Science.gov

Sample records for strings small-scale structure

  1. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  2. Small scale structure on cosmic strings

    SciTech Connect

    Albrecht, A.

    1989-10-30

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs.

  3. Kinks and small-scale structure on cosmic strings

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.

    2009-12-15

    We discuss some hitherto puzzling features of the small-scale structure of cosmic strings. We argue that kinks play a key role, and that an important quantity to study is their sharpness distribution. In particular we suggest that for very small scales the two-point correlation function of the string tangent vector varies linearly with the separation and not as a fractional power, as proposed by Polchinski and Rocha [Phys. Rev. D 74, 083504 (2006)]. However, our results are consistent with theirs, because the range of scales to which this linearity applies shrinks as evolution proceeds.

  4. Small-scale positive flower structures

    NASA Astrophysics Data System (ADS)

    Clendenin, C. W.

    1993-01-01

    Field relations indicate that small-scale positive flower structures along sub-regional strike-slip faults localize ore in particular 4 m thick, bedded ore zones in Mississippi Valley-type Pb-Zn deposits of the Viburnum Trend, southeast Missouri, U.S.A. Outwardly divergent, shallow-dipping, duplex-deformed fault splays control ore and merge inwardly with sub-vertical fault strands. The characteristics of both duplex-deformed splays and ore suggest that the flower structures acted as drains for fluids being moved vertically along the strike-slip faults. This ore control differs from pipe-like conduits of transtensional dilation jogs in that duplex-deformed splays form under transpression and develop horizontal veins adjacent to strike-slip faults.

  5. Small scale retentive structures and Dinophysis

    NASA Astrophysics Data System (ADS)

    Xie, Hongqin; Lazure, Pascal; Gentien, Patrick

    2007-01-01

    Despite its rarity, Dinophysis acuminata is in terms of economic impact, the first toxic algal species along the coasts of Western Europe. It is observed at low levels (< 20 cell l - 1 ) all the year round but toxic events occur mainly in late spring and summer. D. acuminata ecophysiology is largely unknown due to the inability to culture it. Therefore, standard biomass models based on inorganic nutrition are largely inadequate. Presently, any progress in describing the conditions of population growth of this species will be a step forward to prediction of harmful events at the coast. This species has been observed at increased, albeit low cell densities in retentive eddies located in pycnocline layers. A concentration build-up of one species results from the balance between growth and loss processes, one of the latter being dispersal. The scales of interest for a D. acuminata population are of the order of 10 nautical miles on the horizontal and duration of 10 days, for a reported achievable growth rate of 0.6 day - 1 . A three dimensional (3D) hydrodynamical model of the Bay of Biscay has been elaborated to reproduce hydrological structures over the last decade. We attempt here to relate the existence of retentive structures revealed from simulations under realistic forcing conditions and the toxic coastal events recorded in the 10-year time series of the French plankton monitoring network database. The eddies in the coastal area appear to be directly related with the Dinophysis coastal events and they may be a potential effective tool to predict those.

  6. Electron Precipitation Associated with Small-Scale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Michell, R.; Samara, M.; Grubbs, G. A., II; Hampton, D. L.; Bonnell, J. W.; Ogasawara, K.

    2014-12-01

    We present results from the Ground-to-Rocket Electrons Electrodynamics Correlative Experiment (GREECE) sounding rocket mission, where we combined high-resolution ground-based auroral imaging with high time-resolution precipitating electron measurements. The GREECE payload successfully launched from Poker Flat, Alaska on 03 March 2014 and reached an apogee of approximately 335 km. The narrow field-of-view auroral imaging was taken from Venetie, AK, which is directly under apogee. This enabled the small-scale auroral features at the magnetic footpoint of the rocket payload to be imaged in detail. The electron precipitation was measured with the Acute Precipitating Electron Spectrometer (APES) onboard the payload. Features in the electron data are matched up with their corresponding auroral structures and boundaries, enabling measurement of the exact electron distributions responsible for the specific small-scale auroral features. These electron distributions will then be used to infer what the potential electron acceleration processes were.

  7. Does small scale structure significantly affect cosmological dynamics?

    PubMed

    Adamek, Julian; Clarkson, Chris; Durrer, Ruth; Kunz, Martin

    2015-02-01

    The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined background cosmological model. It may not. Smoothing over structure adds in an extra contribution, transferring power from small scales up to large. Second-order perturbation theory implies that the effect is small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is actually determined by the ratio of the Hubble scales at matter-radiation equality and today-which are entirely unrelated. This implies that a universe with significantly lower temperature today could have significant backreaction from more power on small scales, and so provides the ideal testing ground for understanding backreaction. We investigate this using two different N-body numerical simulations-a 3D Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact the virialization of structure saturates the backreaction effect at the same level independently of the equality scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it may still contribute at the percent level to certain cosmological observables and therefore it cannot be neglected in precision cosmology. PMID:25699430

  8. Cosmic string structure at the gravitational radiation scale

    SciTech Connect

    Polchinski, Joseph; Rocha, Jorge V.

    2007-06-15

    We use our model of the small scale structure on cosmic strings to develop further the result of Siemens, Olum, and Vilenkin that the gravitational radiation length scale on cosmic strings is smaller than the previously assumed {gamma}G{mu}t. We discuss some of the properties of cosmic string loops at this cutoff scale, and we argue that recent network simulations point to two populations of cosmic string loops, one near the horizon scale and one near the gravitational radiation cutoff.

  9. Extreme events and small-scale structure in computational turbulence

    NASA Astrophysics Data System (ADS)

    Zhai, X. M.; Yeung, P. K.; Sreenivasan, K. R.

    2015-11-01

    Detailed analyses have been made of data from a direct numerical simulation of turbulence on a periodic domain with 81923 grid points designed to improve our understanding of small-scale structure and intermittency. At the Reynolds number of this simulation (1300 based on the Taylor scale) extreme events of dissipation and enstrophy as large as 105 times the mean value are observed. These events are shown to possess a form that is different from similar events at low Reynolds numbers. Extreme vorticity appears to be ``chunky'' in character, in contrast to elongated vortex tubes at moderately large amplitudes commonly reported in the literature. We track the temporal evolution of these extreme events and find that they are generally short-lived, which suggests frequent sampling on-the-fly is useful. Extreme magnitudes of energy dissipation rate and enstrophy are essentially coincident in space and remain so during their evolution. Numerical tests show sensitivity to small-scale resolution and sampling but not machine precision. The connections expected between indicators of fine-scale intermittency such as acceleration statistics and the anomalous scaling of high-order velocity structure functions are also investigated. Supported by NSF Grant ACI-1036170 (Track 1 Petascale Resource Allocations Program).

  10. Cosmic strings as the source of small-scale microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Pogosian, Levon; Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark

    2009-02-01

    Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (ell < 1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales ell gtrsim 2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.

  11. Cosmic strings as the source of small-scale microwave background anisotropy

    SciTech Connect

    Pogosian, Levon; Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark E-mail: tye@lepp.cornell.edu E-mail: mwyman@perimeterinstitute.ca

    2009-02-15

    Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l < 1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales l {approx}> 2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.

  12. Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2011-12-01

    We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra [1] were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, fd{sup AH} < 0.095, and on their tension, Gμ{sub AH} < 0.57 × 10{sup −6}, both at 95% confidence level using WMAP7 data; and fd{sup AH} < 0.048 and Gμ{sub AH} < 0.42 × 10{sup −6} using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, n{sub s} = 1, is now disfavoured at 2.4σ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.

  13. Small-scale structure in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less.

  14. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    PubMed Central

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  15. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration.

    PubMed

    Green, David W; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a "water-tight" barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  16. Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-10-01

    The topological and dynamical features of small scales are studied in the context of decaying magnetohydrodynamic turbulent flows using direct numerical simulations. Joint probability density functions (PDFs) of the invariants of gradient quantities related to the velocity and the magnetic fields demonstrate that structures and dynamics at the time of maximum dissipation depend on the large scale initial conditions at the examined Reynolds numbers. This is evident in particular from the fact that each flow has a different shape for the joint PDF of the invariants of the velocity gradient in contrast to the universal teardrop shape of hydrodynamic turbulence. The general picture that emerges from the analysis of the invariants is that regions of high vorticity are correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent flows. Magnetic strain dominated regions are also well correlated with region of high current density j. Viscous dissipation ({∝ } S^2) as well as Ohmic dissipation ({∝ } j^2) resides in regions where strain and rotation are locally almost in balance. The structures related to the velocity gradient possess different characteristics than those associated with the magnetic field gradient with the latter being locally more quasi-two dimensional.

  17. MeV Dark Matter and Small Scale Structure

    SciTech Connect

    Hooper, Dan; Kaplinghat, Manoj; Strigari, Louis E.; Zurek, Kathryn M.; /Wisconsin U., Madison

    2007-04-01

    WIMPs with electroweak scale masses (neutralinos, etc.) remain in kinetic equilibrium with other particle species until temperatures approximately in the range of 10 MeV to 1 GeV, leading to the formation of dark matter substructure with masses as small as 10{sup -4} M{sub {circle_dot}} to 10{sup -12} M{sub {circle_dot}}. However, if dark matter consists of particles with MeV scale masses, as motivated by the observation of 511 keV emission from the Galactic Bulge, such particles are naturally expected to remain in kinetic equilibrium with the cosmic neutrino background until considerably later times. This would lead to a strong suppression of small scale structure with masses below about 10{sup 7}M{sub {circle_dot}} to 10{sup 4} M{sub {circle_dot}}. This cutoff scale has important implications for present and future searches for faint Local Group satellite galaxies and for the missing satellites problem.

  18. Detecting small scale CO2 emission structures using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen

    2016-04-01

    Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology

  19. The Physical Character of Small-Scale Interstellar Structures

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

  20. The Structure and Climate of Size: Small Scale Schooling in an Urban District

    ERIC Educational Resources Information Center

    LeChasseur, Kimberly

    2009-01-01

    This study explores mechanisms involved in small scale schooling and student engagement. Specifically, this study questions the validity of arguments for small scale schooling reforms that confound the promised effects of small scale schooling "structures" (such as smaller enrollments, schools-within-schools, and smaller class sizes) with the…

  1. Visualization of small scale structures on high resolution DEMs

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky

  2. Small Scale Structure and Turbulence in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Spangler, Steven

    Radio scintillation observations show fluctuations in electromagnetic wave properties (intensity, interferometer phase, etc) on spatial scales as small as hundreds of kilometers. These observations indicate that irregularities in the interstellar plasma density also exist on these scales. In this talk I will discuss what observations of these irregularities tell us about the nature of interstellar turbulence. I will be particularly interested in information on suitable mathematical models of such turbulence, as well as the mechanisms responsible for its generation. The small scale irregularities are important because their physics is arguably relatively simple; they probably respond to temporal and spatial variations in the turbulent kinetic and magnetic energy densities. Physical processes such as gravitation, radiative cooling, and ion-neutral collisional effects are important on larger scales and probably complicate the interpretation of observations on such scales. However, they should be unimportant on the scales probed by radio scintillations. The generally-observed Kolmogorov spectrum for these irregularities strongly indicates the existence of an inertial subrange of density and (probably) magnetic field and fluid velocity from scales of order 1015 cm to as small as 10^7 cm. This observation indicates that ion-neutral collisional or ambipolar effects, which would set an inner scale near the upper end of this range, cannot be dominant in the interstellar plasma probed by radio wave scintillations. One can speculate that structures formed by ion-neutral effects might manifest themselves in strong refractive scintillation phenomena, enhanced low frequency variability, and perhaps the "tiny-scale" ISM features (Heiles 1997, ApJ 481, 193). Interstellar scintillation observations also present consistent evidence for anisotropy of scattering, indicating anisotropic, magnetic field-aligned density irregularities. From existent observations, we would conclude that

  3. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  4. Exploring the Small Scale Structure of N103B

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Burrows, D. N.; Nousek, J.; Garmire, G.; Hughes, J. P.; Slane, P.

