-bo; Khan, Muhammad; He, Yang-yang; Yao, Min; Li, Yong-ming; Gao, Hong-wen; Ma, Tong-hui

    2016-01-01

    Aim: Tubeimoside-1 (TBMS1), a triterpenoid saponin extracted from the Chinese herbal medicine Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), has shown anticancer activities in various cancer cell lines. The aim of this study was to investigate the anticancer activity and molecular targets of TBMS1 in human prostate cancer cells in vitro. Methods: DU145 and P3 human prostate cancer cells were treated with TBMS1. Cell viability and apoptosis were detected. ROS generation, mitochondrial membrane potential and cell cycle profile were examined. Western blotting was used to measure the expression of relevant proteins in the cells. Results: TBMS1 (5–100 μmol/L) significantly suppressed the viability of DU145 and P3 cells with IC50 values of approximately 10 and 20 μmol/L, respectively. Furthermore, TBMS1 dose-dependently induced apoptosis and cell cycle arrest at G0/G1 phase in DU145 and P3 cells. In DU145 cells, TBMS1 induced mitochondrial apoptosis, evidenced by ROS generation, mitochondrial dysfunction, endoplasmic reticulum stress, modulated Bcl-2 family protein and cleaved caspase-3, and activated ASK-1 and its downstream targets p38 and JNK. The G0/G1 phase arrest was linked to increased expression of p53 and p21 and decreased expression of cyclin E and cdk2. Co-treatment with Z-VAD-FMK (pan-caspase inhibitor) could attenuate TBMS1-induced apoptosis but did not prevent G0/G1 arrest. Moreover, co-treatment with NAC (ROS scavenger), SB203580 (p38 inhibitor), SP600125 (JNK inhibitor) or salubrinal (ER stress inhibitor) significantly attenuated TBMS1-induced apoptosis. Conclusion: TBMS1 induces oxidative stress-mediated apoptosis in DU145 human prostate cancer cells in vitro via the mitochondrial pathway. PMID:27292614

  12. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line

    PubMed Central

    Milošević, Milena; Milićević, Katarina; Božić, Iva; Lavrnja, Irena; Stevanović, Ivana; Bijelić, Dunja; Dubaić, Marija; Živković, Irena; Stević, Zorica; Giniatullin, Rashid; Andjus, Pavle

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2–0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2

  13. Visualizing Vpr-Induced G2 Arrest and Apoptosis

    PubMed Central

    Murakami, Tomoyuki; Aida, Yoko

    2014-01-01

    Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1) with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2). The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to characterize the

  14. Role of 6-shogaol in tert -butyl hydroperoxide-induced apoptosis of HepG2 cells.

    PubMed

    Kim, Sang Chan; Lee, Jong Rok; Park, Sook Jahr

    2014-01-01

    The aim of this study was to investigate the protective effects of 6-shogaol on tert-butyl hydroperoxide (tBHP)-induced oxidative stress leading to apoptosis in human hepatoma cell line HepG2. The cells were exposed to tBHP (100 μmol/l) after pretreatment with 6-shogaol (2.5 and 5 μmol/l), and then cell viability was measured. 6-Shogaol fully prevented HepG2 cell death caused by tBHP. Treatment of tBHP resulted in apoptotic cell death as assessed by TUNEL assay and the expression of apoptosis regulator proteins, Bcl-2 family, caspases and cytochrome c. Cells treated with 6-shogaol showed rapid reduction of apoptosis by restoring these markers of apoptotic cells. In addition, 6-shogaol significantly recovered disruption of mitochondrial membrane potential as a start sign of hepatic apoptosis induced by oxidative stress. In line with this observation, antioxidative 6-shogaol inhibited generation of reactive oxygen species and depletion of reduced glutathione in tBHP-stimulated HepG2 cells. Taken together, these results for the first time showed antioxidative and antiapoptotic activities of 6-shogaol in tBHP-treated hepatoma HepG2 cells, suggesting that 6-shogaol could be beneficial in hepatic disorders caused by oxidative stress. © 2014 S. Karger AG, Basel.

  15. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells

    PubMed Central

    Ren, Zhen; Chen, Si; Qing, Tao; Xuan, Jiekun; Couch, Letha; Yu, Dianke; Ning, Baitang; Shi, Leming; Guo, Lei

    2017-01-01

    Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity. PMID:28988120

  16. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    PubMed Central

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  17. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  18. Protective Effects of Sweet Orange, Unshiu Mikan, and Mini Tomato Juice Powders on t-BHP-Induced Oxidative Stress in HepG2 Cells

    PubMed Central

    Jannat, Susoma; Ali, Md Yousof; Kim, Hyeung-Rak; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    The aim of this study was to investigate the protective effects of juice powders from sweet orange [Citrus sinensis (L.) Osbeck], unshiu mikan (Citrus unshiu Marcow), and mini tomato (Solanum lycopersicum L.), and their major flavonoids, hesperidin, narirutin, and rutin in tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. The increased reactive oxygen species and decreased glutathione levels observed in t-BHP-treated HepG2 cells were ameliorated by pretreatment with juice powders, indicating that the hepatoprotective effects of juice powders and their major flavonoids are mediated by induction of cellular defense against oxidative stress. Moreover, pretreatment with juice powders up-regulated phase-II genes such as heme oxygenase-1 (HO-1), thereby preventing cellular damage and the resultant increase in HO-1 expression. The high-performance liquid chromatography profiles of the juice powders confirmed that hesperidin, narirutin, and rutin were the key flavonoids present. Our results suggest that these fruit juice powders and their major flavonoids provide a significant cytoprotective effect against oxidative stress, which is most likely due to the flavonoid-related bioactive compounds present, leading to the normal redox status of cells. Therefore, these fruit juice powders could be advantageous as bioactive sources for the prevention of oxidative injury in hepatoma cells. PMID:27752497

  19. Citral, A Monoterpene Protect Against High Glucose Induced Oxidative Injury in HepG2 Cell In Vitro-An Experimental Study.

    PubMed

    Subramaniyan, Sri Devi; Natarajan, Ashok Kumar

    2017-08-01

    Diabetes mellitus, a major metabolic disorder associated with hyperglycaemia is one of the leading cause of death in many developed countries. However, use of natural phytochemicals have been proved to have a protective effect against oxidative damage. To investigate the effect of citral, a monoterpene on high glucose induced cytotoxicity and oxidative stress in human hepatocellular liver carcinoma (Hep G2) cell line. Cells were treated with 50 mM concentration of glucose for 24 hours incubation following citral (30 μM) was added to confluent HepG2 cells. Cell viability, Reactive Oxygen Species (ROS) generation, DNA damage, lipid peroxidation, antioxidants and Mitogen Activated Protein Kinases (MAPKs) signaling were assessed in citral and/or high glucose induced HepG2 cells. Cells treated with glucose (50 mM), resulted in increased cytotoxicity, ROS generation, DNA damage, lipid peroxidation and depletion of enzymatic and non enzymatic antioxidants. In contrast, treatment with citral (30 μM) significantly decreased cell cytotoxicity, ROS generation, DNA damage, lipid peroxidation and increased antioxidants enzymes in high glucose induced HepG2 cells. In addition, the present study highlighted that high glucose treated cells showed increased expression of Extracellular Signal Regulated Protein Kinase-1 (ERK-1), c-Jun N-terminal Kinase (JNK) and p38 in HepG2 cells. On the other hand treatment with citral significantly suppressed the expression of ERK-1, JNK and p38 in high glucose induced HepG2 cells. Citral protects against high glucose induced oxidative stress through inhibiting ROS activated MAPK signaling pathway in HepG2 cells.

  20. 6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells.

    PubMed

    Yang, Guang; Wang, Shaopeng; Zhong, Laifu; Dong, Xu; Zhang, Wenli; Jiang, Liping; Geng, Chengyan; Sun, Xiance; Liu, Xiaofang; Chen, Min; Ma, Yufang

    2012-11-01

    6-Gingerol, a major phenolic compound derived from ginger, has been known to possess anticarcinogenic activities. However, the mechanisms are not well understood. In our previous study, it was demonstrated that lysosome and mitochondria may be the primary targets for 6-gingerol in HepG2 cells. Therefore, the aim was to evaluate lysosome-mitochondria cross-signaling in 6-gingerol-induced apoptosis. Apoptosis was detected by Hoechst 33342 and TUNEL assay after 24 h treatment, and the destabilization of lysosome and mitochondria were early upstream initiating events. This study showed that cathepsin D played a crucial role in the process of apoptosis. The release of cathepsin D to the cytosol appeared to be an early event that preceded the release of cytochrome c from mitochondria. Moreover, inhibition of cathepsin D activity resulted in suppressed release of cytochrome c. To further determine the involvement of oxidative stress in 6-gingerol-induced apoptosis, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH) were examined. Taken together, these results suggest that cathepsin D may be a positive mediator of 6-gingerol induced apoptosis in HepG2 cells, acting upstream of cytochrome c release, and the apoptosis may be associated with oxidative stress. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Increased gluconeogenesis in rats exposed to hyper-G stress

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.; Hannak, K.

    1985-01-01

    The effect of gluconeogenesis on the levels of plasma glucose and liver glycogen was studied in rats exposed to hyper-G stress. Incorporation of lactate, alanine, or glycerol, labeled with C-14, into plasma glucose and liver glycogen was measured in rats centrifuged at 3.1 G for 0.25, 0.50, and 1.0-hr periods, and was compared to noncentrifuged controls injected with appropriate glycogen precursors. It was found that exposure to G-stress leads to increased incorporation from all three substrates into both plasma glucose and liver glycogen. These early incorporation increases were blocked upon pre-G administration of 5-methoxyindole-2-carboxylic acid, a gluconeogenesis inhibitor, or propanolol, a beta-adrenergic blocker, as well as by adrenodemedullation. Results indicate that the rapid rise in plasma glucose, as well as in liver glycogen in rats exposed to hyper-G stress is due to an increased rate of gluconeogenesis, and that epinephrine, released in response to hyper-G-induced activation of the sympathetic-adrenal system, plays a dominant role during the early stages of hyper-G stress.

  2. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  3. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways.

    PubMed

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Zhong, Caiyun

    2017-04-15

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemicals. Accumulating evidence indicates that exposure to BPA contributes to insulin resistance through diverse mechanism including inflammation and oxidative stress. Previous studies have suggested curcumin as a safe phytochemical which can improve obesity-related insulin resistance, inflammation and oxidative stress. The present study aimed to investigate the ability of curcumin to prevent BPA-induced insulin resistance in vitro and the underlying mechanism. Following the establishmet of in vitro insulin resistance via BPA treatment in human liver HepG2 cells, the protective effects of curcumin were determiend. We showed that treatment of HepG2 cells with 100nM BPA for 5days induced significantly decreased glucose consumption, impaired insulin signaling, elevation of pro-inflammatory cytokines and oxidative stress, and activation of signaling pathways; inhibition of JNK and p38 pathways, but not ERK nor NF-κB pathways, improved glucose consumption and insulin signaling in BPA-treated HepG2 cells. Moreover, we revealed that curcumin effectively attenuated the spectrum of effects of BPA-triggered insulin resistance, whereas pretreatment with JNK and p38 agonist anisomycin could significantly compensate the effects caused by curcumin. These data illustrated the role of JNK/p38 activation in BPA-induced insulin resistance and suggested curcumin as a promising candidate for the intervention of BPA-induced insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil.

    PubMed

    Yamada, Mizuki; Takeno, Kiyotoshi

    2014-02-15

    Poor nutrition and low temperature stress treatments induced flowering in the Japanese morning glory Pharbitis nil (synonym Ipomoea nil) cv. Violet. The expression of PnFT2, one of two homologs of the floral pathway integrator gene FLOWERING LOCUS T (FT), was induced by stress, whereas the expression of both PnFT1 and PnFT2 was induced by a short-day treatment. There was no positive correlation between the flowering response and the homolog expression of another floral pathway integrator gene SUPPRESSOR OF OVEREXPRESSION OF CO1 and genes upstream of PnFT, such as CONSTANS. In another cultivar, Tendan, flowering and PnFT2 expression were not induced by poor nutrition stress. Aminooxyacetic acid (AOA), a phenylalanine ammonia-lyase inhibitor, inhibited the flowering and PnFT2 expression induced by poor nutrition stress in Violet. Salicylic acid (SA) eliminated the inhibitory effects of AOA. SA enhanced PnFT2 expression under the poor nutrition stress but not under non-stress conditions. These results suggest that SA induces PnFT2 expression, which in turn induces flowering; SA on its own, however, may not be sufficient for induction. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells.

    PubMed

    Jian, Tunyu; Wu, Yuexian; Ding, Xiaoqin; Lv, Han; Ma, Li; Zuo, Yuanyuan; Ren, Bingru; Zhao, Lei; Tong, Bei; Chen, Jian; Li, Weilin

    2018-01-01

    Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice.

    PubMed

    Zhuang, Yongliang; Ma, Qingyu; Guo, Yan; Sun, Liping

    2017-10-01

    Rambutan peel phenolic (RPP) extracts were prepared via dynamic separation with macroporous resin. The total phenolic content and individual phenolics in RPP were determined. Results showed that the total phenolic content of RPP was 877.11 mg gallic acid equivalents (GAE)/g extract. The content of geranin (122.18 mg/g extract) was the highest among those of the 39 identified phenolic compounds. RPP protected against oxidative stress in H 2 O 2 -induced HepG2 cells in a dose-response manner. The inhibitory effects of RPP on cell apoptosis might be related to its inhibitory effects on the generation of intracellular reactive oxygen species and increased effects on superoxide dismutase activity. The in vivo anti-aging activity of RPP was evaluated using an aging mice model that was induced by d-galactose (d-gal). The results showed that RPP enhanced the antioxidative status of experimental mice. Moreover, histological analysis indicated that RPP effectively reduced d-gal-induced liver and kidney tissue damage in a dose-dependent manner. Therefore, RPP can be used as a natural antioxidant and anti-aging agent in the pharmaceutical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study of inducer load and stress, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.

  8. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    PubMed

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  10. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  11. Protective Effect of Pinus koraiensis Needle Water Extract Against Oxidative Stress in HepG2 Cells and Obese Mice

    PubMed Central

    Won, Sae Bom; Jung, Ga-young; Kim, Juhae; Chung, Young Shin; Hong, Eun Kyung

    2013-01-01

    Abstract Needles of pine species are rich in polyphenols, which may exert beneficial effects on human health. The present study was conducted to evaluate the in vitro and in vivo antioxidant effects of Pinus koraiensis needle water extracts (PKW). HepG2 cells were pretreated with various concentrations of PKW (from 10−3 to 1 mg/mL) and oxidative stress was induced by tert-butyl hydroperoxide (t-BOOH). In the animal model, male ICR mice were fed a high-fat diet for 6 weeks to induce obesity, and then mice were continually fed a high-fat diet with or without orally administered PKW (400 mg/kg body weight) for 5 weeks. Pretreatment with PKW prevented significant increases in cytotoxicity and catalase activity induced by t-BOOH in HepG2 cells. Similarly, the catalase protein expression levels elevated by t-BOOH were abrogated in cells pretreated with PKW. In mice fed a high-fat diet, PKW significantly increased hepatic activities of catalase and glutathione reductase and lower lipid peroxidation levels were observed in the liver and kidney of mice with PKW supplementation. The present study demonstrates that PKW protects against oxidative stress in HepG2 cells treated with t-BOOH and in mice fed a high-fat diet. PMID:23822143

  12. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells

    PubMed Central

    Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi

    2017-01-01

    Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (−)­epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages. PMID:28366989

  13. Nrf2 protects against oxidative stress induced by SiO2 nanoparticles.

    PubMed

    Liu, Wei; Hu, Tao; Zhou, Li; Wu, Desheng; Huang, Xinfeng; Ren, Xiaohu; Lv, Yuan; Hong, Wenxu; Huang, Guanqin; Lin, Zequn; Liu, Jianjun

    2017-10-01

    The aim of our study was to explore the role of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) on the exposure of SiO 2 nanoparticles (NPs) and its influence. To understand the mechanism of NP-induced oxidative stress, the involvement of oxidative-stress-responding transcription factors and the Nrf2/antioxidant reactive element (ARE) signaling pathway in the toxicity of SiO 2 NPs' exposure was investigated via in vivo and in vitro models. A549 cells showed a significant cytotoxic effect while A549-shNrf2 cells showed decreased cell viability after nm-SiO 2 exposure. SiO 2 NPs' exposure activated the Nrf2/ARE signaling pathway. Nrf2 -/- exposed mice showed increased reactive oxygen species, 8-hydroxyl deoxyguanosine level and decreased total antioxidant capacity. Nrf2/ARE signaling pathway activation disrupted, leading inhibition of heme oxygenase-1 and upregulation of PKR-like endoplasmic-reticulum-regulated kinase. Our findings suggested that Nrf2 could protect against oxidative stress induced by SiO 2 NPs, and the Nrf2/ARE pathway might be involved in mild-to-moderate SiO 2 NP-induced oxidative stress that was evident from dampened activity of Nrf2.

  14. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers suchmore » as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.« less

  15. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    PubMed

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  16. Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis.

    PubMed

    Donner, Nina C; Siebler, Philip H; Johnson, Danté T; Villarreal, Marcos D; Mani, Sofia; Matti, Allison J; Lowry, Christopher A

    2016-01-01

    Anxiety and affective disorders are often associated with hypercortisolism and dysfunctional serotonergic systems, including increased expression of TPH2, the gene encoding the rate-limiting enzyme of neuronal serotonin synthesis. We previously reported that chronic glucocorticoid exposure is anxiogenic and increases rat Tph2 mRNA expression, but it was still unclear if this also translates to increased TPH2 protein levels and in vivo activity of the enzyme. Here, we found that adult male rats treated with corticosterone (CORT, 100 μg/ml) via the drinking water for 21 days indeed show increased TPH2 protein expression in the dorsal and ventral part of the dorsal raphe nucleus (DRD, DRV) during the light phase, abolishing the enzyme's diurnal rhythm. In a second study, we systemically blocked the conversion of 5-hydroxytryptophan (5-HTP) to serotonin immediately before rats treated with CORT or vehicle were either exposed to 30 min acoustic startle stress or home cage control conditions. This allowed us to measure 5-HTP accumulation as a direct readout of basal versus stress-induced in vivo TPH2 activity. As expected, basal TPH2 activity was elevated in the DRD, DRV and MnR of CORT-treated rats. In response to stress, a multitude of serotonergic systems reacted with increased TPH2 activity, but the stress-, anxiety-, and learned helplessness-related dorsal and caudal DR (DRD/DRC) displayed stress-induced increases in TPH2 activity only after chronic CORT-treatment. To address the mechanisms underlying this region-specific CORT-dependent sensitization, we stereotaxically implanted CORT-treated rats with cannulae targeting the DR, and pharmacologically blocked either corticotropin-releasing hormone receptor type 1 (CRHR1) or type 2 (CRHR2) 10 min prior to acoustic startle stress. CRHR2 blockade prevented stress-induced increases of TPH2 activity within the DRD/DRC, while blockade of CRHR1 potentiated stress-induced TPH2 activity in the entire DR. Stress-induced TPH2

  17. Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis

    PubMed Central

    Donner, Nina C.; Siebler, Philip H.; Johnson, Danté T.; Villarreal, Marcos D.; Mani, Sofia; Matti, Allison J.; Lowry, Christopher A.

    2015-01-01

    Anxiety and affective disorders are often associated with hypercortisolism and dysfunctional serotonergic systems, including increased expression of TPH2, the gene encoding the rate-limiting enzyme of neuronal serotonin synthesis. We previously reported that chronic glucocorticoid exposure is anxiogenic and increases rat Tph2 mRNA expression, but it was still unclear if this also translates to increased TPH2 protein levels and in vivo activity of the enzyme. Here, we found that adult male rats treated with corticosterone (CORT, 100 μg/ml) via the drinking water for 21 days indeed show increased TPH2 protein expression in the dorsal and ventral part of the dorsal raphe nucleus (DRD, DRV) during the light phase, abolishing the enzyme’s diurnal rhythm. In a second study, we systemically blocked the conversion of 5-hydroxytryptophan (5-HTP) to serotonin immediately before rats treated with CORT or vehicle were either exposed to 30 min acoustic startle stress or home cage control conditions. This allowed us to measure 5-HTP accumulation as a direct readout of basal versus stress-induced in vivo TPH2 activity. As expected, basal TPH2 activity was elevated in the DRD, DRV and MnR of CORT-treated rats. In response to stress, a multitude of serotonergic systems reacted with increased TPH2 activity, but the stress-, anxiety-, and learned helplessness-related dorsal and caudal DR (DRD/DRC) displayed stress-induced increases in TPH2 activity only after chronic CORT-treatment. To address the mechanisms underlying this region-specific CORT-dependent sensitization, we stereotaxically implanted CORT-treated rats with cannulae targeting the DR, and pharmacologically blocked either corticotropin-releasing hormone receptor type 1 (CRHR1) or type 2 (CRHR2) 10 min prior to acoustic startle stress. CRHR2 blockade prevented stress-induced increases of TPH2 activity within the DRD/DRC, while blockade of CRHR1 potentiated stress-induced TPH2 activity in the entire DR. Stress-induced TPH

  18. Atmospheric Pressure Room Temperature Plasma Jets Facilitate Oxidative and Nitrative Stress and Lead to Endoplasmic Reticulum Stress Dependent Apoptosis in HepG2 Cells

    PubMed Central

    Meng, Dandan; Lei, Qian; Li, Yin; Deng, Pengyi; Chen, Mingjie; Tu, Min; Lu, Xinpei; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment. PMID:24013954

  19. C1473G polymorphism in mouse tryptophan hydroxylase-2 gene in the regulation of the reaction to emotional stress.

    PubMed

    Bazhenova, Ekaterina Y; Bazovkina, Daria V; Kulikova, Elizabeth A; Fursenko, Dariya V; Khotskin, Nikita V; Lichman, Daria V; Kulikov, Alexander V

    2017-02-15

    Neurotransmitter serotonin (5-HT) is involved in the regulation of stress response. Tryptophan hydroxylase-2 (TPH2) is the key enzyme of serotonin (5-HT) synthesis in the brain. C1473G polymorphism in Tph2 gene is the main factor defining the enzyme activity in the brain of laboratory mice. The effect of interaction between C1473G polymorphism and 30min restriction stress on the behavior in the open field test, c-Fos gene expression and 5-HT metabolism in the brain in adult male of B6-1473C and B6-1473G congenic mouse lines with high and low TPH2 activity was investigated. A significant effect of genotype x stress interaction on c-Fos mRNA in the hypothalamus (F 1,21 =10.66, p<0.001) and midbrain (F 1,21 =9.18, p<0.01) was observed. The stress-induced rise of c-Fos mRNA in these structures is more intensive in B6-1473G than in B6-1473C mice. A marked effect of genotype x stress interaction on 5-HT level in the cortex (F 1,18 =9.38, p<0.01) and 5-HIAA/5-HT turnover rate in the hypothalamus (F 1,18 =9.01, p<0.01) was revealed. The restriction significantly decreased 5-HT level in the cortex (p<0.01) and increased 5-HIAA/5-HT rate (p<0.001) in the hypothalamus in B6-1473C mice, but not in B6-1473G mice. The present result is the first experimental evidence that C1473G polymorphism is involved in the regulation of the reaction to emotional stress in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inheritance of stress-induced, ATF-2-dependent epigenetic change.

    PubMed

    Seong, Ki-Hyeon; Li, Dong; Shimizu, Hideyuki; Nakamura, Ryoichi; Ishii, Shunsuke

    2011-06-24

    Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.

    PubMed

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    PubMed Central

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  3. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  4. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway.

    PubMed

    Shi, Chunli; Zhou, Xue; Zhang, Jiayu; Wang, Jiachun; Xie, Hong; Wu, Zhigang

    2016-07-01

    α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway. Copyright © 2016. Published by Elsevier B.V.

  5. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of themore » genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.« less

  6. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  7. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage

  8. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress.

    PubMed

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S

    2010-08-01

    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  9. Mood and autonomic responses to repeated exposure to the Trier Social Stress Test for Groups (TSST-G).

    PubMed

    Boesch, Maria; Sefidan, Sandra; Ehlert, Ulrike; Annen, Hubert; Wyss, Thomas; Steptoe, Andrew; La Marca, Roberto

    2014-05-01

    A group version of the Trier Social Stress Test (TSST-G) was introduced as a standardized, economic and efficient tool to induce a psychobiological stress response simultaneously in a group of subjects. The aim of the present study was to examine the efficacy of the TSST-G to repeatedly induce an affective and autonomic stress response while comparing two alternative protocols for the second examination. Healthy young male recruits participated twice in the TSST-G 10 weeks apart. In the first examination, the TSST-G consisted of a combination of mental arithmetic and a fake job interview (TSST-G-1st; n=294). For the second examination, mental arithmetic was combined with either (a) a defensive speech in response to a false shoplifting accusation (TSST-G-2nd-defence; n=105), or (b) a speech on a more neutral topic selected by the investigators (TSST-G-2nd-presentation; n=100). Affect ratings and salivary alpha-amylase (sAA) were determined immediately before and after the stress test, while heart rate (HR) and heart rate variability (HRV) were measured continuously. TSST-G-1st resulted in a significant increase of negative affect, HR, and sAA, and a significant decrease in positive affect and HRV. TSST-G-2nd, overall, resulted in a significant increase of HR and sAA (the latter only in response to TSST-G-2nd-defence) and a decrease in HRV, while no significant affect alterations were found. When comparing both, TSST-G-2nd-defence and -2nd-presentation, the former resulted in a stronger stress response with regard to HR and HRV. The findings reveal that the TSST-G is a useful protocol to repeatedly evoke an affective and autonomic stress response, while repetition leads to affective but not necessarily autonomic habituation. When interested in examining repeated psychosocial stress reactivity, a task that requires an ego-involving effort, such as a defensive speech, seems to be significantly superior to a task using an impersonal speech. Copyright © 2014 Elsevier

  10. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com; Cheah, Yew-Hoong; Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action ofmore » xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.« less

  11. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells.

    PubMed

    Su, Zi-Jie; Wei, Ying-Yi; Yin, Dan; Shuai, Xue-Hong; Zeng, Yun; Hu, Ting-Jun

    2013-11-01

    In this study, an oxidative stress model was first developed in a mouse macrophage cell line (RAW264.7 cells) by infecting the cells with porcine circovirus type 2 (PCV2). The regulatory effect of Sophora subprosrate polysaccharide (SSP) on PCV2-induced oxidative stress was investigated. The results showed that after infection with PCV2, reactive oxygen species (ROS) and nitric oxide (NO) production, myeloperoxidase (MPO) activity, and inducible nitric oxide synthase (iNOS) expression were significantly increased. Meanwhile, the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) and hydroxyl radical prevention capacity were greatly reduced. These data indicate successful creation of an oxidative stress model in RAW264.7 cells. A dramatic decrease in cell viability was observed in the cells exposed to oxidative stress compared to the control. When the cells were treated with SSP in concentrations of 100, 200 or 400 μg/mL post PCV2 infection, an increase in the GSH/GSSG ratio and hydroxyl radical prevention capacity was observed. We also observed decreased ROS and NO production, MPO activity, and iNOS expression in the infected cells. Our results demonstrated that PCV2 infection was able to induce oxidative stress in RAW264.7 cells and that SSP could reduce the negative effects resulting from the PCV2 infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a.

    PubMed

    An, Phan Nguyen Thuy; Shimaji, Kouhei; Tanaka, Ryo; Yoshida, Hideki; Kimura, Hiroshi; Fukusaki, Eiichiro; Yamaguchi, Masamitsu

    2017-08-04

    Epigenetics is now emerging as a key regulation in response to various stresses. We herein identified the Drosophila histone methyltransferase G9a (dG9a) as a key factor to acquire tolerance to starvation stress. The depletion of dG9a led to high sensitivity to starvation stress in adult flies, while its overexpression induced starvation stress resistance. The catalytic domain of dG9a was not required for starvation stress resistance. dG9a plays no apparent role in tolerance to other stresses including heat and oxidative stresses. Metabolomic approaches were applied to investigate global changes in the metabolome due to the loss of dG9a during starvation stress. The results obtained indicated that dG9a plays an important role in maintaining energy reservoirs including amino acid, trehalose, glycogen, and triacylglycerol levels during starvation. Further investigations on the underlying mechanisms showed that the depletion of dG9a repressed starvation-induced autophagy by controlling the expression level of Atg8a, a critical gene for the progression of autophagy, in a different manner to that in cancer cells. These results indicate a positive role for dG9a in starvation-induced autophagy.

  13. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    PubMed

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  14. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    PubMed

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  16. H2S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Sen, Utpal; Vacek, Thomas P.; Kumar, Munish; Hughes, William M.; Kundu, Soumi

    2009-01-01

    Abstract Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nω-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. Antioxid. Redox Signal. 11, 25–33. PMID:18837652

  17. Sterigmatocystin induces G1 arrest in primary human esophageal epithelial cells but induces G2 arrest in immortalized cells: key mechanistic differences in these two models.

    PubMed

    Wang, Juan; Huang, Shujuan; Xing, Lingxiao; Cui, Jinfeng; Tian, Ziqiang; Shen, Haitao; Jiang, Xiujuan; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2015-11-01

    Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest

  18. Tetrandrine Induces Apoptosis in Human Nasopharyngeal Carcinoma NPC-TW 039 Cells by Endoplasmic Reticulum Stress and Ca2+/Calpain Pathways.

    PubMed

    Liu, Kuo-Ching; Lin, Ya-Jing; Hsiao, Yung-Ting; Lin, Meng-Liang; Yang, Jiun-Long; Huang, Yi-Ping; Chu, Yung-Lin; Chung, Jing-Gung

    2017-11-01

    Tetrandrine is an alkaloid extracted from a traditional China medicine plant, and is considered part of food therapy as well. In addition, it has been widely reported to induce apoptotic cell death in many human cancer cells. However, the mechanism of Tetrandrine on human nasopharyngeal carcinoma cells (NPC) is still questioned. In our study, we examined whether Tetrandrine can induce apoptosis of NPC-TW 039 cells. We found that cell morphology was changed after treatment with different concentrations of Tetrandrine. Further, we indicated that the NPC-TW 039 cells viability decreased in a Tetrandrine dose-dependent manner. We also found that tetrandrine induced cell cycle arrest in G 0 /G 1 phase. Tetrandrine induced DNA condensation by DAPI staining as well. In addition, we found that Tetrandrine induced Ca 2+ release in the cytosol. At the same time, endoplasmic reticulum (ER) stress occurred. Then we used western blotting to examine the protein expression which is associated with mitochondria-mediated apoptotic pathways and caspase-dependent pathways. To further examine whether Ca 2+ was released or not with Tetrandrine induced-apoptosis, we used the chelator of Ca 2+ and showed that cell viability increased. At the same time, caspase-3 expression was decreased. Furthermore, confocal microscopy examination revealed that Tetrandrine induced expression of ER stress-related proteins GADD153 and GRP78. Our results indicate that Tetrandrine induces apoptosis through calcium-mediated ER stress and caspase pathway in NPC-TW 039 cells. In conclusion, Tetrandrine may could be used for treatment of human nasopharyngeal carcinoma in future. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Protective effects of flavonoids isolated from Korean milk thistle Cirsium japonicum var. maackii (Maxim.) Matsum on tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells.

    PubMed

    Jung, Hyun Ah; Abdul, Qudeer Ahmed; Byun, Jeong Su; Joung, Eun-Ji; Gwon, Wi-Gyeong; Lee, Min-Sup; Kim, Hyeung-Rak; Choi, Jae Sue

    2017-09-14

    Milk thistle leaves and flowers have been traditionally used as herbal remedy to alleviate liver diseases for decades. Korean milk thistle, Cirsium japonicum var. maackii (Maxim.) Matsum has been employed in traditional folk medicine as diuretic, antiphlogistic, hemostatic, and detoxifying agents. The aim of current investigation was to evaluate hepatoprotective properties of the MeOH extract of the roots, stems, leaves and flowers of Korean milk thistle as well as four isolated flavonoids, luteolin, luteolin 5-O-glucoside, apigenin and apigenin 7-O-glucuronide during t-BHP-induced oxidative stress in HepG2 cells. Hepatoprotective potential of the MeOH extracts and flavonoids derived from Korean milk thistle against t-BHP-induced oxidative stress in HepG2 cells were evaluated following MTT method. Incubating HepG2 cells with t-BHP markedly decreased the cell viability and increased the intracellular ROS generation accompanied by depleted GSH levels. Protein expression of heme oxygenase (HO-1) and nuclear factor-E2-related factor 2 (Nrf-2) was determined by Western blot. Our findings revealed that pretreating HepG2 cells with MeOH extracts and bioactive flavonoids significantly attenuated the t-BHP-induced oxidative damage, followed by increased cell viability in a dose-dependent manner. The results illustrate that excess ROS generation was reduced and GSH levels increased dose-dependently when HepG2 cells were pretreated with four flavonoids. Moreover, Western blotting analysis demonstrated that protein expressions of Nrf-2 and HO-1 were also up-regulated by flavonoids treatment. These results clearly demonstrate that the MeOH extracts and flavonoids from Korean milk thistle protected HepG2 cells against oxidative damage triggered by t-BHP principally by modulating ROS generation and restoring depleted GSH levels in addition to the increased Nrf-2/HO-1 signaling cascade. These flavonoids are potential natural antioxidative biomarkers against oxidative stress-induced

  20. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  1. The triterpenoids of Ganoderma tsugae prevent stress-induced myocardial injury in mice.