    2000-12-01

    We present the preliminary results of a 40.8 ks Chandra ACIS observation of the young supernova remnant (SNR) N103B located in the Large Magellanic Cloud. The image reveals structure at the arc-second level, including several bright knots and filamentary structures. The remnant has the characteristic spectrum of a type Ia SNR, containing stron lines of Fe, He- and H-like Si, S, Ar, and Ca. Spectra of several bright knots are presented. Preliminary analysis, including equivalent width images in the brighter lines of Si and S have revealed spatial variations in the emission strength of these elements. These variations are further explored.

  5. Small-Scale High-Temperature Structures in Flare Regions

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Chernov, G. P.; Hanaoka, I.

    2001-04-01

    When analyzing YOHKOH/SXT, HXT (soft and hard X-ray) images of solar flares against the background of plasma with a temperature T ~ 6 MK, we detected localized (with minimum observed sizes of approximately 2000 km) high-temperature structures (HTSs) with T = (20-50) MK with a complex spatial-temporal dynamics. Quasi-stationary, stable HTSs form a chain of hot cores that encircles the flare region and coincides with the magnetic loop. No structures are seen in the emission measure. We reached conclusions about the reduced heat conductivity (a factor of ~10^3 lower than the classical isotropic one) and high thermal insulation of HTSs. The flare plasma becomes collisionless in the hottest HTSs (T > 20 MK). We confirm the previously investigated idea of spatial heat localization in the solar atmosphere in the form of HTSs during flare heating with a volume nonlocalized source. Based on localized soliton solutions of a nonlinear heat conduction equation with a generalized flare-heating source of a potential form including radiative cooling, we discuss the nature of HTSs.

  6. The structure of cosmic string wakes

    SciTech Connect

    Sornborger, A.; Brandenberger, R.; Fryxell, B.; Olson, K.

    1997-06-01

    The clustering of baryons and cold dark matter induced by a single moving string is analyzed numerically, making use of the new three-dimensional Eulerian cosmological hydrocode of Sornborger {ital et al.}, which uses the piecewise parabolic method to track the baryons and the particle-in-cell method to evolve the dark matter particles. A long straight string moving with a speed comparable to c induces a planar overdensity (a {open_quotes}wake{close_quotes}). Since the initial perturbation is a velocity kick toward the plane behind the string and there is no initial Newtonian gravitational line source, the baryons are trapped in the center of the wake, leading to an enhanced baryon to dark matter ratio. The cold coherent flow leads to very low postshock temperatures of the baryonic fluid. In contrast, long strings with small-scale structure (which can be described by adding a Newtonian gravitational line source) move slowly and form filamentary objects. The large central pressure due to the gravitational potential causes the baryons to be expelled from the central regions and leads to a relative deficit in the baryon to dark matter ratio. In this case, the velocity of the baryons is larger, leading to high postshock temperatures. {copyright} {ital 1997} {ital The American Astronomical Society}

  7. Modelling of Dust Extinction through Dark Clouds: Small Scale Structure

    NASA Astrophysics Data System (ADS)

    Clemens, D.; Lada, C.

    1993-12-01

    In order to understand some curious effects discovered in analyzing our deep JHK near-infrared survey of the background stars probing the IC 5146 dark cloud complex (Lada, Lada, Clemens, & Bally 1993), we have constructed a simple model of the dust extinction through a molecular cloud. The effect noticed involved a correlation between the dispersion of the E(H-K) based estimate of A_V, when the stellar estimates of E(H-K) were binned into arcmin sized bins, with the mean A_V computed for those bins. The sense of the correlation is that the dispersion of the extinction rises with the extinction in a nearly linear fashion. Further, the dispersion of the dispersion also rises with extinction. Our model was constructed to try to understand the origin of this unexpected behavior. The model consists of a Poisson generator to populate a bin with stars and various extinction generating functions to add extinction to each star. Additionally, measurement noise and varying amounts of foreground star contamination are added to simulate the actual observations. Remarkably, this simple model is able to rule out several cloud structure models, including uniform extinction across an arcmin sized bin and the case of dense clumplets (rocks) embedded in a low extinction medium. We show that a power law parameterization of the extinction variation with position across a bin is able to fully reproduce the observations for a fairly robust set of power law indices. We also show that foreground star contamination plus any simple extinction model cannot reproduce the observations, while foreground star contamination does not appreciably affect the power law extinction model for foreground stellar fractions less than 30 - 50% of the total stellar content.

  8. Fabrication of small-scale structures with non-planar features

    SciTech Connect

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  9. Low-force magneto-rheological damper design for small-scale structural control experimentation

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin D.; Velazquez, Antonio; Swartz, R. Andrew

    2015-03-01

    Experimental validation of novel structural control algorithms is a vital step in both developing and building acceptance for this technology. Small-scale experimental test-beds fulfill an important role in the validation of multiple-degree-offreedom (MDOF) and distributed semi-active control systems, allowing researchers to test the control algorithms, communication topologies, and timing-critical aspects of structural control systems that do not require full-scale specimens. In addition, small-scale building specimens can be useful in combined structural health monitoring (SHM) and LQG control studies, diminishing safety concerns during experiments by using benchtop-scale rather than largescale specimens. Development of such small-scale test-beds is hampered by difficulties in actuator construction. In order to be a useful analog to full-scale structures, actuators for small-scale test-beds should exhibit similar features and limitations as their full-scale counterparts. In particular, semi-active devices, such as magneto-rheological (MR) fluid dampers, with limited authority (versus active mass dampers) and nonlinear behavior are difficult to mimic over small force scales due to issues related to fluid containment and friction. In this study, a novel extraction-type small-force (0- 10 N) MR-fluid damper which exhibits nonlinear hysteresis similar to a full-scale, MR-device is proposed. This actuator is a key development to enable the function of a small-scale structural control test-bed intended for wireless control validation studies. Experimental validation of this prototype is conducted using a 3-story scale structure subjected to simulated single-axis seismic excitation. The actuator affects the structural response commanded by a control computer that executes an LQG state feedback control law and a modified Bouc-Wen lookup table that was previously developed for full-scale MR-applications. In addition, damper dynamic limitations are characterized and

  10. Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Meneguzzi, Maurice; Pouquet, Annick; Sulem, Pierre-Louis

    Small-scale structures in turbulent flows appear as a subtle mixture of order and chaos that could play an important role in the energetics. The aim here is a better understanding of the similarities and differences between vortex and current dynamics, and of the influence of these structures on the statistical and transport properties of hydrodynamic and magnetohydrodynamic turbulence, with special concern for fusion plasmas, and solar or magnetospheric environments. Special emphasis is given to the intermittency at inertial scales and to the coherent structures at small scales. Magnetic reconnection and the dynamo effect are also discussed, together with the effect of stratification and inhomogeneity. The impact of hydrodynamic concepts on astro and geophysical observations are reviewed.

  11. Small-Scale Heterogeneity in Deep-Sea Nematode Communities around Biogenic Structures

    PubMed Central

    Hasemann, Christiane; Soltwedel, Thomas

    2011-01-01

    The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments. PMID:22216193

  12. Small-scale heterogeneity in deep-sea nematode communities around biogenic structures.

    PubMed

    Hasemann, Christiane; Soltwedel, Thomas

    2011-01-01

    The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure "sponge" on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments. PMID:22216193

  13. A mathematical model of the structure and evolution of small-scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, Charles E.

    1990-01-01

    A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.

  14. THE OPACITY OF THE INTERGALACTIC MEDIUM DURING REIONIZATION: RESOLVING SMALL-SCALE STRUCTURE

    SciTech Connect

    Emberson, J. D.; Thomas, Rajat M.; Alvarez, Marcelo A.

    2013-02-15

    Early in the reionization process, the intergalactic medium (IGM) would have been quite inhomogeneous on small scales, due to the low Jeans mass in the neutral IGM and the hierarchical growth of structure in a cold dark matter universe. This small-scale structure acted as an important sink during the epoch of reionization, impeding the progress of the ionization fronts that swept out from the first sources of ionizing radiation. Here we present results of high-resolution cosmological hydrodynamics simulations that resolve the cosmological Jeans mass of the neutral IGM in representative volumes several Mpc across. The adiabatic hydrodynamics we follow are appropriate in an unheated IGM, before the gas has had a chance to respond to the photoionization heating. Our focus is determination of the resolution required in cosmological simulations in order to sufficiently sample and resolve small-scale structure regulating the opacity of an unheated IGM. We find that a dark matter particle mass of m {sub dm} {approx}< 50 M {sub Sun} and box size of L {approx}> 1 Mpc are required. With our converged results we show how the mean free path of ionizing radiation and clumping factor of ionized hydrogen depend on the ultraviolet background flux and redshift. We find, for example at z = 10, clumping factors typically of 10-20 for an ionization rate of {Gamma} {approx} (0.3-3) Multiplication-Sign 10{sup -12} s{sup -1}, with corresponding mean free paths of {approx}3-15 Mpc, extending previous work on the evolving mean free path to considerably smaller scales and earlier times.

  15. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  16. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  17. A Statistical Test of the Relationship between Galactic HI Structure and Small-scale Structure in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2014-06-01

    The archive of IRIS, PLANCK and WMAP data available at the IRSA website of IPAC allows the apparent associations between galactic neutral hydrogen (HI) features and small-scale structure in WMAP and PLANCK data to be closely examined. In addition, HI new observations made with the Green Bank Telescope are used to perform a statistical test of putative associations. It is concluded that attention should be paid to the possibility that some of the small-scale structure found in WMAP and PLANCK data harbors the signature of a previously unrecognized source of high-frequency continuum emission in the Galaxy.

  18. Backscattering from small-scale breaking wave turbulence structure generated by FLUENT

    NASA Astrophysics Data System (ADS)

    Luo, Gen; Zhang, Min

    2014-12-01

    A breaking wave can exert a great influence on the electromagnetic (EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics (CFD) software FLUENT, and the backscattering radar cross section (RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either. In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.

  19. Transverse structure of the QCD string

    SciTech Connect

    Meyer, Harvey B.

    2010-11-15

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.

  20. Radio Brightness Temperatures and Angular Dimensions of Recently Predicted Vl-Bi Small-Scale Structures

    NASA Astrophysics Data System (ADS)

    Opher, R.

    1990-11-01

    RESUMEN. Muestro que analisis recientes publicados de fuentes de radio galacticas y extragalacticas predicen estructuras en pequera escala en fuentes de radio extendidas, remanentes de supernova, vientos protoestelares, nubes moleculares, distorsiones del fondo de 3 K, enanas blancas magnetizadas, estrellas de tipo tardio y el Sol. Discuto las temperatu- ras de brillo de radio de estas estructuras y sus ditnensiones. Muestro que estas estructuras son detectables con las sensibilidades actuales de VLBI (o en el futuro cercano). ABSTRACT. I show that recently published analysis of galactic and extragalactic radio sources make predictions of small-scale structures in extended radio sources, supernovae remnants, protostellar winds, molecu- lar clouds, distortions of the 3 K background, magnetized white dwarf binaries, late-type stars and the sun. I discuss the radio brightness temperatures of these structures and their dimensions. I show that these structures are detectable with present (or near future) VLBI sensitivities. : RADIO SOURCES-EXTENDED

  1. Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Wagner, M. F.-X.