    PubMed

    Kuok, Qian-Yu; Yeh, Chen-Yu; Su, Bor-Chyuan; Hsu, Pei-Ling; Ni, Hao; Liu, Ming-Yie; Mo, Fan-E

    2013-10-01

    Ganoderma mushrooms (Lingzhi in Chinese) have well-documented health benefits. Ganoderma tsugae (G. tsugae), one of the ganoderma species, has been commercially cultivated as a dietary supplement. Because G. tsugae has high antioxidant activity and because oxidative stress is often associated with cardiac injury, we hypothesized that G. tsugae protects against cardiac injury by alleviating oxidative stress. We tested the hypothesis using a work-overload-induced myocardial injury model created by challenging mice with isoproterenol (ISO). Remarkably, oral G. tsugae protected the mice from ISO-induced myocardial injury. Moreover, the triterpenoid fraction of G. tsugae, composed of a mixture of nine structurally related ganoderic acids (GAs), provided cardioprotection by inhibiting the ISO-induced expression of Fas/Fas ligand, oxidative stress, and apoptosis. The antioxidant activity of GAs was tested in cultured cardio-myoblast H9c2 cells against the insult of H₂O₂. GAs dissipated the cellular reactive oxygen species imposed by H₂O₂ and prevented cell death. Our findings uncovered the cardioprotective activity of G. tsugae and identified GAs as the bioactive components against cardiac insults. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mangiferin, a Dietary Xanthone Protects Against Mercury-Induced Toxicity in HepG2 Cells

    PubMed Central

    Agarwala, Sobhika; Rao, B. Nageshwar; Mudholkar, Kaivalya; Bhuwania, Ridhirama; Rao, B. S. Satish

    2012-01-01

    Mercury is one of the noxious heavy metal environmental toxicants and is a cause of concern for human exposure. Mangiferin (MGN), a glucosylxanthone found in Mangifera indica, reported to have a wide range of pharmacological properties. The objective of this study was to evaluate the cytoprotective potential of MGN, against mercury chloride (HgCl2) induced toxicity in HepG2 cell line. The cytoprotective effect of MGN on HgCl2 induced toxicity was assessed by colony formation assay, while antiapoptotic effect by fluorescence microscopy, flow cytometric DNA analysis, and DNA fragmentation pattern assays. Further, the cytoprotective effect of MGN against HgCl2 toxicity was assessed by using biochemical parameters like reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) by spectrophotometrically, mitochondrial membrane potential by flowcytometry and the changes in reactive oxygen species levels by DCFH-DA spectrofluoremetric analysis. A significant increase in the surviving fraction was observed with 50 µM of MGN administered two hours prior to various concentrations of HgCl2. Further, pretreatment of MGN significantly decreased the percentage of HgCl2 induced apoptotic cells. Similarly, the levels of ROS generated by the HgCl2 treatment were inhibited significantly (P < 0.01) by MGN. MGN also significantly (P < 0.01) inhibited the HgCl2 induced decrease in GSH, GST, SOD, and CAT levels at all the post incubation intervals. Our study demonstrated the cytoprotective potential of MGN, which may be attributed to quenching of the ROS generated in the cells due to oxidative stress induced by HgCl2, restoration of mitochondrial membrane potential and normalization of cellular antioxidant levels. PMID:20629087

  3. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    PubMed

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Stress Induces AMP-Dependent Loss of Potency Factors Id2 and Cdx2 in Early Embryos and Stem Cells

    PubMed Central

    Xie, Yufen; Awonuga, Awoniyi; Liu, Jian; Rings, Edmond; Puscheck, Elizabeth Ella

    2013-01-01

    The AMP-activated protein kinase (AMPK) mediates rapid, stress-induced loss of the inhibitor of differentiation (Id)2 in blastocysts and trophoblast stem cells (TSC), and a lasting differentiation in TSC. However, it is not known if AMPK regulates other potency factors or regulates them before the blastocyst stage. The caudal-related homeodomain protein (Cdx)2 is a regulatory gene for determining TSC, the earliest placental lineage in the preimplantation mouse embryo, but is expressed in the oocyte and in early cleavage stage embryos before TSC arise. We assayed the expression of putative potency-maintaining phosphorylated Cdx2 ser60 in the oocyte, two-cell stage embryo, blastocyst, and in TSC. We studied the loss of Cdx2 phospho ser60 expression induced by hyperosmolar stress and its underlying mechanisms. Hyperosmolar stress caused rapid loss of nuclear Cdx2 phospho ser60 and Id2 in the two-cell stage embryo by 0.5 h. Stress-induced Cdx2 phospho ser60 and Id2 loss is reversed by the AMPK inhibitor compound C and is induced by the AMPK agonist 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide in the absence of stress. In the two-cell stage embryo and TSC hyperosmolar, stress caused AMPK-mediated loss of Cdx2 phospho ser60 as detected by immunofluorescence and immunoblot. We propose that AMPK may be the master regulatory enzyme for mediating stress-induced loss of potency as AMPK is also required for stress-induced loss of Id2 in blastocysts and TSC. Since AMPK mediates potency loss in embryos and stem cells it will be important to measure, test mechanisms for, and manage the AMPK function to optimize the stem cell and embryo quality in vitro and in vivo. PMID:23316940

  5. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    PubMed

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  6. Translocation of TRPV2 channel induced by focal administration of mechanical stress

    PubMed Central

    Nagasawa, Masahiro; Kojima, Itaru

    2015-01-01

    The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca2+ concentration ([Ca2+]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca2+]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca2+]s was not observed by removal of extracellular Ca2+, by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca2+]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca2+]s. PMID:25677550

  7. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    PubMed

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  8. Hepatoprotective effect of 10% ethanolic extract from Curdrania tricuspidata leaves against ethanol-induced oxidative stress through suppression of CYP2E1.

    PubMed

    You, Yanghee; Min, Seoyoung; Lee, Yoo-Hyun; Hwang, Kwontack; Jun, Woojin

    2017-10-01

    The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Translocation of TRPV2 channel induced by focal administration of mechanical stress.

    PubMed

    Nagasawa, Masahiro; Kojima, Itaru

    2015-02-01

    The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca(2+) concentration ([Ca(2+)]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca(2+)]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca(2+)]s was not observed by removal of extracellular Ca(2+), by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca(2+)]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca(2+)]s. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Baicalin Ameliorates H2O2 Induced Cytotoxicity in HK-2 Cells through the Inhibition of ER Stress and the Activation of Nrf2 Signaling

    PubMed Central

    Lin, Miao; Li, Long; Zhang, Yi; Zheng, Long; Xu, Ming; Rong, Ruiming; Zhu, Tongyu

    2014-01-01

    Renal ischemia-reperfusion injury plays a key role in renal transplantation and greatly affects the outcome of allograft. Our previous study proved that Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, protects kidney from ischemia-reperfusion injury. This study aimed to study the underlying mechanism in vitro. Human renal proximal tubular epithelial cell line HK-2 cells were stimulated by H2O2 with and without Baicalin pretreatment. The cell viability, apoptosis and oxidative stress level were measured. The expression of endoplasmic reticulum (ER) stress hallmarks, such as binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP), were analyzed by western blot and real-time PCR. NF-E2-related factor 2 (Nrf2) expression was also measured. In the H2O2 group, cell viability decreased and cell apoptosis increased. Reactive Oxygen Species (ROS) and Glutathione/Oxidized Glutathione (GSH/GSSG) analysis revealed increased oxidative stress. ER stress and Nrf2 signaling also increased. Baicalin pretreatment ameliorated H2O2-induced cytotoxicity, reduced oxidative stress and ER stress and further activated the anti-oxidative Nrf2 signaling pathway. The inducer of ER stress and the inhibitor of Nrf2 abrogated the protective effects, while the inhibitor of ER stress and the inducer of Nrf2 did not improve the outcome. This study revealed that Baicalin pretreatment serves a protective role against H2O2-induced cytotoxicity in HK-2 cells, where the inhibition of ER stress and the activation of downstream Nrf2 signaling are involved. PMID:25029541

  11. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced

  12. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellularmore » carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.« less

  13. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  14. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids

    PubMed Central

    Jaeger, Doris; Schoiswohl, Gabriele; Hofer, Peter; Schreiber, Renate; Schweiger, Martina; Eichmann, Thomas O.; Pollak, Nina M.; Poecher, Nadja; Grabner, Gernot F.; Zierler, Kathrin A.; Eder, Sandra; Kolb, Dagmar; Radner, Franz P.W.; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Kershaw, Erin E.; Haemmerle, Guenter

    2015-01-01

    Background & Aims Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. Methods Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. Results Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. Conclusions AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis. PMID:25733154

  15. The basolateral amygdala dopaminergic system contributes to the improving effect of nicotine on stress-induced memory impairment in rats.

    PubMed

    Keshavarzian, Elnaz; Ghasemzadeh, Zahra; Rezayof, Ameneh

    2018-05-18

    Stress seems to be an important risk factor in the beginning and continuing stages of cigarette tobacco smoking in humans. Considering that both of nicotine administration and stress exposure affect cognitive functions including memory formation, the aim of the present study was 1) to evaluate the effect of subcutaneous (s.c.) administration of nicotine on memory formation under stress and 2) to assess the possible role of the basolateral amygdala (BLA) dopamine D1 and D2 receptors in the effect of nicotine on stress-induced memory retrieval impairment. Adult male wistar rats were bilaterally implanted in the BLA. A step-through type passive avoidance task was used to measure memory retrieval. To induce acute stress, the animals were placed on an elevated platform. The results showed that pre-test exposure to 20 and 30 min stress, but not 10 min, impaired memory retrieval. Nicotine administration (0.05 mg/kg, s.c.) improved stress-induced memory retrieval impairment. The activation of the BLA dopamine receptors via bilateral microinjection of apomorphine (0.025-0.4 μg/rat), a non-selective dopamine receptor agonist, potentiated the effect of nicotine on stress-induced memory retrieval impairment. Interestingly, intra-BLA microinjection of SCH23390 (a selective dopamine D1 receptor antagonist; 0.02-0.5 μg/rat) or sulpiride (a selective dopamine D2 receptor antagonist; 0.02-0.5 μg/rat) dose-dependently inhibited nicotine-induced improvement of the stress amnesic effect. Taken together, it can be concluded that stress-induced impairment of memory retrieval can be improved by nicotine administration. Moreover, the dopaminergic neurotransmission in the BLA through D1 and D2 receptors mediates the improving effect of nicotine on stress-induced memory retrieval impairment. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice.

    PubMed

    Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan

    2014-01-01

    A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.

  17. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway.

    PubMed

    Zhang, Dong; Ma, Qingyong; Wang, Zheng; Zhang, Min; Guo, Kun; Wang, Fengfei; Wu, Erxi

    2011-11-26

    Smoking and stress, pancreatic cancer (PanCa) risk factors, stimulate nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  18. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells.

    PubMed

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-11-09

    This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway.

  19. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  20. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    PubMed

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2.

    PubMed

    Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Lee, Won-Sup; Kim, Eun-Hee; Kim, Gon Sup

    2016-06-01

    Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells. © 2015 Wiley Periodicals, Inc.

  3. Origin of MeV ion irradiation-induced stress changes in SiO2

    NASA Astrophysics Data System (ADS)

    Brongersma, M. L.; Snoeks, E.; van Dillen, T.; Polman, A.

    2000-07-01

    The 4 MeV Xe ion irradiation of a thin thermally grown SiO2 film on a Si substrate leads to four different effects in which each manifests itself by a characteristic change in the mechanical stress state of the film: densification, ascribed to a beam-induced structural change in the silica network; stress relaxation by radiation-enhanced plastic flow; anisotropic expansion and stress generation; and transient stress relaxation ascribed to the annealing of point defects. Using sensitive wafer-curvature measurements, in situ measurements of the in-plane mechanical stress were made during and after ion irradiation at various temperatures in the range from 95 to 575 K, in order to study the magnitude of these effects, the mechanism behind them, as well as their interplay. It is found that the structural transformation leads to a state with an equilibrium density that is 1.7%-3.2% higher than the initial state, depending on the irradiation temperature. Due to the constraint imposed by the substrate, this transformation causes a tensile in-plane stress in the oxide film. This stress is relaxed by plastic flow, leading to densification of the film. The anisotropic strain-generation rate decreases linearly with temperature from (2.5±0.4)×10-17cm2/ion at 95 K to (-0.9±0.7)×10-17 cm2/ion at 575 K. The spectrum of irradiation-induced point defects, measured from the stress change after the ion beam was switched off, peaks below 0.23 eV and extends up to 0.80 eV. All four irradiation-induced effects can be described using a thermal spike model.

  4. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  5. 6-gingerol prevents patulin-induced genotoxicity in HepG2 cells.

    PubMed

    Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Liu, Xiaofang; Chen, Min; Ma, Yufang

    2011-10-01

    Patulin (PAT) is a mycotoxin produced by several Penicillium, Aspergillus and Byssochlamys species. Since PAT is a potent genotoxic compound, and PAT contamination is common in fruits and fruit products, the search for newer, better agents for protection against genotoxicity of PAT is required. In this study, the chemoprotective effect of 6-gingerol against PAT-induced genotoxicity in HepG2 cells was investigated. The comet assay and micronucleus test (MNT) were used to monitor genotoxic effects. To further elucidate the underlying mechanisms, the intracellular generation of reactive oxygen species (ROS) and level of reduced glutathione (GSH) were tested. In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG). The results showed that 6-gingerol significantly reduced the DNA strand breaks and micronuclei formation caused by PAT. Moreover, 6-gingerol effectively suppressed PAT-induced intracellular ROS formation and 8-OHdG level. The GSH depletion induced by PAT in HepG2 cells was also attenuated by 6-gingerol pretreatment. These findings suggest that 6-gingerol has a strong protective ability against the genotoxicity caused by PAT, and the antioxidant activity of 6-gingerol may play an important part in attenuating the genotoxicity of PAT. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  7. Novel role of TRPV2 in promoting the cytotoxicity of H2O2-mediated oxidative stress in human hepatoma cells.

    PubMed

    Ma, Wenbo; Li, Caiyue; Yin, Shikui; Liu, Jingxin; Gao, Chao; Lin, Zuoxian; Huang, Rongqi; Huang, Jufang; Li, Zhiyuan

    2015-12-01

    Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis.

    PubMed

    Lee, Jong Seok; Kim, Young Rae; Song, In Gyu; Ha, Suk-Jin; Kim, Young Eon; Baek, Nam-In; Hong, Eock Kee

    2015-02-01

    The extract obtained from berries contains high amounts of anthocyanins, and this extract is used as a phytotherapeutic agent for different types of diseases. In this study, we examined the cytoprotective effects of cyanidin-3-glucoside (C3G) isolated from mulberry fruit against pancreatic β-cell apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress. The MIN6 pancreatic β-cells were used to investigate the cytoprotective effects of C3G on the oxidative stress-induced apoptosis of cells. Cell viability was examined by MTT assay and lipid peroxidation was assayed by thiobarbituric acid (TBA) reaction. Immunofluorescence staining, flow cytometry and western blot analysis were also used to determine apoptosis and the expression of proteins associated with apoptosis. Our results revealed that H2O2 increased the rate of apoptosis by stimulating various pro-apoptotic processes, such as the generation of intracellular reactive oxygen species (ROS), lipid peroxidation, DNA fragmentation and caspase-3 activation. However, C3G reduced the H2O2-induced cell death in the MIN6N pancreatic β-cells. In addition, we confirmed that H2O2 activated mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. C3G inhibited the phosphorylation of ERK and p38 without inducing the phosphorylation of JNK. Furthermore, C3G regulated the intrinsic apoptotic pathway-associated proteins, such as proteins belonging to the Bcl-2 family, cytochrome c and caspase-3. Taken together, our results suggest that C3G isolated from mulberry fruit has potential for use as a phytotherapeutic agent for the prevention of diabetes by preventing oxidative stress-induced β-cell apoptosis.

  9. Anti-cancer Activity of Osmanthus matsumuranus Extract by Inducing G2/M Arrest and Apoptosis in Human Hepatocellular Carcinoma Hep G2 Cells

    PubMed Central

    Jin, Soojung; Park, Hyun-Jin; Oh, You Na; Kwon, Hyun Ju; Kim, Jeong-Hwan; Choi, Yung Hyun; Kim, Byung Woo

    2015-01-01

    Background: Osmanthus matsumuranus, a species of Oleaceae, is found in East Asia and Southeast Asia. The bioactivities of O. matsumuranus have not yet been fully understood. Here, we studied on the molecular mechanisms underlying anti-cancer effect of ethanol extract of O. matsumuranus (EEOM). Methods: Inhibitory effect of EEOM on cell growth and proliferation was determined by WST assay in various cancer cells. To investigate the mechanisms of EEOM-mediated cytotoxicity, HepG2 cells were treated with various concentration of EEOM and analyzed the cell cycle arrest and apoptosis induction by flow cytometry, Western blot analysis, 4,6-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation. Results: EEOM showed the cytotoxic activities in a dose-dependent manner in various cancer cell lines but not in normal cells, and HepG2 cells were most susceptible to EEOM-induced cytotoxicity. EEOM induced G2/M arrest in HepG2 cells associated with decreased expression of cyclin-dependent kinase 1 (CDK1), cyclin A and cylcin B, and increased expression of phospho-checkpoint kinase 2, p53 and CDK inhibitor p21. Immunofluorescence staining showed that EEOM-treated HepG2 increased doublet nuclei and condensed actin, resulting in cell rounding. Furthermore, EEOM-mediated apoptosis was determined by Annexin V staining, chromatin condensation and DNA fragmentation. EEOM caused upregulation of FAS and Bax, activation of caspase-3, -8, -9, and fragmentation of poly ADP ribose polymerase. Conclusions: These results suggest that EEOM efficiently inhibits proliferation of HepG2 cells by inducing both G2/M arrest and apoptosis via intrinsic and extrinsic pathways, and EEOM may be used as a cancer chemopreventive agent in the food or nutraceutical industry. PMID:26734586

  10. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway.

    PubMed

    Wang, Peng; Gao, Yi-Meng; Sun, Xing; Guo, Na; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2017-04-01

    2'-O-galloylhyperin (2'-O-GH), an active compound isolated from Pyrola calliantha, possesses remarkable antioxidant activity. The aims of this study were to investigate the hepatoprotective effect of 2'-O-GH against oxidative stress and elucidate the underlying mechanistic signaling pathways in HepG2 cells as well as in an animal model. Results showed that 2'-O-GH significantly inhibited hydrogen peroxide (H 2 O 2 )-induced HepG2 cell death in a dose dependent manner. The mitogen-activated protein kinase activation, ROS production, mitochondrial membrane potential, intracellular calcium level and subsequent apoptotic protein activation in H 2 O 2 -stimulated HepG2 cells were remarkably inhibited by 2'-O-GH. Furthermore, 2'-O-GH stimulation resulted in a fast and dramatic activation of Akt and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with the increased expression of heme oxygenase-1 (HO-1) and levels of glutathione (GSH). Meanwhile, histopathological evaluation of the liver also revealed that 2'-O-GH effectively ameliorated CCl 4 -induced the hepatic damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Therefore, these results suggested the hepatoprotective effect of 2'-O-GH might be correlated with its antioxidant and free radical scavenger effect. Copyright © 2017. Published by Elsevier Ltd.

  11. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression.

    PubMed

    Qin, Wang-Sen; Deng, Yu-Hui; Cui, Fa-Cai

    2016-08-01

    Acrolein (2-propenal) is a reactive α, β-unsaturated aldehyde which causes a health hazard to humans. The present study focused on determining the protection offered by sulforaphane against acrolein-induced damage in peripheral blood mononuclear cells (PBMC). Acrolein-induced oxidative stress was determined through evaluating the levels of reactive oxygen species, protein carbonyl and sulfhydryl content, thiobarbituric acid reactive species, total oxidant status and antioxidant status (total antioxidant capacity, glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase activity). Also, Nrf-2 expression levels were determined using western blot analysis. Acrolein-induced inflammation was determined through analyzing expression of cyclooxygenase-2 by western blot and PGE2 levels by ELISA. The protection offered by sulforaphane against acrolein-induced oxidative stress and inflammation was studied. Acrolein showed a significant (p < 0.001) increase in the levels of oxidative stress parameters and down-regulated Nrf-2 expression. Acrolein-induced inflammation was observed through upregulation (p < 0.001) of COX-2 and PGE2 levels. Pretreatment with sulforaphane enhanced the antioxidant status through upregulating Nrf-2 expression (p < 0.001) in PBMC. Acrolein-induced inflammation was significantly inhibited through suppression of COX-2 (p < 0.001) and PGE2 levels (p < 0.001). The present study provides clear evidence that pre-treatment with sulforaphane completely restored the antioxidant status and prevented inflammatory responses mediated by acrolein. Thus the protection offered by sulforaphane against acrolein-induced damage in PBMC is attributed to its anti-oxidant and anti-inflammatory potential.

  12. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 {+-} 0.1 {sup o}C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. Withmore » silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.« less

  13. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats.

    PubMed

    Faramarzi, G; Zendehdel, M; Haghparast, A

    2016-10-01

    Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more

  14. Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells

    PubMed Central

    Du, Yichen; Esfandi, Ramak; Willmore, William G.; Tsopmo, Apollinaire

    2016-01-01

    The purpose of this study was to determine, for the first time, antioxidant activities of seven peptides (P1–P7) derived from hydrolysis of oat proteins in a cellular model. In the oxygen radical absorbance capacity (ORAC) assay, it was found that P2 had the highest radical scavenging activity (0.67 ± 0.02 µM Trolox equivalent (TE)/µM peptide) followed by P5, P3, P6, P4, P1, and P7 whose activities were between 0.14–0.61 µM TE/µM). In the hepatic HepG2 cells, none of the peptides was cytotoxic at 20–300 µM. In addition to having the highest ORAC value, P2 was also the most protective (29% increase in cell viability) against 2,2′-azobis(2-methylpropionamidine) dihydrochloride -induced oxidative stress. P1, P6, and P7 protected at a lesser extent, with an 8%–21% increase viability of cells. The protection of cells was attributed to several factors including reduced production of intracellular reactive oxygen species, increased cellular glutathione, and increased activities of three main endogenous antioxidant enzymes. PMID:27775607

  15. Grape Polyphenols Prevent Fructose-Induced Oxidative Stress and Insulin Resistance in First-Degree Relatives of Type 2 Diabetic Patients

    PubMed Central

    Hokayem, Marie; Blond, Emilie; Vidal, Hubert; Lambert, Karen; Meugnier, Emmanuelle; Feillet-Coudray, Christine; Coudray, Charles; Pesenti, Sandra; Luyton, Cedric; Lambert-Porcheron, Stéphanie; Sauvinet, Valerie; Fedou, Christine; Brun, Jean-Frédéric; Rieusset, Jennifer; Bisbal, Catherine; Sultan, Ariane; Mercier, Jacques; Goudable, Joelle; Dupuy, Anne-Marie; Cristol, Jean-Paul; Laville, Martine; Avignon, Antoine

    2013-01-01

    OBJECTIVE To assess the clinical efficacy of nutritional amounts of grape polyphenols (PPs) in counteracting the metabolic alterations of high-fructose diet, including oxidative stress and insulin resistance (IR), in healthy volunteers with high metabolic risk. RESEARCH DESIGN AND METHODS Thirty-eight healthy overweight/obese first-degree relatives of type 2 diabetic patients (18 men and 20 women) were randomized in a double-blind controlled trial between a grape PP (2 g/day) and a placebo (PCB) group. Subjects were investigated at baseline and after 8 and 9 weeks of supplementation, the last 6 days of which they all received 3 g/kg fat-free mass/day of fructose. The primary end point was the protective effect of grape PPs on fructose-induced IR. RESULTS In the PCB group, fructose induced 1) a 20% decrease in hepatic insulin sensitivity index (P < 0.05) and an 11% decrease in glucose infusion rate (P < 0.05) as evaluated during a two-step hyperinsulinemic-euglycemic clamp, 2) an increase in systemic (urinary F2-isoprostanes) and muscle (thiobarbituric acid–reactive substances and protein carbonylation) oxidative stress (P < 0.05), and 3) a downregulation of mitochondrial genes and decreased mitochondrial respiration (P < 0.05). All the deleterious effects of fructose were fully blunted by grape PP supplementation. Antioxidative defenses, inflammatory markers, and main adipokines were affected neither by fructose nor by grape PPs. CONCLUSIONS A natural mixture of grape PPs at nutritional doses efficiently prevents fructose-induced oxidative stress and IR. The current interest in grape PP ingredients and products by the global food and nutrition industries could well make them a stepping-stone of preventive nutrition. PMID:23275372

  16. Attenuation of Oxidative Stress-Induced Cell Apoptosis in Schwann RSC96 Cells by Ocimum Gratissimum Aqueous Extract

    PubMed Central

    Chao, Pei-Yu; Lin, James A.; Ye, Je-Chiuan; Hwang, Jin-Ming; Ting, Wei-Jen; Huang, Chih-Yang; Liu, Jer-Yuh

    2017-01-01

    Objectives:Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods:We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results:Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy. PMID:28824312

  17. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  18. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509; Tanimoto, Keiji

    2014-01-24

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue ofmore » where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in

  19. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  20. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stemmore » cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  1. Transport stress-induced cerebrum oxidative stress is not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks.

    PubMed

    Ge, J; Li, H; Sun, F; Li, X-N; Lin, J; Xia, J; Zhang, C; Li, J-L

    2017-07-01

    Transportation of newly hatched chicks from the hatchery to the farm is inevitable, especially for parent stock and grandsire parent stock chicks. However, the possible effects of transport stress in the newly hatched chicks are poorly understood. The aim of this study was to determine the adaptive responses to transport stress by activing the nuclear factor-erythroid 2-related factor 2 (Nrf2)-induced antioxidant defense. One hundred twenty newly hatched chicks were divided into 3 groups (control group, transport group, and simulation transport group) for 2, 4, and 8 h of real or simulated transportation. Transport stress could cause oxidative stress in the cerebrum of newly hatched chicks by increasing lipid peroxidation and production of free radicals and decreasing the activities of antioxidant enzymes and the glutathione:oxidized glutathione ratio. Transport stress activated the Nrf2 signaling pathway and triggered the transcription of antioxidant parameters. However, transport stress-induced cerebrum oxidative stress was not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks.

  2. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Abolaji, Amos Olalekan; Babalola, Oluwatoyin Victoria; Adegoke, Abimbola Kehinde; Farombi, Ebenezer Olatunde

    2017-10-01

    Trichloroethylene (TCE) is a chlorinated organic pollutant of groundwater with diverse toxic effects in animals and humans. Here, we investigated the ameliorative role of hesperidin, a citrus bioflavonoid on TCE-induced toxicity in Drosophila melanogaster. Four groups of D. melanogaster (50 flies/vial, with 5 vials/group) were exposed to ethanol (2.5%, control), HSP (400mg/10g diet), TCE (10μM/10g diet) and TCE (10μM/10g diet)+HSP (400mg/10g diet) respectively in the diet for 5days. Then, selected oxidative stress and antioxidant markers were evaluated. The results showed that TCE significantly increased the level of reactive oxygen species (ROS) and inhibited catalase, glutathione S-transferase and acetylcholinesterase (AChE) activities with concurrent depletion of total thiol level. However, co-administration of TCE and hesperidin mitigated TCE-induced depletion of antioxidants, and restored ROS level and AChE activity in the flies (p<0.05). Overall, hesperidin offered protective potency on TCE-induced oxidative stress in the flies via anti-oxidative mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  4. Repeated Short-term (2h×14d) Emotional Stress Induces Lasting Depression-like Behavior in Mice.

    PubMed

    Kim, Kyoung-Shim; Kwon, Hye-Joo; Baek, In-Sun; Han, Pyung-Lim

    2012-03-01

    Chronic behavioral stress is a risk factor for depression. To understand chronic stress effects and the mechanism underlying stress-induced emotional changes, various animals model have been developed. We recently reported that mice treated with restraints for 2 h daily for 14 consecutive days (2h-14d or 2h×14d) show lasting depression-like behavior. Restraint provokes emotional stress in the body, but the nature of stress induced by restraints is presumably more complex than emotional stress. So a question remains unsolved whether a similar procedure with "emotional" stress is sufficient to cause depression-like behavior. To address this, we examined whether "emotional" constraints in mice treated for 2h×14d by enforcing them to individually stand on a small stepping platform placed in a water bucket with a quarter full of water, and the stress evoked by this procedure was termed "water-bucket stress". The water-bucket stress activated the hypothalamus-pituitary-adrenal gland (HPA) system in a manner similar to restraint as evidenced by elevation of serum glucocorticoids. After the 2h×14d water-bucket stress, mice showed behavioral changes that were attributed to depression-like behavior, which was stably detected >3 weeks after last water-bucket stress endorsement. Administration of the anti-depressant, imipramine, for 20 days from time after the last emotional constraint completely reversed the stress-induced depression-like behavior. These results suggest that emotional stress evokes for 2h×14d in mice stably induces depression-like behavior in mice, as does the 2h×14d restraint.

  5. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  6. Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex

    PubMed Central

    Patton, Michael S; Lodge, Daniel J; Morilak, David A; Girotti, Milena

    2017-01-01

    Deficits in cognitive flexibility are prominent in stress-related psychiatric disorders, including depression. Ketamine has rapid antidepressant efficacy, but it is unknown if ketamine improves cognitive symptoms. In rats, 2 weeks chronic intermittent cold (CIC) stress impairs reversal learning, a form of cognitive flexibility mediated by the orbitofrontal cortex (OFC) that we have used previously to model cognitive dysfunction in depression. We have shown that activating JAK2/STAT3 signaling in the OFC rescued the CIC stress-induced reversal learning deficit. Thus, in the present study we determined whether ketamine also corrects the stress-induced reversal learning deficit, and if JAK2/STAT3 signaling is involved in this effect. A single injection of ketamine (10 mg/kg, i.p.) 24 h prior to testing rescued the CIC stress-induced reversal learning deficit. CIC stress decreased JAK2 phosphorylation in the OFC, and ketamine restored pJAK2 levels within 2 h post injection. The JAK2 inhibitor AG490 given systemically or into the OFC at the time of ketamine injection prevented its beneficial effect on reversal learning. We then tested the role of JAK2/STAT3 in ketamine-induced plasticity in the OFC. Ketamine depressed local field potentials evoked in the OFC by excitatory thalamic afferent stimulation, and this was prevented by JAK2 inhibition in the OFC. Further, in both the OFC and primary cortical neurons in culture, ketamine increased expression of the neural plasticity-related protein Arc, and this was prevented by JAK2 inhibition. These results suggest that the JAK2/STAT3 signaling pathway is a novel mechanism by which ketamine exerts its therapeutic effects on stress-induced cognitive dysfunction in the OFC. PMID:27748739

  7. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells.

    PubMed

    Liu, Kuo-Ching; Shih, Ting-Ying; Kuo, Chao-Lin; Ma, Yi-Shih; Yang, Jiun-Long; Wu, Ping-Ping; Huang, Yi-Ping; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-01-01

    Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.

  8. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells.

    PubMed

    Cia, David; Vergnaud-Gauduchon, Juliette; Jacquemot, Nathalie; Doly, Michel

    2014-09-01

    To determine whether the green tea polyphenol epigallocatechin gallate (EGCG) could prevent H(2)O(2)-induced oxidative stress in primary rat retinal pigment epithelial cells. Primary cultures of retinal pigment epithelium (RPE) cells were established from Long-Evans newborn rats. RPE cells were pretreated with various concentrations of EGCG for 24 h before being exposed to hydrogen peroxide (H(2)O(2)) for 2 h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was quantified by flow cytometry using propidium iodide (PI). Treatment of RPE cells with EGCG alone does not affect the cell viability up to 50 µM. Exposure of RPE cells to 600 µM H(2)O(2) caused a significant decrease in cell viability; whereas pretreatment with 10, 25, and 50 µM EGCG significantly reduced this decrease in a dose-dependent manner. The proportion of PI-positive cells increased significantly in cultures treated with H(2)O(2) alone; whereas pretreatment of RPE cells with 50 µM EGCG significantly reduced H(2)O(2)-induced RPE cell death. Our study shows that EGCG pretreatment can protect primary rat RPE cells from H(2)O(2)-induced death. This suggests potential effect of EGCG in the prevention of retinal diseases associated with H(2)O(2)-induced oxidative stress.

  9. Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Chao, Xu; Zhou, Xiaojun; Zheng, Gang; Dong, Changhu; Zhang, Wei; Song, Xiaomei; Jin, Tianbo

    2014-05-01

    Osthole [7-methoxy-8-(3-methyl-2-butenyl) coumarin] isolated from the fruit of Cnidium monnieri (L.) Cuss, one of the commonly used Chinese medicines listed in the Shennong's Classic of Materia Medica in the Han Dynasty, had remarkable antiproliferative activity against human hepatocellular carcinoma HepG2 cells in culture. This study evaluated the effects of osthole on cell growth, nuclear morphology, cell cycle distribution, and expression of apoptosis-related proteins in HepG2 cells. Cytotoxic activity of osthole was determined by the MTT assay at various concentrations ranging from 0.004 to 1.0 µmol/ml in HepG2 cells. Cell morphology was assessed by Hoechst staining and fluorescence microscopy. Apoptosis and cell-cycle distribution was determined by annexin V staining and flow cytometry. Apoptotic protein levels were assessed by Western blot. Osthole exhibited significant inhibition of the survival of HepG2 cells and the half inhibitory concentration (IC₅₀) values were 0.186, 0.158 and 0.123 µmol/ml at 24, 48 and 72 h, respectively. Cells treated with osthole at concentrations of 0, 0.004, 0.02, 0.1 and 0.5 μmol/ml showed a statistically significant increase in the G2/M fraction accompanied by a decrease in the G0/G1 fraction. The increase of apoptosis induced by osthole was correlated with down-regulation expression of anti-apoptotic Bcl-2 protein and up-regulation expression of pro-apoptotic Bax and p53 proteins. Osthole had significant growth inhibitory activity and the pro-apoptotic effect of osthole is mediated through the activation of caspases and mitochondria in HepG2 cells. Results suggest that osthole has promising therapeutic potential against hepatocellular carcinoma.

  10. Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Angeles; Goya, Luis; Ramos, Sonia

    2015-04-01

    Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    PubMed

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  12. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction.

    PubMed

    Kim, Eun Hye; Park, Pil-Hoon

    2018-05-24

    Acetaminophen (APAP) overdose treatment causes severe liver injury. Adiponectin, a hormone predominantly produced by adipose tissue, exhibits protective effects against APAP-induced hepatotoxicity. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on APAP-induced hepatocyte death and its underlying mechanisms. We found that APAP (2 mM)-induced hepatocyte death was prevented by inhibition of the inflammasome. In addition, treatment with gAcrp (0.5 and 1 μg/ml) inhibited APAP-induced activation of the inflammasome, judged by suppression of interleukin-1β maturation, caspase-1 activation, and apoptosis-associated speck-like protein (ASC) speck formation, suggesting that protective effects of gAcrp against APAP-induced hepatocyte death is mediated via modulation of the inflammasome. APAP also induced ER stress and treatment with tauroursodeoxycholic acid (TUDCA), an ER chaperone and inhibitor of ER stress, abolished APAP-induced inflammasomes activation, implying that ER stress acts as signaling event leading to the inflammasome activation in hepatocytes stimulated with APAP. Moreover, gAcrp significantly suppressed APAP-induced expression of ER stress marker genes. Finally, the modulatory effects of gAcrp on ER stress and inflammasomes activation were abrogated by treatment with autophagy inhibitors, while an autophagy inducer (rapamycin) suppressed APAP-elicited ER stress, demonstrating that autophagy induction plays a crucial role in the suppression of APAP-induced inflammasome activation and ER stress by gAcrp. Taken together, these results indicate that gAcrp protects hepatocytes against APAP-induced cell death by modulating ER stress and the inflammasome activation, at least in part, via autophagy induction. Copyright © 2018. Published by Elsevier Inc.

  13. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.

    PubMed

    Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F

    2012-06-01

    Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims.  To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also

  14. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    PubMed

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  15. Decreased contraction induced by endothelium-derived contracting factor in prolonged treatment of rat renal artery with endoplasmic reticulum stress inducer.

    PubMed

    Ando, Makoto; Matsumoto, Takayuki; Taguchi, Kumiko; Kobayashi, Tsuneo

    2018-05-04

    Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A 2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE 2 - and PGF 2α -induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α 1 adrenoceptor ligand. Isotonic high-K + -induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.

  16. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  17. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights

  18. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Liu, Ling; Wang, Dongmei; Wang, Jiangang; Wang, Shuying

    2016-04-01

    Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway. © 2015 Wiley Periodicals, Inc.

  19. Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals.

    PubMed

    Huang, Ya-Han; Su, Yeu-Shiuan; Chang, Chung-Jen; Sun, Wei-Hsin

    2016-12-01

    Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ∼ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH ≥ 6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH ≤ 5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.

  20. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells.

    PubMed

    Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang

    2018-05-01

    Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.

    PubMed

    Schaefer, Matthias; Pollex, Tim; Hanna, Katharina; Tuorto, Francesca; Meusburger, Madeleine; Helm, Mark; Lyko, Frank

    2010-08-01

    Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNA(Asp-GTC), tRNA(Val-AAC) and tRNA(Gly-GCC) are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs.

  2. Silymarin suppresses the PGE2 -induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways.

    PubMed

    Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu

    2015-03-01

    Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3). © 2013 Wiley Periodicals, Inc.

  3. Stress Induced Hyperglycemia and the Subsequent Risk of Type 2 Diabetes in Survivors of Critical Illness

    PubMed Central

    Plummer, Mark P.; Finnis, Mark E.; Phillips, Liza K.; Kar, Palash; Bihari, Shailesh; Biradar, Vishwanath; Moodie, Stewart; Horowitz, Michael; Shaw, Jonathan E.; Deane, Adam M.

    2016-01-01

    Objective Stress induced hyperglycemia occurs in critically ill patients who have normal glucose tolerance following resolution of their acute illness. The objective was to evaluate the association between stress induced hyperglycemia and incident diabetes in survivors of critical illness. Design Retrospective cohort study. Setting All adult patients surviving admission to a public hospital intensive care unit (ICU) in South Australia between 2004 and 2011. Patients Stress induced hyperglycemia was defined as a blood glucose ≥ 11.1 mmol/L (200 mg/dL) within 24 hours of ICU admission. Prevalent diabetes was identified through ICD-10 coding or prior registration with the Australian National Diabetes Service Scheme (NDSS). Incident diabetes was identified as NDSS registration beyond 30 days after hospital discharge until July 2015. The predicted risk of developing diabetes was described as sub-hazard ratios using competing risk regression. Survival was assessed using Cox proportional hazards regression. Main Results Stress induced hyperglycemia was identified in 2,883 (17%) of 17,074 patients without diabetes. The incidence of type 2 diabetes following critical illness was 4.8% (821 of 17,074). The risk of diabetes in patients with stress induced hyperglycemia was approximately double that of those without (HR 1.91 (95% CI 1.62, 2.26), p<0.001) and was sustained regardless of age or severity of illness. Conclusions Stress induced hyperglycemia identifies patients at subsequent risk of incident diabetes. PMID:27824898

  4. OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis.

    PubMed

    Yanase, Noriko; Toyota, Hiroko; Hata, Kikumi; Yagyu, Seina; Seki, Takahiro; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro

    2014-10-14

    There is an urgent requirement for a novel vaccine that can stimulate immune responses without unwanted toxicity, including IgE elevation. We examined whether antigen ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA-NPs) with average diameter of 110nm would serve as an immune adjuvant. When BALB/c mice were immunized with OVA-NPs, they developed sufficient levels of OVA-specific IgG1 antibody responses with low levels of IgE synthesis, representing helper T (Th)2-mediated humoral immunity. OVA-specific IgG2a and IgG2b responses (i.e., Th1-mediated immunity) were also induced by secondary immunization with OVA-NPs. As expected, immunization with OVA in alum (OVA-alum) stimulated humoral immune responses, including IgG1 and IgE antibodies, with only low levels of IgG2a/IgG2b antibodies. CD4-positive T cells from mice primed with OVA-NPs produced substantial levels of IL-21 and IL-4, comparable to those from OVA-alum group. The irradiated mice receiving OVA-NPs-primed B cells together with OVA-alum-primed T cells exhibited enhanced anti-OVA IgG2b responses relative to OVA-alum-primed B cells and T cells following stimulation with OVA-NPs. Moreover, when OVA-NPs-primed, but not OVA-alum-primed, B cells were cultured in the presence of anti-CD40 monoclonal antibody, IL-4, and IL-21, or LPS plus TGF-β in vitro, OVA-specific IgG1 or IgG2b antibody responses were elicited, suggesting that immunization with OVA-NPs modulates B cells to generate IgG1 and IgG2b responses. Thus, OVA-NPs might exert their adjuvant action on B cells, and they represent a promising potential vaccine for generating both IgG1 and IgG2a/IgG2b antibody responses with low IgE synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Endoplasmic reticulum stress (ER-stress) by 2-deoxy-D-glucose (2DG) reduces cyclooxygenase-2 (COX-2) expression and N-glycosylation and induces a loss of COX-2 activity via a Src kinase-dependent pathway in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2010-11-30

    Endoplasmic reticulum (ER) stress regulates a wide range of cellular responses including apoptosis, proliferation, inflammation, and differentiation in mammalian cells. In this study, we observed the role of 2-deoxy-D-glucose (2DG) on inflammation of chondrocytes. 2DG is well known as an inducer of ER stress, via inhibition of glycolysis and glycosylation. Treatment of 2DG in chondrocytes considerably induced ER stress in a dose- and time-dependent manner, which was demonstrated by a reduction of glucose regulated protein of 94 kDa (grp94), an ER stress-inducible protein, as determined by a Western blot analysis. In addition, induction of ER stress by 2DG led to the expression of COX-2 protein with an apparent molecular mass of 66-70kDa as compared with the normally expressed 72-74 kDa protein. The suppression of ER stress with salubrinal (Salub), a selective inhibitor of eif2-alpha dephosphorylation, successfully prevented grp94 induction and efficiently recovered 2DG- modified COX-2 molecular mass and COX-2 activity might be associated with COX-2 N-glycosylation. Also, treatment of 2DG increased phosphorylation of Src in chondrocytes. The inhibition of the Src signaling pathway with PP2 (Src tyrosine kinase inhibitor) suppressed grp94 expression and restored COX-2 expression, N-glycosylation, and PGE2 production, as determined by a Western blot analysis and PGE2 assay. Taken together, our results indicate that the ER stress induced by 2DG results in a decrease of the transcription level, the molecular mass, and the activity of COX-2 in rabbit articular chondrocytes via a Src kinase-dependent pathway.

  6. Human leptin protein activates the growth of HepG2 cells by inhibiting PERK‑mediated ER stress and apoptosis.

    PubMed

    Xiong, Ying; Zhang, Jie; Liu, Man; An, Mingwei; Lei, Ling; Guo, Wuhua

    2014-09-01

    Current treatment modalities for various types of hepatic cancer, which has an increasing incidence rate, are inadequate and novel therapies are required. Therefore, identifying targets for liver cancer is becoming increasingly valuable to develop novel methods for therapy. The aim of the present study was to examine the growth activation mechanism of the leptin protein in the liver cancer cell line HepG2. The effects of the leptin protein on cell death were investigated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide analysis. DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis were also performed to detect cell apoptosis. The expression of leptin and three endoplasmic reticulum (ER) stress unfolded protein response (UPR) proteins, including activating transcription factor 6, phosphorylated‑PKR‑like ER kinase (p‑PERK) and inositol requiring protein 1, were investigated for the examination of ER stress. The mRNA UPR proteins were also detected by reverse transcription polymerase chain reaction. The apoptosis‑associated caspase 12 and C/EBP homologous protein (CHOP) was detected by western blot analysis. The expression of or incubation with the leptin protein was able to activate cell growth and inhibit cell death and apoptosis. In cells that expressed leptin or were incubated with leptin protein (pep-LPT), cisplatin‑induced ER stress‑associated mRNA transcription and protein activation were inhibited. Levels of the ER stress UPR pathway protein, PERK, increased significantly in leptin‑silenced cells when treated with cisplatin as compared with those in the leptin‑expressing or pep-LPT cells. Furthermore, caspase 12 activation was inhibited in ex‑LPT, pep‑LPT and HepG2 cells. In conclusion, human leptin protein is involved in promoting the proliferation of HepG2 cells through inhibiting the ER stress‑associated apoptotic pathway. The PERK UPR pathway and the apoptotic factor

  7. The role of Nrf2 in oxidative stress-induced endothelial injuries.

    PubMed

    Chen, Bo; Lu, Yanrong; Chen, Younan; Cheng, Jingqiu

    2015-06-01

    Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is perhaps the most prominent. Nrf2, a transcription factor with a high sensitivity to oxidative stress, binds to AREs in the nucleus and promotes the transcription of a wide variety of antioxidant genes. Nrf2 is located in the cytoskeleton, adjacent to Keap1. Keap1 acts as an adapter for cullin 3/ring-box 1-mediated ubiquitination and degradation of Nrf2, which decreases the activity of Nrf2 under physiological conditions. Oxidative stress causes Nrf2 to dissociate from Keap1 and to subsequently translocate into the nucleus, which results in its binding to ARE and the transcription of downstream target genes. Experimental evidence has established that Nrf2-driven free radical detoxification pathways are important endogenous homeostatic mechanisms that are associated with vasoprotection in the setting of aging, atherosclerosis, hypertension, ischemia, and cardiovascular diseases. The aim of the present review is to briefly summarize the mechanisms that regulate the Nrf2/Keap1-ARE signaling pathway and the latest advances in understanding how Nrf2 protects against oxidative stress-induced endothelial injuries. Further studies regarding the precise mechanisms by which Nrf2-regulated endothelial protection occurs are necessary for determining whether Nrf2 can serve as a therapeutic target in the treatment of cardiovascular diseases. © 2015 Society for Endocrinology.

  8. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena; Capelle, Martinus; Fent, Karl, E-mail: karl.fent@fhnw.ch

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL andmore » Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.« less

  9. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  10. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  11. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  12. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  13. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats

    PubMed Central

    Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  14. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury

    PubMed Central

    Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J.; Wu, Tzong-Jin; Konduri, Girija G.

    2017-01-01

    Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. PMID:28213471

  15. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    USGS Publications Warehouse

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  16. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  17. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Patel-Vayas, Kinal; Shen, Jianliang

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h andmore » 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are

  18. Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study.

    PubMed

    François, Marie; Schaefer, Johanna M; Bole-Feysot, Christine; Déchelotte, Pierre; Verhulst, Frank C; Fetissov, Sergueï O

    2015-06-03

    Ghrelin, a hunger hormone, has been implicated in the regulation of stress-response, anxiety and depression. Ghrelin-reactive immunoglobulins (Ig) were recently identified in healthy and obese humans showing abilities to increase ghrelin's stability and orexigenic effects. Here we studied if ghrelin-reactive Ig are associated with anxiety and depression and with the stress-induced cortisol response in a general population of adolescents. Furthermore, to test the possible infectious origin of ghrelin-reactive Ig, their levels were compared with serum IgG against common viruses. We measured ghrelin-reactive IgM, IgG and IgA in serum samples of 1199 adolescents from the Dutch TRAILS study and tested their associations with 1) anxiety and depression symptoms assessed with the Youth Self-Report, 2) stress-induced salivary cortisol levels and 3) IgG against human herpesvirus 1, 2, 4 and 6 and Influenza A and B viruses. Ghrelin-reactive IgM and IgG correlated positively with levels of antibodies against Influenza A virus. Ghrelin-reactive IgM correlated negatively with antibodies against Influenza B virus. Ghrelin-reactive IgM correlated positively with anxiety scores in girls and ghrelin-reactive IgG correlated with stress-induced cortisol secretion, but these associations were weak and not significant after correction for multiple testing. These data indicate that production of ghrelin-reactive autoantibodies could be influenced by viral infections. Serum levels of ghrelin-reactive autoantibodies probably do not play a role in regulating anxiety, depression and the stress-response in adolescents from the general population. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie

    2016-01-01

    Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316

  20. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells.

    PubMed

    Gu, Yuxiu; Cheng, Shanshan; Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Li, Juan; Cao, Yi

    2017-03-01

    It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO 2 NPs were used to compare the effects. Exposure to 32 μg/mL ZnO NPs (p < 0.05), but not TiO 2 NPs (p > 0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO 4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO 2 NP exposure (p > 0.05). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01). We concluded ER stress is probably not associated with ZnO NP exposure induced oxidative stress and inflammatory responses in HUVECs.

  1. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells.

    PubMed

    Sivasinprasasn, Sivanan; Pantan, Rungusa; Thummayot, Sarinthorn; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-10-28

    Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Oxidative stress in MeHg-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  3. O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response.

    PubMed

    Jang, Insook; Kim, Han Byeol; Seo, Hojoong; Kim, Jin Young; Choi, Hyeonjin; Yoo, Jong Shin; Kim, Jae-woo; Cho, Jin Won

    2015-08-01

    O-GlcNAcylation is highly involved in cellular stress responses including the endoplasmic reticulum (ER) stress response. For example, glucosamine-induced flux through the hexosamine biosynthetic pathway can promote ER stress and ER stress inducers can change the total cellular level of O-GlcNAcylation. However, it is largely unknown which component(s) of the unfolded protein response (UPR) is directly regulated by O-GlcNAcylation. In this study, eukaryotic translation initiation factor 2α (eIF2α), a major branch of the UPR, was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241. Upon ER stress, eIF2α is phosphorylated at Ser 51 by phosphorylated PKR-like ER kinase and this inhibits global translation initiation, except for that of specific mRNAs, including activating transcription factor 4, that induce stress-responsive genes such as C/EBP homologous protein (CHOP). Hyper-O-GlcNAcylation induced by O-GlcNAcase inhibitor (thiamet-G) treatment or O-GlcNAc transferase (OGT) overexpression hindered phosphorylation of eIF2α at Ser 51. The level of O-GlcNAcylation of eIF2α was changed by dithiothreitol treatment dependent on its phosphorylation at Ser 51. Point mutation of the O-GlcNAcylation sites of eIF2α increased its phosphorylation at Ser 51 and CHOP expression and resulted in increased apoptosis upon ER stress. These results suggest that O-GlcNAcylation of eIF2α affects its phosphorylation at Ser 51 and influences CHOP-mediated cell death. This O-GlcNAcylation of eIF2α was reproduced in thiamet-G-injected mouse liver. In conclusion, proper regulation of O-GlcNAcylation and phosphorylation of eIF2α is important to maintain cellular homeostasis upon ER stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Stress Induced Charge-Ordering Process in LiMn 2O 4

    DOE PAGES

    Chen, Yan; Yu, Dunji; An, Ke

    2016-07-25

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn 2O 4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn 2O 4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  6. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells.

    PubMed

    Ayed-Boussema, Imen; Abassi, Haila; Bouaziz, Chayma; Hlima, Wiem Ben; Ayed, Yosra; Bacha, Hassen

    2013-06-01

    Patulin (PAT) is a mycotoxin produced in fruits, mainly in apples, by certain species of Penicillium, Aspergillus, and Byssochlamys. It has been shown that PAT is cytotoxic, genotoxic, and mutagenic in different cell types. Several studies incriminate the oxidative stress as a mechanism of PAT-mediated toxicity. In this context, our aim was to investigate the protective role of Vitamin E (Vit E), an antioxidant agent, against PAT induced cytotoxicity and genotoxicity in cultured HepG2 cells. The obtained results showed that addition of Vit E in cells treated with PAT significantly reduce cell mortality induced by this toxin. In the same conditions, Vit E decreased the intracellular level of ROS, reduced PAT induced p53 expression, and reversed PAT induced DNA damage. In addition, Vit E prevented significantly the percentage of chromosome aberrations induced by PAT in HepG2 cells in a concentration dependant manner. These results suggest that Vit E, an exogenous antioxidant agent, plays an important role in defense against PAT-induced cytotoxicity and genotoxicity, which confirms the involvement of oxidative stress in the induction of DNA damage by PAT in HepG2 cells. Copyright © 2011 Wiley Periodicals, Inc.

  7. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increasedmore » GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.« less

  8. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancermore » cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through

  9. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    PubMed

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Green Tea Potentially Ameliorates Bisphenol A-Induced Oxidative Stress: An In Vitro and In Silico Study

    PubMed Central

    Suthar, Hiral; Verma, R. J.; Patel, Saumya; Jasrai, Y. T.

    2014-01-01

    The present investigation was an attempt to elucidate oxidative stress induced by bisphenol A on erythrocytes and its amelioration by green tea extract. For this, venous blood samples from healthy human adults were collected in EDTA vials and used for preparation of erythrocytes suspension. When erythrocyte suspensions were treated with different concentrations of BPA/H2O2, a dose-dependent increase in hemolysis occurred. Similarly, when erythrocytes suspensions were treated with either different concentrations of H2O2 (0.05–0.25 mM) along with BPA (50 μg/mL) or 0.05 mM H2O2 along with different concentrations of BPA (50–250 μg/mL), dose-dependent significant increase in hemolysis occurred. The effect of BPA and H2O2 was found to be additive. For the confirmation, binding capacity of bisphenol A with erythrocyte proteins (hemoglobin, catalase, and glutathione peroxidase) was inspected using molecular docking tool, which showed presence of various hydrogen bonds of BPA with the proteins. The present data clearly indicates that BPA causes oxidative stress in a similar way as H2O2 . Concurrent addition of different concentrations (10–50 μg/mL) of green tea extract to reaction mixture containing high dose of bisphenol A (250 μg/mL) caused concentration-dependent amelioration in bisphenol A-induced hemolysis. The effect was significant (P < 0.05). It is concluded that BPA-induced oxidative stress could be significantly mitigated by green tea extract. PMID:25180096

  11. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough

    PubMed Central

    Vilborg, Anna; Sabath, Niv; Wiesel, Yuval; Nathans, Jenny; Levy-Adam, Flonia; Yario, Therese A.; Steitz, Joan A.; Shalgi, Reut

    2017-01-01

    Transcription is a highly regulated process, and stress-induced changes in gene transcription have been shown to play a major role in stress responses and adaptation. Genome-wide studies reveal prevalent transcription beyond known protein-coding gene loci, generating a variety of RNA classes, most of unknown function. One such class, termed downstream of gene-containing transcripts (DoGs), was reported to result from transcriptional readthrough upon osmotic stress in human cells. However, how widespread the readthrough phenomenon is, and what its causes and consequences are, remain elusive. Here we present a genome-wide mapping of transcriptional readthrough, using nuclear RNA-Seq, comparing heat shock, osmotic stress, and oxidative stress in NIH 3T3 mouse fibroblast cells. We observe massive induction of transcriptional readthrough, both in levels and length, under all stress conditions, with significant, yet not complete, overlap of readthrough-induced loci between different conditions. Importantly, our analyses suggest that stress-induced transcriptional readthrough is not a random failure process, but is rather differentially induced across different conditions. We explore potential regulators and find a role for HSF1 in the induction of a subset of heat shock-induced readthrough transcripts. Analysis of public datasets detected increases in polymerase II occupancy in DoG regions after heat shock, supporting our findings. Interestingly, DoGs tend to be produced in the vicinity of neighboring genes, leading to a marked increase in their antisense-generating potential. Finally, we examine genomic features of readthrough transcription and observe a unique chromatin signature typical of DoG-producing regions, suggesting that readthrough transcription is associated with the maintenance of an open chromatin state. PMID:28928151

  12. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts.

    PubMed

    Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh

    2018-04-01

    The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

  13. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    PubMed

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  14. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    PubMed Central

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  15. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  16. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.

    PubMed

    Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu

    2016-06-01

    Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.

  17. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    PubMed

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p < 0.001). The extract also dose-dependently reduced intracellular ROS production (p < 0.001). Moreover, the extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  18. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    PubMed

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  19. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-08-01

    Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors.

  20. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  1. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.

    PubMed

    Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S

    2012-02-01

    Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.

  2. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  3. Molecular response to phototoxic stress of UVB-irradiated ketoprofen through arresting cell cycle in G2/M phase and inducing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shicheng; Mizu, Hideo; Yamauchi, Hitoshi

    The phototoxicity of ketoprofen (KP), a non-steroidal anti-inflammatory drug, has recently attracted considerable attention, because it is photolabile and undergoes degradation when irradiated by sunlight to induce various skin diseases. The present study shows that combination of UVB irradiation with KP induced the cytotoxicity and suppressed DNA synthesis in HaCaT cells in a concentration-dependent manner. UVB-irradiated KP inhibited the cell growth and induced G2/M cell cycle arrest by modulating the levels of cdc2, cyclin B1, Chk1, Tyr15-phosphorylated cdc2 and p21. It also provoked a striking accumulation of cyclin B1-cdc2-p21 complexes, concomitantly with an increase in the levels of Tyr15-phosphorylated cdc2more » and p21 protein. The presence of KP accentuated the apoptotic response to UVB radiation in HaCaT cells as evidenced by DAPI staining. The apoptotic process was associated with activation of caspase-9, caspase-3 and cleavage of PARP, and this activation could be prevented by a specific caspase-3 inhibitor. Taken together, our results suggest that KP-photoinduced apoptosis may be a useful approach to reduce or prevent skin carcinogenesis.« less

  4. G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E2) and selective agonist G1.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Tang, Hexiao; Jiang, Zhixiao; Zhou, Bo; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2015-04-01

    Estrogen classically drives lung cancer development via estrogen receptor β (ERβ). However, fulvestrant, an anti-estrogen-based endocrine therapeutic treatment, shows limited effects for non-small cell lung cancer (NSCLC) in phase II clinical trials. G protein-coupled estrogen receptor (GPER), a third estrogen receptor that binds to estrogen, has been found to be activated by fulvestrant, stimulating the progression of breast, endometrial, and ovarian cancers. We here demonstrated that cytoplasm-GPER (cGPER) (80.49 %) and nucleus-GPER (53.05 %) were detected by immunohistochemical analysis in NSCLC samples. cGPER expression was related to stages IIIA-IV, lymph node metastasis, and poorly differentiated NSCLC. Selective agonist G1 and 17β-estradiol (E2) promoted the GPER-mediated proliferation, invasion, and migration of NSCLC cells. Additionally, in vitro administration of E2 and G1 increased the number of tumor nodules, tumor grade, and tumor index in a urethane-induced adenocarcinoma model. Importantly, the pro-tumorigenic effects of GPER induced by E2 were significantly reduced by co-administering the GPER inhibitor G15 and the ERβ inhibitor fulvestrant, as compared to administering fulvestrant alone both in vitro and in vivo. Moreover, the phosphorylation of MAPK and Akt was involved in E2/G1-induced GPER activation. In conclusion, our results indicated that a pro-tumor function of GPER exists that mediated E2-/G1-dependent NSCLC progression and showed better efficiency regarding the co-targeting of GPER and ERβ, providing a rationale for further investigation of anti-estrogen clinical therapy.

  5. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    PubMed

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer.

    PubMed

    Naziroğlu, Mustafa; Tokat, Sümeyye; Demirci, Seda

    2012-12-01

    Exposure to electromagnetic radiation (EMR) may increase breast cancer risk by inducing oxidative stress and suppressing the production of melatonin. Aim of the present review is to discuss the mechanisms and risk factors of EMR and oxidative stress-induced breast cancer, to summarize the controlled studies evaluating measures for prevention, and to conclude with evidence-based strategies for prevention. Review of the relevant literature and results from our recent basic studies, as well as critical analyses of published systematic reviews were obtained from the Pubmed and the Science Citation Index. It has been proposed that chronic exposure to EMR may increase the risk of breast cancer by suppressing the production of melatonin; this suppression may affect the development of breast cancer either by increasing levels of circulation of estrogen or through over production of free oxygen radicals. Most epidemiological studies have also indicated overall effect of EMR exposure in premenopausal women, particularly for estrogen receptor positive breast tumors. Enhanced voltage-dependent Ca(2+) current and impaired inhibitory G-protein function, and derangement of intracellular organelles with a Ca(2+) buffering effect, such as endoplasmic reticulum and mitochondria have been also shown to contribute to disturbed Ca(2+) signaling in breast cancer. Melatonin may modulate breast cancer through modulation of enhanced oxidative stress and Ca(2+) influx in cell lines. However, there is not enough evidence on increased risk of breast cancer related to EMR exposure.

  8. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress

    PubMed Central

    Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  9. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    PubMed

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  10. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.

    PubMed

    Hseu, You-Cheng; Lee, Meng-Shiou; Wu, Chi-Rei; Cho, Hsin-Ju; Lin, Kai-Yuan; Lai, Guan-Hua; Wang, Sheng-Yang; Kuo, Yueh-Hsiung; Kumar, K J Senthil; Yang, Hsin-Ling

    2012-03-07

    Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.

  11. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress.

    PubMed

    Chen, Wei; Li, Yuting; Bao, Tao; Gowd, Vemana

    2017-01-01

    Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin -3-O- glucoside and cyanidin -3-O- rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.

  12. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    PubMed Central

    Li, Yuting; Bao, Tao; Gowd, Vemana

    2017-01-01

    Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress. PMID:28819542

  13. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  14. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

    PubMed Central

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-01-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069

  15. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization

    PubMed Central

    Zhang, Li; Sun, Yang; Fei, Mingjian; Tan, Cheng; Wu, Jing; Zheng, Jie; Tang, Jiqing; Sun, Wei; Lv, Zhaoliang; Bao, Jiandong; Xu, Qiang; Yu, Huixin

    2014-01-01

    Oxidative stress has been implicated in both normal aging and various neurodegenerative disorders and it may be a major cause of neuronal death. Chaperone-mediated autophagy (CMA) targets selective cytoplasmic proteins for degradation by lysosomes and protects neurons against various extracellular stimuli including oxidative stress. MEF2A (myocyte enhancer factor 2A), a key transcription factor, protects primary neurons from oxidative stress-induced cell damage. However, the precise mechanisms of how the protein stability and the transcriptional activity of MEF2A are regulated under oxidative stress remain unknown. In this study, we report that MEF2A is physiologically degraded through the CMA pathway. In pathological conditions, mild oxidative stress (200 μM H2O2) enhances the degradation of MEF2A as well as its activity, whereas excessive oxidative stress (> 400 μM H2O2) disrupts its degradation process and leads to the accumulation of nonfunctional MEF2A. Under excessive oxidative stress, an N-terminal HDAC4 (histone deacetylase 4) cleavage product (HDAC4-NT), is significantly induced by lysosomal serine proteases released from ruptured lysosomes in a PRKACA (protein kinase, cAMP-dependent, catalytic, α)-independent manner. The production of HDAC4-NT, as a MEF2 repressor, may account for the reduced DNA-binding and transcriptional activity of MEF2A. Our work provides reliable evidence for the first time that MEF2A is targeted to lysosomes for CMA degradation; oxidative stress-induced lysosome destabilization leads to the disruption of MEF2A degradation as well as the dysregulation of its function. These findings may shed light on the underlying mechanisms of pathogenic processes of neuronal damage in various neurodegenerative-related diseases. PMID:24879151

  16. Human immunodeficiency virus type 1 Vpr induces cell cycle G2 arrest through Srk1/MK2-mediated phosphorylation of Cdc25.

    PubMed

    Huard, Sylvain; Elder, Robert T; Liang, Dong; Li, Ge; Zhao, Richard Y

    2008-03-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G(2) arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G(2) arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G(2)/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G(2) arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G(2) delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G(2)/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue

  17. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  18. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wanlu; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province; Tang, Zhuqi

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion ofmore » TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.« less

  19. Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.

    2018-04-01

    In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.

  20. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  1. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  2. Inhibition of murine splenic T lymphocyte proliferation by 2-deoxy-D-glucose-induced metabolic stress

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Klinger, J. C.; Akin, C.; Koebel, D. A.; Sonnenfeld, G.

    1994-01-01

    Female Swiss-Webster mice were injected with the glucose analogue 2-deoxy-D-glucose (2-DG), which when administered to rodents induces acute periods of metabolic stress. A single or multiple injections of 2-DG invoked a stress response, as evidenced by increases in serum corticosterone levels. The influence of this metabolic stressor on the blastogenic potential of splenic T lymphocytes was then examined. It was found that one, two, or three injections of 2-DG resulted in depressed T cell proliferative responses, with an attenuation of the effect occurring by the fifth injection. The 2-DG-induced inhibition of T cell proliferation was not attributable to 2-DG-induced cytolysis, as in vitro incubation of naive T cells with varying concentrations of 2-DG did not result in a reduction in cell number or viability, and flow cytometric analysis demonstrated that percentages of CD3, CD4, and CD8 splenic T cells were not altered as a result of 2-DG-induced stress. Incubating naive T cells in varying concentrations of 2-DG resulted in a dose-dependent inhibition of T cell blastogenic potential. Following in vivo exposure to 2-DG, T cell proliferation did not return to normal levels until 3 days after the cessation of 2-DG injections. Administering the beta-adrenergic receptor antagonist propranolol did not reverse the inhibited lymphoproliferation in 2-DG-treated mice. The inhibition in T cell proliferation was not observed, however, in mice that had been adrenalectomized or hypophysectomized and injected with 2-DG.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Periodic Mechanical Stress INDUCES Chondrocyte Proliferation and Matrix Synthesis via CaMKII-Mediated Pyk2 Signaling.

    PubMed

    Liang, Wenwei; Li, Zeng; Wang, Zhen; Zhou, Jinchun; Song, Huanghe; Xu, Shun; Cui, Weiding; Wang, Qing; Chen, Zhefeng; Liu, Feng; Fan, Weimin

    2017-01-01

    Periodic mechanical stress can promote chondrocyte proliferation and matrix synthesis to improve the quality of tissue-engineered cartilage. Although the integrin β1-ERK1/2 signal cascade has been implicated in periodic mechanical stress-induced mitogenic effects in chondrocytes, the precise mechanisms have not been fully established. The current study was designed to probe the roles of CaMKII and Pyk2 signaling in periodic mechanical stress-mediated chondrocyte proliferation and matrix synthesis. Chondrocytes were subjected to periodic mechanical stress, proliferation was assessed by direct cell counting and CCK-8 assay; gene expressions were analyzed using quantitative real-time PCR, protein abundance by Western blotting. Mechanical stress, markedly enhanced the phosphorylation levels of Pyk2 at Tyr402 and CaMKII at Thr286. Both suppression of Pyk2 with Pyk2 inhibitor PF431396 or Pyk2 shRNA and suppression of CaMKII with CaMKII inhibitor KN-93 or CaMKII shRNA blocked periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. Additionally, either pretreatment with KN-93 or shRNA targeted to CaMKII prevented the activation of ERK1/2 and Pyk2 under conditions of periodic mechanical stress. Interestingly, in relation to periodic mechanical stress, in the context of Pyk2 inhibition with PF431396 or its targeted shRNA, only the phosphorylation levels of ERK1/2 were abrogated, while CaMKII signal activation was not affected. Moreover, the phosphorylation levels of CaMKII- Thr286 and Pyk2- Tyr402 were abolished after pretreatment with blocking antibody against integrinβ1 exposed to periodic mechanical stress. Our results collectively indicate that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis through the integrinβ1-CaMKII-Pyk2-ERK1/2 signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Sargassum horneri methanol extract rescues C2C12 murine skeletal muscle cells from oxidative stress-induced cytotoxicity through Nrf2-mediated upregulation of heme oxygenase-1.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Hong, Su Hyun; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Choi, Byung Tae; Kim, Cheol Min; Choi, Yung Hyun

    2015-02-05

    Sargassum horneri, an edible marine brown alga, is typically distributed along the coastal seas of Korea and Japan. Although several studies have demonstrated the anti-oxidative activity of this alga, the regulatory mechanisms have not yet been defined. The aim of the present study was to examine the cytoprotective effects of S. horneri against oxidative stress-induced cell damage in C2C12 myoblasts. We demonstrated the anti-oxidative effects of a methanol extract of S. horneri (SHME) in a hydrogen peroxide (H2O2)-stimulated C2C12 myoblast model. Cytotoxicity was determined using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay and mode of cell death by cell cycle analysis. DNA damage was measured using a comet assay and expression of phospho-histone γH2A.X (p-γH2A.X). Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate. The involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using Western blot analysis. SHME attenuated H2O2-induced growth inhibition and exhibited scavenging activity against intracellular ROS that were induced by H2O2. The SHME also inhibited comet tail formation, p-γH2A.X expression, and the number of sub-G1 hypodiploid cells, suggesting that it prevents H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, the SHME significantly enhanced the expression of heme oxygenase-1 (HO-1) associated with induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) in a time- and concentration-dependent manner. Moreover, the protective effect of the SHME on H2O2-induced C2C12 cell damage was significantly abolished by zinc protoporphyrin IX, a HO-1 competitive inhibitor, in C2C12 cells. These findings suggest that the SHME augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway, protecting C2C12 cells from H2

  5. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  6. Rejoining of isochromatid breaks induced by heavy ions in G2-phase normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    2001-01-01

    We reported previously that exposure of normal human fibroblasts in G2 phase of the cell cycle to high-LET radiation produces a much higher frequency of isochromatid breaks than exposure to gamma rays. We concluded that an increase in the production of isochromatid breaks is a signature of initial high-LET radiation-induced G2-phase damage. In this paper, we report the repair kinetics of isochromatid breaks induced by high-LET radiation in normal G2-phase human fibroblasts. Exponentially growing human fibroblasts (AG1522) were irradiated with gamma rays or energetic carbon (290 MeV/nucleon), silicon (490 MeV/nucleon), or iron (200 MeV/nucleon) ions. Prematurely condensed chromosomes were induced by calyculin A after different postirradiation incubation times ranging from 0 to 600 min. Chromosomes were stained with Giemsa, and aberrations were scored in cells at G2 phase. G2-phase fragments, the result of the induction of isochromatid breaks, decreased quickly with incubation time. The curve for the kinetics of the rejoining of chromatid-type breaks showed a slight upward curvature with time after exposure to 440 keV/microm iron particles, probably due to isochromatid-isochromatid break rejoining. The formation of chromatid exchanges after exposure to high-LET radiation therefore appears to be underestimated, because isochromatid-isochromatid exchanges cannot be detected. Increased induction of isochromatid breaks and rejoining of isochromatid breaks affect the overall kinetics of chromatid-type break rejoining after exposure to high-LET radiation.

  7. Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses

    PubMed Central

    Usuki, Fusako; Fujimura, Masatake; Yamashita, Akio

    2013-01-01

    We demonstrate that methylmercury (MeHg)-susceptible cells preconditioned with an inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase, thapsigargin, showed resistance to MeHg cytotoxicity through favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (Eif2α), accumulation of activating transcription factor 4 (Atf4), upregulation of stress-related proteins, and activation of extracellular signal regulated kinase pathway. In addition, ER stress preconditioning induced suppression of nonsense-mediated mRNA decay (NMD) mainly through the phospho-Eif2α-mediated general suppression of translation initiation and possible combined effects of decreased several NMD components expression. Atf4 accumulation was not mediated by NMD inhibition but translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-Eif2α. These results suggested that ER stress plays an important role in MeHg cytotoxicity and that the modulation of ER stress has therapeutic potential to attenuate MeHg cytotoxicity, the underlying mechanism being the induction of integrated stress responses. PMID:23907635

  8. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    PubMed Central

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  9. Clonidine blocks stress-induced craving in cocaine users.

    PubMed

    Jobes, Michelle L; Ghitza, Udi E; Epstein, David H; Phillips, Karran A; Heishman, Stephen J; Preston, Kenzie L

    2011-11-01

    Reactivity to stressors and environmental cues, a putative cause of relapse in addiction, may be a useful target for relapse-prevention medication. In rodents, alpha-2 adrenergic agonists such as clonidine block stress-induced reinstatement of drug seeking, but not drug cue-induced reinstatement. The objective of this study is to test the effect of clonidine on stress- and cue-induced craving in human cocaine users. Healthy, non-treatment-seeking cocaine users (n = 59) were randomly assigned to three groups receiving clonidine 0, 0.1, or 0.2 mg orally under double-blind conditions. In a single test session, each participant received clonidine or placebo followed 3 h later by exposure to two pairs of standardized auditory-imagery scripts (neutral/stress and neutral/drug). Subjective measures of craving were collected. Subjective responsivity ("crave cocaine" Visual Analog Scale) to stress scripts was significantly attenuated in the 0.1- and 0.2-mg clonidine groups; for drug-cue scripts, this attenuation occurred only in the 0.2-mg group. Other subjective measures of craving showed similar patterns of effects but Dose × Script interactions were not significant. Clonidine was effective in reducing stress-induced (and, at a higher dose, cue-induced) craving in a pattern consistent with preclinical findings, although this was significant on only one of several measures. Our results, though modest and preliminary, converge with other evidence to suggest that alpha-2 adrenergic agonists may help prevent relapse in drug abusers experiencing stress or situations that remind them of drug use.

  10. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    PubMed

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  11. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis.

    PubMed

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2014-01-01

    The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. © 2013.

  12. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line.

    PubMed

    Iloki-Assanga, Simon Bernard; Lewis-Luján, Lidianys María; Fernández-Angulo, Daniela; Gil-Salido, Armida Andrea; Lara-Espinoza, Claudia Lizeth; Rubio-Pino, José Luis

    2015-07-29

    Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.

  13. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate.

    PubMed

    Yan, Shengmin; Zhang, Hongxia; Wang, Jianshe; Zheng, Fei; Dai, Jiayin

    2015-10-01

    Perfluoroalkyl acids (PFAAs) are a group of widely used anthropogenic compounds. As one of the most dominant PFAAs, perfluorooctanoic acid (PFOA) has been suggested to induce hepatotoxicity and several other toxicological effects. However, details on the mechanisms for PFOA-induced hepatotoxicity still need to be elucidated. In this study, we observed the occurrence of endoplasmic reticulum (ER) stress in mouse livers and HepG2 cells after PFOA exposure using several familiar markers for the unfolded protein response (UPR). ER stress in HepG2 cells after PFOA exposure was not significantly influenced by autophagy inhibition or stimulation. The antioxidant defense system was significantly disturbed in mouse livers after PFOA exposure, and reactive oxygen species (ROS) were increased in cells exposed to PFOA for 24 h. However, N-acetyl-L-cysteine (NAC) pretreatment did not satisfactorily alleviate the UPR in cells exposed to PFOA even though the increase of ROS was less evident. Furthermore, exposure of HepG2 cells to PFOA in the presence of sodium 4-phenylbutyrate (4-PBA), a chemical chaperone and ER stress inhibitor, suggested that 4-PBA alleviated the UPR and autophagosome accumulation induced by PFOA in cells. In addition, several toxicological effects attributed to PFOA exposure, including cell cycle arrest, proteolytic activity impairment, and neutral lipid accumulation, were also improved by 4-PBA cotreatment in cells. In vivo study demonstrated that PFOA-induced lipid metabolism perturbation and liver injury were partially ameliorated by 4-PBA in mice after 28 days of exposure. These findings demonstrated that PFOA-induced ER stress leading to UPR might play an important role in PFOA-induced hepatotoxic effects, and chemical chaperone 4-PBA could ameliorate the effects. Copyright © 2015. Published by Elsevier Inc.