    2016-06-01

    Most investigations on NiTi-based shape memory alloys involve large-scale bulk material; knowledge about the martensitic transformation in small-scale NiTi structures is still limited. In this paper, we study the microstructures of thin NiTi layers and their mechanical properties, and we discuss typical challenges that arise when experiments are performed on small samples. A physical vapor deposition (PVD) process was used to deposit thin NiTi wires with a cross section of 15 × 15 μm2 and dogbone-shaped samples 5 × 500 μm2. Microstructural properties were characterized by X-ray diffraction, electron backscatter diffraction, and scanning electron microscopy. Moreover, tensile tests were performed using optical strain measurements in order to observe martensite band formation during cyclic loading. The surfaces of the crystalline wires reflect the columnar growth of NiTi during deposition. The wires exhibit pseudoelastic material behavior during tensile testing. Fracture typically occurs along the columns because the column growth direction is perpendicular to the straining direction. Electropolishing removes these local stress raisers and hence increases fracture strains. Our results demonstrate that the pseudoelastic properties of the PVD-processed materials agree well with those of conventional NiTi, and that they provide new opportunities to study the fundamentals of martensitic transformation in small-scale model systems.

  2. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  3. SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD {rho} Oph STARS: DIFFUSE BAND OBSERVATIONS

    SciTech Connect

    Cordiner, M. A.; Smith, A. M.; Sarre, P. J.; Fossey, S. J.

    2013-02-10

    We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars {rho} Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars {rho} Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward {rho} Oph C contains relatively dense, molecule-rich material and has the strongest {lambda}{lambda}5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak ''C{sub 2}'' (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions.

  4. Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Wagner, M. F.-X.

    2016-03-01

    Most investigations on NiTi-based shape memory alloys involve large-scale bulk material; knowledge about the martensitic transformation in small-scale NiTi structures is still limited. In this paper, we study the microstructures of thin NiTi layers and their mechanical properties, and we discuss typical challenges that arise when experiments are performed on small samples. A physical vapor deposition (PVD) process was used to deposit thin NiTi wires with a cross section of 15 × 15 μm2 and dogbone-shaped samples 5 × 500 μm2. Microstructural properties were characterized by X-ray diffraction, electron backscatter diffraction, and scanning electron microscopy. Moreover, tensile tests were performed using optical strain measurements in order to observe martensite band formation during cyclic loading. The surfaces of the crystalline wires reflect the columnar growth of NiTi during deposition. The wires exhibit pseudoelastic material behavior during tensile testing. Fracture typically occurs along the columns because the column growth direction is perpendicular to the straining direction. Electropolishing removes these local stress raisers and hence increases fracture strains. Our results demonstrate that the pseudoelastic properties of the PVD-processed materials agree well with those of conventional NiTi, and that they provide new opportunities to study the fundamentals of martensitic transformation in small-scale model systems.

  5. Small-scale structure and turbulence observed in MAP/WINE)

    NASA Technical Reports Server (NTRS)

    Blix, T. A.

    1989-01-01

    During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.

  6. Small-scale polymer structures enabled by thiol-ene copolymer systems

    NASA Astrophysics Data System (ADS)

    Kasprzak, Scott Edward

    2009-12-01

    The research described herein is aimed at exploring the thermomechanical properties of thiol-ene polymers in bulk form, investigating the ability of thiol-ene polymers to behave desirably as photolithographic media, and providing the first characterization of the mechanical properties of two-photon stereolithography-produced polymer structures. The thiol-ene polymerization reaction itself is well-characterized and described in the literature, but the thermomechanical properties of thiol-ene and thiol-ene/acrylate polymers still require more rigorous study. Understanding the behavior of thiol-ene networks is a crucial step towards their expanded use in bulk form, and particularly in specialized applications such as shape memory devices. Additionally, the thiol-ene polymerization reaction mechanism exhibits unique properties which make these polymers well suited to photolithography, overcoming the typical dichotomy of current materials which either exhibit excellent photolithographic behavior or have controllable properties. Finally, before two-photon stereolithography can create mechanisms and devices which can serve any mechanically functional role, the mechanical properties of the polymers they produce must be quantitatively characterized, which is complicated by the extremely small scale at which these structures are produced. As such, mechanical characterization to date has been strictly qualitative. Fourier transfer infrared spectroscopy revealed functional group conversion information and sol-fraction testing revealed the presence of unconverted monomer and impurities, while dynamic mechanical analysis (DMA) and tensile testing revealed the thermomechanical responses of the systems. Nanoindentation was employed to characterize the mechanical properties of micrometer-scale polymer structures produced by two-photon stereolithography. Optical and electron microscopy were exploited to provide both quantitative and qualitative evaluations of thiol-ene/acrylate and

  7. Detection of small-scale structures in the dissipation regime of solar-wind turbulence.

    PubMed

    Perri, S; Goldstein, M L; Dorelli, J C; Sahraoui, F

    2012-11-01

    Recent observations of the solar wind have pointed out the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ(p) down to the electron Larmor radius ρ(e) scale. In this Letter we study the spatial properties of magnetic field fluctuations in the solar wind and find that at small scales the magnetic field does not resemble a sea of homogeneous fluctuations, but rather a two-dimensional plane containing thin current sheets and discontinuities with spatial sizes ranging from l >/~ ρ(p) down to ρ(e) and below. These isolated structures may be manifestations of intermittency that localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection, and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas. PMID:23215371

  8. Solving the small-scale structure puzzles with dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Foot, Robert; Vagnozzi, Sunny

    2016-07-01

    Small-scale structure is studied in the context of dissipative dark matter, arising for instance in models with a hidden unbroken Abelian sector, so that dark matter couples to a massless dark photon. The dark sector interacts with ordinary matter via gravity and photon-dark photon kinetic mixing. Mirror dark matter is a theoretically constrained special case where all parameters are fixed except for the kinetic mixing strength, epsilon. In these models, the dark matter halo around spiral and irregular galaxies takes the form of a dissipative plasma which evolves in response to various heating and cooling processes. It has been argued previously that such dynamics can account for the inferred cored density profiles of galaxies and other related structural features. Here we focus on the apparent deficit of nearby small galaxies (``missing satellite problem"), which these dissipative models have the potential to address through small-scale power suppression by acoustic and diffusion damping. Using a variant of the extended Press-Schechter formalism, we evaluate the halo mass function for the special case of mirror dark matter. Considering a simplified model where Mbaryons propto Mhalo, we relate the halo mass function to more directly observable quantities, and find that for epsilon ≈ 2 × 10‑10 such a simplified description is compatible with the measured galaxy luminosity and velocity functions. On scales Mhalo lesssim 108 Msolar, diffusion damping exponentially suppresses the halo mass function, suggesting a nonprimordial origin for dwarf spheroidal satellite galaxies, which we speculate were formed via a top-down fragmentation process as the result of nonlinear dissipative collapse of larger density perturbations. This could explain the planar orientation of satellite galaxies around Andromeda and the Milky Way.

  9. Small-scale spatial structuring of interstitial invertebrates on three embayed beaches, Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Cooke, Belinda C.; Goodwin, Ian D.; Bishop, Melanie J.

    2014-10-01

    An understanding of ecological processes hinges upon an understanding of the spatial structuring of their key biotic components. Interstitial invertebrates are a ubiquitous and ecologically important component of sandy beach ecosystems. As many sandy beach taxa have limited dispersal, it may be expected that their populations exhibit a high degree of spatial structuring, yet the spatial scales across which they display baseline variability remain largely unknown. To assess (1) whether interstitial invertebrates display patchiness on embayed sandy beaches, (2) whether the size of patches they form is consistent across three geographically proximal beaches, (3) the key environmental correlates of this variation and (4) its taxonomic dependence, samples were collected at regular (0.5 m) intervals along 15 m long geomorphically similar stretches of three proximal intermediate beaches and analyses of spatial autocorrelation were conducted. On each of the three beaches, interstitial invertebrate communities formed patches of 2-4.5 m in diameter. Spatial structuring of invertebrate communities was driven by harpacticoid copepods and gastrotrichs, and corresponded to spatial structuring of sediments. Sediments, however, explained only 33% of spatial variation in faunal communities, indicating the importance of other abiotic and/or biotic factors. Our study highlights that even on seemingly homogeneous sandy beaches, faunal communities may display considerable small-scale spatial structuring. Examination of spatial structure may lead to a greater understanding of the ecological processes in this system.

  10. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    PubMed

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase. PMID:25524322

  11. A study of large, medium and small scale structures in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Gross, Stanley H.; Kuo, Spencer P.; Shmoys, Jerry

    1986-01-01

    Alouette and ISIS data were studied for large, medium, and small scale structures in the ionosphere. Correlation was also sought with measurements by other satellites, such as the Atmosphere Explorer C and E and the Dynamic Explorer 2 satellites, of both neutrals and ionization, and with measurements by ground facilities, such as the incoherent scatter radars. Large scale coherent wavelike structures were found from ISIS 2 electron density contours from above the F peak to nearly the satellite altitude. Such structures were also found to correlate with the observation by AE-C below the F peak during a conjunction of the two satellites. Vertical wavefronts found in the upper F region suggest the dominance of diffusion along field lines as well. Also discovered were multiple, evenly spaced field-aligned ducts in the F region that, at low latitudes, extended to the other hemisphere and were in the form of field-aligned sheets in the east-west direction. Low latitude heating events were discovered that could serve as sources for waves in the ionosphere.

  12. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  13. Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2016-01-01

    Several recent studies discuss of role of skewness of the turbulent velocity fluctuations in near-wall shear layers, in the context of quantifying the correlation between large-scale motions and amplitude variations of small-scale fluctuations—referred to as "modulation." The present study is based on the premise that the skewness of the small-scale fluctuations should be accounted for explicitly in the process of defining their envelope, which characterizes their amplitude variations. This leads to the notion of two envelopes, one for positive and the other for negative small-scale fluctuations, and hence also to two corresponding correlation coefficients. Justification for this concept is provided first by an examination of a high-frequency synthetic signal subjected to realistic skewness-inducing modulation. A new formalism is provided for deriving the two envelopes, and its fidelity is demonstrated for the synthetic test case. The method is then applied to a channel flow at a friction Reynolds number of 4200, for which direct numerical simulation (DNS) data are available. The large-scale and small-scale fields are separated by the empirical mode decomposition method, and the modulation of the small-scale fluctuations by the large scales is examined. Separate maps of the correlation coefficient and of two-point correlations, the latter linking the large-scale motions and the envelopes of the small-scale motions, are derived for the two envelopes pertaining to positive and negative small-scale fluctuations, and these demonstrate a significant sensitivity to the envelope-definition process, especially close to the wall where the skewness of the small-scale fluctuations is the dominant contributor to the total value.

  14. Small scale structure of spacetime: The van Vleck determinant and equigeodesic surfaces

    NASA Astrophysics Data System (ADS)

    Stargen, D. Jaffino; Kothawala, Dawood

    2015-07-01

    It has recently been argued that if spacetime M possesses nontrivial structure at small scales, an appropriate semiclassical description of it should be based on nonlocal bitensors instead of local tensors such as the metric ga b(p ). Two most relevant bitensors in this context are Synge's world function Ω (p ,p0) and the van Vleck determinant (VVD) Δ (p ,p0), as they encode the metric properties of spacetime and (de)focusing behavior of geodesics. They also characterize the leading short distance behavior of two point functions of the d'Alembartian □p0p . We begin by discussing the intrinsic and extrinsic geometry of equigeodesic surfaces ΣG ,p0≡{p ∈M |Ω (p ,p0)=constant} in a geodesically convex neighborhood of an event p0 and highlight some elementary identities relating the VVD with geometry of ΣG ,p0. As an aside, we also comment on the contribution of ΣG ,p0 to the surface term in the Einstein-Hilbert (EH) action and show that it can be written as a volume integral of □ln Δ . We then proceed to study the small scale structure of spacetime in presence of a Lorentz invariant short distance cutoff ℓ0 using Ω (p ,p0) and Δ (p ,p0), based on some recently developed ideas. We derive a second rank bitensor qa b(p ,p0;ℓ0)=qa b[ga b,Ω ,Δ ] which naturally yields geodesic intervals bounded from below and reduces to ga b for Ω ≫ℓ02/2 . We present a general and mathematically rigorous analysis of short distance structure of spacetime based on (a) geometry of equigeodesic surfaces ΣG ,p0 of ga b, (b) structure of the nonlocal d'Alembartian □p0 p ˜ associated with qa b, and (c) properties of VVD. In particular, we prove the following: (i) The Ricci biscalar Ric ˜ (p ,p0) of qa b is completely determined by ΣG ,p0, the tidal tensor and first two derivatives of Δ (p ,p0), and has a nontrivial classical limit (see text for details): lim ℓ0→0 lim Ω →0± Ric ˜ (p ,p0)=±D Ra bqaqb (ii) The GHY term in EH action evaluated on

  15. Study of Structure and Small-Scale Fragmentation in TMC-1

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Kuiper, T. B.; Levin, S.; Olsen, E.; Migenes, V.