  14. Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis

    PubMed Central

    Martínez-Espinosa, Rodrigo; Argüello-García, Raúl; Saavedra, Emma; Ortega-Pierres, Guadalupe

    2015-01-01

    The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events. PMID:26300866

  15. Trpc2 Depletion Protects RBC from Oxidative Stress-Induced Hemolysis

    PubMed Central

    Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Keefer, Kerry; Conrad, Kathleen; Tong, Qin; Chen, Shu-jen; Bronson, Sarah; Cheung, Joseph Y.; Miller, Barbara A.

    2011-01-01

    Transient receptor potential channels Trpc2 and Trpc3 are expressed on normal murine erythroid precursors, and erythropoietin stimulates an increase in intracellular calcium ([Ca2+]i) through TRPC2 and TRPC3. Because modulation of [Ca2+]i is an important signaling pathway in erythroid proliferation and differentiation, Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were utilized to explore the roles of these channels in erythropoiesis. Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were not anemic, and had similar red blood cell counts, hemoglobins, and reticulocyte counts as wild type littermate controls. Although the erythropoietin induced increase in [Ca2+]i was reduced, these knockout mice showed no defects in red cell production. The major phenotypic difference at steady state was that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit of red cells were significantly greater in Trpc2 and Trpc2/Trpc3 double knockout mice, and mean corpuscular hemoglobin concentration was significantly reduced. All hematological parameters in Trpc3 knockout mice were similar to controls. When exposed to phenyhydrazine, unlike the Trpc3 knockouts, Trpc2 and Trpc2/Trpc3 double knockout mice showed significant resistance to hemolysis. This was associated with significant reduction in hydrogen peroxide-induced calcium influx in erythroblasts. While erythropoietin induced calcium influx through TRPC2 or TRPC3 is not critical for erythroid production, these data demonstrate that TRPC2 plays an important role in oxidative stress-induced hemolysis which may be related to reduced calcium entry in red cells in the presence of Trpc2 depletion. PMID:21924222

  16. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    PubMed Central

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  17. Effects of obesity and obesity-induced stress on depressive symptoms in Korean elementary school children.

    PubMed

    Park, Chul-Min; Kim, Moon-Doo; Hong, Seong-Chul; Kim, Yeol; Hyun, Mi-Youl; Kwak, Young-Sook; Lee, Chang-In; Park, Min-Jeong; Jang, Yun-Hee; Moon, Ji-Hyun; Seok, Eun-Mi; Song, Young-Ja; Hyeon Ju Kim

    2009-07-01

    Obesity is becoming prevalent in Korean children. Because body image is becoming increasingly important, it is likely that obesity-induced stress has a significant effect on childhood depression. To examine the correlation between obesity-induced stress and depressive symptoms in Korean elementary school students. The study participants were 2,305 elementary school children and their parents in the districts of Jeju-si, Seogwipo-si, Namjeju-gun and Bukjeju-gun on Jeju Island, Korea, who completed questionnaires involving demographic information, an obesity-induced stress scale and the Korean form of Kovacs' Children's Depression Inventory (CDI) from September to December 2006. After controlling for significant independent variables that are wellknown correlates of depressive symptoms in children (e.g. age, gender, residence, family monthly income, obesity status of both parents, family history of chronic illness, and time spent with mother), obesity-induced stress had an odds ratio of 1.128 (95% CI 1.111-1.146). Reducing the prevalence of depressive symptoms in elementary school children in Jeju Island will require special attention, particularly the development of coping strategies to resolve obesity-induced stress in various areas including school, family and society.

  18. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  19. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

    PubMed

    Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N

    2014-03-01

    Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

  20. Silymarin versus Silibinin: Differential Antioxidant and Neuroprotective Effects against H2O2-induced Oxidative Stress in PC12 Cells.

    PubMed

    Jiang, Hui-Hui; Yan, Fa-Shun; Shen, Liang; Ji, Hong-Fang

    2016-05-01

    The present study assessed comparatively the antioxidant activities of silymarin and its major active component silibinin and their neuroprotective effects against hydrogen peroxide (H2O2)-induced oxidative stress in rat pheochromocytoma PC12 cells. It was found that despite newly prepared silymarin and silibinin solution possessing comparable superoxide anion (O2*-)-scavenging activities, with time the activity of silymarin lowered slightly, but that of silibinin decreased dramatically. Both silymarin and silibinin suppressed H2O2-induced oxidative stress and apoptosis, and the neuroprotective effect of silymarin was overall relatively stronger than that of silibinin. The findings provided clues for future studies on therapeutic potentials of the whole silymarin or purified silibinin for neurodegenerative diseases.

  1. Protective Role of GPER Agonist G-1 on Cardiotoxicity Induced by Doxorubicin.

    PubMed

    De Francesco, Ernestina M; Rocca, Carmine; Scavello, Francesco; Amelio, Daniela; Pasqua, Teresa; Rigiracciolo, Damiano C; Scarpelli, Andrea; Avino, Silvia; Cirillo, Francesca; Amodio, Nicola; Cerra, Maria C; Maggiolini, Marcello; Angelone, Tommaso

    2017-07-01

    The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 μg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1β, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  3. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE PAGES

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    2017-06-13

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  4. Rac1 mediates laminar shear stress-induced vascular endothelial cell migration

    PubMed Central

    Huang, Xianliang; Shen, Yang; Zhang, Yi; Wei, Lin; Lai, Yi; Wu, Jiang; Liu, Xiaojing; Liu, Xiaoheng

    2013-01-01

    The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. PMID:24430179

  5. Nano-sized TiO2 (nTiO2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions.

    PubMed

    Zhang, Zhi; Liang, Zhi Cheng; Zhang, Jian Hua; Tian, Sheng Li; Le Qu, Jun; Tang, Jiao Ning; De Liu, Shi

    2018-06-15

    Nano-sized TiO 2 (nTiO 2 ) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO 2 is an urgent concern. Little information is available regarding the effect of TiO 2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO 2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO 2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO 2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO 2 . Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO 2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO 2 -induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO 2 -induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO 2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effect of total flavonoids of Spatholobus suberectus Dunn on PCV2 induced oxidative stress in RAW264.7 cells.

    PubMed

    Chen, Hai-Lan; Yang, Jian; Fu, Yuan-Fang; Meng, Xi-Nan; Zhao, Wei-Dan; Hu, Ting-Jun

    2017-05-02

    This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on PCV2 induced oxidative stress in RAW264.7 cells. Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits. PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to a level similar to control. Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic drug for reactive oxygen-associated pathologies.

  7. High levels of Porphyromonas gingivalis-induced immunoglobulin G2 are associated with lower high-density lipoprotein levels in chronic periodontitis.

    PubMed

    Ardila, Carlos M; Guzmán, Isabel C

    2016-11-01

    To investigate the association between the presence of Porphyromonas gingivalis-induced immunoglobulin G antibodies and the high-density lipoprotein (HDL) level. A total of 108 individuals were examined. The presence of P. gingivalis was detected using primers designed to target the 16S rRNA gene sequence. Peripheral blood was collected from each subject to determine the levels of P. gingivalis-induced IgG1 and IgG2 serum antibodies. The HDL levels were determined using fully enzymatic methods. A higher proportion of periodontitis patients had high levels of P. gingivalis-induced IgG1 and IgG2, and the proportion of subjects with a HDL level of < 35 md/dL was higher in the group of chronic periodontitis patients. In the unadjusted regression model, the presence of high levels of P. gingivalis-induced IgG2 was associated with a HDL level of < 35 md/dL. The adjusted model indicated that periodontitis patients with high levels of P. gingivalis-induced IgG2 showed 3.2 more chances of having pathological HDL levels (odds ratio = 3.2, 95% confidence interval = 1.2-9.8). High levels of P. gingivalis-induced IgG2 were associated with low HDL concentrations in patients with periodontitis, which suggests that the response of the host to periodontal infection may play an important role in the pathogenesis of cardiovascular diseases. © 2015 Wiley Publishing Asia Pty Ltd.

  8. Sulforaphane Induces Nrf2 and Protects Against CYP2E1-dependent Binge Alcohol –induced Liver Steatosis

    PubMed Central

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2013-01-01

    Background The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. Method The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. Results The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase -1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-Nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Conclusions Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol–induced fatty liver in mice. General significance The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. PMID:24060752

  9. E2F1 transcription is induced by genotoxic stress through ATM/ATR activation.

    PubMed

    Carcagno, Abel L; Ogara, María F; Sonzogni, Silvina V; Marazita, Mariela C; Sirkin, Pablo F; Ceruti, Julieta M; Cánepa, Eduardo T

    2009-05-01

    E2F1, a member of the E2F family of transcription factors, plays a critical role in controlling both cell cycle progression and apoptotic cell death in response to DNA damage and oncogene activation. Following genotoxic stresses, E2F1 protein is stabilized by phosphorylation and acetylation driven to its accumulation. The aim of the present work was to examine whether the increase in E2F1 protein levels observed after DNA damage is only a reflection of an increase in E2F1 protein stability or is also the consequence of enhanced transcription of the E2F1 gene. The data presented here demonstrates that UV light and other genotoxics induce the transcription of E2F1 gene in an ATM/ATR dependent manner, which results in increasing E2F1 mRNA and protein levels. After genotoxic stress, transcription of cyclin E, an E2F1 target gene, was significantly induced. This induction was the result of two well-differentiated effects, one of them dependent on de novo protein synthesis and the other on the protein stabilization. Our results strongly support a transcriptional effect of DNA damaging agents on E2F1 expression. The results presented herein uncover a new mechanism involving E2F1 in response to genotoxic stress.

  10. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes.

    PubMed

    Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt

    2016-07-01

    Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

  11. Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthar, B; Northrop, PWC; Braatz, RD

    This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-determined limit estimated using a pseudo 2-dimensional (P2D). model. This paper focuses on the problem of maximizing the charge stored in a given time while restricting capacity fade due to intercalation-induced stresses. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage or CC-CV) are not derived by considering capacity fade mechanisms, which are not only inefficient in terms of life-time usage of the batteries but are also slower by notmore » taking into account the changing dynamics of the system. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.« less

  12. A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory.

    PubMed

    Wirz, Lisa; Wacker, Jan; Felten, Andrea; Reuter, Martin; Schwabe, Lars

    2017-02-22

    Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor ( ADRA2B ), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems. SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications

  13. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    PubMed

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia.

  14. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  15. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    PubMed Central

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  16. Does stress induce bowel dysfunction?

    PubMed

    Chang, Yu-Ming; El-Zaatari, Mohamad; Kao, John Y

    2014-08-01

    Psychological stress is known to induce somatic symptoms. Classically, many gut physiological responses to stress are mediated by the hypothalamus-pituitary-adrenal axis. There is, however, a growing body of evidence of stress-induced corticotrophin-releasing factor (CRF) release causing bowel dysfunction through multiple pathways, either through the HPA axis, the autonomic nervous systems, or directly on the bowel itself. In addition, recent findings of CRF influencing the composition of gut microbiota lend support for the use of probiotics, antibiotics, and other microbiota-altering agents as potential therapeutic measures in stress-induced bowel dysfunction.

  17. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Monetti, Emanuela; Kadono, Takashi; Tran, Daniel; Azzarello, Elisa; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Briand, Joël; Kawano, Tomonori; Mancuso, Stefano; Bouteau, François

    2014-03-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.

  18. ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Thomas, Christophoros G; Spyrou, Giannis

    2009-03-06

    Down-regulation of the unfolded protein response (UPR) can be therapeutically valuable in cancer treatment, and endoplasmic reticulum (ER)-resident chaperone proteins may thus be targets for developing novel chemotherapeutic strategies. ERdj5 is a novel ER chaperone that regulates the ER-associated degradation of misfolded proteins through its associations with EDEM and the ER stress sensor BiP. To investigate whether ERdj5 can regulate ER stress signaling pathways, we exposed neuroblastoma cells overexpressing ERdj5 to ER stress inducers. ERdj5 promoted apoptosis in tunicamycin, thapsigargin, and bortezomib-treated cells. To provide further evidence that ERdj5 induces ER stress-regulated apoptosis, we targeted Bcl-2 to ER of ERdj5-overexpressing cells. Targeting the Bcl-2 to ER prevented the apoptosis induced by ER stress inducers but not by non-ER stress apoptotic stimuli, suggesting induction of ER stress-regulated apoptosis by ERdj5. ERdj5 enhanced apoptosis by abolishing the ER stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) and the subsequent translational repression. ERdj5 was found to inhibit the eIF2alpha phosphorylation under ER stress through inactivating the pancreatic endoplasmic reticulum kinase. The compromised integrated stress response observed in ERdj5-overexpressing ER-stressed cells due to repressed eIF2alpha phosphorylation correlated with impaired neuroblastoma cell resistance under ER stress. These results demonstrate that ERdj5 decreases neuroblastoma cell survival by down-regulating the UPR, raising the possibility that this protein could be a target for anti-tumor approaches.

  19. Leaf extract of Wasabia japonica relieved oxidative stress induced by Helicobacter pylori infection and stress loading in Mongolian gerbils.

    PubMed

    Sekiguchi, Hirotaka; Takabayashi, Fumiyo; Deguchi, Yuya; Masuda, Hideki; Toyoizumi, Tomoyasu; Masuda, Shuichi; Kinae, Naohide

    2010-01-01

    Infection with Helicobacter pylori (H. pylori) can induce gastric disorders, and though its presence cannot explain disease pathogenesis and does not have associations with other factors, it is well known that H. pylori infection causes stomach inflammation following oxidative stress. We examined the suppressive effects of a leaf extract of Wasabia japonica on H. pylori infection and on stress loading in Mongolian gerbils. Following oral administration of wasabi extract of 50 and 200 mg/kg B.W./d for 10 d, the animals were exposed to restraint stress for 90 and 270 min. As for the results, the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the stomach and oxidative DNA damage in peripheral erythrocytes at 270 min significantly increased. That elevation was significantly suppressed by the addition of the leaf extract. We concluded that the simultaneous loading of H. pylori infection and physical stress loading might induce oxidative DNA damage additively, while a leaf extract attenuated this DNA damage in the stomach as well as the peripheral erythrocytes.

  20. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  1. Free Radical Scavenging Properties of Skin and Pulp Extracts of Different Grape Cultivars In Vitro and Attenuation of H2O2-Induced Oxidative Stress in Liver Tissue Ex Vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2015-07-01

    Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6-310 mg gallic acid equivalent/g fresh weight (fw), and 46.6-733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44-58 %), hydrogen peroxide (15.3-18.6 %), and hydroxyl radicals (50-85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.

  2. Involvement of α(2)-adrenergic receptor in the regulation of the blood glucose level induced by immobilization stress.

    PubMed

    Kang, Yu-Jung; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Suh, Hong-Won

    2015-01-01

    The blood glucose profiles were characterized after mice were forced into immobilization stress with various exposure durations. The blood glucose level was significantly enhanced by immobilization stress for 30 min or 1 h, respectively. On the other hand, the blood glucose level was not affected in the groups which were forced into immobilization stress for 2 or 4 h. We further examined the effect of yohimbine (an α2-adrenergic receptor antagonist) administered systemically or centrally in the immobilization stress model. Mice were pretreated intraperitoneally (i.p.; from 0.5 to 5 mg/kg), intracerebroventricularly (i.c.v.; from 1 to 10 µg/5 µl), or intrathecally (i.t.; from 1 to 10 µg/5 µl) with yohimbine for 10 min and then, forced into immobilization stress for 30 min. The blood glucose level was measured right after immobilization stress. We found that up-regulation of the blood glucose level induced by immobilization stress was abolished by i.p. pretreatment with yohimbine. And the immobilization stress-induced blood glucose level was not inhibited by i.c.v. or i.t. pretreatment with yohimbine at a lower dose (1 µg/5 µl). However, immobilization stress-induced blood glucose level was significantly inhibited by i.c.v. or i.t. pretreatment with yohimbine at higher doses (5 and 10 µg/5 µl). In addition, the i.p. (5 mg/kg), i.c.v. (10 µg/5 µl), or i.t. (10 µg/5 µl) pretreatment with yohimbine reduced hypothalamic glucose transporter 4 expression. The involvement of α2-adrenergic receptor in regulation of immobilization stress- induced blood glucose level was further confirmed by the i.p, i.c.v, or i.t pretreatment with idazoxan, another specific α2-adrenergic receptor antagonist. Finally, i.p., i.c.v., or i.t. pretreatment with yohimbine attenuated the blood glucose level in D-glucose-fed model. We suggest that α2-adrenergic receptors located at the peripheral, the brain and the spinal cord play important roles in the up

  3. Hyperosmotic stress stimulates autophagy via polycystin-2.

    PubMed

    Peña-Oyarzun, Daniel; Troncoso, Rodrigo; Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-08-22

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.

  4. Hyperosmotic stress stimulates autophagy via polycystin-2

    PubMed Central

    Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-01-01

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions. PMID:28915568

  5. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavintharan, S.; Ong, C.N.; Jeyaseelan, K.

    2007-09-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ{sub 10}). In HepG2 cells, simvastatin decreased mitochondrial CoQ{sub 10} levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ{sub 10}, reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ{sub 10} deficiency plays an important role in statin-induced hepatopathy, and that CoQ{sub 10} supplementation protectsmore » HepG2 cells from this complication.« less

  6. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    PubMed

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  7. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    PubMed

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. Copyright © 2015 John Wiley & Sons, Ltd.

  8. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress.

    PubMed

    Zheng, Peili; Lin, Yu; Wang, Feifei; Luo, Renfei; Zhang, Tiezheng; Hu, Shan; Feng, Pinning; Liang, Xinling; Li, Chunling; Wang, Weidong

    2016-10-01

    Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells. Copyright © 2016 the American Physiological Society.

  9. FAS apoptotic inhibitory molecule 2 is a stress-induced intrinsic neuroprotective factor in the retina.

    PubMed

    Pawar, Mercy; Busov, Boris; Chandrasekhar, Aaruran; Yao, Jingyu; Zacks, David N; Besirli, Cagri G

    2017-10-01

    We report the neuroprotective role of FAS apoptotic inhibitory molecule 2 (FAIM2), an inhibitor of the FAS signaling pathway, during stress-induced photoreceptor apoptosis. Retinal detachment resulted in increased FAIM2 levels in photoreceptors with higher amounts detected at the tips of outer segments. Activation of FAS death receptor via FAS-ligand led to JNK-mediated FAIM2 phosphorylation, decreased proteasome-mediated degradation and increased association with the FAS receptor. Photoreceptor apoptosis was accelerated in Faim2 knockout mice following experimental retinal detachment. We show that FAIM2 is primarily involved in reducing stress-induced photoreceptor cell death but this effect was transient. FAIM2 was found to interact with both p53 and HSP90 following the activation of the FAS death pathway and FAIM2/HSP90 interaction was dependent on the phosphorylation of FAIM2. Lack of FAIM2 led to increased expression of proadeath genes Fas and Ripk1 in the retina under physiologic conditions. These results demonstrate that FAIM2 is an intrinsic neuroprotective factor activated by stress in photoreceptors and delays FAS-mediated photoreceptor apoptosis. Modulation of this pathway to increase FAIM2 expression may be a potential therapeutic option to prevent photoreceptor death.

  10. Cellular and molecular basis for stress-induced depression.

    PubMed

    Seo, J-S; Wei, J; Qin, L; Kim, Y; Yan, Z; Greengard, P

    2017-10-01

    Chronic stress has a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2 + ) glutamatergic neurons. Viral expression of p11 in D2 + PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2 + neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2 + PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses.

  11. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure

    PubMed Central

    Vandewynckel, Yves-Paul; Laukens, Debby; Devisscher, Lindsey; Paridaens, Annelies; Bogaerts, Eliene; Verhelst, Xavier; Van den Bussche, Anja; Raevens, Sarah; Van Steenkiste, Christophe; Van Troys, Marleen; Ampe, Christophe; Descamps, Benedicte; Vanhove, Chris; Govaere, Olivier; Geerts, Anja; Van Vlierberghe, Hans

    2015-01-01

    Hepatocellular carcinoma (HCC) is characterized by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), which activates the unfolded protein response (UPR). However, the role of ER stress in tumor initiation and progression is controversial. To determine the impact of ER stress, we applied tauroursodeoxycholic acid (TUDCA), a bile acid with chaperone properties. The effects of TUDCA were assessed using a diethylnitrosamine-induced mouse HCC model in preventive and therapeutic settings. Cell metabolic activity, proliferation and invasion were investigated in vitro. Tumor progression was assessed in the HepG2 xenograft model. Administration of TUDCA in the preventive setting reduced carcinogen-induced elevation of alanine and aspartate aminotransferase levels, apoptosis of hepatocytes and tumor burden. TUDCA also reduced eukaryotic initiation factor 2α (eIf2α) phosphorylation, C/EBP homologous protein expression and caspase-12 processing. Thus, TUDCA suppresses carcinogen-induced pro-apoptotic UPR. TUDCA alleviated hepatic inflammation by increasing NF-κB inhibitor IκBα. Furthermore, TUDCA altered the invasive phenotype and enhanced metabolic activity but not proliferation in HCC cells. TUDCA administration after tumor development did not alter orthotopic tumor or xenograft growth. Taken together, TUDCA attenuates hepatocarcinogenesis by suppressing carcinogen-induced ER stress-mediated cell death and inflammation without stimulating tumor progression. Therefore, this chemical chaperone could represent a novel chemopreventive agent. PMID:26293671

  12. Effects of induced stress on seismic forward modelling and inversion

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  13. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  14. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia.

    PubMed

    Rybaczek, Dorota; Bodys, Aleksandra; Maszewski, Janusz

    2007-09-01

    Immunocytochemistry using alpha-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases alpha and delta, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX aggregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.

  16. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  17. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations

    PubMed Central

    Kintner, Jennifer; Lajoie, Dawn; Hall, Jennifer; Whittimore, Judy; Schoborg, Robert V.

    2014-01-01

    Chlamydia trachomatis, the most common bacterial sexually transmitted disease agent worldwide, enters a viable, non-dividing and non-infectious state (historically termed persistence and more recently referred to as the chlamydial stress response) when exposed to penicillin G in culture. Notably, penicillin G-exposed chlamydiae can reenter the normal developmental cycle upon drug removal and are resistant to azithromycin-mediated killing. Because penicillin G is less frequently prescribed than other β-lactams, the clinical relevance of penicillin G-induced chlamydial persistence/stress has been questioned. The goal of this study was to determine whether more commonly used penicillins also induce C. trachomatis serovar E persistence/stress. All penicillins tested, as well as clavulanic acid, induced formation of aberrant, enlarged reticulate bodies (RB) (called aberrant bodies or AB) characteristic of persistent/stressed chlamydiae. Exposure to the penicillins and clavulanic acid also reduced chlamydial infectivity by >95%. None of the drugs tested significantly reduced chlamydial unprocessed 16S rRNA or genomic DNA accumulation, indicating that the organisms were viable, though non-infectious. Finally, recovery assays demonstrated that chlamydiae rendered essentially non-infectious by exposure to ampicillin, amoxicillin, carbenicillin, piperacillin, penicillin V, and clavulanic acid recovered infectivity after antibiotic removal. These data definitively demonstrate that several commonly used penicillins induce C. trachomatis persistence/stress at clinically relevant concentrations. PMID:24783061

  18. Roles of nibrin and AtM/ATR kinases on the G2 checkpoint under endogenous or radio-induced DNA damage.

    PubMed

    Marcelain, Katherine; De La Torre, Consuelo; González, Patricio; Pincheira, Juana

    2005-01-01

    Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.

  19. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    PubMed Central

    Mantsch, John R; Baker, David A; Funk, Douglas; Lê, Anh D; Shaham, Yavin

    2016-01-01

    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse. PMID:25976297

  20. In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2.

    PubMed

    Ferrigo, Davide; Raiola, Alessandro; Bogialli, Sara; Bortolini, Claudio; Tapparo, Andrea; Causin, Roberto

    2015-05-20

    The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (<20%) in comparison to control cultures. Transcriptional studies with seven biosynthetic genes showed a significant increase in transcript levels in the strain that made more fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.

  1. Pycnogenol (PYC) induces apoptosis in human fibrosarcoma (HFS) cells under metal-mediated oxidative stress.

    PubMed

    Park, Yeon Sun; Kim, Young Gon

    2011-01-01

    Pycnogenol (PYC), polyphenolic compounds with antioxidant activity, acted as a prooxidant. PYC caused oxidative stress in human fibrosarcoma cells (HFS) when administered following pretreatment with iron chloride. The generated reactive oxygen species (ROS) caused the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA and resulted in more apoptosis in HFS cells than in the human fibroblastoma (HFB) cells. DNA damage and cellular viability at different PYC concentrations were closely consistent with cell growth, high performance liquid chromatography (HPLC), Enzyme Linked Immunosorbent Assay (ELISA) and assays of two major antioxidant enzymes, superoxide dismutase (SOD) and catalase. Although the presence of PYC induced total SOD and catalase activities under oxidative stress in dose dependent fashion, more apoptotic cells were induced in HFS cells with increased [8-OHdG] than in HFB cells. The results suggest that PYC selectively induced cell death in HFS cells. This further confirmed that PYC-induced apoptosis is mediated primarily through the activation of caspase-3 apoptotic marker in HFS cells but not in HFB cells. We conclude that PYC would behave as either antioxidant or prooxidant dependant upon the cellular types.

  2. CKA2 functions in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NO accumulation in yeast.

    PubMed

    Liu, Wen-Cheng; Yuan, Hong-Mei; Li, Yun-Hui; Lu, Ying-Tang

    2015-09-01

    Nitric oxide (NO) plays key roles in yeast responses to various environmental factors, such as H2O2 and high temperature. However, the gene encoding NO synthase (NOS) in yeast has not yet been identified, and the mechanism underlying the regulation of NOS-like activity is poorly understood. Here, we report on the involvement of CKA2 in H2O2-induced yeast apoptosis and yeast high-temperature stress tolerance. Our results showed that although Δcka2 mutant had reduced NO accumulation with decreased apoptosis after H2O2 exposure, treatment with a NO donor, sodium nitroprusside, resulted in similar survival rate of Δcka2 mutant compared to that of wild-type yeast when subjected to H2O2 stress. This finding occurred because H2O2-enhanced NOS-like activity in wild-type yeast was significantly repressed in Δcka2. Our additional experiments indicated that both high-temperature-enhanced NO accumulation and NOS-like activity were also suppressed in Δcka2, leading to the hypersensitivity of the mutant to high temperature in terms of changes in survival rate. Thus, our results showed that CKA2 functioned in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NOS-like-dependent NO accumulation in yeast. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less

  4. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    PubMed

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  6. Rac2 deficiency attenuates CCl4-induced liver injury through suppressing inflammation and oxidative stress.

    PubMed

    Zou, Yan; Xiong, Ji-Bin; Ma, Ke; Wang, Ai-Zhong; Qian, Ke-Jian

    2017-10-01

    Oxidative stress is a leading cause to liver injury. Rac2 is a Ras-associated guanosine triphosphatase, an important molecule modulating a large number of cells and involved in the regulation of reactive oxygen species (ROS). For the study described here, we supposed that Rac2 knockout protects mice against CCl 4 -induced acute liver injury. We found that Rac2 expressed highly in CCl 4 -induced liver tissues. CCl 4 -treated Rac2 knockout (Rac2-/-) mice had reduced CD24 levels and steatosis. In addition, CCl 4 -induced high expression of pro-inflammatory cytokines and chemokine were reversed by Rac2 deficiency compared to CCl 4 -treated wild type (WT) mice. We also found that fibrosis-related signals of MMP-9, MMP-2 and TGF-β1 were also down-regulated in Rac2 knockout mice induced by CCl 4 . Significantly, oxidative stress induced by CCl 4 was also suppressed owing to the lack of Rac2, evidenced by enhanced superoxide dismutase (SOD) activity, and reduced malondialdehyde (MDA) levels, superoxide radical, H 2 O 2 , xanthine oxidase (XO), xanthine dehydrogenase (XDH) and XO/XDH ratio. Moreover, c-Jun N-terminal protein kinase mitogen-activated protein kinases (JNK MAPK) was activated by CCl 4 , which was reversed in the liver of Rac2-/- mice through western blot and immunohistochemical analysis. In vitro, endotoxin (LPS) was treated to hepatocytes isolated from WT mice and Rac2-/- mice. The data further confirmed the role of Rac2 deficiency suppressed pro-inflammatory cytokines and chemokine, as well as fibrosis-related signals. Of note, production of ROS induced by LPS was reduced in Rac2-/- cells, accompanied with enhanced SOD1, SOD2 and reduced XO and phosphorylated-JNK expressions. Our results indicated that Rac2 played an essential role in acute liver injury induced by CCl 4 , providing the compelling information of the effects of Rac2 on liver injury, and revealing a novel regulatory mechanism for acute liver injury. Copyright © 2017. Published by Elsevier

  7. Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands.

    PubMed

    Rorick-Kehn, Linda M; Hart, John C; McKinzie, David L

    2005-12-01

    Accumulating evidence suggests that drugs acting on the glutamatergic system may represent promising novel therapeutic targets for the treatment of anxiety disorders. The stress-induced hyperthermia paradigm has been used widely to model some of the physiological symptoms associated with anxiety disorders and has produced results that are predictive of clinical efficacy. We have modified this paradigm to measure the autonomic consequences of stress induced by the fear of predation in mice. To evaluate the efficacy of several classes of metabotropic and ionotropic glutamate receptor ligands, as well as known anxiolytics and psychotropic comparators, in attenuating predatory-stress-induced hyperthermia. Male DBA/2 mice were implanted with radiotelemetric transmitters in the peritoneal cavity to measure stress-related increases in core body temperature, following placement in a novel cage containing soiled rat shavings. Clinically active compounds such as chlordiazepoxide (5-10 mg/kg), alprazolam (0.3-3 mg/kg), and buspirone (10-30 mg/kg) exhibited an anxiolytic profile. Assessment of glutamatergic agents indicated that the mGlu1 receptor antagonist LY456236 (10-30 mg/kg), mGlu5 receptor antagonist MPEP (10-30 mg/kg), mGlu2/3 receptor agonist LY354740 (3-10 mg/kg), mGlu2 receptor potentiator LY566332 (30 and 100 mg/kg), mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (30-60 mg/kg), competitive NMDA receptor antagonist LY235959 (1 mg/kg), AMPA receptor antagonist GYKI-52466 (10-20 mg/kg), and glycine transporter-1 (GlyT-1) inhibitor ALX-5407 (3-10 mg/kg) dose-dependently attenuated stress-induced hyperthermia. The AMPA receptor potentiator LY451646, iGlu5 kainate receptor antagonist LY382884, glycine(B) receptor partial agonist D: -cycloserine, and GlyT-1 inhibitor ORG-24461 were ineffective in this model. Select metabotropic and ionotropic glutamate receptor ligands exhibited an anxiolytic profile, as measured by the attenuation of stress-induced hyperthermia

  8. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  9. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis.

    PubMed

    Pesant, Matthieu; Sueur, Stéphanie; Dutartre, Patrick; Tallandier, Mireille; Grimaldi, Paul A; Rochette, Luc; Connat, Jean-Louis

    2006-02-01

    Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied. We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we also showed that the selective PPARdelta agonist GW501516 protected cells from H(2)O(2)-induced cell death. The protective effect of GW501516 was due to an inhibition of H(2)O(2)-triggered apoptosis as shown by annexin-V labeling, DNA fragmentation analysis, and caspase-3 activity measurement. We demonstrated by transient transfection of a dominant negative mutant of PPARdelta that the protection induced by GW501516 was totally dependent on PPARdelta. Semi-quantitative RT-PCR and Western blotting analysis demonstrated that GW501516 treatment upregulated catalase. Moreover, forced overexpression of catalase inhibited H(2)O(2)-triggered apoptosis, as evidenced by annexin-V labeling. Taken together, our results account for an important role of PPARdelta in inhibiting the onset of oxidative stress-induced apoptosis in H9c2 cells. PPARdelta appears to be a new therapeutic target for the regulation of heart reperfusion-associated oxidative stress and stimulation of enzymatic antioxidative defences.

  10. Staphylococcus aureus-Induced G2/M Phase Transition Delay in Host Epithelial Cells Increases Bacterial Infective Efficiency

    PubMed Central

    Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407

  11. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins.

    PubMed Central

    Schwarz, G; Callewaert, G; Droogmans, G; Nilius, B

    1992-01-01

    1. Changes of the free cytosolic Ca2+ concentration induced by shear stress were measured in Fura-2 acetoxymethyl ester-loaded endothelial cells from human umbilical cord veins. 2. We were able to induce Ca2+ transients in almost every cell by blowing a stream of physiological solution onto a single endothelial cell thereby inducing shear stress between 0 and 50 dyn cm-2. The Ca2+ response could be graded by varying the shear stress, and reached a half-maximal value at a shear stress of 30 dyn cm-2. 3. The shear stress responses critically depended on the extracellular Ca2+ concentration and were absent in a Ca(2+)-free solution. Repetitive application of short pulses of shear stress induced cumulative effects because of the slow decay of the shear stress Ca2+ responses (time constants 82.3 +/- 17.8 s from twenty-five cells). Application of a depolarizing high potassium solution to reduce the driving force for Ca2+ entry decreased the Ca2+ transients in some of the cells. 4. Application of shear stress in the presence of other divalent cations, such as nickel, cobalt or barium, always produced substantial changes in the ratio of the 390/360 nm fluorescence signal, indicating influx of these cations and subsequent quenching of the Fura-2 fluorescence. 5. Shear stress responses in the presence of 10 mM Ca2+ were completely blocked by application of 1 mM La3+. 6. Incubation of the cells with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not alter the shear stress response, but completely blocked histamine-induced Ca2+ transients. 7. Small submaximal shear stress potentiated the Ca2+ transients induced by histamine. 8. We conclude that shear stress-dependent Ca2+ signals are induced by an influx of calcium that is not modulated via protein kinase C and not activated by membrane depolarization. The influx pathway is also permeable to divalent cations such as Ni2+, Co2+ and Ba2+, but is blocked by La3+. PMID:1338792

  12. Fusaric Acid Induces DNA Damage and Post-Translational Modifications of p53 in Human Hepatocellular Carcinoma (HepG2 ) Cells.

    PubMed

    Ghazi, Terisha; Nagiah, Savania; Tiloke, Charlette; Sheik Abdul, Naeem; Chuturgoon, Anil A

    2017-11-01

    Fusaric acid (FA), a common fungal contaminant of maize, is known to mediate toxicity in plants and animals; however, its mechanism of action is unclear. p53 is a tumor suppressor protein that is activated in response to cellular stress. The function of p53 is regulated by post-translational modifications-ubiquitination, phosphorylation, and acetylation. This study investigated a possible mechanism of FA induced toxicity in the human hepatocellular carcinoma (HepG 2 ) cell line. The effect of FA on DNA integrity and post-translational modifications of p53 were investigated. Methods included: (a) culture and treatment of HepG 2 cells with FA (IC 50 : 580.32 μM, 24 h); (b) comet assay (DNA damage); (c) Western blots (protein expression of p53, MDM2, p-Ser-15-p53, a-K382-p53, a-CBP (K1535)/p300 (K1499), HDAC1 and p-Ser-47-Sirt1); and (d) Hoechst 33342 assay (apoptosis analysis). FA caused DNA damage in HepG 2 cells relative to the control (P < 0.0001). FA decreased the protein expression of p53 (0.24-fold, P = 0.0004) and increased the expression of p-Ser-15-p53 (12.74-fold, P = 0.0126) and a-K382-p53 (2.24-fold, P = 0.0096). This occurred despite the significant decrease in the histone acetyltransferase, a-CBP (K1535)/p300 (K1499) (0.42-fold, P = 0.0023) and increase in the histone deacetylase, p-Ser-47-Sirt1 (1.22-fold, P = 0.0020). The expression of MDM2, a negative regulator of p53, was elevated in the FA treatment compared to the control (1.83-fold, P < 0.0001). FA also inhibited cell proliferation and induced apoptosis in HepG 2 cells as evidenced by the Hoechst assay. Together, these results indicate that FA is genotoxic and post-translationally modified p53 leading to HepG 2 cell death. J. Cell. Biochem. 118: 3866-3874, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells

    PubMed Central

    Monetti, Emanuela; Kadono, Takashi; Bouteau, François

    2014-01-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca2+ concentration ([Ca2+]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·–) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·– generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca2+]cyt increase and singlet oxygen production, do not seem to be involved in PCD. PMID:24420571

  14. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration

    PubMed Central

    Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N.

    2015-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. PMID:26490115

  15. Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells.

    PubMed

    Peng, Z G; Yao, Y B; Yang, J; Tang, Y L; Huang, X

    2015-05-12

    This study aimed to determine the effect of mangiferin on the cell cycle in HL-60 leukemia cells and expression of the cell cycle-regulatory genes Wee1, Chk1 and CDC25C and to further investigate the molecular mechanisms of the antileukemic action of mangiferin. The inhibitory effect of mangiferin on HL-60 leukemia cell proliferation was determined by the MTT assay. The impact of mangiferin on the HL-60 cell cycle was evaluated by flow cytometry. After the cells were treated with different concentrations of mangiferin, the expression levels of Wee1, Chk1 and CDC25C mRNA were determined by RT-PCR, and Western blot was used to evaluate the expression levels of cdc25c, cyclin B1, and Akt proteins. The inhibition of HL-60 cell growth by mangiferin was dose- and time-dependent. After treatment for 24 h, cells in G2/M phase increased, and G2/M phase arrest appeared with increased mRNA expression of Wee1, Chk1 and CDC25C. Mangiferin inhibited Chk1 and cdc25c mRNA expression at high concentrations and induced Wee1 mRNA expression in a dose-dependent manner. It significantly inhibited ATR, Chk1, Wee1, Akt, and ERK1/2 phosphorylation but increased cdc2 and cyclin B1 phosphorylation. Furthermore, mangiferin reduced cdc25c, cyclin B1, and Akt protein levels while inducing Wee1 protein expression. It also antagonized the phosphorylation effect of vanadate on ATR, and the phosphorylation effect of EGF on Wee1. These findings indicated that mangiferin inhibits cell cycle progression through the ATR-Chk1 stress response DNA damage pathway, leading to cell cycle arrest at G2/M phase in leukemia cells.

  16. Increased gluconeogenesis in hyper-G stressed rats

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1982-01-01

    The role of gluconeogenesis in the altered carbohydrate metabolism in rats exposed to hyper-G stress is investigated. The blood levels of the substrates and hormones involved in gluconeogenesis were determined in rats exposed to 3.1 G for various time periods (0.25 to 24 hr). It is found that hyper-G stressed rats showed an immediate increase in plasma glucose at the onset of centrifugation which persisted throughout all the exposure periods. A substantial part of the initial rise in blood glucose is attributed to an increased rate of gluconeogenesis. An increase in liver glycogen deposition was observed in centrifuged rats as early as 0.50 hr exposure time, with progressively larger amounts accumulated as the exposure time was extended to 24 hr. It is concluded that the increase in gluconeogenic activity of hyper-G stressed rats is due to an increase in the mobilization of gluconeogenic substrates from perpheral tissues to the liver as a result of increases in circulating catecholamines and glucagon.

  17. Replication stress induces accumulation of FANCD2 at central region of large fragile genes

    PubMed Central

    Okamoto, Yusuke; Iwasaki, Watal M; Kugou, Kazuto; Takahashi, Kazuki K; Oda, Arisa; Sato, Koichi; Kobayashi, Wataru; Kawai, Hidehiko; Sakasai, Ryo; Takaori-Kondo, Akifumi; Yamamoto, Takashi; Kanemaki, Masato T; Taoka, Masato; Isobe, Toshiaki; Kurumizaka, Hitoshi; Innan, Hideki; Ohta, Kunihiro; Ishiai, Masamichi; Takata, Minoru

    2018-01-01

    Abstract During mild replication stress provoked by low dose aphidicolin (APH) treatment, the key Fanconi anemia protein FANCD2 accumulates on common fragile sites, observed as sister foci, and protects genome stability. To gain further insights into FANCD2 function and its regulatory mechanisms, we examined the genome-wide chromatin localization of FANCD2 in this setting by ChIP-seq analysis. We found that FANCD2 mostly accumulates in the central regions of a set of large transcribed genes that were extensively overlapped with known CFS. Consistent with previous studies, we found that this FANCD2 retention is R-loop-dependent. However, FANCD2 monoubiquitination and RPA foci formation were still induced in cells depleted of R-loops. Interestingly, we detected increased Proximal Ligation Assay dots between FANCD2 and R-loops following APH treatment, which was suppressed by transcriptional inhibition. Collectively, our data suggested that R-loops are required to retain FANCD2 in chromatin at the middle intronic region of large genes, while the replication stress-induced upstream events leading to the FA pathway activation are not triggered by R-loops. PMID:29394375

  18. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts.

    PubMed

    Chen, Wei-Cheng; Hsieh, Shih-Rong; Chiu, Chun-Hwei; Hsu, Ban-Dar; Liou, Ying-Ming

    2014-06-09

    Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity

  19. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts

    PubMed Central

    2014-01-01

    Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative

  20. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  1. Effect of water deprivation on baseline and stress-induced corticosterone levels in the Children's python (Antaresia childreni).

    PubMed

    Dupoué, Andréaz; Angelier, Frédéric; Lourdais, Olivier; Bonnet, Xavier; Brischoux, François

    2014-02-01

    Corticosterone (CORT) secretion is influenced by endogenous factors (e.g., physiological status) and environmental stressors (e.g., ambient temperature). Heretofore, the impact of water deprivation on CORT plasma levels has not been thoroughly investigated. However, both baseline CORT and stress-induced CORT are expected to respond to water deprivation not only because of hydric stress per se, but also because CORT is an important mineralocorticoid in vertebrates. We assessed the effects of water deprivation on baseline CORT and stress-induced CORT, in Children's pythons (Antaresia childreni), a species that experiences seasonal droughts in natural conditions. We imposed a 52-day water deprivation on a group of unfed Children's pythons (i.e., water-deprived treatment) and provided water ad libitum to another group (i.e., control treatment). We examined body mass variations throughout the experiment, and baseline CORT and stress-induced CORT at the end of the treatments. Relative body mass loss averaged ~10% in pythons without water, a value 2 to 4 times higher compared to control snakes. Following re-exposition to water, pythons from the water-deprived treatment drank readily and abundantly and attained a body mass similar to pythons from the control treatment. Together, these results suggest a substantial dehydration as a consequence of water deprivation. Interestingly, stress-induced but not baseline CORT level was significantly higher in water-deprived snakes, suggesting that baseline CORT might not respond to this degree of dehydration. Therefore, possible mineralocorticoid role of CORT needs to be clarified in snakes. Because dehydration usually induces adjustments (reduced movements, lowered body temperature) to limit water loss, and decreases locomotor performances, elevated stress-induced CORT in water-deprived snakes might therefore compensate for altered locomotor performances. Future studies should test this hypothesis. Copyright © 2013 Elsevier Inc

  2. Protective effect of Curcuma longa L. extract on CCl4-induced acute hepatic stress.

    PubMed

    Lee, Geum-Hwa; Lee, Hwa-Young; Choi, Min-Kyung; Chung, Han-Wool; Kim, Seung-Wook; Chae, Han-Jung

    2017-02-01

    The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl 4 )-induced liver stress model. Acute hepatic stress was induced by a single intraperitoneal injection of CCl 4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl 4 -treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl 4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl 4 -treated group (p < 0.05), leading to a reduced lipid peroxidase level. Our data suggested that CLL extract and curcumin protect the liver from acute CCl 4 -induced injury in a rodent model by suppressing

  3. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-05

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation.

    PubMed

    Wong, Joyce J W; Young, Tracy A; Zhang, Jiayan; Liu, Shiheng; Leser, George P; Komives, Elizabeth A; Lamb, Robert A; Zhou, Z Hong; Salafsky, Joshua; Jardetzky, Theodore S

    2017-10-03

    Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.

  5. Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.

    PubMed

    Martin, K R; Failla, M L; Smith, J C

    1996-09-01

    Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.

  6. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Sub-inhibitory concentrations of penicillin G induce biofilm formation by field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Hathroubi, S; Fontaine-Gosselin, S-È; Tremblay, Y D N; Labrie, J; Jacques, M

    2015-09-30

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and causative agent of porcine pleuropneumonia. This is a highly contagious disease that causes important economic losses to the swine industry worldwide. Penicillins are extensively used in swine production and these antibiotics are associated with high systemic clearance and low oral bioavailability. This may expose A. pleuropneumoniae to sub-inhibitory concentrations of penicillin G when the antibiotic is administered orally. Our goal was to evaluate the effect of sub-minimum inhibitory concentration (MIC) of penicillin G on the biofilm formation of A. pleuropneumoniae. Biofilm production of 13 field isolates from serotypes 1, 5a, 7 and 15 was tested in the presence of sub-MIC of penicillin G using a polystyrene microtiter plate assay. Using microscopy techniques and enzymatic digestion, biofilm architecture and composition were also characterized after exposure to sub-MIC of penicillin G. Sub-MIC of penicillin G significantly induced biofilm formation of nine isolates. The penicillin G-induced biofilms contained more poly-N-acetyl-D-glucosamine (PGA), extracellular DNA and proteins when compared to control biofilms grown without penicillin G. Additionally, penicillin G-induced biofilms were sensitive to DNase which was not observed with the untreated controls. Furthermore, sub-MIC of penicillin G up-regulated the expression of pgaA, which encodes a protein involved in PGA synthesis, and the genes encoding the envelope-stress sensing two-component regulatory system CpxRA. In conclusion, sub-MICs of penicillin G significantly induce biofilm formation and this is likely the result of a cell envelope stress sensed by the CpxRA system resulting in an increased production of PGA and other matrix components. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROS-mediated endoplasmic reticulum stress response

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Zeng, Kun; Pan, Weidong; Song, Tao

    2014-11-01

    Magnetic nanoparticles (MNPs) have been increasingly applied in various areas, such as the biomedical and electronic industries. The unique properties of MNPs are beneficial to their applications, but concerns about their safety to human health along with the growing applications and production also arise. In this study, the cytotoxicity of superparamagnetic MNPs, with an average diameter of 10 nm and typical diameter range between 5 and 30 nm, was investigated using neuro-2a cells. The MNPs internalized into the cytoplasm of neuro-2a cells and inhibited the cell viability in a dose-dependent manner at concentrations ranging from 100 to 500 μg/mL. The cell growth inhibition would be partly attributed to the MNP-induced cell cycle arrest in the G0/G1 phase. MNPs triggered the endoplasmic reticulum (ER) stress response, as indicated by the up-regulated expression of the classical ER stress genes, binding immunoglobulin protein, activating transcription factor 6, and CCAAT-enhancer-binding protein homologous protein (CHOP). The induced production of cellular reactive oxygen species (ROS) and increased expression of heme oxygenase 1 and nuclear factor erythroid two-related factor two genes demonstrated that oxidative stress was also induced. Furthermore, the clearance of ROS by free radical scavenger N-acetylcysteine reduced the up-regulation of MNP-induced CHOP mRNA expressions, thereby suggesting that ROS was involved in the process of ER stress response induced by MNPs.

  9. Changes in translation rate modulate stress-induced damage of diverse proteins

    PubMed Central

    Kim, Heejung

    2013-01-01

    Proteostasis is the maintenance of the proper function of cellular proteins. Hypertonic stress disrupts proteostasis and causes rapid and widespread protein aggregation and misfolding in the nematode Caenorhabditis elegans. Optimal survival in hypertonic environments requires degradation of damaged proteins. Inhibition of protein synthesis occurs in response to diverse environmental stressors and may function in part to minimize stress-induced protein damage. We recently tested this idea directly and demonstrated that translation inhibition by acute exposure to cycloheximide suppresses hypertonicity-induced aggregation of polyglutamine::YFP (Q35::YFP) in body wall muscle cells. In this article, we further characterized the relationship between protein synthesis and hypertonic stress-induced protein damage. We demonstrate that inhibition of translation reduces hypertonic stress-induced formation and growth of Q35::YFP, Q44::YFP, and α-synuclein aggregates; misfolding of paramyosin and ras GTPase; and aggregation of multiple endogenous proteins expressed in diverse cell types. Activation of general control nonderepressible-2 (GCN-2) kinase signaling during hypertonic stress inhibits protein synthesis via phosphorylation of eukaryotic initiation factor-2α (eIF-2α). Inhibition of GCN-2 activation prevents the reduction in translation rate and greatly exacerbates the formation and growth of Q35::YFP aggregates and the aggregation of endogenous proteins. The current studies together with our previous work provide the first direct demonstration that hypertonic stress-induced reduction in protein synthesis minimizes protein aggregation and misfolding. Reduction in translation rate also serves as a signal that activates osmoprotective gene expression. The cellular proteostasis network thus plays a critical role in minimizing hypertonic stress-induced protein damage, in degrading stress-damaged proteins, and in cellular osmosensing and signaling. PMID:24153430

  10. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    PubMed

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  11. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    PubMed

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  12. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis

    PubMed Central

    Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing

    2016-01-01

    Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465

  13. 2,4,6-Trichlorophenol cytotoxicity involves oxidative stress, endoplasmic reticulum stress, and apoptosis.

    PubMed

    Zhang, Xiaoning; Zhang, Xiaona; Niu, Zhidan; Qi, Yongmei; Huang, Dejun; Zhang, Yingmei

    2014-01-01

    This study aims to evaluate the cytotoxicity and potential mechanisms of 2,4,6-trichlorophenol (2,4,6-TCP) in mouse embryonic fibroblasts. Our results show that 2,4,6-TCP causes morphological changes and reduces cell viability. The overproduction of reactive oxygen species, the upregulation of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX1) messenger RNA (mRNA) expressions, and the nuclear translocation of Nrf2 protein demonstrate that 2,4,6-TCP induces oxidative stress, and the Nrf2/HMOX1 pathway might be involved in 2,4,6-TCP-induced antioxidative response. Simultaneously, our data also demonstrate that 2,4,6-TCP upregulates the expressions of binding immunoglobulin protein, inositol-requiring enzyme/endonuclease 1α, and C/EBP homologous protein; stimulates α subunit of eukaryotic translation initiation factor 2 phosphorylation; and induces the splicing of Xbp1 mRNA, suggesting that endoplasmic reticulum (ER) stress is triggered. Moreover, 2,4,6-TCP alters the mitochondrial membrane potential and increases the apoptosis rate, the caspase 3 activity, and the Bax/Bcl-2 ratio, demonstrating that the mitochondrial pathway is involved in the 2,4,6-TCP-induced apoptosis. Thus, these results show that 2,4,6-TCP induces oxidative stress, ER stress, and apoptosis, which together contribute to its cytotoxicity in vitro. © The Author(s) 2014.

  14. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu; Karin, Norman J.; Geist, Derik J.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that themore » P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.« less

  15. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats.

    PubMed

    Hasan, Syed Kazim; Sultana, Sarwat

    2015-01-01

    2-Acetylaminofluorene (2-AAF), is a well-known liver toxicant, generally used to induce tumors in laboratory animals. Geraniol (GE), a monoterpene found in essential oils of herbs and fruits, has been known to possess preventive efficacy against chemically induced toxicities. The present study was designed to analyze the protective effect of GE against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic tissue damage in the liver of female Wistar rats. 2-AAF (0.02% w/w in diet) was administered and subjected to partial hepatectomy, as a mitogenic stimulus for the induction of hyperproliferation of liver tissue. GE was pre-treated orally at two different doses (100 and 200 mg/kg b.wt.) dissolved in corn oil. GE pre-treatment significantly ameliorated 2-AAF induced oxidative damage by diminishing tissue lipid peroxidation accompanied by the increase in enzymatic activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase and reduced glutathione content. The level of serum toxicity markers (AST, ALT, LDH) was found to be decreased. Pre-treatment with GE downregulated the expression of caspase-3,9, COX-2, NFkB, PCNA, iNOS, VEGF and significantly decreased disintegration of DNA. Histological findings further revealed that GE significantly restores the architecture of liver tissue. In the light of the above observations it may be concluded that GE may be used as preventive agent against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic damage.

  16. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetz, Lauren M., E-mail: ltetz@umich.edu; Cheng, Adrienne A.; Korte, Cassandra S.

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and thenmore » measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a

  18. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721

    PubMed Central

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104

  19. [Ursodeoxycholic acid induced apoptosis of human hepatoma cells HepG2 and SMMC-7721 bymitochondrial-mediated pathway].

    PubMed

    Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin

    2014-12-02

    To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.

  20. Retigabine ameliorates acute stress-induced impairment of spatial memory retrieval through regulating USP2 signaling pathways in hippocampal CA1 area.

    PubMed

    Li, Cai; Zhang, Ji; Xu, Haiwei; Chang, Mujun; Lv, Chuntao; Xue, Wenhua; Song, Zhizhen; Zhang, Lizhen; Zhang, Xiaojian; Tian, Xin

    2018-06-01

    Acute stress could trigger maladaptive changes associated with stress-related cognitive and emotional deficits. Dysfunction of ion channel or receptor in the hippocampal area has been linked to the cognitive deficits induced by stress. It is known that Kv7 channel openers, including FDA-approved drug retigabine, show cognitive protective efficacy. However, the underlying molecular mechanisms remain elusive. Here we showed that exposing adult male rats to acute stress significantly impaired the spatial memory, a cognitive process controlled by the hippocampus. Concomitantly, significantly reduced AMPA receptor expression was found in hippocampal CA1 area from acute stressed rats. This effect relied on the down-regulation of deubiquitinating enzyme USP2 and its upstream regulators (PGC-1α and β-catenin), and the subsequent enhancement of mTOR-related autophagy which is regulated by USP2. These findings suggested that acute stress dampened AMPA receptor expression by controlling USP2-related signaling, which caused the detrimental effect on hippocampus-dependent cognitive processes. We also found that retigabine alleviated acute stress-induced spatial memory retrieval impairment through adjusting the aberrance of USP2, its upstream regulators (PGC-1α, E4BP4 and β-catenin) and its downstream targets (mTOR, autophagy and GluA1). Our results have identified USP2 as a key molecule that mediates stress-induced spatial memory retrieval impairment, which provides a framework for new druggable targets to conceptually treat stress-associated cognitive deficits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats

    PubMed Central

    Aricioglu, Feyza; Regunathan, Soundar

    2010-01-01

    Physiological stress evokes a number of responses, including a rise in body temperature, which has been suggested to be the result of an elevation in the thermoregulatory set point. This response seems to share similar mechanisms with infectious fever. The aim of the present study was to investigate the effect of agmatine on different models of stressors [(restraint and lipopolysaccaride (LPS)] on body temperature. Rats were either restrained for 4 h or injected with LPS, both of these stressors caused an increase in body temperature. While agmatine itself had no effect on body temperature, treatment with agmatine (20, 40, 80 mg/kg intraperitoneally) dose dependently inhibited stress- and LPS-induced hyperthermia. When agmatine (80 mg/kg) was administered 30 min later than LPS (500 μg/kg) it also inhibited LPS-induced hyperthermia although the effect became significant only at later time points and lower maximal response compared to simultaneous administration. To determine if the decrease in body temperature is associated with an anti-inflammatory effect of agmatine, the nitrite/nitrate levels in plasma was measured. Agmatine treatment inhibited LPS-induced production of nitrates dose dependently. As an endogenous molecule, agmatine has the capacity to inhibit stress- and LPS-induced increases in body temperature. PMID:15936786

  2. The effects of varenicline on stress-induced and cue-induced craving for cigarettes.

    PubMed

    Ray, Lara A; Lunny, Katy; Bujarski, Spencer; Moallem, Nathasha; Krull, Jennifer L; Miotto, Karen

    2013-07-01

    Varenicline is a partial agonist of the α4β2 nicotinic acetylcholine receptor approved by the FDA for the treatment of nicotine dependence. While the clinical efficacy of varenicline for smoking cessation is well-supported, its biobehavioral mechanisms of action remain poorly understood. This randomized, crossover, placebo-controlled, human laboratory study combines guided imagery stress exposure with in vivo presentation of cigarette cues to test the effects of varenicline on stress-induced and cue-induced craving for cigarettes. A total of 40 (13 females) daily smokers (≥10 cigarettes per day) completed a guided imagery exposure (stress and neutral) followed by the presentation of cigarette cues at the target dose of varenicline (1mg twice per day) and on matched placebo. Multilevel regression models revealed a significant main effect of varenicline (p<.01) such that it reduced cigarette craving across the experimental paradigm, compared to placebo. There was also a significant medication×stress×trial interaction indicating that varenicline attenuated cue induced craving following neutral imagery but not when cues were preceded by stress induction (i.e., stress+cues). These results elucidate the biobehavioral effects of varenicline for nicotine dependence and suggest that varenicline-induced amelioration of cigarette craving is unique to tonic craving and cue-induced craving following neutral imagery but does not extend to the combination of stress plus cues. Copyright © 2013. Published by Elsevier Ireland Ltd.

  3. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activitymore » and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.« less

  4. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H(2)O(2)-induced stress.

    PubMed

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.

  5. Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L.) Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-induced Stress

    PubMed Central

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851

  6. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

    PubMed Central

    Kalayda, Ganna V.; Mannewitz, Mareike; Cinatl, Jindrich; Rothweiler, Florian; Michaelis, Martin; Saafan, Hisham; Ritter, Christoph A.; Jaehde, Ulrich

    2017-01-01

    The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis. PMID:28746345

  7. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    PubMed

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  8. PGE2-EP2 signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB

    PubMed Central

    Aoki, T; Nishimura, M; Matsuoka, T; Yamamoto, K; Furuyashiki, T; Kataoka, H; Kitaoka, S; Ishibashi, R; Ishibazawa, A; Miyamoto, S; Morishita, R; Ando, J; Hashimoto, N; Nozaki, K; Narumiya, S

    2011-01-01

    BACKGROUND AND PURPOSE Cerebral aneurysm is a frequent cerebrovascular event and a major cause of fatal subarachnoid haemorrhage, but there is no medical treatment for this condition. Haemodynamic stress and, recently, chronic inflammation have been proposed as major causes of cerebral aneurysm. Nevertheless, links between haemodynamic stress and chronic inflammation remain ill-defined, and to clarify such links, we evaluated the effects of prostaglandin E2 (PGE2), a mediator of inflammation, on the formation of cerebral aneurysms. EXPERIMENTAL APPROACH Expression of COX and prostaglandin E synthase (PGES) and PGE receptors were examined in human and rodent cerebral aneurysm. The incidence, size and inflammation of cerebral aneurysms were evaluated in rats treated with COX-2 inhibitors and mice lacking each prostaglandin receptor. Effects of shear stress and PGE receptor signalling on expression of pro-inflammatory molecules were studied in primary cultures of human endothelial cells (ECs). KEY RESULTS COX-2, microsomal PGES-1 and prostaglandin E receptor 2 (EP2) were induced in ECs in the walls of cerebral aneurysms. Shear stress applied to primary ECs induced COX-2 and EP2. Inhibition or loss of COX-2 or EP2in vivo attenuated each other's expression, suppressed nuclear factor κB (NF-κB)-mediated chronic inflammation and reduced incidence of cerebral aneurysm. EP2 stimulation in primary ECs induced NF-κB activation and expression of the chemokine (C-C motif) ligand 2, essential for cerebral aneurysm. CONCLUSIONS AND IMPLICATIONS These results suggest that shear stress activated PGE2-EP2 pathway in ECs and amplified chronic inflammation via NF-κB. We propose EP2 as a therapeutic target in cerebral aneurysm. PMID:21426319

  9. Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress

    PubMed Central

    Hoeferlin, L. Alexis; Oleinik, Natalia V.; Krupenko, Natalia I.

    2011-01-01

    The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21−/− cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21+/+ cells; such an arrest was not seen in p21-deficient (HCT116 p21−/−) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death. PMID:22593801

  10. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    NASA Astrophysics Data System (ADS)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  11. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO).

    PubMed

    Magierowska, Katarzyna; Magierowski, Marcin; Surmiak, Marcin; Adamski, Juliusz; Mazur-Bialy, Agnieszka Irena; Pajdo, Robert; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2016-03-24

    Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.g.)), RuCl₃ (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1-10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with N(G)-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl₃ was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO's hyperemic and anti-inflammatory properties, but is independent of NO.

  12. ML-7 amplifies the quinocetone-induced cell death through akt and MAPK-mediated apoptosis on HepG2 cell line.

    PubMed

    Zhou, Yan; Zhang, Shen; Deng, Sijun; Dai, Chongshan; Tang, Shusheng; Yang, Xiayun; Li, Daowen; Zhao, Kena; Xiao, Xilong

    2016-01-01

    The study aims at evaluating the combination of the quinocetone and the ML-7 in preclinical hepatocellular carcinoma models. To this end, the effect of quinocetone and ML-7 on apoptosis induction and signaling pathways was analyzed on HepG2 cell lines. Here, we report that ML-7, in a nontoxic concentration, sensitized the HepG2 cells to quinocetone-induced cytotoxicity. Also, ML-7 profoundly enhances quinocetone-induced apoptosis in HepG2 cell line. Mechanistic investigations revealed that ML-7 and quinocetone act in concert to trigger the cleavage of caspase-8 as well as Bax/Bcl-2 ratio up-regulation and subsequent cleavage of Bid, capsases-9 and -3. Importantly, ML-7 weakened the quinocetone-induced Akt pathway activation, but strengthened the phosphorylation of p-38, ERK and JNK. Further treatment of Akt activator and p-38 inhibitor almost completely abolished the ML-7/quinocetone-induced apoptosis. In contrast, the ERK and JNK inhibitor aggravated the ML-7/quinocetone-induced apoptosis, indicating that the synergism critically depended on p-38 phosphorylation and HepG2 cells provoke Akt, ERK and JNK signaling pathways to against apoptosis. In conclusion, the rational combination of quinocetone and ML-7 presents a promising approach to trigger apoptosis in hepatocellular carcinoma, which warrants further investigation.

  13. Endomembrane Ca2+ -ATPases play significant role in virus-induced adaptation to oxidative stress

    USDA-ARS?s Scientific Manuscript database

    In our recently published paper (Plant Cell Environ 34: 406-417) we have reported a phenomenon of Potato Virus X (PVX) - induced cross tolerance to oxidative stress in Nicotiana benthamiana plants and showed a critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study fol...

  14. [Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line].

    PubMed

    Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi

    2008-08-01

    To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.

  15. Sevoflurane-Induced Endoplasmic Reticulum Stress Contributes to Neuroapoptosis and BACE-1 Expression in the Developing Brain: The Role of eIF2α.

    PubMed

    Liu, Bin; Xia, Junming; Chen, Yali; Zhang, Jun

    2017-02-01

    Neonatal exposure to volatile anesthetics causes apoptotic neurodegeneration in the developing brain, possibly leading to neurocognitive deficits in adulthood. Endoplasmic reticulum (ER) stress might be associated with sevoflurane (sevo)-induced neuroapoptosis. However, the signaling pathway regulating sevo-induced neuroapoptosis is not understood. We investigated the effects of neonatal sevo exposure on ER signaling pathway activation. Seven-day-old mouse pups were divided into control (C) and sevo (S; 3 % sevo exposure, 6 h) groups. ER stress marker [protein kinase RNA-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), CHOP, and caspase-12] levels were determined by western blotting. To understand the role of eIF2α in sevo-induced ER stress and caspase-3 activation, pups were pretreated with an eIF2α dephosphorylation inhibitor, salubrinal, and a potent and selective inhibitor of PERK, GSK2656157, before sevo exposure, and the effects on ER stress signaling and neuroapoptosis were examined. We investigated whether neonatal exposure to sevo increased β-site APP-cleaving enzyme 1 (BACE-1) expression. Neonatal sevo exposure elevated caspase-3 activation. ER stress signaling was activated, along with increased PERK and eIF2α phosphorylation, and upregulation of proapoptotic proteins (ATF4 and CHOP) in the cerebral cortex of the developing brain. Pretreatment with salubrinal augmented sevo-induced eIF2α phosphorylation, which inhibited ER stress-mediated ATF4 and caspase-3 activation. Inhibition of PERK phosphorylation due to GSK2656157 pretreatment reduced the sevo-induced increase in eIF2α phosphorylation. Sevo increased BACE-1 expression, which was attenuated by GSK2656157 and salubrinal pretreatment. Our data suggested that neonatal sevo exposure-induced neuroapoptosis is mediated via the PERK-eIF2α-ATF4-CHOP axis of the ER stress signaling pathway. Modulation of eIF2α phosphorylation

  16. Estrogen reduces endoplasmic reticulum stress to protect against glucotoxicity induced-pancreatic β-cell death.

    PubMed

    Kooptiwut, Suwattanee; Mahawong, Pitchnischa; Hanchang, Wanthanee; Semprasert, Namoiy; Kaewin, Suchada; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai

    2014-01-01

    Estrogen can improve glucose homeostasis not only in diabetic rodents but also in humans. However, the molecular mechanism by which estrogen prevents pancreatic β-cell death remains unclear. To investigate this issue, INS-1 cells, a rat insulinoma cell line, were cultured in medium with either 11.1mM or 40mM glucose in the presence or the absence of estrogen. Estrogen significantly reduced apoptotic β-cell death by decreasing nitrogen-induced oxidative stress and the expression of the ER stress markers GRP 78, ATF6, P-PERK, PERK, uXBP1, sXBP1, and CHOP in INS-1 cells after prolonged culture in medium with 40mM glucose. In contrast, estrogen increased the expression of survival proteins, including sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA-2), Bcl-2, and P-p38, in INS-1 cells after prolonged culture in medium with 40mM glucose. The cytoprotective effect of estrogen was attenuated by addition of the estrogen receptor (ERα and ERβ) antagonist ICI 182,780 and the estrogen membrane receptor inhibitor G15. We showed that estrogen decreases not only oxidative stress but also ER stress to protect against 40mM glucose-induced pancreatic β-cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study.

    PubMed

    Kalmbach, David A; Pillai, Vivek; Drake, Christopher L

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10-.13, p < .001) and cognitive intrusions (β = .19-.20, p < .001) predicted depression severity 1y and 2y later. Depression incidence across 2 years was 6.2%. Perseverators with insomnia had the highest rates of depression (13.0%), whereas good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p < .04). Cognitive intrusions following stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers.

  18. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  19. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  20. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice

    PubMed Central

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia. PMID:26664256

  1. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    PubMed

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  2. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  3. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity

  4. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca2+ regulation in airway smooth muscle (ASM)1

    PubMed Central

    Delmotte, Philippe; Sieck, Gary C.

    2015-01-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  5. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system.

  6. Expansion and stress responses of the AP2/EREBP superfamily in cotton.

    PubMed

    Liu, Chunxiao; Zhang, Tianzhen

    2017-01-31

    The allotetraploid cotton originated from one hybridization event between an extant progenitor of Gosssypium herbaceum (A 1 ) or G. arboreum (A 2 ) and another progenitor, G. raimondii Ulbrich (D 5 ) 1-1.5 million years ago (Mya). The APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plants. They are characterized by their AP2 domain, which comprises 60-70 amino acids, and are classified into four main subfamilies: the APETALA2 (AP2), Related to ABI3/VP1 (RAV), Dehydration-Responsive Element Binding protein (DREB) and Ethylene-Responsive Factor (ERF) subfamilies. The AP2/EREBP genes play crucial roles in plant growth, development and biotic and abiotic stress responses. Hence, understanding the molecular characteristics of cotton stress tolerance and gene family expansion would undoubtedly facilitate cotton resistance breeding and evolution research. A total of 269 AP2/EREBP genes were identified in the G. raimondii (D5) cotton genome. The protein domain architecture and intron/exon structure are simple and relatively conserved within each subfamily. They are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem duplication. We identified 73 tandem duplicated genes and 221 segmental duplicated gene pairs which contributed to the expansion of AP2/EREBP superfamily. Of them, tandem duplication was the most important force of the expansion of the B3 group. Transcriptome analysis showed that 504 AP2/EREBP genes were expressed in at least one tested G. hirsutum TM-1 tissues. In G. hirsutum, 151 non-repeated genes of the DREB and ERF subfamily genes were responsive to different stresses: 132 genes were induced by cold, 63 genes by drought and 94 genes by heat. qRT-PCR confirmed that 13 GhDREB and 15 GhERF genes were induced by cold and/or drought. No transcripts detected for 53 of the 111 tandem duplicated genes in TM-1

  7. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  8. Morinda citrifolia L. fruit extracts modulates H2O2-induced oxidative stress in human liposarcoma SW872 cells.

    PubMed

    Ruhomally, Z; Somanah, J; Bahorun, T; Neergheen-Bhujun, V S

    2016-07-01

    Morinda citrifolia L. commonly known as noni is used by the pharmaceutical and cosmetic industries due to the plethora of pharmacological activities of its metabolites. In Mauritius, the fruits of M. citrifolia are used in folk medicine against a number of indications. The present study aimed at evaluating the antioxidant activity of ripe and unripe noni fruit at both biochemical and cellular levels. Using an array of established assay systems, the fruit antioxidant propensity was assessed in terms of its radical scavenging, iron reducing and metal chelating potentials. Ascorbic acid, total phenolic and total flavonoid contents of the fruits were also determined. The ascorbic acid content of ripe noni was 76.24 ± 1.13 mg/100 g while total phenolics of ripe and unripe fruit extracts were 748.40 ± 8.85 μg and 770.34 ± 2.27 μg GAE g(-1) FW respectively. Both the ripe and unripe extracts of M. citrifolia were potent scavengers of nitric oxide, superoxide and hydroxyl radicals. The ferric reducing capacity ranged from 11.26 ± 0.33 to 11.90 ± 0.20 mM Fe(2+) g(-1) FW while the IC50 values for the iron (II) chelating power were 0.50 ± 0.01 and 1.74 ± 0.01 g FW/mL for the ripe and unripe fruit extracts respectively. Cellular studies additionally demonstrated that noni were able to dose-dependently counteract accumulation of reactive oxygen species (ROS)-induced oxidative stress, a potential obesogenic factor within human liposarcoma SW872 cells as well as significantly restore cell death within the concentration range of 0.106-0.813 g/mL. Results reported herein suggest noni as an interesting source of prophylactic antioxidants modulated by its polyphenol composition.

  9. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{submore » i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to

  10. Analysis on annealing-induced stress of blind-via TSV using FEM

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Shi, Tielin; Du, Li; Su, Lei; Lu, Xiangning; Liao, Guanglan

    2017-07-01

    Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during the annealing process, often causing reliability issues. In this paper, the finite element method is employed to investigate the impacts of via shape and SiO2 liner uniformity on the thermo-mechanical properties of copper- filled blind-via TSV after annealing. Top interface stress analysis on the TSV structure shows that the curvature of via openings releases stress concentration that leads to 60 MPa decrease of normal stresses, σ xx and σ yy , in copper and 70 MPa decrease of σ xx in silicon. Meanwhile, the vertical interface analysis shows that annealing-induced stress at the SiO2/Si interface depends heavily on SiO2 uniformity. By increasing the thickness of SiO2 linear, the stress at the vertical interface can be significantly reduced. Thus, process optimization to reduce the annealing-induced stress becomes feasible. The results of this study help us gain a better understanding of the thermo-mechanical behavior of the annealed TSV in 3D packaging.

  11. The Surgically Induced Stress Response

    PubMed Central

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  12. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration.

    PubMed

    Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N

    2015-12-15

    Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. © 2015 Janjanam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress.

    PubMed

    Zhu, Yong; Deng, Guoying; Ji, Anqi; Yao, Jiayi; Meng, Xiaoxiao; Wang, Jinfeng; Wang, Qian; Wang, Qiugen; Wang, Ruilan

    2017-01-01

    Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO 2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO 2 (n=18). The PQ and PQ + Se@SiO 2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO 2 nanospheres 1 mg/kg (in the PQ + Se@SiO 2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO 2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO 2 nanosphere treatment. These data indicate that porous Se@SiO 2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO 2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.

  14. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.