    1995-01-01

    Large-scale C(sup 18)O maps show that the Taurus molecular cloud 1 (TMC-1) has numerous cores located along a ridge which extends about 12 minutes by at least 35 minutes. The cores traced by C(sup 18)O are about a few arcminutes (0.1-0.2 pc) in extent, typically contain about 0.5-3 solar mass, and are probably gravitationally bound. We present a detailed study of the small-scale fragmentary structure of one of these cores, called core D, within TMC-1 using very high spectral and spatial resolution maps of CCS and CS. The CCS lines are excellent tracers for investigating the density, temperature, and velocity structure in dense cores. The high spectral resolution, 0.008 km /s, data consist mainly of single-dish, Nyquist-sampled maps of CCS at 22 GHz with 45 sec spatial resolution taken with NASA's 70 m DSN antenna at Goldstone. The high spatial resolution spectral line maps were made with the Very Large Array (9 sec resolution) at 22 GHz and with the OVRO millimeter array in CCS and CS at 93 GHz and 98 GHz, respectively, with 6 sec resolution. These maps are supplemented with single-dish observations of CCS and CC(sup 34)S spectra at 33 GHz using a NASA 34 m DSN antenna, CCS 93 GHz, C(sup 34)S (2-1), and C(sup 18)O (1-0) single-dish observations made with the AT&T Bell Laboratories 7 m antenna. Our high spectral and spatial CCS and CS maps show that core D is highly fragmented. The single-dish CCS observations map out several clumps which range in size from approx. 45 sec to 90 sec (0.03-0.06 pc). These clumps have very narrow intrinsic line widths, 0.11-0.25 km/s, slightly larger than the thermal line width for CCS at 10 K, and masses about 0.03-0.2 solar mass. Interferometer observations of some of these clumps show that they have considerable additional internal structure, consisting of several condensations ranging in size from approx. 10 sec- 30 sec (0.007-0.021 pc), also with narrow line widths. The mass of these smallest fragments is of order 0.01 solar mass

  16. Space-borne detection of small scale CO2 emission structures with OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Eldering, A.; Verhulst, K. R.; Miller, C. E.; Nguyen, H.; Oda, T.; O'Dell, C.; Rao, P.; Kahn, B. H.; Crisp, D.; Gunson, M. R.; Sanchez, R. M.; Ashok, M.; Birman, L.; Pieri, D. C.; Linick, J. P.; Xing, Z.; Yuen, K.

    2015-12-01

    Localized carbon dioxide (CO2) emission structures covering spatial domains of less than 50km diameter include cities, transportation infrastructure, fossil fuel production, upgrading and consumption sites. Anthropogenic sources upset the natural balance between carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from sparse point-wise measurements from the Japanese Greenhouse gas Observation SATellite (GOSAT) instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath of 2 to 10 km in width can slice through emission plumes and possibly provide momentary cross sections. While GOSAT measured approximately circular ~10.5 km diameter single-shot footprints, OCO-2 can provide hundreds more soundings per area at single kilometer scale footprint resolution. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban XCO2 enhancements of ~2 ppmv against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban emission spatial structures previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban greenhouse gas tomography. © California Institute of Technology

  17. Small-Scale Interstellar Structure Toward the Open Cluster CHI Persei-Fuse II

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Friedman, Scott

    2003-01-01

    The purpose of this study was to measure the physical conditions of gas along sight lines toward 6 stars in the core Chi Persei open cluster. These sight lines traverse gas in both the Orion and Perseus spiral arms of the Galaxy, at distances of 500 and 2000 pc, respectively. The stars have angular separations ranging from 45 to 280 arcsec; 60 arcsec corresponds to linear distances of 0.15 and 0.6 pc in the two arms. Thus, abundance variations in these observations would constitute evidence for small-scale variations in the properties of the interstellar medium. Ground-based Na I observations at high resolution (approx. 15 km/sec) toward 172 stars (including the 6 in this study) in the double open cluster h and Chi Persei have revealed complex spatial variation. These variations are especially evident in the gas at velocities of -40 and -55 km/sec, corresponding to the Perseus spiral arm. 21 cm observations of HI emission using the Low Resolution DRAO Survey, with a 12-arcmin beam, also show variations. Averaging the Na I apparent optical depth profiles of neighboring sight lines in order to mimic such a beam size reduces the variation, as compared to the individual Na I measurements, but still show variations larger than seen in the 21 cm profiles. Na I is not the dominant ionization state of Na in the interstellar medium. Thus, it is possible that the variations seen really trace physical structures in the interstellar medium, or they may simply result from variations in the radiation field seen by the gas, or be due to some other environmental circumstance. To distinguish among these possibilities in the present study we obtained FUSE spectra toward the 6 targets in order to measure the molecular hydrogen absorption profiles along these sight lines. The higher J states of H2 are populated by the ambient W radiation field, and thus can provide insight into the environment affecting the gas. If both the high and low J states reveal absorption line profiles with

  18. Quiet Sun coronal heating: Analyzing large scale magnetic structures driven by different small-scale uniform sources

    NASA Astrophysics Data System (ADS)

    Podladchikova, O.; Dudok de Wit, T.; Krasnoselskikh, V.; Lefebvre, B.

    2002-02-01

    Recent measurements of quiet Sun heating events by Krucker & Benz (\\cite{Krucker98}) give strong support to Parker's (\\cite∥) hypothesis that small-scale dissipative events make the main contribution to quiet heating. Moreover, combining their observations with the analysis by Priest et al. (\\cite{pr1}), it can be concluded that the sources driving these dissipative events are also small-scale sources, typically of the order of (or smaller than) 2000 km and below the resolution of modern instruments. Thus the question arises of how these small scale events participate in the larger-scale observable phenomena, and how the information about small scales can be extracted from observations. This problem is treated in the framework of a simple phenomenological model introduced in Krasnoselskikh et al. (\\cite{KPL}), which allows one to switch between various small-scale sources and dissipative processes. The large-scale structure of the magnetic field is studied by means of Singular Value Decomposition (SVD) and a derived entropy, techniques which are readily applicable to experimental data.

  19. Small-Scale Dust Structures in Halley's Coma: Evidence from the Vega-2 Electric Field Records

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    1999-07-01

    Owing to simultaneous dust and plasma wave observations onboard the Vega mission to Comet Halley, previous studies have found that the two double probe antennas, short (of APV-N experiment) and long (APV-V), (i) responded to plasma clouds induced by impacts of relatively large particles, (ii) the target area was comparable to the whole spacecraft projection, and (iii) the mass thresholds depended on the ambient plasma conditions. Subsequently, the response mechanisms have been identified, and it was shown that if impacts became continuous, the sensitivity of the antennas to individual plasma clouds was reduced or even cancelled. In the present paper, about 30 short-time events of continuous impact (CIEs), recognized in the Vega-2 records from the two experiments mostly near the closest approach to (at ∼104 km from) the nucleus, are investigated. The high-resolution APV-N waveforms reveal that the respective dust formations were structured. A few types of structure, all belonging to one family, have been distinguished. The basic structure, as seen along the Vega-2 pass, is a sequence of particle clouds. CIEs have time scales shorter than or comparable to the time resolution of the dust experiments (spatial scale less than 200 km) and do not correlate with the SP-1 observations (m≤10-10 g) nor with the published SP-2 fluxes (m≤5.8×10-8 g). But, these dust data, combined with an integral criterion for continuous impact, provide a constraint which implies that the particles responsible were bigger than 10-9-10-8 g. The data from the DUCMA V-detector confirm positively this inference for about 1/3 (∼10) of CIEs and indicate that particles (much) bigger than 10-7 g were decisive in generating several other events. Using an argument from the dusty gas dynamics, it is shown that the small-scale dust structures were not jets but have originated from the disintegration of particle aggregates. An estimate of the total mass contained within a dust structure leads to

  20. Early structure formation from cosmic string loops

    SciTech Connect

    Shlaer, Benjamin; Vilenkin, Alexander; Loeb, Abraham E-mail: vilenkin@cosmos.phy.tufts.edu

    2012-05-01

    We examine the effects of cosmic strings on structure formation and on the ionization history of the universe. While Gaussian perturbations from inflation are known to provide the dominant contribution to the large scale structure of the universe, density perturbations due to strings are highly non-Gaussian and can produce nonlinear structures at very early times. This could lead to early star formation and reionization of the universe. We improve on earlier studies of these effects by accounting for high loop velocities and for the filamentary shape of the resulting halos. We find that for string energy scales Gμ∼>10{sup −7}, the effect of strings on the CMB temperature and polarization power spectra can be significant and is likely to be detectable by the Planck satellite. We mention shortcomings of the standard cosmological model of galaxy formation which may be remedied with the addition of cosmic strings, and comment on other possible observational implications of early structure formation by strings.

  1. Dark matter from late decays and the small-scale structure problems

    SciTech Connect

    Borzumati, Francesca; Bringmann, Torsten; Ullio, Piero

    2008-03-15

    The generation of dark matter in late decays of quasistable massive particles has been proposed as a viable framework to address the excess of power found in numerical N-body simulations for cold dark matter cosmologies. We identify a convenient set of variables to illustrate which requirements need to be satisfied in any generic particle-physics model to address the small-scale problems and to fulfill other astrophysical constraints. As a result of this model-independent analysis, we point out that meeting these requirements in a completely natural way is inherently difficult. In particular, we reexamine the role of gravitinos and Kaluza-Klein gravitons in this context and find them disfavored as a solution to the small-scale problems in case they are dark matter candidates generated in the decay of thermally produced weakly interacting massive particles. We propose right-handed sneutrinos and right-handed Kaluza-Klein neutrinos as alternatives. We find that they are viable dark matter candidates, but that they can contribute to a solution of the small-scale problems only in case the associated Dirac neutrino mass term appears as a subdominant contribution in the neutrino mass matrix.

  2. Bursting process of large- and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element

    NASA Astrophysics Data System (ADS)

    Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua

    2016-05-01

    Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.

  3. Off-Shell Structure of the String Sigma Model

    SciTech Connect

    Alan Kostelecky, V.; Perry, Malcolm J.; Potting, Robertus

    2000-05-15

    The off-shell structure of the string sigma model is investigated. In the open bosonic string, nonperturbative effects appear to depend crucially on the regularization scheme. A scheme retaining the notion of string width reproduces the structure of Witten's string field theory. (c) 2000 The American Physical Society.