    PubMed

    Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H

    2014-02-01

    In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Carbamylated erythropoietin ameliorates the metabolic stress induced in vivo by severe chronic hypoxia

    PubMed Central

    Fantacci, Monica; Bianciardi, Paola; Caretti, Anna; Coleman, Thomas R.; Cerami, Anthony; Brines, Michael; Samaja, Michele

    2006-01-01

    Ischemia and chronic hypoxia (CH) trigger a variety of adverse effects arising from metabolic stress that injures cells. In response to reduced O2, hypoxia-inducible factor 1α (HIF-1α) activates erythropoietin (Epo) as well as many other target genes that counteract the effects of O2 deficiency. Epo produced by the kidney stimulates erythrocyte production, leading to decreased HIF-1α production by improved tissue O2 delivery. However, Epo is produced by many other tissues, and it is currently unclear to what extent, if any, locally produced Epo modulates HIF-1α expression. Derivatives of Epo that possess tissue-protective activities but do not stimulate erythropoiesis [e.g., carbamylated Epo (CEpo)] are useful tools with which to determine whether exogenous Epo modulates HIF-1α in the absence of changes in hemoglobin concentration. We compared the effects of CH (6.5% O2 for 10 days) with or without CEpo administered by daily s.c. injection (10 μg/kg of body weight). CEpo administration did not alter the survival rate, weight loss, or increased hemoglobin concentration associated with CH. Therefore, CEpo does not directly suppress HIF-mediated erythropoiesis. CEpo does, however, prevent CH-induced neuronal increases of HIF-1α and Epo receptor-associated immunoreactivity (a measure of stress) while reducing the apoptotic index. In contrast, the myocardium did not exhibit increased HIF-1α expression during CH, although CEpo did reduce the apoptotic index. These observations therefore demonstrate that CEpo administration reduces the metabolic stress caused by severe CH, resulting in improved cellular survival independent of erythrocyte production. PMID:17090665

  16. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity.

    PubMed

    Zhang, Jiayu; Zhou, Xue; Wu, Wenbo; Wang, Jiachun; Xie, Hong; Wu, Zhigang

    2017-04-01

    Alpha-lipoic acid (α-LA) is an important antioxidant that is capable of regenerating other antioxidants, such as glutathione (GSH). However, the underlying molecular mechanism by which α-LA regenerates GSH remains poorly understood. The current study aimed to investigate whether α-LA regenerates GSH by activation of Nrf2 to alleviate cadmium-induced cytotoxicity in HepG2 cells. In the present study, we found that cadmium induced cell death by depletion of GSH through inactivation of Nrf2. Addition of α-LA to cadmium-treated cells reactivated Nrf2 and regenerated GSH through elevating the Nrf2-downstream genes γ-glutamate-cysteine ligase (γ-GCL) and GR, both of which are key enzymes for GSH synthesis. However, blocking Nrf2 with brusatol in the cells co-treated with α-LA and cadmium reduced the mRNA and the protein levels of γ-GCL and GR, thus suppressed GSH regeneration by α-LA. Our results indicated that α-LA activated Nrf2 signaling pathway, which upregulated the transcription of the enzymes for GSH synthesis and therefore GSH contents to alleviate cadmium-induced cytotoxicity in HepG2 cells. Copyright © 2017. Published by Elsevier B.V.

  17. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  18. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  19. Gender comparisons of exercise-induced oxidative stress: influence of antioxidant supplementation.

    PubMed

    Goldfarb, Allan H; McKenzie, Michael J; Bloomer, Richard J

    2007-12-01

    The purpose of this study was to determine the influence of gender and antioxidant supplementation on exercise-induced oxidative stress. Twenty-five men and 23 women ran for 30 min at 80% VO2 max, once before and once after 2 weeks of supplementation, and again after a 1-week wash-out period. Subjects were randomly assigned to either placebo (P), antioxidant (A: 400 IU vitamin E+1 g vitamin C), or a fruit and vegetable powder (FV) treatment. Blood was obtained at rest and immediately after exercise. Before supplementation, women had higher resting reduced glutathione, total glutathione, and plasma vitamin E compared with men. With both A and FV supplementations, plasma vitamin E gender differences disappeared. Protein carbonyls, oxidized glutathione, and malondialdehyde all increased similarly for both genders in response to exercise. Both A and FV attenuated the reduced glutathione decrease and the oxidized glutathione and protein carbonyls increase compared with P, with no gender differences. 8-hydroxydeoxyguanosine was lower with treatment A compared with FV and P only for men. Plasma vitamin C increased 39% (A) and 21% (FV) compared with P. These data indicate that women have higher resting antioxidant levels than men. Markers of oxidative stress increased similarly in both genders in response to exercise of similar intensity and duration. Two weeks of antioxidant supplementation can attenuate exercise-induced oxidative stress equally in both genders.

  20. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. The G2 block induced by DNA damage: a caffeine-resistant component independent of Cdc25C, MPM-2 phosphorylation, and H1 kinase activity.

    PubMed

    Barratt, R A; Kao, G; McKenna, W G; Kuang, J; Muschel, R J

    1998-06-15

    Treatment of cells with agents that cause DNA damage often results in a delay in G2. There is convincing evidence showing that inhibition of p34cdc2 kinase activation is involved in the DNA damage-induced G2 delay. In this study, we have demonstrated the existence of an additional pathway, independent of the p34cdc2 kinase activation pathway, that leads to a G2 arrest in etoposide-treated cells. Both the X-ray-induced and the etoposide-induced G2 arrest were associated with inhibition of the p34cdc2 H1 kinase activation pathway as judged by p34cdc2 H1 kinase activity and phosphorylation of cdc25C. Caffeine treatment restored these activities after either of the treatments. However, the etoposide-treated cells did not resume cycling, revealing the presence of an alternative pathway leading to a G2 arrest. To explore the possibility that this additional pathway involved phosphorylation of the MPM-2 epitope that is shared by a large family of mitotic phosphoproteins, we monitored the phosphorylation status of the MPM-2 epitope after DNA damage and after treatment with caffeine. Phosphorylation of the MPM-2 epitope was depressed in both X-ray and etoposide-treated cells, and the depression was reversed by caffeine in both cases. The results indicate that the pathway affecting MPM-2 epitope phosphorylation is involved in the G2 delay caused by DNA damage. However, it is not part of the caffeine-insensitive pathway leading to a G2 block seen in etoposide-treated cells.

  2. Cellular stress induces cytoplasmic RNA granules in fission yeast.

    PubMed

    Nilsson, Daniel; Sunnerhagen, Per

    2011-01-01

    Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.

  3. Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).

    PubMed

    Feng, Mi; Yin, Hua; Cao, Yajuan; Peng, Hui; Lu, Guining; Liu, Zehua; Dang, Zhi

    2018-06-15

    Cd-induced stress response of Phanerochaete chrysosporium during the biodegradation of BDE-47 was investigated in this study, with the goal of elucidating the tolerance behavior and the detoxification mechanisms of P. chrysosporium to resist the Cd stress in the course of BDE-47 biodegradation, which has implications for expanding the application of P. chrysosporium in the bioremediation of Cd and BDE-47 combined pollution. The results suggested that single BDE-47 exposure did not induce obvious oxidative stress in P. chrysosporium, but coexistent Cd significantly triggered ROS generation, both intracellular ROS level and H 2 O 2 content showed positive correlation with Cd concentration. The activities of SOD and CAT were enhanced by low level of Cd (≤ 1 mg/L), but Cd of higher doses (>1 mg/L) depressed the expression of these two antioxidant enzymes at the later exposure period (3-5 days). The intracellular content of GSH along with GSH/GSSG ratio also exhibited a bell-shaped response with a maximum value at Cd of 1 mg/L. Furthermore, Cd-induced ROS generation resulted in the lipid peroxidation, as indicated by a noticeable increment of MDA content found after 3 days. Moreover, the study also indicated that Cd less than 1 mg/L promoted the production of extracellular protein and quickened the decrease of pH value in the medium, while excessive Cd (>1 mg/L) would lead to inhibition. These findings obtained demonstrated that P. chrysosporium had a certain degree of tolerance to Cd within a specific concentration range via regulating the antioxidant levels, inducing the synthesis of extracellular protein as well as stimulating the production of organic acids, and 1 mg/L is suggested to be the tolerance threshold of this strains under Cd stress during BDE-47 biodegradation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Increased gluconeogenesis in rats exposed to hyper-G stress

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.; Hannak, K.

    1985-01-01

    The effect of glucogenesis on the plasma glucose and liver glycogen of rats exposed to hyper-G stress is investigated. Twelve male Sprague-Dawley rats are injected with C-14 lactate, alanine, of glycerol, and six of the rats are exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. The plasma glucose and liver glycogen of the centrifuged and noncentrifuged rats are analyzed. A significant increase in the C-14 incorporation of the substrate into the plasma glucose and liver glycogen is observed in the centrifuged rats. The injection of 5-methoxyindole-2-carboxylic acid, a gluconeogenesis inhibitor, results in a blocked increase in plasma glucose and liver glycogen. The role of epinephrine on the hyperglycemic and liver glycogen responses of centrifuged rats is studied. It is concluded that the initial increase in plasma glucose and liver glycogen in rats exposed to hyper-G stress is the result of an increased rate of gluconeogenesis.

  5. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study

    PubMed Central

    Pillai, Vivek; Drake, Christopher L.

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10–.13, p < .001) and cognitive intrusions (β = .19–.20, p < .001) predicted depression severity 1y and 2y later. Depression incidence across 2 years was 6.2%. Perseverators with insomnia had the highest rates of depression (13.0%), whereas good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p < .04). Cognitive intrusions following stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers. PMID:29438400

  6. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity.

    PubMed

    A V, Vipin; K, Raksha Rao; Kurrey, Nawneet Kumar; K A, Anu Appaiah; G, Venkateswaran

    2017-07-01

    Aflatoxin B 1 (AFB 1 ) is one of the predominant mycotoxin contaminant in food and feed, causing oxidative stress and hepatotoxicity. Ginger phenolics have been reported for its antioxidant potential and hepatoprotective activity. The present study investigated the protective effects of phenolics rich ginger extract (GE) against AFB 1 induced oxidative stress and hepatotoxicity, in vitro and in vivo. The phenolic acid profiles of GE showed 6-gingerol and 6-shogaol as predominant components. Pretreatment of HepG2 cells with GE significantly inhibited the production of intracellular reactive oxygen species (ROS), DNA strand break, and cytotoxicity induced by AFB 1 . A comparable effect was observed in in vivo. Male Wistar rats were orally treated with GE (100 and 250mg/kg) daily, with the administration of AFB 1 (200μg/kg) every alternative day for 28days. Treatment with GE significantly reduced AFB 1 induced toxicity on the serum markers of liver damage. In addition, GE also showed significant hepatoprotective effect by reducing the lipid peroxidation and by enhancing the antioxidant enzymes activities. These results combined with liver histopathological observations indicated that GE has potential protective effect against AFB 1 induced hepatotoxicity. Additionally, administration of GE up-regulated Nrf2/HO-1 pathway, which further proved the efficiency of GE to inhibit AFB 1 induced hepatotoxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. L-selenomethionine does not protect against testosterone plus 17β-estradiol-induced oxidative stress and preneoplastic lesions in the prostate of NBL rats.

    PubMed

    Özten, Nur; Schlicht, Michael; Diamond, Alan M; Bosland, Maarten C

    2014-01-01

    Previous animal studies examining dietary selenium effects on prostatic carcinogenesis did not show preventive benefit, including 1 study in a rat model involving testosterone (T) and estradiol (E2)-induced prostatic oxidative stress. Here, we examined modulation of T + E2-induced prostatic oxidative stress, dysplasia, and inflammation by L-selenomethionine at 1.5 or 3.0 mg selenium/kg in NIH-07 diet in Noble (Nbl)/Crl rats treated with T + E2 for 16 wk. Hormone treatment increased immunohistochemical staining for 8-hydroxydeoxyguanosine (8-OHdG) in the prostatic sites of T + E2-induced preneoplasia (P < 0.05), but selenomethionine did not attenuate 8-OHdG staining and dysplasia in the lateral prostate. Glutathione-peroxidase activity (P < 0.05) and mRNA expression were induced by T + E2 (P < 0.0001) but not changed by selenomethionine. Selenomethionine did not cause significant responses in expression and activity of glutathione-peroxidase and MnSOD, except for a reduction of MnSOD protein expression in the lateral prostate (P < 0.01). The absence of reduction of oxidative stress and dysplasia and the minimal effects on antioxidant enzymes caused by selenomethionine are consistent with the null effects observed in selenium supplementation animal studies and clinical trials. Significant (P < 0.01) opposite apoptosis/cell proliferation balance responses to selenomethionine and to T + E2 occurred in the lateral and dorsal prostate, explaining why T + E2 induces lesions selectively in the lateral lobe of NBL rats.

  8. Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart

    PubMed Central

    Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich

    2013-01-01

    Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371

  9. Reversal of haloperidol induced motor deficits in rats exposed to repeated immobilization stress.

    PubMed

    Shireen, Erum; Pervez, Sidra; Masroor, Maria; Ali, Wafa Binte; Rais, Qudsia; Khalil, Samira; Tariq, Anum; Haleem, Darakshan Jabeen

    2014-09-01

    Stress is defined as a non specific response of body to any physiological and psychological demand. Preclinical studies have shown that an uncontrollable stress condition produces neurochemical and behavioral deficits. The present study was conducted to test the hypothesis that a decrease in the responsiveness of somatodendritic 5-hydroxytryptamine (5-HT)-1A receptors following adaptation to stress could attenuate haloperidol induced acute parkinsonian like effect. Results showed that single exposure (2h) to immobilization stress markedly decreased food intake, growth rate and locomotor activity but these stress-induced behavioral deficits were not observed following repeated (2h/day for 5 days) exposure of immobilization stress suggesting behavioral tolerance occurs to similar stress. An important finding of present study is a reversal of haloperidol-induced motor deficits in animals exposed to repeated immobilization stress than respective control animals. It is suggested that stress induced possible desensitization of somatodendritic 5-HT-1A as well as 5-HT-2C receptors could release dopamine system from the inhibitory influence of serotonin. On the other hand, an increase in the effectiveness of postsynaptic 5-HT-1A receptors elicits a direct stimulatory influence on the activity of dopaminergic neuron and is possibly involved in the reversal of haloperidol-induced parkinsonian like symptoms in repeatedly immobilized rats.

  10. Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution*

    PubMed Central

    Mamais, Adamantios; Chia, Ruth; Beilina, Alexandra; Hauser, David N.; Hall, Christine; Lewis, Patrick A.; Cookson, Mark R.; Bandopadhyay, Rina

    2014-01-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function. PMID:24942733

  11. NELL2 function in the protection of cells against endoplasmic reticulum stress.

    PubMed

    Kim, Dong Yeol; Kim, Han Rae; Kim, Kwang Kon; Park, Jeong Woo; Lee, Byung Ju

    2015-01-01

    Continuous intra- and extracellular stresses induce disorder of Ca(2+) homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

  12. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood–Brain Barrier Damage

    PubMed Central

    Qie, Xiaojuan; Wen, Di; Guo, Hongyan; Xu, Guanjie; Liu, Shuai; Shen, Qianchao; Liu, Yi; Zhang, Wenfang; Cong, Bin; Ma, Chunling

    2017-01-01

    Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood–brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption. PMID:28959203

  13. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    PubMed

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  14. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    NASA Astrophysics Data System (ADS)

    Matthews, M. J.; Stolken, J. S.; Vignes, R. M.; Norton, M. A.; Yang, S.; Cooke, J. D.; Guss, G. M.; Adams, J. J.

    2009-10-01

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO2 lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO2 laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work we present the results of 351 nm, 3ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO2 laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1~40s square pulse CO2 laser exposures created over 0.5-1.25kW/cm2 with a 1-3mm 1/e2 diameter beam (Tmax~1500-3000K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for Tmax>=2000K. The effect of cooling rate on fictive temperature caused by CO2 laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  15. In vivo monitor oxidative burst induced by Cd2+ stress for the oilseed rape (Brassica napus L.) based on electrochemical microbiosensor.

    PubMed

    Xu, Qiao; Wei, Fang; Wang, Zhan; Yang, Qin; Zhao, Yuan-Di; Chen, Hong

    2010-01-01

    Since the mechanism of Cd(2+) stress for plants is not clear, an in vivo method to monitor Cd(2+) stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd(2+) stress for plants. To establish an electrochemical method with poly-o-phenylenediamine and Pt microparticle modified Pt electrode (POPD-Pt-MP-Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd(2+) stress in oilseed rape (Brassica napus L.). The optimal fabrication of POPD-Pt-MP-Pt biosensor was achieved. Electrochemical signal was collected by amperometry. After oilseed rape was exposed to 84.9 mM CdCl(2) stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. This contribution presents the in vivo monitoring of the OB process induced by Cd(2+) stress in oilseed rape by POPD-Pt-MP-Pt microbiosensor in real-time. The novel electrochemical microbiosensor not only facilitates the real-time study in plant self-defence response to the adverse environment such as Cd(2+) stress, but also provides an effective tool for probing the self-defence mechanism in plants.

  16. Layer 2/3 pyramidal cells in the medial prefrontal cortex moderate stress induced depressive behaviors

    PubMed Central

    Shrestha, Prerana; Mousa, Awni; Heintz, Nathaniel

    2015-01-01

    Major depressive disorder (MDD) is a prevalent illness that can be precipitated by acute or chronic stress. Studies of patients with Wolfram syndrome and carriers have identified Wfs1 mutations as causative for MDD. The medial prefrontal cortex (mPFC) is known to be involved in depression and behavioral resilience, although the cell types and circuits in the mPFC that moderate depressive behaviors in response to stress have not been determined. Here, we report that deletion of Wfs1 from layer 2/3 pyramidal cells impairs the ability of the mPFC to suppress stress-induced depressive behaviors, and results in hyperactivation of the hypothalamic–pituitary–adrenal axis and altered accumulation of important growth and neurotrophic factors. Our data identify superficial layer 2/3 pyramidal cells as critical for moderation of stress in the context of depressive behaviors and suggest that dysfunction in these cells may contribute to the clinical relationship between stress and depression. DOI: http://dx.doi.org/10.7554/eLife.08752.001 PMID:26371510

  17. Role of NF-κB in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague Dawley rats

    PubMed Central

    Fardoun, Riham Zein; Asghar, Mohammad; Lokhandwala, Mustafa

    2009-01-01

    Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptors-G-protein uncoupling via mechanisms involving Protein Kinase C (PKC) and G-protein Coupled Receptor Kinase 2 (GRK2) in the primary culture of renal PT of Sprague Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-κB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-κB in oxidative stress–induced defective renal D1 receptor –G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H2O2, 50 μM/20 min) induced the nuclear translocation of NF-κB, increased PKC activity, and triggered the translocation of GRK2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pre-treatment with pyrrolidine dithiocarbamate (PDTC, 25 μM/10min), an NF-κB inhibitor, blocked the H2O2-induced nuclear translocation of NF-κB, increase in PKC activity, as well as GRK2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, KATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-κB in the renal proximal tubules, which contributes to defective D1-receptor-G-protein coupling and function via mechanism involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors. PMID:17320758

  18. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    PubMed

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  19. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity

    PubMed Central

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-01-01

    Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression

  20. Involvement of enniatins-induced cytotoxicity in human HepG2 cells.

    PubMed

    Juan-García, Ana; Manyes, Lara; Ruiz, María-José; Font, Guillermina

    2013-04-12

    Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 μM and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

    PubMed Central

    Khaperskyy, Denys A.; Emara, Mohamed M.; Johnston, Benjamin P.; Anderson, Paul; Hatchette, Todd F.; McCormick, Craig

    2014-01-01

    Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. PMID:25010204

  2. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

    PubMed Central

    Choi, Yoon-Hee; Lee, Hyun Sook; Chung, Cha-Kwon

    2017-01-01

    BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes. PMID:28386382

  3. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Gui-bo; Sun, Xiao; Wang, Min

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging andmore » antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial

  4. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways.

    PubMed

    Saha, Sukanya; Sadhukhan, Pritam; Sinha, Krishnendu; Agarwal, Namrata; Sil, Parames C

    2016-03-01

    Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  5. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  6. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    PubMed Central

    Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-01

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778

  7. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression

    PubMed Central

    Lyons, Shawn M.; Achorn, Chris; Kedersha, Nancy L.; Anderson, Paul J.; Ivanov, Pavel

    2016-01-01

    Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program. PMID:27174937

  8. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  9. A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux.

    PubMed

    Krokowski, Dawid; Han, Jaeseok; Saikia, Mridusmita; Majumder, Mithu; Yuan, Celvie L; Guan, Bo-Jhih; Bevilacqua, Elena; Bussolati, Ovidio; Bröer, Stefan; Arvan, Peter; Tchórzewski, Marek; Snider, Martin D; Puchowicz, Michelle; Croniger, Colleen M; Kimball, Scot R; Pan, Tao; Koromilas, Antonis E; Kaufman, Randal J; Hatzoglou, Maria

    2013-06-14

    Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes.

  10. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    PubMed

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  11. Identification of Neuregulin-2 as a novel stress granule component.

    PubMed

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-08-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454].

  12. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  13. Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia.

    PubMed

    Guervilly, Jean-Hugues; Macé-Aimé, Gaëtane; Rosselli, Filippo

    2008-03-01

    Fanconi anemia (FA) is a cancer-prone hereditary disease resulting from mutations in one of the 13 genes defining the FANC/BRCA pathway. This pathway is involved in the cellular resistance to DNA-cross-linking agents. How the FANC/BRCA pathway is activated and why its deficiency leads to the accumulation of FA cells with a 4N DNA content are still poorly answered questions. We investigated the involvement of ATR pathway members in these processes. We show here that RAD9 and RAD17 are required for DNA interstrand cross-link (ICL) resistance and for the optimal activation of FANCD2. Moreover, we demonstrate that CHK1 and its interacting partner CLASPIN that act downstream in the ATR pathway are required for both FANCD2 monoubiquitination and assembling in subnuclear foci in response to DNA damage. Paradoxically, in the absence of any genotoxic stress, CHK1 or CLASPIN depletion results in an increased basal level of FANCD2 monoubiquitination and focalization. We also demonstrate that the ICL-induced accumulation of FA cells in late S/G2 phase is dependent on ATR and CHK1. In agreement with this, CHK1 phosphorylation is enhanced in FA cells, and chemical inhibition of the ATR/CHK1 axis in FA lymphoblasts decreases their sensitivity to mitomycin C. In conclusion, this work describes a complex crosstalk between CHK1 and the FANC/BRCA pathway: CHK1 activates this pathway through FANCD2 monoubiquitination, whereas FA deficiency leads to a CHK1-dependent G2 accumulation, raising the possibility that the FANC/BRCA pathway downregulates CHK1 activation.

  14. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    PubMed

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  15. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.

    PubMed

    Sha, BaoYong; Gao, Wei; Wang, ShuQi; Li, Wei; Liang, Xuan; Xu, Feng; Lu, Tian Jian

    2013-08-01

    Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.5μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    PubMed

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats.

  17. Knockdown of Akt1 promotes Akt2 upregulation and resistance to oxidative-stress-induced apoptosis through control of multiple signaling pathways.

    PubMed

    Zhang, Lan; Sun, Shuming; Zhou, Jie; Liu, Jiao; Lv, Jia-Han; Yu, Xiang-Qiang; Li, Chi; Gong, Lili; Yan, Qin; Deng, Mi; Xiao, Ling; Ma, Haili; Liu, Jin-Ping; Peng, Yun-Lei; Wang, Dao; Liao, Gao-Peng; Zou, Li-Jun; Liu, Wen-Bin; Xiao, Ya-Mei; Li, David Wan-Cheng

    2011-07-01

    The Akt signaling pathway plays a key role in promoting the survival of various types of cells from stress-induced apoptosis, and different members of the Akt family display distinct physiological roles. Previous studies have shown that in response to UV irradiation, Akt2 is sensitized to counteract the induced apoptosis. However, in response to oxidative stress such as hydrogen peroxide, it remains to be elucidated what member of the Akt family would be activated to initiate the signaling cascades leading to resistance of the induced apoptosis. In the present study, we present the first evidence that knockdown of Akt1 enhances cell survival under exposure to 50 μM H(2)O(2). This survival is derived from selective upregulation and activation of Akt2 but not Akt3, which initiates 3 major signaling cascades. First, murine double minute 2 (MDM2) is hyperphosphorylated, which promotes p53 degradation and attenuates its Ser-15 phosphorylation, significantly attenuating Bcl-2 homologous antagonist killer (Bak) upregulation. Second, Akt2 activation inactivates glycogen synthase kinase 3 beta (GSK-3β) to promote stability of myeloid leukemia cell differentiation protein 1 (MCL-1). Finally, Akt2 activation promotes phosphorylation of FOXO3A toward cytosolic export and thus downregulates Bim expression. Overexpression of Bim enhances H(2)O(2)-induced apoptosis. Together, our results demonstrate that among the Akt family members, Akt2 is an essential kinase in counteracting oxidative-stress-induced apoptosis through multiple signaling pathways.

  18. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ying; Li, Shu-Jun; Yang, Jian

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less

  19. L-Selenomethionine Does not Protect Against Testosterone Plus 17β-Estradiol-Induced Oxidative Stress and Pre-Neoplastic Lesions in the Prostate of NBL Rats

    PubMed Central

    Özten, Nur; Schlicht, Michael; Diamond, Alan M.; Bosland, Maarten C.

    2014-01-01

    Previous animal studies examining dietary selenium effects on prostatic carcinogenesis did not show preventive benefit, including one study in a rat model involving testosterone (T) and estradiol (E2)-induced prostatic oxidative stress. Here, we examined modulation of T+E2-induced prostatic oxidative stress, dysplasia, and inflammation by L-selenomethionine at 1.5 or 3.0 mg selenium/kg in NIH-07 diet in Nbl/Crl rats treated with T+E2 for 16 weeks. Hormone treatment increased immunohistochemical staining for 8-hydroxydeoxyguanosine (8-OHdG) in the prostatic sites of T+E2-induced preneoplasia (p<0.05), but selenomethionine did not attenuate 8-OHdG staining and dysplasia in the lateral prostate. Glutathione-peroxidase activity and mRNA expression were induced by T+E2 (p<0.05–p<0.0001) but not changed by selenomethionine. Selenomethionine did not cause significant responses in expression and activity of glutathione-peroxidase and MnSOD, except for a reduction of MnSOD protein expression in the lateral prostate (p<0.01). The absence of reduction of oxidative stress and dysplasia and the minimal effects on antioxidant enzymes caused by selenomethionine are consistent with the null effects observed in selenium supplementation animal studies and clinical trials. Significant (p<0.01) opposite apoptosis/cell proliferation balance responses to selenomethionine and to T+E2 occurred in the lateral and dorsal prostate, explaining why T+E2 induces lesions selectively in the lateral lobe of NBL rats. PMID:24773027

  20. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  1. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of bloodmore » vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS

  2. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1

    PubMed Central

    Shah, A; Kumar, S; Simon, S D; Singh, D P; Kumar, A

    2013-01-01

    HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS

  3. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanyan; Gao, Chao; Shi, Yanru

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin.more » The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.« less

  4. Role of peroxynitrite in the responses induced by heat stress in tobacco BY-2 cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2018-07-01

    Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO - ), the RNS species generated by the interaction between NO and O 2 - . In this work, the role of ONOO - on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO - . The obtained results suggest a potential role for ONOO - in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO - seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.

  5. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  6. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    PubMed

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  7. Cell death induced by endoplasmic reticulum stress.

    PubMed

    Iurlaro, Raffaella; Muñoz-Pinedo, Cristina

    2016-07-01

    The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases. © 2015 FEBS.

  8. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    PubMed

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  9. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    PubMed Central

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  10. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    PubMed Central

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG. PMID:24625987

  11. Sulforaphane prevents bleomycin‑induced pulmonary fibrosis in mice by inhibiting oxidative stress via nuclear factor erythroid 2‑related factor‑2 activation.

    PubMed

    Yan, Bingdi; Ma, Zhongsen; Shi, Shaomin; Hu, Yuxin; Ma, Tiangang; Rong, Gao; Yang, Junling

    2017-06-01

    Lung fibrosis is associated with inflammation, apoptosis and oxidative damage. The transcription factor nuclear factor erythroid 2‑related factor‑2 (Nrf2) prevents damage to cells from oxidative stress by regulating the expression of antioxidant proteins. Sulforaphane (SFN), an Nrf2 activator, additionally regulates excessive oxidative stress by promoting the expression of endogenous antioxidants. The present study investigated if SFN protects against lung injury induced by bleomycin (BLM). The secondary aim of the present study was to assess if this protection mechanism involves upregulation of Nrf2 and its downstream antioxidants. Pulmonary fibrosis was induced in C57/BL6 mice by intratracheal instillation of BLM. BLM and age‑matched control mice were treated with or without a daily dose of 0.5 mg/kg SFN until sacrifice. On days 7 and 28, mice were assessed for induction of apoptosis, inflammation, fibrosis, oxidative damage and Nrf2 expression in the lungs. The lungs were investigated with histological techniques including haematoxylin and eosin staining, Masson's trichrome staining and terminal deoxynucleotidyl transferase UTP nick end labeling. Inflammatory, fibrotic and apoptotic processes were confirmed by western blot analysis for interleukin‑1β, tumor necrosis factor‑α, transforming growth factor‑β and caspase‑3 protein expressions. Furthermore, protein levels of 3‑nitro‑tyrosine, 4‑hydroxynonenal, superoxide dismutase 1 and catalase were investigated by western blot analysis. It was demonstrated that pulmonary fibrosis induced by BLM significantly increased apoptosis, inflammation, fibrosis and oxidative stress in the lungs at days 7 and 28. Notably, SFN treatment significantly attenuated the infiltration of the inflammatory cells, collagen accumulation, epithelial cell apoptosis and oxidative stress in the lungs. In addition, SFN treatment increased expression of the Nrf2 gene and its downstream targets. In conclusion, these

  12. Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy.

    PubMed

    Hirotani, Shinichi; Higuchi, Yoshiharu; Nishida, Kazuhiko; Nakayama, Hiroyuki; Yamaguchi, Osamu; Hikoso, Shungo; Takeda, Toshihiro; Kashiwase, Kazunori; Watanabe, Tetsuya; Asahi, Michio; Taniike, Masayuki; Tsujimoto, Ikuko; Matsumura, Yasushi; Sasaki, Terukatsu; Hori, Masatsugu; Otsu, Kinya

    2004-06-01

    G-protein-coupled receptor agonists including endothelin-1 (ET-1) and phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Others and we previously reported that Rac1 signaling pathway plays an important role in this agonist-induced cardiomyocyte hypertrophy. In this study reported here, we found that a Ca(2+)-sensitive non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2)/cell adhesion kinase beta (CAKbeta), is involved in ET-1- and PE-induced cardiomyocyte hypertrophy medicated through Rac1 activation. ET-1, PE or the Ca(2+) inophore, ionomycin, stimulated a rapid increase in tyrosine phosphorylation of Pyk2. The tyrosine phosphorylation of Pyk2 was suppressed by the Ca(2+) chelator, BAPTA. ET-1- or PE-induced increases in [(3)H]-leucine incorporation and expression of atrial natriuretic factor and the enhancement of sarcomere organization. Infection of cardiomyocytes with an adenovirus expressing a mutant Pyk2 which lacked its kinase domain or its ability to bind to c-Src, eliminated ET-1- and PE-induced hypertrophic responses. Inhibition of Pyk2 activation also suppressed Rac1 activation and reactive oxygen species (ROS) production. These findings suggest that the signal transduction pathway leading to hypertrophy involves Ca(2+)-induced Pyk2 activation followed by Rac1-dependent ROS production.

  13. Wogonin prevents rat dorsal root ganglion neurons death via inhibiting tunicamycin-induced ER stress in vitro.

    PubMed

    Xu, Shujuan; Zhao, Xin; Zhao, Quanlai; Zheng, Quan; Fang, Zhen; Yang, Xiaoming; Wang, Hong; Liu, Ping; Xu, Hongguang

    2015-04-01

    Wogonin is a natural flavonoid isolated from the root of Scutellaria baicalensis Georgi, which has been widely used in various research areas for its anti-oxidant, anti-inflammatory, and anti-cancer activities. It also presents a neuroprotective effect in the brain while encounters stress conditions, but the mechanisms controlling the neuroprotective effect of wogonin are not clear. In this study, we investigated the biomechanism underlying the neuroprotective effect of wogonin on rat dorsal root ganglion (DRG) neurons. Wogonin pre-treatment at 75 μM significantly increased the cell viability of DRG neurons and decreased the number of the propidium iodide-positive DRG neurons before the endoplasmic reticulum (ER) stress is being induced by tunicamycin (TUN) (0.75 μg/mL). In addition, Wogonin also inhibited the release of LDH and up-regulated the level of GSH. Furthermore, wogonin decreased the activation of ER stress-related molecules, including glucose-regulated protein 78 (GRP78), GRP94, C/EBP-homologous protein, active caspase12 and active caspase3, phosphorylation of pancreatic ER stress kinase, and eukaryotic initiation factor 2 alpha (eIF2α). In summary, our results indicated that wogonin could protect DRG neurons against TUN-induced ER stress.

  14. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells.

    PubMed

    Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D

    2015-02-01

    Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.

  15. Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease.

    PubMed

    Tozzi, Alessandro; Tantucci, Michela; Marchi, Saverio; Mazzocchetti, Petra; Morari, Michele; Pinton, Paolo; Mancini, Andrea; Calabresi, Paolo

    2018-02-12

    Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca 2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for

  16. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    PubMed

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  17. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  18. Identification of Neuregulin-2 as a novel stress granule component

    PubMed Central

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454] PMID:27345716

  19. Houttuynia cordata Thunb Promotes Activation of HIF-1A-FOXO3 and MEF2A Pathways to Induce Apoptosis in Human HepG2 Hepatocellular Carcinoma Cells.

    PubMed

    Kim, Jung Min; Hwang, In-Hu; Jang, Ik-Soon; Kim, Min; Bang, In Seok; Park, Soo Jung; Chung, Yun-Jo; Joo, Jong-Cheon; Lee, Min-Goo

    2017-09-01

    Houttuynia cordata Thunb ( H cordata), a medicinal plant, has anticancer activity, as it inhibits cell growth and induces cell apoptosis in cancer. However, the potential anti-cancer activity and mechanism of H cordata for human liver cancer cells is not well understood. Recently, we identified hypoxia-inducible factor (HIF)-1A, Forkhead box (FOX)O3, and MEF2A as proapoptotic factors induced by H cordata, suggesting that HIF-1A, FOXO3, and MEF2A contribute to the apoptosis of HepG2 hepatocellular carcinoma cells. FOXO3 transcription factors regulate target genes involved in apoptosis. H cordata significantly increased the mRNA and protein expression of HIF-1A and FOXO3 and stimulated MEF2A expression in addition to increased apoptosis in HepG2 cells within 24 hours. Therefore, we determined the potential role of FOXO3 on apoptosis and on H cordata-induced MEF2A in HepG2 cells. HIF-1A silencing by siRNA attenuated MEF2A and H cordata-mediated FOXO3 upregulation in HepG2 cells. Furthermore, H cordata-mediated MEF2A expression enhanced caspase-3 and caspase-7, which were abolished on silencing FOXO3 with siRNA. In addition, H cordata inhibited growth of human hepatocellular carcinoma xenografts in nude mice. Taken together, our results demonstrate that H cordata enhances HIF-1A/FOXO3 signaling, leading to MEF2A upregulation in HepG2 cells, and in parallel, it disturbs the expression of Bcl-2 family proteins (Bax, Bcl-2, and Bcl-xL), which results in apoptosis. Taken together, these findings demonstrate that H cordata promotes the activation of HIF-1A-FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells and is, therefore, a promising candidate for antitumor drug development.

  20. Houttuynia cordata Thunb Promotes Activation of HIF-1A–FOXO3 and MEF2A Pathways to Induce Apoptosis in Human HepG2 Hepatocellular Carcinoma Cells

    PubMed Central

    Kim, Jung Min; Hwang, In-Hu; Jang, Ik-Soon; Kim, Min; Bang, In Seok; Park, Soo Jung; Chung, Yun-Jo; Joo, Jong-Cheon; Lee, Min-Goo

    2016-01-01

    Houttuynia cordata Thunb (H cordata), a medicinal plant, has anticancer activity, as it inhibits cell growth and induces cell apoptosis in cancer. However, the potential anti-cancer activity and mechanism of H cordata for human liver cancer cells is not well understood. Recently, we identified hypoxia-inducible factor (HIF)-1A, Forkhead box (FOX)O3, and MEF2A as proapoptotic factors induced by H cordata, suggesting that HIF-1A, FOXO3, and MEF2A contribute to the apoptosis of HepG2 hepatocellular carcinoma cells. FOXO3 transcription factors regulate target genes involved in apoptosis. H cordata significantly increased the mRNA and protein expression of HIF-1A and FOXO3 and stimulated MEF2A expression in addition to increased apoptosis in HepG2 cells within 24 hours. Therefore, we determined the potential role of FOXO3 on apoptosis and on H cordata–induced MEF2A in HepG2 cells. HIF-1A silencing by siRNA attenuated MEF2A and H cordata–mediated FOXO3 upregulation in HepG2 cells. Furthermore, H cordata–mediated MEF2A expression enhanced caspase-3 and caspase-7, which were abolished on silencing FOXO3 with siRNA. In addition, H cordata inhibited growth of human hepatocellular carcinoma xenografts in nude mice. Taken together, our results demonstrate that H cordata enhances HIF-1A/FOXO3 signaling, leading to MEF2A upregulation in HepG2 cells, and in parallel, it disturbs the expression of Bcl-2 family proteins (Bax, Bcl-2, and Bcl-xL), which results in apoptosis. Taken together, these findings demonstrate that H cordata promotes the activation of HIF-1A–FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells and is, therefore, a promising candidate for antitumor drug development. PMID:27698266

  1. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons

    PubMed Central

    Mohibbullah, Md.; Hannan, Md. Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-01-01

    Abstract Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2′,7′-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis. PMID:26106876

  2. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype.

    PubMed

    Miglionico, Rocchina; Ostuni, Angela; Armentano, Maria Francesca; Milella, Luigi; Crescenzi, Elvira; Carmosino, Monica; Bisaccia, Faustino

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21 Cip p53 independent; and 4) downregulation of lamin A/C. These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.

  3. Stress-induced reliance on habitual behavior is moderated by cortisol reactivity.

    PubMed

    Smeets, T; van Ruitenbeek, P; Hartogsveld, B; Quaedflieg, Conny W E M

    2018-05-25

    Instrumental learning, i.e., learning that specific behaviors lead to desired outcomes, occurs through goal-directed and habit memory systems. Exposure to acute stress has been shown to result in less goal-directed control, thus rendering behavior more habitual. The aim of the current studies was to replicate and extend findings on stress-induced prompting of habitual responding and specifically focused on the role of stress-induced cortisol reactivity. Study 1 used an established outcome devaluation paradigm to assess goal-directed and habitual control. Study 2 utilized a modified version of this paradigm that was intended to establish stronger habitual responding through more extensive reward training and applying a relevant behavioral devaluation procedure (i.e., eating to satiety). Both studies failed to replicate that stress overall, i.e., independent of cortisol reactivity, shifted behavior from goal-directed to habitual control. However, both studies found that relative to stress-exposed cortisol non-responders and no-stress controls, participants displaying stress-induced cortisol reactivity displayed prominent habitual responding. These findings highlight the importance of stress-induced cortisol reactivity in facilitating habits. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    PubMed Central

    Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010

  5. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  6. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  7. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    PubMed

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular mechanism of emotional stress-induced and catecholamine-induced heart attack.

    PubMed

    Ueyama, Takashi; Senba, Emiko; Kasamatsu, Ken; Hano, Takuzo; Yamamoto, Katsuhiro; Nishio, Ichiro; Tsuruo, Yoshihiro; Yoshida, Ken-ichi

    2003-01-01

    Emotional or physical stress triggers 'tako-tsubo' cardiomyopathy or 'transient left ventricular apical ballooning', but the pathogenesis is unclear. In response to the immobilization stress of rats, a useful model of emotional stress, rapid activation of p44/p42 mitogen-activated protein kinase was observed in the heart, followed by a transient upregulation of immediate early genes in the smooth muscle cells of coronary arteries, the endothelial cells and the myocardium. Heat shock protein 70 was induced in the aortic and coronary arterial smooth muscle cells and in the myocardium. Natriuretic peptide genes were also upregulated in the myocardium. Sequential gene expression can be considered as an adaptive response to emotional stress. Blocking of both alpha-adrenoceptors and beta-adrenoceptors eliminated the upregulation of immediate early genes induced by stress, while alpha-agonists and beta-agonists upregulated immediate early genes in the perfused heart. Activation of alpha-adrenoceptors and beta-adrenoceptors is the primary trigger of emotional stress-induced molecular changes in the heart.

  9. Genotoxic effect of 6-gingerol on human hepatoma G2 cells.

    PubMed

    Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Ma, Yufang

    2010-04-15

    6-gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20-80 and 20-40 microM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20-80 microM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  11. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  12. Oxidative Stress Induces Disruption of the Axon Initial Segment

    PubMed Central

    Clark, Kareem C.; Sword, Brooke A.; Dupree, Jeffrey L.

    2017-01-01

    The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex. PMID:29228786

  13. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy

    NASA Astrophysics Data System (ADS)

    Tahir, Beenish; Tahir, Muhammad; Amin, Nor Aishah Saidina

    2017-10-01

    Copper modified polymeric graphitic carbon nitride (Cu/g-C3N4) nanorods for photo-induced CO2 conversion with methane (CH4) and water (H2O) as reducing system under simulated solar energy has been investigated. The nanocatalysts, synthesized by pyrolysis and sonication, were characterized by XRD, FTIR, Raman analysis, XPS, SEM, N2 adsorption-desorption and PL spectroscopy. The presence of Cu2+ ions over the g-C3N4 structure inhibited charge carriers recombination process. The results indicated that photo-activity and selectivity of Cu/g-C3N4 photo-catalyst for CO2 reduction greatly dependent on the type of CO2-reduction system. CO2 was efficiently converted to CH4 and CH3OH with traces of C2H4 and C2H6 hydrocarbons in the CO2-water system. The yield of the main product, CH4 over 3 wt.% Cu/g-C3N4 was 109 μmole g-cata.-1 h-1 under visible light irradiation, significantly higher than the pure g-C3N4 catalyst (60 μmole/g.cat). In photo-induced CO2-CH4 reaction, CO and H2 were detected as the main products with smaller amount of hydrocarbons. The highest efficiency was detected over 3 wt.%Cu-loading of g-C3N4 and at optimal CH4/CO2 feed ratio of 1.0. The maximum yield of CO and H2 detected were 142 and 76 μmole g-catal.-1 h-1, respectively at selectivity 66.6% and 32.5%, respectively. Significantly enhanced CO2/CH4 reduction over Cu/g-C3N4 was attributed to its polymeric structure with efficient charge transfer property and inhibited charges recombination rate. A proposed photo-induced reaction mechanism, corroborated with the experimental data, was also deliberated.

  14. A Self-defeating Anabolic Program Leads to β-Cell Apoptosis in Endoplasmic Reticulum Stress-induced Diabetes via Regulation of Amino Acid Flux*

    PubMed Central

    Krokowski, Dawid; Han, Jaeseok; Saikia, Mridusmita; Majumder, Mithu; Yuan, Celvie L.; Guan, Bo-Jhih; Bevilacqua, Elena; Bussolati, Ovidio; Bröer, Stefan; Arvan, Peter; Tchórzewski, Marek; Snider, Martin D.; Puchowicz, Michelle; Croniger, Colleen M.; Kimball, Scot R.; Pan, Tao; Koromilas, Antonis E.; Kaufman, Randal J.; Hatzoglou, Maria

    2013-01-01

    Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes. PMID:23645676

  15. Activator of G Protein Signaling 8 (AGS8) Is Required for Hypoxia-induced Apoptosis of Cardiomyocytes

    PubMed Central

    Sato, Motohiko; Jiao, Qibin; Honda, Takashi; Kurotani, Reiko; Toyota, Eiji; Okumura, Satoshi; Takeya, Tatsuo; Minamisawa, Susumu; Lanier, Stephen M.; Ishikawa, Yoshihiro

    2009-01-01

    Ischemic injury of the heart is associated with activation of multiple signal transduction systems including the heterotrimeric G-protein system. Here, we report a role of the ischemia-inducible regulator of Gβγ subunit, AGS8, in survival of cardiomyocytes under hypoxia. Cultured rat neonatal cardiomyocytes (NCM) were exposed to hypoxia or hypoxia/reoxygenation following transfection of AGS8siRNA or pcDNA::AGS8. Hypoxia-induced apoptosis of NCM was completely blocked by AGS8siRNA, whereas overexpression of AGS8 increased apoptosis. AGS8 formed complexes with G-proteins and channel protein connexin 43 (CX43), which regulates the permeability of small molecules under hypoxic stress. AGS8 initiated CX43 phosphorylation in a Gβγ-dependent manner by providing a scaffold composed of Gβγ and CX43. AGS8siRNA blocked internalization of CX43 following exposure of NCM to repetitive hypoxia; however it did not influence epidermal growth factor-mediated internalization of CX43. The decreased dye flux through CX43 that occurred with hypoxic stress was also prevented by AGS8siRNA. Interestingly, the Gβγ inhibitor Gallein mimicked the effect of AGS8 knockdown on both the CX43 internalization and the changes in cell permeability elicited by hypoxic stress. These data indicate that AGS8 is required for hypoxia-induced apoptosis of NCM, and that AGS8-Gβγ signal input increased the sensitivity of cells to hypoxic stress by influencing CX43 regulation and associated cell permeability. Under hypoxic stress, this unrecognized response program plays a critical role in the fate of NCM. PMID:19723622

  16. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  17. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    PubMed

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  18. Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines.

    PubMed

    Umukoro, Solomon; Kalejaye, Hassanat Adeola; Ben-Azu, Benneth; Ajayi, Abayomi M

    2018-06-12

    The effects of naringenin; a dietary flavonoid, with potent anti-oxidant and anti-inflammatory activities on social defeat stress (SDS)-induced neurobehavioral and biochemical changes were evaluated in mice using resident-intruder paradigm. The intruder male mice were distributed into 6 groups (n = 6). Mice in group 1 (control) received vehicle (3% DMSO, i.p), group 2 (SDS-control) were also given vehicle, groups 3-5 received naringenin (10, 25 and 50 mg/kg, i.p.) while group 6 had ginseng (50 mg/kg, i.p) daily for 14 days. However, 30 min after treatment on day 7, mice in groups 2-6 were exposed to SDS for a period of 10 min confrontation with aggressive counterparts for 7 consecutive days. Neurobehavioral phenotypes: spontaneous motor activity (SMA), memory, anxiety and depression were then evaluated on day 14. Malondialdehyde (MDA), glutathione (GSH), catalase and superoxide dismutase (SOD) were then estimated in the brain tissues. Acetylcholinesterase (AChE) activity and the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) were also determined. SDS-induced neurobehavioral deficits were significantly (p < 0.05) attenuated by naringenin. The increased brain level of MDA (13.00 ± 0.63 μmol/g tissue) relative to vehicle-control (6.50 ± 0.43 μmol/g tissue) was significantly (p < 0.05) reduced to 5.50 ± 0.22 μmol/g tissue by naringenin (50 mg/kg). Mice exposed to SDS had decreased brain GSH level (5.17 ± 0.40 μmol/g tissue) relative to control (11.67 ± 0.84 μmol/g tissue). However, naringenin (50 mg/kg) significantly (p < 0.05) elevated GSH content (13.33 ± 0.88 μmol/g tissue) in the brains of SDS-mice. Moreover, 50 mg/Kg of naringenin (38.13 ± 2.38 ρg/mL) attenuated (p < 0.05) increased TNF-α level when compared with SDS (49.69 ± 2.81 ρg/mL). SDS-induced increase in brain level of IL-1β (236.5 ± 6.92 ρg/mL) was significantly (p

  19. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  20. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    PubMed

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  1. Role of CYP2E1 immunoglobulin G4 subclass antibodies and complement in pathogenesis of idiosyncratic drug-induced hepatitis.

    PubMed

    Njoku, Dolores B; Mellerson, Jenelle L; Talor, Monica V; Kerr, Douglas R; Faraday, Nauder R; Outschoorn, Ingrid; Rose, Noel R

    2006-02-01

    Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.

  2. Role of CYP2E1 Immunoglobulin G4 Subclass Antibodies and Complement in Pathogenesis of Idiosyncratic Drug-Induced Hepatitis

    PubMed Central

    Njoku, Dolores B.; Mellerson, Jenelle L.; Talor, Monica V.; Kerr, Douglas R.; Faraday, Nauder R.; Outschoorn, Ingrid; Rose, Noel R.

    2006-01-01

    Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation. PMID:16467335

  3. Type 1 5'-deiodinase activity is inhibited by oxidative stress and restored by alpha-lipoic acid in HepG2 cells.

    PubMed

    Chen, Kanjun; Yan, Biao; Wang, Fei; Wen, Feiting; Xing, Xingan; Tang, Xue; Shi, Yonghui; Le, Guowei

    2016-04-08

    3,3',5-triiodothyronine (T3) is largely generated from thyroxine (T4) by the catalysis of deiodinases in peripheral tissues. Emerging evidences have indicated its broad participation in regulating various metabolic process via protecting tissues from oxidative stress and improving cellular antioxidant capacity. However, the potential correlation between the oxidative stress and conversion of T4 to T3 is still unclear. In the present study, the effects of T3 and T4 on redox homeostasis in HepG2 cells pre-treated with H2O2 was investigated. It revealed that T3 significantly rescued the apoptotic cell death, consistent with an upregulation of cell antioxidant ability and reduction of ROS accumulation while T4 did not. Afterwards, we examined the enzyme activity and mRNA expression of type 1 5'-deiodianse (DIO1), T3 and rT3 level and found that H2O2 reduced both DIO1 activity and expression in a dose-dependent manner, which consequently declined T3 and rT3 generation. Alpha-lipoic acid (LA) treatment notably restored DIO1 activity, T3 and rT3 level, as well as transcriptional abnormalities of inflammation-associated genes. It suggests that oxidative stress may reduce DIO1 activity by an indirect way like activating cellular inflammatory responses. All these results indicate that the oxidative stress downregulates the conversion of T4 to T3 through DIO1 function in HepG2 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. G-Protein-Coupled Estrogen Receptor Antagonist G15 Decreases Estrogen-Induced Development of Non-Small Cell Lung Cancer.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Fu, Xiangning; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2017-08-25

    G-protein-coupled estrogen receptor (GPER) was found to promote Non-small cell lung cancer (NSCLC) by estrogen, indicating the potential necessity of inhibiting GPER by selective antagonist. This study was performed to elucidate the function of GPER selective inhibitor G15 in NSCLC development. Cytoplasmic GPER (cGPER) and nuclear GPER (nGPER) were detected by immunohistochemical analysis in NSCLC samples. The relation of GPER and estrogen receptor β (ERβ) expression and correlation between GPER, ERβ and clinical factors were analyzed. The effects of activating GPER and function of G15 were analyzed in proliferation of A549, H1793 cell lines and development of urethane-induced adenocarcinoma. Overexpression of cGPER and nGPER was detected in 80.49% (120/150) and 52.00% (78/150) of the NSCLC samples. High expression of GPER related with higher stages, poorer differentiation and high expression of ERβ. Protein level of GPER in A549 and H1793 cell lines increased by treatment of E2, G1 (GPER agonist) or Ful (fulvestrant, ERβ antagonist), and decreased by G15. Administration with G15 reversed the E2- or G1-induced cell growth by inhibiting GPER. In urethane-induced adenocarcinoma mice, number of tumor nodules and tumor index increased in E2 or G1 group and decreased by treatment of G15. These findings deomonstrate that using of G15 to block GPER signaling may be considered as a new therapeutic target in NSCLC.

  5. Chronic psychosocial stress causes delayed extinction and exacerbates reinstatement of ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2014-01-01

    We have shown previously, using an animal model of voluntary ethanol intake and ethanol-conditioned place preference (EtOH-CPP), that exposure to chronic psychosocial stress induces increased ethanol intake and EtOH-CPP acquisition in mice. Here, we examined the impact of chronic subordinate colony (CSC) exposure on EtOH-CPP extinction, as well as ethanol-induced reinstatement of CPP. Mice were conditioned with saline or 1.5 g/kg ethanol and were tested in the EtOH-CPP model. In the first experiment, the mice were subjected to 19 days of chronic stress, and EtOH-CPP extinction was assessed during seven daily trials without ethanol injection. In the second experiment and after the EtOH-CPP test, the mice were subjected to 7 days of extinction trials before the 19 days of chronic stress. Drug-induced EtOH-CPP reinstatement was induced by a priming injection of 0.5 g/kg ethanol. Compared to the single-housed colony mice, CSC mice exhibited increased anxiety-like behavior in the elevated plus maze (EPM) and the open field tests. Interestingly, the CSC mice showed delayed EtOH-CPP extinction. More importantly, CSC mice showed increased alcohol-induced reinstatement of the EtOH-CPP behavior. Taken together, this study indicates that chronic psychosocial stress can have long-term effects on EtOH-CPP extinction as well as drug-induced reinstatement behavior and may provide a suitable model to study the latent effects of chronic psychosocial stress on extinction and relapse to drug abuse.

  6. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    PubMed

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  8. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes.

    PubMed

    Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C

    2016-02-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.

  9. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells.

    PubMed

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2005-09-14

    Ulmus davidiana Nakai (UDN) has been used in folk medicine for its anti-inflammatory activity. In the present study, we investigated the antiapoptotic effect of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells. To evaluate the antiapoptotic effect of UDN glycoprotein, experiments were carried out using Western blot analysis for nuclear factor-kappa B (NF-kappaB), caspase-3, and poly(ADP-ribose) polymerase (PARP). We also examined nitric oxide (NO) production and nuclear staining. When BNL CL.2 cells were treated with G/GO (50 mU/ml), viability of the cells was 54.1%. However, the number of living cells after the addition of UDN glycoprotein in the presence of G/GO increased. UDN glycoprotein protected from cell damage caused by G/GO. Interestingly, UDN glycoprotein decreased NF-kappaB activation and stimulated NO production in G/GO-induced BNL CL.2 cells. In apoptotic parameters, UDN glycoprotein inhibited activations of caspase-3 and PARP cleavage in G/GO-induced BNL CL.2 cells. The results of nuclear staining indicated that UDN glycoprotein (50 microg/ml) has a protective ability from apoptotic cell death caused G/GO (50 mU/ml). In conclusion, UDN glycoprotein has a protective effect on apoptosis induced by G/GO through the inhibition of NF-kappaB, caspase-3, and PARP activity, and the stimulation of NO production in BNL CL.2 cells.

  10. Acute stress induces selective alterations in cost/benefit decision-making.

    PubMed

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-09-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1-3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression.

  11. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    PubMed Central

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  12. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  13. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  14. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response

    PubMed Central

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B.; De Giovanni, Laura N.; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E.; Spear, Linda P.; Pautassi, Ricardo Marcos

    2016-01-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. PMID:26830848

  15. Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress*

    PubMed Central

    Ngoh, Gladys A.; Papanicolaou, Kyriakos N.; Walsh, Kenneth

    2012-01-01

    The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58IPK expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58IPK induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response. PMID:22511781

  16. ROS-induced HepG2 Cell Death from hyperthermia using Magnetic Hydroxyapatite Nanoparticles.

    PubMed

    Yang, Chun-Ting; Li, Keng-Yuan; Meng, Fan-Qi; Lin, Jung-Feng; Young, In-Chi; Ivkov, Robert; Lin, Feng-Huei

    2018-06-19

    HepG2 cell death with magnetic hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe2+. The grain size of HAPs and iron oxide magnetic were 39.1 nm and 19.5 nm were calculated by the Scherrer formula. HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5°C. After heating, cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured ROS in cells exposed to MHT was two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of reactive oxygen species (ROS) to cause DNA damage, which leads to cell death that complemented heat-stress related biological effects. © 2018 IOP Publishing Ltd.

  17. Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.

    PubMed

    Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M

    2018-08-01

    Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission.

    PubMed

    Wu, Haili; Wang, Yingying; Wu, Changxin; Yang, Peng; Li, Hanqing; Li, Zhuoyu

    2016-12-14

    Resveratrol (Res), a natural phytoalexin found in a variety of plants, has significant antitumor activity. Pyruvate kinase M2 (PKM2) has abnormally high expression in various tumor cells, and it has been implicated in the survival of tumors. However, whether and how Res inhibits PKM2 expression is poorly understood. In the present study, we found that treatment with Res inhibited cell proliferation and induced cell apoptosis. The IC 50 values of Res against DLD1, HeLa, and MCF-7 cells were 75 ± 4.54, 50 ± 3.65, and 50 ± 3.32 μM, respectively. To elucidate mechanisms underlying its antitumor activities, serial experiments were performed. Results showed that reduction of PKM2 expression in tumor cells by Res treatment increased the expression of ER stress and mitochondrial fission proteins but reduced cell viability and the levels of fusion proteins. These phenomena were reversed by artificial overexpression of PKM2. Quantitative analyses showed that the expression of microRNA-326 (miR-326) was increased upon Res treatment. Treatment with the miR-326 mimic reduced PKM2 expression, promoting recovery from ER stress and mitochondrial fission. Overall, these results demonstrate that miR-326/PKM2-mediated ER stress and mitochondrial dysfunction participate in apoptosis induced by Res. These results provide novel insight into the molecular mechanisms by which Res suppresses tumors and further support for the use of Res as an antitumor drug.

  19. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome cmore » and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.« less

  20. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    PubMed

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca 2+ by 1,2-bis-( o -aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid. Knockdown of Ca V 1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N -Acetyl l-cysteine (NAC) and l- N G -Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N -terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca 2+ , activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Sympathoadrenal balance and physiological stress response in cattle at spontaneous and PGF2α-induced calving.

    PubMed

    Nagel, Christina; Trenk, Lisa; Aurich, Christine; Ille, Natascha; Pichler, Martina; Drillich, Marc; Pohl, Werner; Aurich, Jörg

    2016-03-15

    Increased cortisol release in parturient cows may either represent a stress response or is part of the endocrine changes that initiate calving. Acute stress elicits an increase in heart rate and decrease in heart rate variability (HRV). Therefore, we analyzed cortisol concentration, heart rate and HRV variables standard deviation of beat-to-beat interval (SDRR) and root mean square of successive beat-to-beat intervals (RMSSD) in dairy cows allowed to calve spontaneously (SPON, n = 6) or with PGF2α-induced preterm parturition (PG, n = 6). We hypothesized that calving is a stressor, but induced parturition is less stressful than term calving. Saliva collection for cortisol analysis and electrocardiogram recordings for heart rate and HRV analysis were performed from 32 hours before to 18.3 ± 0.7 hours after delivery. Cortisol concentration increased in SPON and PG cows, peaked 15 minutes after delivery (P < 0.001) but was higher in SPON versus PG cows (P < 0.001) during and within 2 hours after calving. Heart rate peaked during the expulsive phase of labor and was higher in SPON than in PG cows (time × group P < 0.01). The standard deviation of beat-to-beat interval and RMSSD peaked at the end of the expulsive phase of labor (P < 0.001), indicating high vagal activity. Standard deviation of beat-to-beat interval (P < 0.01) and RMSSD (P < 0.05) were higher in SPON versus PG cows. Based on physiological stress parameters, calving is perceived as stressful but expulsion of the calf is associated with a transiently increased vagal tone which may enhance uterine contractility. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection.

    PubMed

    Önnheim, Karin; Ekblad, Maria; Görander, Staffan; Bergström, Tomas; Liljeqvist, Jan-Åke

    2016-04-22

    Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, and in serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  3. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  4. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells.

    PubMed

    Choi, Min Jung; Park, Eun Jung; Min, Kyoung Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2011-04-01

    The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. ER stress has been implicated in a variety of common diseases, such as diabetes, ischemia and neurodegenerative disorders. Withaferin A, a major chemical constituent of Withania somnifera, has been reported to inhibit tumor cell growth. We show that withaferin A induced a dose-dependent apoptotic cell death in several types of human cancer cells, as measured by FACS analysis and PARP cleavage. Treatment of Caki cells with withaferin A induced a number of signature ER stress markers, including phosphorylation of eukaryotic initiation factor-2α (eIF-2 α), ER stress-specific XBP1 splicing, and up-regulation of glucose-regulated protein (GRP)-78. In addition, withaferin A caused up-regulation of CAAT/enhancer-binding protein-homologous protein (CHOP), suggesting the induction of ER stress. Pretreatment with N-acetyl cysteine (NAC) significantly inhibited withaferin A-mediated ER stress proteins and cell death, suggesting that reactive oxygen species (ROS) mediate withaferin A-induced ER stress. Furthermore, CHOP siRNA or inhibition of caspase-4 activity attenuated withaferin A-induced apoptosis. Taken together, the present study provides strong evidence supporting an important role of the ER stress response in mediating withaferin A-induced apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. ADRA2B genotype differentially modulates stress-induced neural activity in the amygdala and hippocampus during emotional memory retrieval.

    PubMed

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2015-02-01

    Noradrenaline interacts with stress hormones in the amygdala and hippocampus to enhance emotional memory consolidation, but the noradrenergic-glucocorticoid interaction at retrieval, where stress impairs memory, is less understood. We used a genetic neuroimaging approach to investigate whether a genetic variation of the noradrenergic system impacts stress-induced neural activity in amygdala and hippocampus during recognition of emotional memory. This study is based on genotype-dependent reanalysis of data from our previous publication (Li et al. Brain Imaging Behav 2014). Twenty-two healthy male volunteers were genotyped for the ADRA2B gene encoding the α2B-adrenergic receptor. Ten deletion carriers and 12 noncarriers performed an emotional face recognition task, while their brain activity was measured with fMRI. During encoding, 50 fearful and 50 neutral faces were presented. One hour later, they underwent either an acute stress (Trier Social Stress Test) or a control procedure which was followed immediately by the retrieval session, where participants had to discriminate between 100 old and 50 new faces. A genotype-dependent modulation of neural activity at retrieval was found in the bilateral amygdala and right hippocampus. Deletion carriers showed decreased neural activity in the amygdala when recognizing emotional faces in control condition and increased amygdala activity under stress. Noncarriers showed no differences in emotional modulated amygdala activation under stress or control. Instead, stress-induced increases during recognition of emotional faces were present in the right hippocampus. The genotype-dependent effects of acute stress on neural activity in amygdala and hippocampus provide evidence for noradrenergic-glucocorticoid interaction in emotional memory retrieval.

  6. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Li; Wang, Jing; Xiao, Haifang

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavagemore » of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer

  7. The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis.

    PubMed

    Kögel, Donat; Concannon, Caoimhín G; Müller, Thorsten; König, Hildegard; Bonner, Caroline; Poeschel, Simone; Chang, Steffi; Egensperger, Rupert; Prehn, Jochen H M

    2012-09-01

    Here we employed human SHEP neuroblastoma cells either stably or inducibly expressing the amyloid precursor protein (APP) intracellular domain (AICD) to investigate its ability to modulate stress-induced cell death. Analysis of effector caspase activation revealed that AICD overexpression was specifically associated with an increased sensitivity to apoptosis induced by the 2 endoplasmic reticulum (ER) stressors thapsigargin and tunicamycin, but not by staurosporine (STS). Basal and ER stress-induced expression of Bip/Grp78 and C/EBP-homologous protein/GADD153 were not altered by AICD implying that AICD potentiated cell death downstream or independent of the conserved unfolded protein response (UPR). Interestingly, quantitative polymerase chain reaction analysis and reporter gene assays revealed that AICD significantly downregulated messenger RNA levels of the Alzheimer's disease susceptibility gene ApoJ/clusterin, indicating transcriptional repression. Knockdown of ApoJ/clusterin mimicked the effect of AICD on ER stress-induced apoptosis, but had no discernible effect on staurosporine-induced cell death. Our data suggest that altered levels of AICD may abolish the prosurvival function of ApoJ/clusterin and increase the susceptibility of neurons to ER stress-mediated cell death, a pathway that may contribute to the pathogenesis of Alzheimer's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production

    PubMed Central

    Majewska-Szczepanik, Monika; Askenase, Philip W.; Lobo, Francis M.; Marcińska, Katarzyna; Wen, Li; Szczepanik, Marian

    2017-01-01

    Background Subcutaneous allergen-specific immunotherapy is a standard route for the immunotherapy of allergic diseases. It modulates the course of allergy and can generate long-term remission. However, subcutaneous allergen-specific immunotherapy can also induce anaphylaxis in some patients, and therefore additional routes of administration should be investigated to improve the safety and tolerability of immunotherapy. Objective We sought to determine whether epicutaneous treatment with antigen in the presence of a Toll-like receptor 9 agonist can suppress TH2-mediated responses in an antigen-specific manner. Methods Epicutaneous immunization was performed by applying a skin patch soaked with ovalbumin (OVA) plus CpG, and its suppressor activity was determined by using the mouse model of atopic dermatitis. Finally, adoptive cell transfers were implemented to characterize the regulatory cells that are induced by epicutaneous immunization. Results Epicutaneous immunization with OVA and CpG reduces the production of OVA-specific IgE and increases the synthesis of OVA-specific IgG2a antibodies in an antigen-specific manner. Moreover, eosinophil peroxidase activity in the skin and production of IL-4, IL-5, IL-10, and IL-13 are suppressed. The observed reduction of IgE synthesis is transferable with T-cell receptor (TCR) αβ+CD4+CD25− cells, whereas IgG2a production is dependent on both TCRαβ+ and TCRγδ+ T cells. Further experiments show that the described phenomenon is myeloid differentiation primary response 88, IFN-γ, and IL-17A dependent. Finally, the results suggest that epicutaneous immunization with OVA and CpG decreases the synthesis of OVA-specific IgE and skin eosinophil peroxidase activity in mice with ongoing skin allergy. Conclusion Epicutaneous application of protein antigen in the presence of adjuvant could be an attractive needle-free and self-administered immunotherapy for allergic diseases. PMID:26810716

  9. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  10. Dissecting the roles of ROCK isoforms in stress-induced cell detachment.

    PubMed

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-05-15

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

  11. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2

  12. Dose--response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Takai, N.; Wu, H.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2001-01-01

    PURPOSE: To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (13 keV/ microm, 80 keV/microm), silicon (55 keV/microm) and iron (140 keV/microm, 185keV/microm, 440keV/microm) ions. Chromosomes were prematurely condensed using calyculin-A. Initial chromatid-type and isochromatid breaks in G2 cells were scored. RESULTS: The dose response curves for total chromatid breaks were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET-dependent increase, peaking around 2.7 at 55-80keV/microm and decreasing at higher LET. The dose response curves for isochromatid-type breaks were linear for high-LET radiations, but linear-quadratic for gamma-rays and 13 keV/microm carbon ions. The RBE for the induction of isochromatid breaks obtained from linear components increased rapidly between 13keV/microm (about 7) and 80keV/microm carbon (about 71), and decreased gradually until 440 keV/microm iron ions (about 66). CONCLUSIONS: High-LET radiations are more effective at inducing isochromatid breaks, while low-LET radiations are more effective at inducing chromatid-type breaks. The densely ionizing track structures of heavy ions and the proximity of sister chromatids in G2 cells result in an increase in isochromatid breaks.

  13. Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead.

    PubMed

    Long, Dan-Dan; Fu, Rong-Rong; Han, Jian-Rong

    2017-07-01

    Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.

  14. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    PubMed

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.

    PubMed

    Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya

    2014-02-05

    The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy.

    PubMed

    Zhao, Yang; Dong, Daoyin; Reece, E Albert; Wang, Ashley R; Yang, Peixin

    2018-01-01

    Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In

  17. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  18. Molecular Adaptations to Social Defeat Stress and Induced Depression in Mice.

    PubMed

    Bondar, Natalya; Bryzgalov, Leonid; Ershov, Nikita; Gusev, Fedor; Reshetnikov, Vasiliy; Avgustinovich, Damira; Tenditnik, Mikhail; Rogaev, Evgeny; Merkulova, Tatiana

    2018-04-01

    Chronic stress is a risk factor for major depression. Social defeat stress is a well-validated murine model of depression. However, little is known about the gene activity dynamics during the development of a depression-like state. We analyzed the effects of social defeat stress of varying duration (10 and 30 days) on the behavioral patterns and prefrontal-cortex transcriptome of C57BL/6 mice. The 10-day exposure to social defeat stress resulted in a high level of social avoidance with no signs of depression-associated behavior. Most animals exposed to 30 days of social defeat stress demonstrated clear hallmarks of depression, including a higher level of social avoidance, increased immobility in the forced swimming test, and anhedonic behavior. The monitoring of transcriptome changes revealed widespread alterations in gene expression on the 10th day. Surprisingly, the expression of only a few genes were affected by the 30th day of stress, apparently due to a reversal of the majority of the early stress-induced changes to the original basal state. Moreover, we have found that glucocorticoid-sensitive genes are clearly stimulated targets on the 10th day of stress, but these genes stop responding to the elevated corticosterone level by the 30th day of stress. The majority of genes altered by the 30-day stress were downregulated, with the most relevant ones participating in chromatin modifications and neuroplasticity (e.g., guanine nucleotide exchange factors of the Rho-family of GTPases). Very different molecular responses occur during short-term and long-term social stress in mice. The early-stress response is associated with social avoidance and with upregulation and downregulation of many genes, including those related to signal transduction and cell adhesion pathways. Downregulation of a few genes, in particular, genes for histone-modifying methyltransferases, is a signature response to prolonged stress that induces symptoms of depression. Altogether, our data

  19. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  20. Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta

    NASA Technical Reports Server (NTRS)

    Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and

  1. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis.

    PubMed

    Li, Yansen; Huang, Yi; Piao, Yuanguo; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi; Li, ChunMei

    2013-03-21

    Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it's still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat treated-induced oxidative stress in mouse

  2. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis

    PubMed Central

    2013-01-01

    Background Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it’s still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Methods Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Results Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. Conclusions These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat

  3. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway

    PubMed Central

    Zhang, Jing; Wang, Yang; Zhou, Ye; He, Qing-Yu

    2017-01-01

    Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca2+-mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC. PMID:29207638

  4. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway.

    PubMed

    Zhang, Jing; Wang, Yang; Zhou, Ye; He, Qing-Yu

    2017-10-31

    Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca 2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca 2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca 2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca 2+ -mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC.

  5. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

    PubMed Central

    Singh, Atul K.; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K.

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  6. Mild Lipid Stress Induces Profound Loss of MC4R Protein Abundance and Function

    PubMed Central

    Cragle, Faith K.

    2014-01-01

    Food intake is controlled at the central level by the melanocortin pathway in which the agonist α-MSH binds to melanocortin 4 receptor (MC4R), a Gs-coupled G protein-coupled receptor expressed by neurons in the paraventricular nuclei of the hypothalamus, which signals to reduce appetite. Consumption of a high-fat diet induces hypothalamic accumulation of palmitate, endoplasmic reticulum (ER) stress, apoptosis, and unresponsiveness to prolonged treatment with MC4R agonists. Here we have modeled effects of lipid stress on MC4R by using mHypoE-42 immortalized hypothalamic neurons expressing endogenous MC4R and Neuro2A cells expressing a tagged MC4R reporter, HA-MC4R-GFP. In the hypothalamic neurons, exposure to elevated palmitate in the physiological range induced splicing of X-box binding protein 1, but it did not activate C/EBP-homologous protein or induce increased levels of cleaved caspase-3, indicating mild ER stress. Such mild ER stress coexisted with a minimal loss of MC4R mRNA and yet a profound loss of cAMP signaling in response to incubation with the agonist. These findings were mirrored in the Neuro2A cells expressing HA-MC4R-GFP, in which protein abundance of the tagged receptor was decreased, whereas the activity per receptor number was maintained. The loss of cAMP signaling in response to α-MSH by elevated palmitate was corrected by treatment with a chemical chaperone, 4-phenylbutyrate in both mHypoE-42 hypothalamic neurons and in Neuro2A cells in which protein abundance of HA-MC4R-GFP was increased. The data indicate that posttranscriptional decrease of MC4R protein contribute to lower the response to α-MSH in hypothalamic neurons exposed to even a mild level of lipid stress and that a chemical chaperone corrects such a defect. PMID:24506538

  7. Adrenal-derived stress hormones modulate ozone-induced ...

    EPA Pesticide Factsheets

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  8. Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells

    PubMed Central

    Song, Jike; Guo, Dadong; Bi, Hongsheng

    2018-01-01

    Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051

  9. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine–Induced Acute Pancreatitis: An Experimental Study on Rats

    PubMed Central

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-01-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine–induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg−1) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine–induced acute toxicity of pancreas in rats. PMID:26011211

  10. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats.