  4. Small-Scale Screening to Large-Scale Over-Expression of Human Membrane Proteins for Structural Studies.

    PubMed

    Chaudhary, Sarika; Saha, Sukanya; Thamminana, Sobrahani; Stroud, Robert M

    2016-01-01

    Membrane protein structural studies are frequently hampered by poor expression. The low natural abundance of these proteins implies a need for utilizing different heterologous expression systems. E. coli and yeast are commonly used expression systems due to rapid cell growth at high cell density, economical production, and ease of manipulation. Here we report a simplified, systematically developed robust strategy from small-scale screening to large-scale over-expression of human integral membrane proteins in the mammalian expression system for structural studies. This methodology streamlines small-scale screening of several different constructs utilizing fluorescence size-exclusion chromatography (FSEC) towards optimization of buffer, additives, and detergents for achieving stability and homogeneity. This is followed by the generation of stable clonal cell lines expressing desired constructs, and lastly large-scale expression for crystallization. These techniques are designed to rapidly advance the structural studies of eukaryotic integral membrane proteins including that of human membrane proteins. PMID:27485338

  5. Small-scale Structuring of Ellerman Bombs at the Solar Limb

    NASA Astrophysics Data System (ADS)

    Nelson, C. J.; Scullion, E. M.; Doyle, J. G.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s-1, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical "flaring" (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  6. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    SciTech Connect

    Nelson, C. J.; Doyle, J. G.; Scullion, E. M.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  7. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect

    Yao Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  8. Small-scale structures in common-volume meteor wind measurements

    NASA Astrophysics Data System (ADS)

    Fraser, G. J.; Marsh, S. H.; Baggaley, W. J.; Bennett, R. G. T.; Lawrence, B. N.; McDonald, A. J.; Plank, G. E.

    2006-02-01

    Observational differences occur when different techniques are used for measuring mesospheric winds because the different instruments observe different physical quantities to infer the wind velocity, and have differing time and space resolution. The AMOR meteor wind radar near Christchurch, New Zealand [Marsh et al., 2000. Journal of Atmospheric and Solar-Terrestrial Physics 62,1129 1133.] has good resolution in time (˜0.1 s) and height (˜1 km) and a narrow beam centred in the geographic N S meridian. The meteor echoes randomly sample the atmosphere in a region extending over several hundred kilometres to the South of the radar. The volume of data obtained from the one instrument has made it possible to use correlations between measurements made from individual meteor trails to identify the contribution of atmospheric variability to the observational differences. Measurements of the meridional wind component made from May July 1997 inclusive show that a large part (20 30 m/s r.m.s.) of the atmospheric variation is due to inhomogeneities with small scales, of the order of 10 km and 1 h. There is also a component which has a random time phase over the observation interval but a spatial scale which is coherent over several hundred kilometres, consistent with the behaviour of gravity waves.

  9. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  10. Small-Scale Structure of the SN 1006 Shock with Chandra Observations

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Yamazaki, Ryo; Ueno, Masaru; Koyama, Katsuji

    2003-06-01

    The northeast shell of SN 1006 is the most probable acceleration site of high-energy electrons (up to ~100 TeV) with the Fermi acceleration mechanism at the shock front. We resolved nonthermal filaments from thermal emission in the shell with the excellent spatial resolution of Chandra. The thermal component is extended over ~100" (about 1 pc at 1.8 kpc distance) in width, consistent with the shock width derived from the Sedov solution. The spectrum is fitted with a thin thermal plasma of kT=0.24 keV in nonequilibrium ionization, typical for a young supernova remnant. The nonthermal filaments are likely thin sheets with scale widths of ~4" (0.04 pc) and ~20" (0.2 pc) upstream and downstream, respectively. The spectra of the filaments are fitted with a power-law function of index 2.1-2.3, with no significant variation from position to position. In a standard diffusive shock acceleration model, the extremely small scale length in the upstream region requires the magnetic field nearly perpendicular to the shock normal. The injection efficiency (η) from thermal to nonthermal electrons around the shock front is estimated to be ~1×10-3 under the assumption that the magnetic field in the upstream region is 10 μG. In the filaments, the energy densities of the magnetic field and nonthermal electrons are similar to each other, and both are slightly smaller than that of thermal electrons. These results suggest that the acceleration occurs in more compact regions with larger efficiency than suggested by previous studies.

  11. Small-Scale Habitat Structure Modulates the Effects of No-Take Marine Reserves for Coral Reef Macroinvertebrates

    PubMed Central

    Dumas, Pascal; Jimenez, Haizea; Peignon, Christophe; Wantiez, Laurent; Adjeroud, Mehdi

    2013-01-01

    No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species PMID:23554965

  12. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  13. Reconstructing our Interstellar Past: A Look at the Small Scale Structure in the Direction of the Historical Solar Trajectory

    NASA Astrophysics Data System (ADS)

    Redfield, S.; Scalo, J.; Smith, D. S.

    2007-07-01

    The properties of our nearby interstellar medium (NISM) out to ˜500 pc, including density, temperature, and velocity, provide a sample of the range and timing of environments that have been encountered by our solar system. These conditions influence the structure of the heliosphere, which modulates the flux of Galactic cosmic rays and interstellar gas and dust that reach the Earth. There is a long tradition of speculation focused on the effects of the ISM on heliospheric modulation of cosmic rays and interstellar hydrogen on atmospheric chemistry, cloud cover, glaciation episodes, and exogenous mutation, but the intensity and timing of such variations has never been established empirically, even in a statistical sense. The present work is aimed at evaluating the impact of small scale low column density structures in the NISM, using analysis of absorption line features toward early type stars, on the intensity and timing of heliospheric variations, and at placing these structures, invisible by most other techniques of tracing interstellar structure, in the overall dynamics of the interstellar medium. We present high spectral resolution observations of 49 stars within 10 degrees of the direction of the historical solar trajectory. This densely packed collection of sightlines provides an opportunity to (1) study small-scale structure in the shell separating the Local Bubble from the more distant NISM, (2) enable a rough reconstruction of the interstellar density profile, and hence cosmic ray flux history, encountered by the Solar System in the past 40 million years, and (3) clarify the prevalence of small column density fluctuations in the NISM.

  14. Small-scale Interstellar Structure Toward the Open Cluster Chi Persei; Program ID: BO29 (Cycle 2)

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    2004-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar H2 absorption toward six early-type stars in the core of the open star cluster Chi Persei. High resolution optical observations of the interstellar Na I absorption toward these stars and others in the core of Chi Per have revealed a rich variety of small-scale diffuse ISM structure in both the distant Perseus and more local Orion spiral arms. At the 1 arc minute angular scales typically probed by the separations of these stars, this structure corresponds to respective physical length scales of 0.6 and 0.15 pc in the Perseus and Orion arm gas. The principal scientific goal of the FUSE observations was to determine if this small-scale Na I structure toward the core of Chi Per was reflected in the abundance and/or excitation of interstellar H2. In September 2001, we obtained FUSE observations of the Chi Per stars BD +56 563, BD +56 571, BD +56 573, BD +56 574, BD +56 575, and BD +56 578 for this program. The data reveal that the Perseus arm gas exhibits significant small-scale variations in the strength of its molecular hydrogen absorption while the Orion arm H2 absorption is relatively uniform. We presented these results at the January 2003 American Astronomical Society meeting in Seattle, WA (points, Meyer, Lauroesch, Nguyen, and Friedman 2002, Bulletin of the American Astronomical Society, 34,1229). Since Na I is not a dominant ion in H I clouds, the variations detected in the Perseus arm Na I line profiles could be due to spatial differences in either the physical structure or the physical conditions in the gas. Although many of the H2 absorption profiles are too saturated or too weak to be definitive in this regard, it is clear that small-scale variations are present in H2 gas with excitation as high as the J=4 rotational level. In contrast, lower spatial resolution H I 21 cm studies of the Perseus arm gas across the face of the h and Chi Per double cluster have shown

  15. The large- and small-scale structures of 3C 293

    NASA Technical Reports Server (NTRS)

    Bridle, A. H.; Fomalont, E. B.; Cornwell, T. J.

    1981-01-01

    A Very Large Array (VLA) 1.465-GHz map of the radio galaxy 3C 293 shows that the source, which is unusual in that it is dominated by a steep-spectrum extended core, has a two-sided Z-shaped structure whose physical association with the galaxy VV 5-33-12 is now clear. The core is resolved by the Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.666-GHz, and the VLA at 15.035 GHz, into an inner, two-sided structure within 1 kpc of the center of VV 5-33-12, and curved bridges of emission linking this structure to the large-scale emission. The major axis of the core lies 35 deg from the major axes of the emission bridges that make up the bar of the large-scale Z structure, and 60 deg from the minor axis of VV 5-33-12. Precessional and buoyant-refraction models for these misalignments are discussed.

  16. Characteristics of the behavior of the small-scale turbulence structure in the boundary layer

    SciTech Connect

    Dobrocheev, O.V.; Wojciechowski, J.

    1995-12-01

    Results of theoretical and experimental studies of the structure of turbulence in the boundary layer are presented. It is shown that the spectral density of turbulence energy deviates systematically from Kolmogorov-Obukhov`s law and a theoretical explanation of this deviation is given.

  17. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Kitiashvili, I. N.; Kosovichev, A. G.

    2012-09-10

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.

  18. Adjoint-tomography Inversion of the Small-scale Surface Sedimentary Structures: Key Methodological Aspects

    NASA Astrophysics Data System (ADS)

    Kubina, Filip; Moczo, Peter; Kristek, Jozef; Michlik, Filip

    2016-04-01

    Adjoint tomography has proven an irreplaceable useful tool in exploring Earth's structure in the regional and global scales. It has not been widely applied for improving models of local surface sedimentary structures (LSSS) in numerical predictions of earthquake ground motion (EGM). Anomalous earthquake motions and corresponding damage in earthquakes are often due to site effects in local surface sedimentary basins. Because majority of world population is located atop surface sedimentary basins, it is important to predict EGM at these sites during future earthquakes. A major lesson learned from dedicated international tests focused on numerical prediction of EGM in LSSS is that it is hard to reach better agreement between data and synthetics without an improved structural model. If earthquake records are available for sites atop a LSSS it is natural to consider them for improving the structural model. Computationally efficient adjoint tomography might be a proper tool. A seismic wavefield in LSSS is relatively very complex due to diffractions, conversions, interference and often also resonant phenomena. In shallow basins, the first arrivals are not suitable for inversion due to almost vertical incidence and thus insufficient vertical resolution. Later wavefield consists mostly of local surface waves often without separated wave groups. Consequently, computed kernels are complicated and not suitable for inversion without pre-processing. The spatial complexity of a kernel can be dramatic in a typical situation with relatively low number of sources (local earthquakes) and surface receivers. This complexity can be simplified by directionally-dependent smoothing and spatially-dependent normalization that condition reasonable convergence. A multiscale approach seems necessary given the usual difference between the available and true models. Interestingly, only a successive inversion of μ and λ elastic moduli, and different scale sequences lead to good results.

  19. On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.

    2016-01-01

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  20. Mariner 9 photographs of small-scale volcanic structures on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  1. Describing small-scale structure in random media using pulse-echo ultrasound

    PubMed Central

    Insana, Michael F.; Wagner, Robert F.; Brown, David G.; Hall, Timothy J.