    PubMed

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-05-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine-induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg(-1)) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine-induced acute toxicity of pancreas in rats.

  11. Changes in C57BL6 Mouse Hippocampal Transcriptome Induced by Hypergravity Mimic Acute Corticosterone-Induced Stress

    PubMed Central

    Pulga, Alice; Porte, Yves; Morel, Jean-Luc

    2016-01-01

    Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed during spaceflights, allowing us to understand how a long-term physical constraint can condition the mammalian physiology. It is known that mice, placed in classical cages and maintained during 21 days in a centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity, and/or stress. Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-exposed mice. Corticosterone is known to modify neuronal activity during memory processes. Although learning and memory performances cannot be assessed during the centrifugation, literature largely described a large panel of proteins (channels, second messengers, transcription factors, structural proteins) which expressions are modified during memory processing. Thus, we used the Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days, and (3) aged mice because aging could be characterized by a decrease of hippocampus functions and memory impairment. Our results suggest that hypergravity stress induced by corticosterone administration and aging modulate the expression of genes in the hippocampus. However, the modulations of the transcriptome observed in these conditions are not identical. Hypergravity affects per-se the hippocampus transcriptome and probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more similar to acute injection than chronic diffusion of corticosterone or aging. PMID:28082866

  12. Severe hypotension during the decreasing phase of Gz stress in anesthetized rats wearing an anti-G suit.

    PubMed

    Maruyama, Satoshi; Kemuriyama, Takehito; Manabe, Tomoko; Takahata, Tomofumi; Shoji, Ichiro; Nishida, Yasuhiro

    2011-11-01

    Physiological responses to +Gz stress have been reported in several studies. However, no reports exist on differences in arterial pressure responses between increasing and decreasing G phases. We hypothesized that +Gz stress and/or an anti-G support might disturb the circulation system and cause potential brain hypoperfusion, even if the anti-G support protects against G-induced loss of consciousness. Dependency of +Gz magnitude, hemodynamic changes, renal sympathetic nerve activity (RSNA), and aortic blood flow (AoBF) were estimated in anesthetized rats to analyze the effects of +Gz stress and/or an anti-G support on arterial pressure at a level of the brain (APLB). The rats were exposed to +Gz using a centrifuge for small animals while wearing an anti-G suit. APLB remained at the control level while the anti-G suit was inflated. However, a decrease in APLB was observed twice during increasing and decreasing G phases using the anti-G suit. Hypotension in the decreasing C phase at +5 Gz was significantly deeper than that in the increasing G phase (47.5 +/- 7.7 vs. 29.6 +/- 3.0 mmHg). RSNA responses to Gz loads were greater in the decreasing G than in the increasing G phase (129.7 +/- 8.6 vs. 147.3 +/- 10.4%). Both AoBF and calculated vascular resistance were suppressed more significantly in the decreasing G than in the increasing G phase (38.3 +/- 4.4 vs. 34.4 +/- 3.4 ml x min(-1), 1.44 +/- 0.22 vs. 1.09 +/- 0.14 mmHg x min(-1) x ml(-1)). We conclude that transient excessive decreasing G hypotension may occur during the decreasing G phase, which may be due to anti-G suit functioning.

  13. Overexpressing the Multiple-Stress Responsive Gene At1g74450 Reduces Plant Height and Male Fertility in Arabidopsis thaliana

    PubMed Central

    Visscher, Anne M.; Belfield, Eric J.; Vlad, Daniela; Irani, Niloufer; Moore, Ian; Harberd, Nicholas P.

    2015-01-01

    A subset of genes in Arabidopsis thaliana is known to be up-regulated in response to a wide range of different environmental stress factors. However, not all of these genes are characterized as yet with respect to their functions. In this study, we used transgenic knockout, overexpression and reporter gene approaches to try to elucidate the biological roles of five unknown multiple-stress responsive genes in Arabidopsis. The selected genes have the following locus identifiers: At1g18740, At1g74450, At4g27652, At4g29780 and At5g12010. Firstly, T-DNA insertion knockout lines were identified for each locus and screened for altered phenotypes. None of the lines were found to be visually different from wildtype Col-0. Secondly, 35S-driven overexpression lines were generated for each open reading frame. Analysis of these transgenic lines showed altered phenotypes for lines overexpressing the At1g74450 ORF. Plants overexpressing the multiple-stress responsive gene At1g74450 are stunted in height and have reduced male fertility. Alexander staining of anthers from flowers at developmental stage 12–13 showed either an absence or a reduction in viable pollen compared to wildtype Col-0 and At1g74450 knockout lines. Interestingly, the effects of stress on crop productivity are most severe at developmental stages such as male gametophyte development. However, the molecular factors and regulatory networks underlying environmental stress-induced male gametophytic alterations are still largely unknown. Our results indicate that the At1g74450 gene provides a potential link between multiple environmental stresses, plant height and pollen development. In addition, ruthenium red staining analysis showed that At1g74450 may affect the composition of the inner seed coat mucilage layer. Finally, C-terminal GFP fusion proteins for At1g74450 were shown to localise to the cytosol. PMID:26485022

  14. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected inmore » the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.« less

  15. BDE-47 induces oxidative stress, activates MAPK signaling pathway, and elevates de novo lipogenesis in the copepod Paracyclopina nana.

    PubMed

    Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong

    2016-12-01

    Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Redox-induced surface stress of polypyrrole-based actuators.

    PubMed

    Tabard-Cossa, Vincent; Godin, Michel; Grütter, Peter; Burgess, Ian; Lennox, R B

    2005-09-22

    We measure the surface stress induced by electrochemical transformations of a thin conducting polymer film. One side of a micromechanical cantilever-based sensor is covered with an electropolymerized dodecyl benzenesulfonate-doped polypyrrole (PPyDBS) film. The microcantilever serves as both the working electrode (in a conventional three-electrode cell configuration) and as the mechanical transducer for simultaneous, in situ, and real-time measurements of the current and interfacial stress changes. A compressive change in surface stress of about -2 N/m is observed when the conducting polymer is electrochemically switched between its oxidized (PPy+) and neutral (PPy0) state by cyclic voltammetry. The surface stress sensor's response during the anomalous first reductive scan is examined. The effect of long-term cycling on the mechanical transformation ability of PPy(DBS) films in both surfactant and halide-based electrolytes is also discussed. We have identified two main competing origins of surface stress acting on the PPy(DBS)/ gold-coated microcantilever: one purely mechanical due to the volume change of the conducting polymer, and a second charge-induced, owing to the interaction of anions of the supporting electrolyte with the gold surface.

  17. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images.

    PubMed

    Liu, Meiling; Wang, Tiejun; Skidmore, Andrew K; Liu, Xiangnan

    2018-05-05

    Regional-level information on heavy metal pollution in agro-ecosystems is essential for food security because excessive levels of heavy metals in crops may pose risks to humans. However, collecting this information over large areas is inherently costly. This paper investigates the possibility of applying multi-temporal Sentinel-2 satellite images to detect heavy metal-induced stress (i.e., Cd stress) in rice crops in four study areas in Zhuzhou City, Hunan Province, China. For this purpose, we compared seven Sentinel-2 images acquired in 2016 and 2017 with in situ measured hyper-spectral data, chlorophyll content, rice leaf area index, and heavy metal concentrations in soil collected from 2014 to 2017. Vegetation indices (VIs) related to red edge bands were referred to as the sensitive indicators for screening stressed rice from unstressed rice. The coefficients of spatio-temporal variation (CSTV) derived from the VIs allowed us to discriminate crops exposed to pollution from heavy metals as well as environmental stressors. The results indicate that (i) the red edge chlorophyll index, the red edge position index, and the normalized difference red edge 2 index derived from multi-temporal Sentinel-2 images were good indicators for screening stressed rice from unstressed rice; (ii) Rice under Cd stress remained stable with lower CSTV values of VIs overall growth stages in the experimental region, whereas rice under other stressors (i.e., pests and disease) showed abrupt changes at some growth stages and presented "hot spots" with greater CSTV values; and (iii) the proposed spatio-temporal anomaly detection method was successful at detecting rice under Cd stress; and CSTVs of rice VIs stabilized regardless of whether they were applied to consecutive growth stages or to two different crop years. This study suggests that regional heavy metal stress may be accurately detected using multi-temporal Sentinel-2 images, using VIs sensitive to the spatio

  18. Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats

    PubMed Central

    Gilbert, Jeremy; Campos, Arlene C.; Kline, Nicole; Ashby, Charles R.; Hagan, Jim J.; Heidbreder, Christian A.; Gardner, Eliot L.

    2013-01-01

    Rationale The dopamine (DA) D3 receptor is preferentially expressed in the mesolimbic system. We have previously shown that selective D3 receptor blockade by the novel D3 antagonist SB-277011A inhibits cocaine’s reinforcing action and cocaine-induced reinstatement of cocaine-seeking behavior. Objective In the present study, we investigated whether SB-277011A similarly inhibits stress-induced reinstatement of cocaine-seeking behavior. Methods Rats were allowed to self-administer cocaine (0.5 mg/kg per infusion, 3 h per session) for 10–14 days, followed by a once-daily extinction session for 7–14 days during which saline was substituted for cocaine. Extinction criteria were fewer than ten lever-presses per 3-h session for at least 3 consecutive days. After cocaine-seeking behavior was extinguished, each animal was tested twice for footshock-stress-induced reinstatement, once with vehicle (25% hydroxypropyl-β-cyclodextrin) and once with one of three doses of SB-277011A in counterbalanced fashion. Results During the last 3 days of cocaine self-administration (SA), active lever-presses were approximately 100 per session under fixed-ratio 2 reinforcement (~25 mg/kg cocaine per session). After extinction, intermittent footshock (10 min, 0.5 mA, 0.5 s on with a mean inter-shock interval of 40 s) robustly reinstated the cocaine-seeking behavior (8.4±3.6 active lever-presses in last extinction session to 35.3±5.2 in animals after footshock stress). Intraperitoneal (IP) injections of SB-277011A (3, 6, and 12 mg/kg) dose-dependently blocked stress-induced reinstatement of cocaine-seeking. Reinstatement was also blocked by microinjections of SB-277011A (1.5 μg/0.5 μl per side) bilaterally into the nucleus accumbens, but not into the dorsal striatum. Conclusions The mesolimic DA D3 receptor plays an important role in mediating stress-induced reinstatement. PMID:15083257

  19. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less

  20. Socioeconomic status and stress-induced increases in interleukin-6.

    PubMed

    Brydon, L; Edwards, S; Mohamed-Ali, V; Steptoe, A

    2004-05-01

    Coronary artery disease (CAD) is more prevalent in people from a low socioeconomic background, and low socioeconomic status (SES) is associated with an increased exposure to psychological stress. The pro-inflammatory cytokine interleukin-6 (IL-6) plays a central role in CAD development. IL-6 is responsive to psychological stress and could potentially mediate the effect of psychosocial factors on CAD risk. Accordingly, we predicted that people of low SES would have greater and/or more sustained IL-6 responses to acute psychological stress. Based on previous findings, we also predicted that these people would have delayed post-stress cardiovascular recovery. Thirty-eight male civil servants were tested, with participants divided into high and low SES groups according to employment grade. There were no differences between the groups at baseline. However there were significant differences in IL-6 and heart rate responses to stress. Stress induced increases in plasma IL-6 in all participants. However, in the low SES group, IL-6 continued to increase between 75 min and 2h post-stress, whereas IL-6 levels stabilised at 75 min in the high SES group. Heart rate increased to the same extent following stress in both groups, however by 2h post-stress, it had returned to baseline in 75% of the high SES group compared with only 38.1% of the low SES group. These results suggest that low SES people are less able to adapt to stress than their high SES counterparts. Prolonged stress-induced increases in IL-6 in low SES groups represents a novel mechanism potentially linking socioeconomic position and heart disease.

  1. The Effect of Citalopram on Midbrain CRF Receptors 1 and 2 in a Primate Model of Stress-Induced Amenorrhea

    PubMed Central

    Senashova, Olga; Reddy, Arubala P.; Cameron, Judy L.; Bethea, Cynthia L.

    2012-01-01

    We have demonstrated marked differences in the neurobiology of the serotonin system between stress-sensitive (SS) and stress-resilient (SR) cynomolgus macaques characterized in a model of stress-induced amenorrhea, also called functional hypothalamic amenorrhea (FHA). Dysfunction of the serotonin system in SS monkeys suggested that administration of a selective serotonin reuptake inhibitor (SSRI) might correct FHA. This study examines the effect of escitalopram (CIT) administration to SS and SR monkeys on corticotrophin-releasing factor (CRF) receptor 1 (CRF-R1) and CRF receptor 2 (CRF-R2) gene expression in the serotonin cell body region of the midbrain dorsal raphe. CRF-R1 was not significantly different between groups. There was a significant effect of treatment and a significant interaction between treatment and stress sensitivity on the average CRF-R2-positive pixel area (P < .004 and P < .006, respectively) and on the average number of CRF-R2-positive cells (P < .023 and P < .025, respectively). CIT significantly increased CRF-R2-positive pixel area and cell number in the SS group (pixel area P < .001; cell number P < .01; Bonferoni) but not in the SR group. In summary, CIT administration tended to decrease CRF-R1, but the small animal number precluded significance. CIT administration significantly increased CRF-R2 only in SS animals. These data suggest that the administration of CIT reduces anxiogenic components and increases anxiolytic components of the CRF system in the midbrain serotonin network, which in turn leads to improved ovarian function. Moreover, these data raise the possibility that SSRIs may be effective in the treatment of stress-induced infertility. PMID:22412189

  2. Pentoxifylline prevents post-traumatic stress disorder induced memory impairment.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Ahmed, Mohammed

    2018-05-01

    Posttraumatic stress disorder (PTSD) is a disabling prevalent and difficult-to-treat psychiatric disorder, which can develop after the exposure to severe traumatic events such as those occurring during wars and natural disasters. Pentoxifylline (PTX) is a potent antioxidant, which has an important role in prevention of cognitive dysfunctions. In the present study, the effect of PTX on memory impairment induced by PTSD was investigated using the rat animal model. PTSD-like behavior was induced in animals using a single-prolonged stress (SPS) rat model of PTSD (2 h restrain, 20 min forced swimming, 15 min rest, 1-2 min diethyl ether exposure). PTX was administered intraperitoneally at a dose of 100 mg/kg/day. Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in oxidative stress biomarkers, brain derived neuroptrophic factor (BDNF), and epigenetics (histones) in the hippocampus following treatments were measured using enzymatic assays. The result revealed that SPS impaired both short- and long- term memory (P < 0.05). Use of PTX prevented memory impairment induced by SPS. Furthermore, PTX normalized SPS induced changes in the hippocampus GSH/GSSG ratio, activity of catalase, and glutathione peroxidase (GPx), BDNF, and certain histones levels. In conclusion, the SPS model of PTSD-like behavior induced memory impairment, whereas PTX prevented this impairment possibly through normalizing antioxidant mechanisms, BDNF and epigenetic changes in the hippocampus. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  4. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    PubMed Central

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2015-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. PMID:22513272

  5. The role of ARK in stress-induced apoptosis in Drosophila cells

    PubMed Central

    Zimmermann, Katja C.; Ricci, Jean-Ehrland; Droin, Nathalie M.; Green, Douglas R.

    2002-01-01

    The molecular mechanisms of apoptosis are highly conserved throughout evolution. The homologs of genes essential for apoptosis in Caenorhabditis elegans and Drosophila melanogaster have been shown to be important for apoptosis in mammalian systems. Although a homologue for CED-4/apoptotic protease-activating factor (Apaf)-1 has been described in Drosophila, its exact function and the role of the mitochondrial pathway in its activation remain unclear. Here, we used the technique of RNA interference to dissect apoptotic signaling pathways in Drosophila cells. Inhibition of the Drosophila CED-4/Apaf-1–related killer (ARK) homologue resulted in pronounced inhibition of stress-induced apoptosis, whereas loss of ARK did not protect the cells from Reaper- or Grim-induced cell death. Reduction of DIAP1 induced rapid apoptosis in these cells, whereas the inhibition of DIAP2 expression did not but resulted in increased sensitivity to stress-induced apoptosis; apoptosis in both cases was prevented by inhibition of ARK expression. Cells in which cytochrome c expression was decreased underwent apoptosis induced by stress stimuli, Reaper or Grim. These results demonstrate the central role of ARK in stress-induced apoptosis, which appears to act independently of cytochrome c. Apoptosis induced by Reaper or Grim can proceed via a distinct pathway, independent of ARK. PMID:11901172

  6. Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves.

    PubMed

    Lukatkin, Alexander S; Gar'kova, Albina N; Bochkarjova, Anna S; Nushtaeva, Olga V; Teixeira da Silva, Jaime A

    2013-01-01

    Leaf disks as well as intact 7-day-old plants of winter wheat (Triticum aestivum L., cv. Mironovskaya 808), winter rye (Secale cereale L., cv. Estafeta Tatarstana), and maize (Zea mays L., cv. Kollektivnyi 172MV), were treated with the aryloxyphenoxypropionate class herbicide TOPIK, concentrate-emulsion (active ingredient is clodinafop-propargyl (CP), 8-800μg/L), and the effects of short-term action (up to 3h) and long-term aftereffect (up to 3days) on physiological and biochemical indices related to oxidative stress development were studied. The herbicide induced changes, predominantly increases in lipid peroxidation (LPO) intensity, superoxide anion O2(-) generation, total antioxidant activity (AOA), and catalase (CAT) and ascorbate peroxidase (APOX) activity, although the response by plants was nonlinear and depended on the herbicide concentration and duration of treatment. The highest level of generation of O2(-) was observed in the leaves of maize and winter wheat treated by 800μg/L CP, both in the short- and long-term. As TOPIK concentration increased, so too did LPO and AOA in leaves, confirming the presence of oxidative stress in the cells of all three cereals. Antioxidant enzymes were most active in winter rye and wheat, and least active in maize indicating a protective antioxidant mechanism in the first two cereals. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  8. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    PubMed Central

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  9. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2*

    PubMed Central

    Woodfolk, Judith A.; Glesner, Jill; Wright, Paul W.; Kepley, Christopher L.; Li, Mi; Himly, Martin; Muehling, Lyndsey M.; Gustchina, Alla; Wlodawer, Alexander; Chapman, Martin D.; Pomés, Anna

    2016-01-01

    Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4+ T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines. PMID:26644466

  10. Neuroendocrine and cardiovascular parameters during simulation of stress-induced rise in circulating oxytocin in the rat.

    PubMed

    Ondrejcakova, M; Bakos, J; Garafova, A; Kovacs, L; Kvetnansky, R; Jezova, D

    2010-07-01

    Physiological functions of oxytocin released during stress are not well understood. We have (1) investigated the release of oxytocin during chronic stress using two long-term stress models and (2) simulated stress-induced oxytocin secretion by chronic treatment with oxytocin via osmotic minipumps. Plasma oxytocin levels were significantly elevated in rats subjected to acute immobilization stress for 120 min, to repeated immobilization for 7 days and to combined chronic cold stress exposure for 28 days with 7 days immobilization. To simulate elevation of oxytocin during chronic stress, rats were implanted with osmotic minipumps subcutaneously and treated with oxytocin (3.6 microg/100 g body weight/day) or vehicle for 2 weeks. Chronic subcutaneous oxytocin infusion led to an increase in plasma oxytocin, adrenocorticotropic hormone, corticosterone, adrenal weights and heart/body weight ratio. Oxytocin treatment had no effect on the incorporation of 5-bromo-2-deoxyuridine into DNA in the heart ventricle. Mean arterial pressure response to intravenous phenylephrine was reduced in oxytocin-treated animals. Decrease in adrenal tyrosin hydroxylase mRNA following oxytocin treatment was not statistically significant. Oxytocin treatment failed to modify food intake and slightly increased water consumption. These data provide evidence on increased concentrations of oxytocin during chronic stress. It is possible that the role of oxytocin released during stress is in modulating hypothalamic-pituitary-adrenocortical axis and selected sympathetic functions.

  11. Mechanistic Role for a Novel Glucocorticoid-KLF11 (TIEG2) Protein Pathway in Stress-induced Monoamine Oxidase A Expression*

    PubMed Central

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R.; Stockmeier, Craig A.; Meyer, Jeffrey H.; Urrutia, Raul; Miczek, Klaus A.; Austin, Mark C.; Wang, Junming; Paul, Ian A.; Woolverton, William L.; Seo, Seungmae; Sittman, Donald B.; Ou, Xiao-Ming

    2012-01-01

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders. PMID:22628545

  12. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression.

    PubMed

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R; Stockmeier, Craig A; Meyer, Jeffrey H; Urrutia, Raul; Miczek, Klaus A; Austin, Mark C; Wang, Junming; Paul, Ian A; Woolverton, William L; Seo, Seungmae; Sittman, Donald B; Ou, Xiao-Ming

    2012-07-13

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.

  13. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Tao; Luo, Peihua; Zhu, Hong

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 andmore » cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in

  14. The histaminergic system is involved in psychological stress-induced hyperthermia in rats.

    PubMed

    Lkhagvasuren, Battuvshin; Oka, Takakazu

    2017-04-01

    The histaminergic system modulates numerous physiological functions such as wakefulness, circadian rhythm, feeding, and thermoregulation. However, it is not yet known if this system is also involved in psychological stress-induced hyperthermia (PSH) and, if so, which histamine (H) receptor subtype mediates the effect. Therefore, we investigated the effects of pretreatments with intraperitoneal injections of mepyramine (an H1 receptor inverse agonist), cimetidine (an H2 receptor antagonist), and ciproxifan (an H3 receptor inverse agonist) on cage-exchange stress-induced hyperthermia (a model of PSH) by monitoring core body temperature ( T c ) during both light (10:00 am-12:00 pm) and dark (10:00 pm-12:00 am) phases in conscious, freely moving rats. We also investigated the effects of these drugs on stress-induced changes in locomotor activity ( L a ) to rule out the possibility that effects on T c are achieved secondary to altered L a Cage-exchange stress increased T c within 20 min followed by a gradual decrease back to baseline T c during both phases. In the light phase, mepyramine and cimetidine markedly attenuated PSH, whereas ciproxifan did not affect it. In contrast, in the dark phase, mepyramine dropped T c by 1 °C without affecting cage-exchange stress-induced hyperthermia, whereas cimetidine and ciproxifan did not affect both postinjection T c and PSH Cage-exchange stress induced an increase in L a , especially in the light phase, but none of these drugs altered cage-exchange stress-induced L a in either circadian rhythm phase. These results suggest that the histaminergic system is involved in the physiological mechanisms underlying PSH, particularly through H1 and H2 receptors, without influencing locomotor activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  16. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    PubMed Central

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  17. Central mechanisms of stress-induced headache.

    PubMed

    Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P

    2010-03-01

    Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.

  18. Organic extracts of coke oven emissions can induce genetic damage in metabolically competent HepG2 cells.

    PubMed

    Xin, Lili; Wang, Jianshu; Guo, Sifan; Wu, Yanhu; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Xiao, Wei; Wu, Tangchun; Guo, Huan

    2014-05-01

    Coke oven emissions (COEs) containing various carcinogenic polycyclic aromatic hydrocarbons (PAHs) represent the coal-burning pollution in the air. Organic pollutants in the aerosol and particulate matter of COEs were collected from the bottom, side, and top of a coke oven. The Comet assay and cytokinesis-block micronucleus cytome assay were conducted to analyze the genetic damage of extractable organic matter (EOM) of COEs on HepG2 cells. All the three EOMs could induce significant dose-dependent increases in Olive tail moment, tail DNA, and tail length, micronuclei, nucleoplasmic bridges, and nuclear buds frequencies, which were mostly positively correlated with the total PAHs concentration in each EOM. In conclusion, EOMs of COEs in the three typical working places of coke oven can induce DNA strand breaks and genomic instability in the metabolically competent HepG2 cells. The PAHs in EOMs may be important causative agents for the genotoxic effects of COEs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  20. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  1. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells.

    PubMed

    Zhang, Ling; He, Dian; Li, Kun; Liu, Hongli; Wang, Baitao; Zheng, Lifang; Li, Jiazhong

    2017-06-01

    Emodin has demonstrated potent anticancer activity in human hepatocarcinoma cells and animal models, however, the cellular targets of emodin have not been fully defined. Here we report that emodin induces the dysfunction of mitochondria and the apoptosis in HepG2 cells through an enrichment in mitochondria. Specifically, A mitochondrial matrix protein (cyclophilin D, CyPD) is involved in emodin-induced apoptosis, and the inhibitor of CyPD (cyclosporin A) could almost completely suppressing the apoptosis; Moreover, as the expression of CyPD could be effectively inhibited by antioxidant N-acetyl-l-cysteine and epidermal growth factor (the activator of ERK), reactive oxygen species and ERK might be involved in the relevant role of CyPD. A further molecule-docking discloses the existence of three hydrogen-bonds in CyPD-emodin complex. Thus, target localization and CyPD in mitochondria provides an insight into the action of emodin in the treatment of liver cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    PubMed

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  3. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  4. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    PubMed Central

    Tonack, Sarah; Patel, Sabina; Jalali, Mehdi; Nedjadi, Taoufik; Jenkins, Rosalind E; Goldring, Christopher; Neoptolemos, John; Costello, Eithne

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised. RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable. PMID:21528072

  5. Bis is Induced by Oxidative Stress via Activation of HSF1

    PubMed Central

    Yoo, Hyung Jae; Im, Chang-Nim; Youn, Dong-Ye; Yun, Hye Hyeon

    2014-01-01

    The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompaniedby increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined. PMID:25352760

  6. Ghrelin mediates stress-induced food-reward behavior in mice

    PubMed Central

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M.; Lutter, Michael; Zigman, Jeffrey M.

    2011-01-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense “comfort foods.” Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin’s orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating. PMID:21701068

  7. Ghrelin mediates stress-induced food-reward behavior in mice.

    PubMed

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  8. Xiao-Yao-San, a Chinese Medicine Formula, Ameliorates Chronic Unpredictable Mild Stress Induced Polycystic Ovary in Rat

    PubMed Central

    Sun, Hao-Yu; Li, Quan; Liu, Yu-Ying; Wei, Xiao-Hong; Pan, Chun-Shui; Fan, Jing-Yu; Han, Jing-Yan

    2017-01-01

    Chronic stress induces endocrine disturbance, which contributes to the development of polycystic ovary syndrome (PCOS), a condition that remains a challenge for clinicians to cope with. The present study investigated the effect of Xiao-Yao-San (XYS), a traditional Chinese medicine formula used for treatment of gynecological disease, on the chronic stress-induced polycystic ovary and its underlying mechanism. Female Sprague-Dwaley rats underwent a 3 weeks chronic unpredictable mild stress (CUMS) procedure to establish the PCOS model, followed by 4 weeks treatment with XYS (0.505 g/kg or 1.01 g/kg) by gavage. Granulosa cells were exposed to noradrenaline (1 mM) in vitro for 24 h, followed by incubation with or without XYS-treated rat serum for 24 h. Post-treatment with XYS ameliorated CUMS-induced irregular estrous cycles and follicles development abnormalities, decrease of estradiol and progesterone level as well as increase of luteinizing hormone in serum, reduced cystic follicles formation and the apoptosis and autophagy of granulosa cells, attenuated the increase in dopamine beta hydroxylase and c-fos level in locus coeruleus, the noradrenaline level in serum and ovarian tissue, and the expression of beta 2 adrenergic receptor in ovarian tissue. Besides, XYS alleviated the reduction of phosphorylation of ribosomal protein S6 kinase polypeptide I and protein kinase B, as well as the increase of microtubule-associated protein light chain 3-I to microtubule-associated protein light chain 3-II conversion both in vivo and in vitro. This study demonstrated XYS as a potential strategy for CUMS induced polycystic ovary, and suggested that the beneficial role of XYS was correlated with the regulation of the sympathetic nerve activity. PMID:29018356

  9. Mitochondrial targeted HSP90 inhibitor Gamitrinib-TPP (G-TPP) induces PINK1/Parkin-dependent mitophagy.

    PubMed

    Fiesel, Fabienne C; James, Elle D; Hudec, Roman; Springer, Wolfdieter

    2017-12-05

    Loss-of-function mutations in PINK1 or PARKIN are associated with early-onset Parkinson's disease. Upon mitochondrial stress, PINK1 and Parkin together mediate a response that protects cells from the accumulation of harmful, damaged mitochondria. PINK1, the upstream kinase accumulates on the mitochondrial surface and recruits the E3 ubiquitin ligase Parkin on site to ubiquitylate substrate proteins. The joint activity of both to generate phosphorylated poly-ubiquitin chains on the mitochondrial surface induces the recruitment of autophagy receptors and eventually whole organelles are cleared by autophagy. While this pathway is generally accepted to occur upon chemical uncoupling of mitochondria, the (patho-) physiologic relevance has been questioned. However, few studies have indicated that PINK1 and Parkin are also activated upon accumulation of misfolded proteins in the mitochondrial lumen upon overexpression of ΔOTC (Ornithine transcarbamylase). Here, we used the mitochondrial targeted HSP90 inhibitor Gamitrinib-triphenylphosphonium (G-TPP), an anti-cancer agent, to chemically interfere with mitochondrial protein folding. G-TPP treatment induced PINK1 accumulation, ubiquitin phosphorylation at Ser65, Parkin activation and its recruitment to mitochondria was specific for mitochondrial HSP90 inhibition and largely independent of mitochondrial membrane depolarization. Mitophagy induction was observed by monitoring autophagy receptor recruitment and the mitoKeima reporter. Importantly, mitophagy was not only induced in cancer cells but also in primary human fibroblasts and thereof converted neurons. G-TPP treatment might represent a novel strategy to study PINK1 and Parkin-mediated mitochondrial quality control using a more physiologically relevant stress.

  10. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    PubMed

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  11. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Stress induced obesity: lessons from rodent models of stress

    PubMed Central

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  13. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2011-07-01

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  14. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway.

    PubMed

    Zhang, Zhiguo; Wang, Shudong; Zhou, Shanshan; Yan, Xiaoqing; Wang, Yonggang; Chen, Jing; Mellen, Nicholas; Kong, Maiying; Gu, Junlian; Tan, Yi; Zheng, Yang; Cai, Lu

    2014-12-01

    Type 2 diabetes mellitus (T2DM)-induced cardiomyopathy is associated with cardiac oxidative stress, inflammation, and remodeling. Sulforaphane (SFN), an isothiocyanate naturally presenting in widely consumed vegetables, particularly broccoli, plays an important role in cardiac protection from diabetes. We investigated the effect of SFN on T2DM-induced cardiac lipid accumulation and subsequent cardiomyopathy. Male C57BL/6J mice were fed a high-fat diet for 3months to induce insulin resistance, followed by a treatment with 100mg/kg body-weight streptozotocin to induce hyperglycemia; we referred to it as the T2DM mouse model. Other age-matched mice were fed a normal diet as control. T2DM and control mice were treated with or without 4-month SFN at 0.5mg/kg daily five days a week. At the study's end, cardiac function was assessed. SFN treatment significantly attenuated cardiac remodeling and dysfunction induced by T2DM. SFN treatment also significantly inhibited cardiac lipid accumulation, measured by Oil Red O staining, and improved cardiac inflammation oxidative stress and fibrosis, shown by down-regulating diabetes-induced PAI-1, TNF-α, CTGF, TGF-β, 3-NT, and 4-HNE expression. Elevated 4-HNE resulted in the increase of 4-HNE-LKB1 adducts that should inhibit LKB1 and subsequent AMPK activity. SFN upregulated the expression of Nrf2 and its downstream genes, NQO1 and HO-1, decreased 4-HNE-LKB1 adducts and then reversed diabetes-induced inhibition of LKB1/AMPK and its downstream targets, including sirtuin 1, PGC-1α, phosphorylated acetyl-CoA carboxylase, carnitine palmitoyl transferase-1, ULK1, and light chain-3 II. These results suggest that SFN treatment to T2DM mice may attenuate the cardiac oxidative stress-induced inhibition of LKB1/AMPK signaling pathway, thereby preventing T2DM-induced lipotoxicity and cardiomyopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2.

    PubMed

    Yaghi, Layale; Poras, Isabelle; Simoes, Renata T; Donadi, Eduardo A; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D; Moreau, Philippe

    2016-09-27

    HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2'deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at -966 bp in the 5'UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus.

  16. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2

    PubMed Central

    Yaghi, Layale; Poras, Isabelle; Simoes, Renata T.; Donadi, Eduardo A.; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D.; Moreau, Philippe

    2016-01-01

    HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2′deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at −966 bp in the 5′UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus. PMID:27577073

  17. Alkylating agent induced NRF2 blocks endoplasmic reticulum stress-mediated apoptosis via control of glutathione pools and protein thiol homeostasis

    PubMed Central

    Zanotto-Filho, Alfeu; Masamsetti, V. Pragathi; Loranc, Eva; Tonapi, Sonal S.; Gorthi, Aparna; Bernard, Xavier; Gonçalves, Rosângela Mayer; Moreira, José C. F.; Chen, Yidong; Bishop, Alexander J. R.

    2016-01-01

    Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival; an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine (BSO) caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine (NAC) or glutathione-ethyl-ester (GSH-E), decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 targets overexpression and poor survival. In KEAP1 mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. PMID:27638861

  18. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis.

    PubMed

    Zanotto-Filho, Alfeu; Masamsetti, V Pragathi; Loranc, Eva; Tonapi, Sonal S; Gorthi, Aparna; Bernard, Xavier; Gonçalves, Rosângela Mayer; Moreira, José C F; Chen, Yidong; Bishop, Alexander J R

    2016-12-01

    Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway.

    PubMed

    Zhang, Zhuangwei; Zhang, Huiqin; Chen, Shiyong; Xu, Yan; Yao, Anjun; Liao, Qi; Han, Liyuan; Zou, Zuquan; Zhang, Xiaohong

    2017-02-01

    The plant flavonol dihydromyricetin (DHM) was reported to induce apoptosis in human hepatocarcinoma HepG2 cells. This study was undertaken to elucidate the underlying molecular mechanism of action of DHM. In the study, DHM down-regulated Akt expression and its phosphorylation at Ser473, up-regulated the levels of mitochondrial proapoptotic proteins Bax and Bad, and inhibited the phosphorylation of Bad at Ser136 and Ser112. It also inhibited the expression of the antiapoptotic protein Bcl-2 and enhanced the cleavage and activation of caspase-3 as well as the degradation of its downstream target poly(ADP-ribose) polymerase. Our results for the first time suggest that DHM-induced apoptosis in HepG2 cells may come about by the inhibition of the Akt/Bad signaling pathway and stimulation of the mitochondrial apoptotic pathway. Dihydromyricetin may be a promising therapeutic medication for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 5-LO inhibition ameliorates palmitic acid-induced ER stress, oxidative stress and insulin resistance via AMPK activation in murine myotubes.

    PubMed

    Kwak, Hyun Jeong; Choi, Hye-Eun; Cheon, Hyae Gyeong

    2017-07-10

    Leukotriene B4 (LTB4) production via the 5-lipoxygenase (5-LO) pathway contributes to the development of insulin resistance in adipose and hepatic tissues, but the role of LTB4 in skeletal muscle is relatively unknown. Here, the authors investigated the role of LTB4 in C2C12 myotubes in palmitic acid (PA)-induced ER stress, inflammation and insulin resistance. PA (750 μM) evoked lipotoxicity (ER stress, oxidative stress, inflammation and insulin resistance) in association with LTB4 production. 5-LO inhibition reduced all the lipotoxic effects induced by PA. On the other hand, PA did not induce cysteinyl leukotrienes (CysLTs), which themselves had no effect on ER stress and inflammation. The beneficial effects of 5-LO suppression from PA-induced lipotoxicity were related with AMPK activation. In ob/ob mice, once daily oral administration of zileuton (50, 100 mg/kg) for 5 weeks improved insulin resistance, increased AMPK phosphorylation, and reduced LTB4 and ER stress marker expression in skeletal muscle. These results show that 5-LO inhibition by either zileuton or 5-LO siRNA protects C2C12 myotubes from PA-induced lipotoxicity, at least partly via AMPK activation, and suggest that the in vivo insulin-sensitizing effects of zileuton are in part attributable to its direct action on skeletal muscle via LTB4 downregulation followed by AMPK activation.