    2009-01-01

    A method for estimating structural properties of random media is described. The size, number density, and scattering strength of particles are estimated from an analysis of the radio frequency (rf) echo signal power spectrum. Simple correlation functions and the accurate scattering theory of Faran [J. J. Faran, J. Acoust. Soc. Am. 23, 405–418 (1951)], which includes the effects of shear waves, were used separately to model backscatter from spherical particles and thereby describe the structures of the medium. These methods were tested using both glass sphere-in-agar and polystyrene sphere-in-agar scattering media. With the appropriate correlation function, it was possible to measure glass sphere diameters with an accuracy of 20%. It was not possible to accurately estimate the size of polystyrene spheres with the simple spherical and Gaussian correlation models examined because of a significant shear wave contribution. Using the Faran scattering theory for spheres, however, the accuracy for estimating diameters was improved to 10% for both glass and polystyrene scattering media. It was possible to estimate the product of the average scattering particle number density and the average scattering strength per particle, but with lower accuracy than the size estimates. The dependence of the measurement accuracy on the inclusion of shear waves, the wavelength of sound, and medium attenuation are considered, and the implications for describing the structure of biological soft tissues are discussed. PMID:2299033

  2. Characterizing the small scale structures in the earliest stages of low-mass star formation

    NASA Astrophysics Data System (ADS)

    Vilhelm Persson, Magnus; van Dishoeck, Ewine; Tobin, John; Harsono, Daniel; Jørgensen, Jes K.

    2015-08-01

    In deeply-embedded low-mass protostars, the density and temperature distribution in the inner few hundred AU’s are poorly constrained. In sources where the envelope is less massive, i.e. the Class I stage, disks with Keplerian rotation have been inferred using C18O lines. However, constraining the various disk characteristics turns out to be difficult even in this case. Continuum and molecular line observations of optically thin tracers at very high sensitivity and resolution are needed to constrain the density, temperature and kinematics. Ultimately the assumed structure affects the determination of molecular abundances.We are attempting to model high-resolution dust continuum radio-interferometric observations of a few deeply-embedded low-mass protostars with a power-law disk model embedded in a spherical envelope.We model the interferometric visibilities taken with either the Plateau de Bure Interferometer or the ALMA telescope, probing scales down to a few tens of AU in some cases. Given the assumptions, the study shows disk sizes in the deeply-embedded phase that could be slightly larger than typical found in the more evolved Class I sources. The fitting also highlights that models for the physical structure of the inner envelope, on 500-2000 AU scales, needs to be improved. With future high sensitivity observations, we could potentially also be able to constrain any vertical density and temperature structure. In this poster I will present the

  3. Single Cell Spectroscopy: Noninvasive Measures of Small-Scale Structure and Function

    PubMed Central

    Mousoulis, Charilaos; Xu, Xin; Reiter, David A.; Neu, Corey P.

    2013-01-01

    The advancement of spectroscopy methods attained through increases in sensitivity, and often with the coupling of complementary techniques, has enabled real-time structure and function measurements of single cells. The purpose of this review is to illustrate, in light of advances, the strengths and the weaknesses of these methods. Included also is an assessment of the impact of the experimental setup and conditions of each method on cellular function and integrity. A particular emphasis is placed on noninvasive and nondestructive techniques for achieving single cell detection, including nuclear magnetic resonance, in addition to physical, optical, and vibrational methods. PMID:23886910

  4. Observations of small-scale latitudinal structure in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; O'Brien, T. P.

    2016-04-01

    We describe first-light observations from the AC6 mission, a pair of CubeSats that are in polar orbit and whose in-track separations range up to several hundred kilometers and whose separations are controlled by differential drag. We present temporal dose rate profiles from electrons greater than 35 keV that are very similar at the two vehicles, but offset in time by the GPS-derived in-track separation. We interpret these structures as spatial and propose that they are the result of multiple microbursts that have experienced bounce phase mixing and differential drift over a small fraction of a drift orbit before reaching the spacecraft.

  5. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel

    2014-11-01

    We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.

  6. A COMPACT HIGH VELOCITY CLOUD NEAR THE MAGELLANIC STREAM: METALLICITY AND SMALL-SCALE STRUCTURE

    SciTech Connect

    Kumari, Nimisha; Fox, Andrew J.; Tumlinson, Jason; Thom, Christopher; Ely, Justin; Westmeier, Tobias

    2015-02-10

    The Magellanic Stream (MS) is a well-resolved gaseous tail originating from the Magellanic Clouds. Studies of its physical properties and chemical composition are needed to understand its role in Galactic evolution. We investigate the properties of a compact HVC (CHVC 224.0-83.4-197) lying close on the sky to the MS to determine whether it is physically connected to the Stream and to examine its internal structure. Our study is based on analysis of HST/COS spectra of three QSOs (Ton S210, B0120-28, and B0117-2837) all of which pass through this single cloud at small angular separation (≲0.°72), allowing us to compare physical conditions on small spatial scales. No significant variation is detected in the ionization structure from one part of the cloud to the other. Using Cloudy photoionization models, toward Ton S210 we derive elemental abundances of [C/H] = –1.21 ± 0.11, [Si/H] = –1.16 ± 0.11, [Al/H] = –1.19 ± 0.17, and [O/H] = –1.12 ± 0.22, which agree within 0.09 dex. The CHVC abundances match the 0.1 solar abundances measured along the main body of the Stream. This suggests that the CHVC (and by extension the extended network of filaments to which it belongs) has an origin in the MS. It may represent a fragment that has been removed from the Stream as it interacts with the gaseous Galactic halo.

  7. The Effects of Repeated Fires on Vegetation Communities Structure: Implications for Small Scale Soil Erosion

    NASA Astrophysics Data System (ADS)

    Wittenberg, L.; Malkinson, D.; Beeri, O.; Barzilai, R.

    2009-04-01

    Wildfires, which have been recognized to be an inherent process in Mediterranean ecosystems, rapidly change land cover, and consequently eco-geomorphic process rates. The Carmel Mountain ridge has undergone rapid afforestation and natural re-vegetation during the past century. Similarly to other Mediterranean ecosystems, wildfire frequency has increased in the region during the last several decades. In this study we took a multi-scale approach to analyze changes in vegetation community structure following repeated fires in a single site. We link those changes to observed erosion rates which were recorded following a recent fire, which occurred during April 2005. We use satellite image analysis to monitor vegetation changes in areas repeatedly burned during the last 22 years. An extended vegetation survey of the region was conducted during 1985, and serves as a baseline for the state of the vegetation. Satellite images from 1990 (following a 1989 fire), 1995, 2000 (following 1998, 1999 fires) and 2005 were used to classify the different vegetation types present each year, based on spectral and derived vegetation indices. In addition, we monitored vegetation structure and cover at high resolutions, following a 2005 fire, in 10.5 m2 monitoring plots. Vegetation cover was estimated from plot photographs taken from a pole mounted camera. Likewise, the plots were constructed in areas burned once or twice during the last two decades. Runoff and sediment have been collected after precipitation events, during three years, following the 2005 fire. The resulted satellite image classifications revealed changes in the spatial distribution of tree, shrub and herbaceous vegetation cover following wildfire events. Specific transition probabilities among the vegetation types, as a function of the number of times each site was burned, were being used to construct Markov based transition matrices. In addition, we also considered the interaction between slope aspect and fire

  8. Reconstruction of the inner structure of small scale mining waste dumps by combining GPR and ERTdata.

    NASA Astrophysics Data System (ADS)

    Kniess, Rudolf; Martin, Tina

    2015-04-01

    Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated

  9. Infrasonic ray tracing applied to small-scale atmospheric structures: thermal plumes and updrafts/downdrafts.

    PubMed

    Jones, R Michael; Bedard, Alfred J

    2015-02-01

    A ray-tracing program is used to estimate the refraction of infrasound by the vertical structure of the atmosphere in thermal plumes, showing only weak effects, as well as in updrafts and downdrafts, which can act as vertical wave guides. Thermal plumes are ubiquitous features of the daytime atmospheric boundary layer. The effects of thermal plumes on lower frequency sound propagation are minor with the exception of major events, such as volcanoes, forest fires, or industrial explosions where quite strong temperature gradients are involved. On the other hand, when strong, organized vertical flows occur (e.g., in mature thunderstorms and microbursts), there are significant effects. For example, a downdraft surrounded by an updraft focuses sound as it travels upward, and defocuses sound as it travels downward. Such propagation asymmetry may help explain observations that balloonists can hear people on the ground; but conversely, people on the ground cannot hear balloonists aloft. These results are pertinent for those making surface measurements from acoustic sources aloft, as well as for measurements of surface sound sources using elevated receivers. PMID:25697997

  10. Small scale flux emergence, small flares, and the unresolved fine structure: modeling and observations

    NASA Astrophysics Data System (ADS)

    Haraldson Hansteen, Viggo H.

    2016-05-01

    The emergence of flux through the photosphere and into the outer solar atmosphere is known to produce dynamic events in the chromosphere and corona. In this talk we will describe three-dimensional (3d) magnetohydrodynamic simulations of magnetic flux emergence in a model that spans the convection zone and into the outer solar atmosphere with the Bifrost code. We will contrast this with models in which no flux emergence occurs. These are a ``realistic'' model, in the sense that the parameters and physical effects that control the atmosphere can be used to produce diagnostics that can be directly compared with observations. Thus we will also contrast the model predictions with with SST and IRIS observations of an emerging flux region. We discuss the evolution of the model and several synthetic observables. We discuss the model's possible relevance to the so called 'unresolved fine structure' observed in the solar transition region. Finally, we will report on developments to merge `deeper' models constructed from MURaM simulations with Bifrost models of the chromosphere and corona in flare relevant simulations.

  11. The Small-Scale Structure of High-Velocity Na I Absorption Toward M81

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.; Lauroesch, J. T.

    2000-12-01

    We present high-resolution (R=20,000) integral field spectra of the Na I absorption toward the nucleus of the nearby spiral galaxy M81 (NGC 3031) obtained in April 2000 with the WIYN 3.5-m telescope and the DensePak fiber optic bundle. Our DensePak map covers the central 27 x 43 arcsec of M81 at a spatial resolution of 4 arcsec which corresponds to a projected length scale of 63 pc at the distance of the galaxy (3.25 Mpc). These data were intended to explore the spatial extent of high-velocity (v = 110-130 km/s) gas seen in Na I, Mg I and Mg II absorption toward SN 1993J by Bowen et al. (1994), which they proposed is due to tidal material associated with interactions between M81 and nearby M82 (Yun, Ho & Lo 1993). No H I gas at these velocities has been detected in 21 cm interferometry maps near the position of SN 1993J (2.6 arcmin SW of the M81 nucleus). Our Na I map of the M81 core shows no evidence of the strong absorption seen at v = 110-130 km/s toward SN 1993J. However, our map does reveal a strong Na I component at v = 220 km/s in several fibers that appears to trace a filamentary structure running from the SW to the NE across the M81 nuclear region. The origin and distance of this filament are unknown. No H I gas at v = 220 km/s has previously been detected in 21 cm studies of the core. At the location of SN 1993J, Bowen et al. measured weak Mg II absorption at this velocity but found no evidence of corresponding Na I absorption. The only known H I gas that corresponds to this velocity in the M81 group are the H I streamers found around M82 by Yun, Ho, & Lo that they interpreted as tidally disrupted M82 disk material.

  12. Synthesizing in-stream structure design guidelines from small-scale and field-scale physical experiments

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Hill, C.; Plott, J.; Diplas, P.; Sotiropoulos, F.

    2011-12-01

    Rock vanes, cross vanes, bendway weirs and other similar flow control structures have been studied as part of a multifaceted research program to improve quantitative design guidelines for frequently used stream restoration structures. These structures are typically used in stream restoration projects with the intent of protecting unstable streambanks, preventing undesired lateral migration, or improving aquatic habitat. Despite their frequent use, extensive research-based quantitative design guidelines do not readily exist. As part of this project, a series of small-scale physical model experiments were completed in the St. Anthony Falls Laboratory (SAFL) Tilting Bed Flume measuring 3D flow velocities and sediment scour patterns downstream of stream restoration flow control structures. On a larger scale, similar experiments were completed in the SAFL Outdoor StreamLab (OSL), a near full-scale meandering stream research facility. Two final components of this research program, full-scale field monitoring and computational simulations, provide researchers with a multi-scale dataset. A focal point of the analysis lies on the scour patterns induced by these structures, yet transferring these results into engineering design standards remains a challenge. The issues of dealing with multiple scales of flow control structures, the sediment used in these experiments, and the effects they will have in real-world stream restoration applications is a complex problem. The small-scale flume experiments examined single structures in a straight channel with uniform grain sizes. Large-scale OSL experiments were completed in a specific meandering channel geometry and grain sizes unique to that facility. Field monitoring provides data in complex, real-world environments, yet it is unique to specific locations and at a much lower resolution than available from controlled research facilities. The extensive dataset resulting from this research program provides the means to develop

  13. Structure and dynamics of small scale magnetic fields in the solar atmosphere Results of high resolution polarimetry and image reconstruction

    NASA Astrophysics Data System (ADS)

    Janssen, K.

    2003-07-01

    Two-dimensional spectrograms were obtained at the Vacuum Tower Telescope, Tenerife, in order to study the structure of small scale magnetic fields on the Sun. The speckle reconstruction method that is used for data processing gives high resolution images and wavelength scans in left and right circular polarized light, from which magnetic field maps are calculated using the center of gravity method. The geometric similarity of magnetic structures is studied via the area- perimeter-relation, from which the Hausdorff-dimension of the rim of a structure is determined. The investigation shows that the actual value of the fractal dimension depends on the threshold that is used to determine the borders of the magnetic areas. Higher treshold values lead to smaller fractal dimensions. This can be explained by the concentration of strong magnetic fields while weak fields spread out in more complex structures. With a treshold of 80 Gauss a fractal dimension of D=1,40(5) is obtained. Furthermore, the dimension obtained by observed data is compared to the fractal dimension gained from MHD simulations. It is found that if the measurement scales are adjusted correctly the dimensions for both datasets match quite well. In a second part the dynamics of the mass motions were analysed and a coarse estimate of the energy conveyed by these movements to the magnetic field is given. The energy flux is strong enough to participate in the heating of the solar chromosphere and corona over active regions.

  14. An improved method to characterise the modulation of small-scale turbulent by large-scale structures

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2015-11-01

    A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures

  15. A MEASUREMENT OF SMALL-SCALE STRUCTURE IN THE 2.2 {<=} z {<=} 4.2 Ly{alpha} FOREST

    SciTech Connect

    Lidz, Adam; Faucher-Giguere, Claude-Andre; McQuinn, Matthew; Zaldarriaga, Matias; Hernquist, Lars; Dutta, Suvendra; Dall'Aglio, Aldo; Fechner, Cora

    2010-07-20

    The amplitude of fluctuations in the Ly{alpha} forest on small spatial scales is sensitive to the temperature of the intergalactic medium (IGM) and its spatial fluctuations. The temperature of the IGM and its spatial variations contain important information about hydrogen and helium reionization. We present a new measurement of the small-scale structure in the Ly{alpha} forest from 40 high resolution, high signal-to-noise ratio, VLT spectra for absorbing gas at redshifts between 2.2 {<=} z {<=} 4.2. We convolve each Ly{alpha} forest spectrum with a suitably chosen Morlet wavelet filter, which allows us to extract the amount of small-scale structure in the forest as a function of position across each spectrum. We monitor contamination from metal line absorbers. We present a first comparison of these measurements with high-resolution hydrodynamic simulations of the Ly{alpha} forest that track more than 2 billion particles. This comparison suggests that the IGM temperature close to the cosmic mean density (T {sub 0}) peaks at a redshift near z = 3.4, at which point it is greater than 20, 000 K at {approx}>2{sigma} confidence. The temperature at lower redshift is consistent with the fall-off expected from adiabatic cooling (T {sub 0} {proportional_to} (1 + z){sup 2}), after the peak temperature is reached near z = 3.4. In our highest redshift bin, centered around z = 4.2, the results favor a temperature of T {sub 0} = 15-20, 000 K. However, owing mostly to uncertainties in the mean transmitted flux at this redshift, a cooler IGM model with T {sub 0} = 10, 000 K is only disfavored at the 2{sigma} level here, although such cool IGM models are strongly discrepant with the z {approx} 3-3.4 measurement. We do not detect large spatial fluctuations in the IGM temperature at any redshift covered by our data set. The simplest interpretation of our measurements is that He II reionization completes sometime near z {approx} 3.4, although statistical uncertainties are still large

  16. Knotted Strings and Leptonic Flavor Structure

    NASA Astrophysics Data System (ADS)

    Kephart, T. W.; Leser, P.; Päs, H.

    2012-12-01

    We propose a third idea for the explanation of the leptonic flavor structure in addition to the prominent approaches based on flavor symmetry and anarchy. Typical flavor patterns can be modeled by using mass spectra obtained from the discrete lengths spectrum of tight knots and links. We assume that a string theory model exists in which this idea can be incorporated via the Majorana mass structure of a type I seesaw model. It is shown by a scan over the parameter space that such a model is able to provide an excellent fit to current neutrino data and that it predicts a normal neutrino mass hierarchy as well as a small mixing angle θ13. Startlingly, such scenarios could be related to the dimensionality of spacetime via an anthropic argument.

  17. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY MIRROR-MODE WAVES IN THE SOLAR WIND

    SciTech Connect

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-10-20

    Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B{sub 0} . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B{sub 0} quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θ{sub xB} between the GSE-x and B{sub 0} , we notice that at θ{sub xB} = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P{sub th} and the magnetic pressure P{sub B}, as well as that between the proton density N{sub p} and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T{sub ∥}. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector B{sub N} . We also study the time variation of the cross-helicity σ{sub c} and the compressibility C{sub p} and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T{sub ∥}, proton β ≅ 1, both pairs of P{sub th}-P{sub B} and N{sub p}-B showing anti-correlation, and σ{sub c} ≈ 0 with C{sub p} > 0. Although the examination of σ{sub c} and C{sub p} is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, B{sub N} is found to be highly oblique to B{sub 0} . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.

  18. Cosmic string and formation of large scale structure.

    NASA Astrophysics Data System (ADS)

    Fang, L.-Z.; Xiang, S.-P.

    Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.

  19. Small-scale genetic structure in a marine population in relation to water circulation and egg characteristics.

    PubMed

    Ciannelli, Lorenzo; Knutsen, Halvor; Olsen, Esben M; Espeland, Sigurd H; Asplin, Lars; Jelmert, Anders; Knutsen, Jan Atle; Stenseth, Nils Chr

    2010-10-01

    Until the last decade it was assumed that most marine species have pronounced gene flow over vast areas, largely because of their potential for dispersal during early life stages. However, recent genetic, modeling, and field studies have shown that marine populations may be structured at scales that are inconsistent with extensive dispersal of eggs and larvae. Such findings have stimulated the birth of new studies explaining the mechanisms that promote population structure and isolation in the oceans, in the face of high potential for dispersal. Here we study the vertical and horizontal distribution of cod (Gadus morhua) eggs in relation to small-scale circulation and water column hydrography in a coastal location of southern Norway. Previous studies conducted in this region have shown that cod populations inhabiting fjord locations, which are on average 30 km apart, are genetically differentiated, a remarkable outcome considering that Atlantic cod have pelagic egg stages and long pelagic larval duration. We document that cod eggs are found in greater abundance in shallow water layers, which on average are flowing up the fjord (away from the open ocean), and in the inner portion of the fjord, which is subject to lower current speeds compared to the outer or mouth of the fjord. Eggs were found to be neutrally buoyant at shallow depths, a trait that also favors local retention, given the local circulation. The same patterns held during two environmentally contrasting years. These results strongly suggest that population structure of Atlantic cod is favored and maintained by a balance between water circulation and egg characteristics. PMID:21058552

  20. Associations between Small-scale Structure in Local Galactic Neutral Hydrogen and in the Cosmic Microwave Background Observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  1. Large- and small-scale structure of the intermediate- and high-velocity clouds towards the LMC and SMC

    NASA Astrophysics Data System (ADS)

    Smoker, J. V.; Fox, A. J.; Keenan, F. P.

    2015-08-01

    We employ Ca II K and Na I D interstellar absorption-line spectroscopy of early-type stars in the Large and Small Magellanic Clouds (LMC, SMC) to investigate the large- and small-scale structure in foreground intermediate- and high-velocity clouds (I/HVCs). Data include FLAMES-GIRAFFE Ca II K observations of 403 stars in four open clusters, plus FEROS or UVES spectra of 156 stars in the LMC and SMC. The FLAMES observations are amongst the most extensive probes to date of Ca II structures on ˜20 arcsec scales in Magellanic I/HVCs. From the FLAMES data within a 0.5° field of view, the Ca II K equivalent width in the I/HVC components towards three clusters varies by factors of ≥10. There are no detections of molecular gas in absorption at intermediate or high velocities, although molecular absorption is present at LMC and Galactic velocities towards some sightlines. The FEROS/UVES data show Ca II K I/HVC absorption in ˜60 per cent of sightlines. The range in the Ca II/Na I ratio in I/HVCs is from -0.45 to +1.5 dex, similar to previous measurements for I/HVCs. In 10 sightlines we find Ca II/O I ratios in I/HVC gas ranging from 0.2 to 1.5 dex below the solar value, indicating either dust or ionization effects. In nine sightlines I/HVC gas is detected in both H I and Ca II at similar velocities, implying that the two elements form part of the same structure.

  2. String gravitational equations with Hermitian structure

    NASA Astrophysics Data System (ADS)

    Naderi, F.; Rezaei-Aghdam, A.; Darabi, F.

    2016-02-01

    We consider a string model at one-loop related to a σ-model whose antisymmetric tensor field is constructed as complex structure on the background manifold, especially on a manifold R × N where N is a complex manifold. As an example, we consider a homogeneous anisotropic (1 + 4)-dimensional σ-model where space part of the background is a four-dimensional complex manifold. By solving the related one-loop β-functions, we obtain a static solution so that by reduction of this solution to (1 + 3)-dimension, we obtain a static solution of Einstein equation where the matter sector is effectively interpreted as an inhomogeneous, anisotropic and barotropic matter satisfying all the energy conditions. Finally, the T-dual background of the solution is investigated and it is shown that the duality transformation and reduction processes commute with each other.

  3. Image restoration and superresolution as probes of small scale far-IR structure in star forming regions

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.

    1986-01-01

    Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.

  4. Small scale seismic measurement bench to assess imaging methods - application to Full Waveform Inversion of a shallow structure

    NASA Astrophysics Data System (ADS)

    Leparoux, D.; Bretaudeau, F.; Brossier, R.; Operto, S.; Virieux, J.

    2011-12-01

    Seismic imaging of subsurface is useful for civil engineering and landscape management topics. The usual methods use surface waves phase velocities or first arrival times of body waves. However, for complex structures, such methods can be inefficient and Full Waveform Inversion (FWI) promises relevant performances because all the signal is taken into account. FWI has been originally developed for deep explorations (Pratt et al. 1999). Heterogeneities and strong attenuation in the near surface make difficult the adaptation of the FWI to shallower media (Bretaudeau et al. 2009). For this reason, we have developed a physical modeling measurement bench that performs small scale seismic recording in well controlled contexts (Bretaudeau et al. 2011). In this paper we assess the capacity of the FWI method (Brossier 2010) for imaging a subsurface structure including a low velocity layer and a lateral variation of interfaces. The analog model is a 180mm long and 50mm thick layered epoxy resin block (fig. 1). Seismic data generated with a punctual piezoelectric source emitting a 120KHz Ricker wavelet at the medium surface were collected by an heterodyne laser interferometer. The laser allows recording the absolute normal particle displacement without contact, avoiding disturbances caused by coupling. The laser interferometer and the piezoelectric source were attached to automated arms that could be moved over the model surface to a precision of 0.01mm (fig. 1). The acquisition survey includes 241 receiver and 37 source positions respectively spaced at 1 and 5 mm. Figure 2 shows 2D maps of the Vs parameter after inversion of data sequentially processed with 13 frequencies. The geometry of the sloped interface is recovered. A low velocity zone is imaged but with a thickness thinner than expected. Moreover, artifacts appear in the near surface. Experimental modeling results showed the capacity of the FWI in this case and provided key issues for further works about inversion by

  5. Structure of small-scale field-aligned currents at middle and low latitudes having lower atmospheric origin

    NASA Astrophysics Data System (ADS)

    Nakanishi, K.; Iyemori, T.; Luhr, H.; Aoyama, T.

    2014-12-01

    The CHAMP magnetic data indicate that small amplitude (1-5 nT) magnetic fluctuations with period around a few tens of seconds along the orbit exist globally and almost all the time. Characteristics of the magnetic fluctuations including seasonal dependence having geographical characteristics strongly suggest that they are the small-scale spatial structure of field-aligned currents with lower atmospheric origin (Nakanishi et al., 2014). We suppose that gravity waves generated by lower atmospheric disturbances propagate to the ionosphere and drive the E-layer dynamo. The currents in the ionosphere divert along the magnetic field into the other hemisphere and make a closed circuit. To confirm the above scenario and to find the scale of the current circuit in longitudinal direction, we use the magnetic data observed by the SWARM satellites. By analysis of the magnetic data observed by the SWARM satellites, the magnetic fluctuations as recorded earlier by CHAMP are confirmed to have the same characteristics i.e., the magnetic fluctuation is perpendicular to the geomagnetic field; the amplitude on the dayside is much larger than that on the nightside; towards the dip equator the period tends to get longer. Because the three Swarm satellites have various spatial relations in 3-D space between their orbits, we could easily confirm that the objective magnetic fluctuations are not temporal but spatial structures. The longitudinal scale seems to be of the order of 100 km. We shall show the above results and some other characteristics of the current circuit and discuss whether or not our suggested model fits the observed characteristics.

  6. The use of Structure-from-Motion when quantifying subtle soil erosion processes from a small-scale experiment

    NASA Astrophysics Data System (ADS)

    Benaud, Pia; James, Mike; Quine, Timothy; Quinton, John; Anderson, Karen; Brazier, Richard

    2015-04-01

    The unique accessibility of Structure-from-Motion (SfM) has resulted in the rapid uptake of its application by researchers working within the geosciences. More recently, a growth in user confidence and the continued optimisation of data acquisition methods have paved the way for multi-temporal applications, which offer an exciting potential to quantify soil erosion rates. Accordingly, published research provides examples of the successful quantification of large erosion features, such as gullies and large erosion events on arable land. Soil erosion, however, also occurs through subtle, less-visible, diffuse erosion processes, such as sheet-wash. Consequently, this study aims to quantify both visible and less-visible erosion processes, through the development and utilisation of a suite of techniques, including SfM, rare-earth oxide tracers and terrestrial laser scanning (TLS). Whilst, ultimately the techniques will be used to quantify soil erosion at the field-scale, this study will take a robust approach to the development of novel techniques, starting with small-scale, laboratory-based soil erosion experiments; allowing for rigorous testing of important variables. Using the rainfall simulator hosted within the University of Exeter Sediment Research Facility, we will quantify changes to the soil volume resulting from: compaction of the soil via rainfall, loss of soil via overland flow, and soil erosion via rilling. The findings of the SfM story, thus far, will be presented. Using sediment capture and TLS as a benchmark, we will establish the extent to which SfM can be practically used to quantify both visible and less-visible erosion processes, to millimetre accuracy. This study also provides an opportunity to optimise data acquisition, reducing redundancies and processing times. Variables, such as the number and placement of ground control points, number and position of images, and pixel density will be interrogated to compare the highest level of accuracy with

  7. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  8. Gravitational radiation by cosmic strings in a junction

    SciTech Connect

    Brandenberger, R.; Karouby, J.; Firouzjahi, H.; Khosravi, S.

    2009-01-15

    The formalism for computing the gravitational power radiation from excitations on cosmic strings forming a junction is presented and applied to the simple case of co-planar strings at a junction when the excitations are generated along one string leg. The effects of polarization of the excitations and of the back-reaction of the gravitational radiation on the small scale structure of the strings are studied.

  9. Cosmic string scaling in flat space

    SciTech Connect

    Vanchurin, Vitaly; Olum, Ken; Vilenkin, Alexander

    2005-09-15

    We investigate the evolution of infinite strings as a part of a complete cosmic string network in flat space. We perform a simulation of the network which uses functional forms for the string position and thus is exact to the limits of computer arithmetic. Our results confirm that the wiggles on the strings obey a scaling law described by universal power spectrum. The average distance between long strings also scales accurately with the time. These results suggest that small-scale structure will also scale in an expanding universe, even in the absence of gravitational damping.

  10. Analysis of very-high-resolution Galileo images of Europa: Implications for small-scale structure and surface evolution

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Pappalardo, R. T.; Yin, A.; Prockter, L. M.; Patthoff, D. A.

    2014-12-01

    The Galileo Solid State Imager (SSI) recorded nine very high-resolution frames (8 at 12 m/pixel and 1 at 6 m/pixel) during the E12 flyby of Europa in Dec. 1997. To understand the implications for the small-scale structure and evolution of Europa, we mosaicked these frames (observations 12ESMOTTLE01 and 02, incidence ≈18°, emission ≈77°) into their regional context (part of observation 11ESREGMAP01, 220 m/pixel, incidence ≈74°, emission ≈23°), despite their very different viewing and lighting conditions. We created a map of geological units based on morphology, structure, and albedo along with stereoscopic images where the frames overlapped. The highly diverse units range from: high albedo sub-parallel ridge and grooved terrain; to variegated-albedo hummocky terrain; to low albedo and relatively smooth terrain. We classified and analyzed the diverse units solely based on the high-resolution image mosaic, prior to comparison to the context image, to obtain an in-depth look at possible surface evolution and underlying formational processes. We infer that some of these units represent different stages and forms of resurfacing, including cryovolcanic and tectonic resurfacing. However, significant morphological variation among units in the region indicates that there are different degrees of resurfacing at work. We have created candidate morphological sequences that provide insight into the conversion of ridged plains to chaotic terrain—generally, a process of subduing formerly sharp features through tectonic modification and/or cryovolcanism. When the map of the high-resolution area is compared to the regional context, features that appear to be one unit at regional resolution are comprised of several distinct units at high resolution, and features that appear to be smooth in the context image are found to show distinct textures. Moreover, in the context image, transitions from ridged units to disrupted units appear to be gradual; however the high

  11. Small Scale Industries.

    ERIC Educational Resources Information Center

    Rural Development Detwork Bulletin, 1977

    1977-01-01

    Innovative programs for the promotion of small-scale enterprise are being conducted by a variety of organizations, including universities, government agencies, international research institutes, and voluntary assistance agencies. Their activities encompass basic extension services, management of cooperatives, community action programs, and…

  12. Bosonic structure of realistic SO(10) supersymmetric cosmic strings

    NASA Astrophysics Data System (ADS)

    Allys, Erwan

    2016-05-01

    We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.

  13. Global structure of Gott's two-string spacetime

    NASA Astrophysics Data System (ADS)

    Cutler, Curt

    1992-01-01

    Gott has recently obtained exact solutions to Einstein's equation representing two infinitely long, straight cosmic strings that gravitationally scatter off each other. A remarkable feature of these solutions is that they contain closed timelike curves when the relative velocity of the strings is sufficiently high. In this paper we elucidate the global structure of Gott's two-string spacetime. In particular, we prove that the closed timelike curves are confined to a certain region of the spacetime, and that the spacetime contains complete spacelike, edgeless, achronal hypersurfaces, from which the causality-violating regions may be said to evolve. We then explicitly determine the boundary of the region containing closed timelike curves.

  14. Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2008-09-01

    We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.

  15. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the

  16. Enhanced Monopropellant Fuel Decomposition by High Aspect Ratio, Catalytic CNT Structures for Propulsion of Small Scale Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Marr, Kevin; Claussen, Jonathan; Iverson, Brian

    2014-11-01

    Both maneuverability and efficiency for reagent-based propulsion systems of small-scale exploratory devices, such as autonomous underwater vehicles (AUVs), is largely dependent on their maximum fuel decomposition rate. Reagent-based systems, however, require large catalyst surface area to fuel volume ratios in order to achieve the fuel decomposition rates necessary for locomotion. This work demonstrates the utility of platinum-coated, carbon nanotube (CNT) scaffolds as high surface area catalysts for decomposition of hydrogen peroxide (H2O2) in a flowing environment. Usage of these functionalized microchannels ensures that both the maximum distance between fuel and catalyst is only half the microchannel diameter, and that the fuel concentration gradient increases due to boundary-layer thinning. These conditions facilitate intimate contact between fuel and catalyst and, therefore, faster decomposition rates. Electrochemical testing revealed that electroactive surface area to volume ratios of approximately 61.4 cm-1 can be achieved for samples fabricated using a static Pt deposition scheme. Thrust measurements were taken using a small-scale submersible which indicated a maximum thrust of 0.114 N using 50 weight percent H2O2 exposed to eight inline 2.867 cm2 Pt-CNT scaffolds.

  17. Retrieval of three-dimensional small scale structures in upper tropospheric/lower stratospheric composition as measured by GLORIA

    NASA Astrophysics Data System (ADS)

    Kaufmann, M.; Blank, J.; Guggenmoser, T.; Ungermann, J.; Engel, A.; Ern, M.; Friedl-Vallon, F.; Gerber, D.; Grooss, J. U.; Guenther, G.; Höpfner, M.; Kleinert, A.; Latzko, Th.; Maucher, G.; Neubert, T.; Nordmeyer, H.; Oelhaf, H.; Olschewski, F.; Orphal, J.; Preusse, P.; Schlager, H.; Schneider, H.; Schuettemeyer, D.; Stroh, F.; Suminska-Ebersoldt, O.; Vogel, B.; Volk, C. M.; Woiwode, W.; Riese, M.

    2014-04-01

    The three-dimensional quantification of small scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe and TACTS/ESMVal aircraft campaigns. The focus of this work is on the so-called dynamics mode data characterized by a medium spectral and a very high spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3 and CFC-12) and their spatial resolution are discussed. During ESSenCe, high resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in-situ data indicate a good agreement between the data sets. During TACTS/ESMVal a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere has been performed. This filament could be reconstructed with an unprecedented spatial resolution of better than 500 m vertically and 20 km × 20 km horizontally.

  18. Retrieval of three-dimensional small-scale structures in upper-tropospheric/lower-stratospheric composition as measured by GLORIA

    NASA Astrophysics Data System (ADS)

    Kaufmann, M.; Blank, J.; Guggenmoser, T.; Ungermann, J.; Engel, A.; Ern, M.; Friedl-Vallon, F.; Gerber, D.; Grooß, J. U.; Guenther, G.; Höpfner, M.; Kleinert, A.; Kretschmer, E.; Latzko, Th.; Maucher, G.; Neubert, T.; Nordmeyer, H.; Oelhaf, H.; Olschewski, F.; Orphal, J.; Preusse, P.; Schlager, H.; Schneider, H.; Schuettemeyer, D.; Stroh, F.; Suminska-Ebersoldt, O.; Vogel, B.; Volk, C. M.; Woiwode, W.; Riese, M.

    2015-01-01

    The three-dimensional quantification of small-scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents the first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe (ESa Sounder Campaign) and TACTS/ESMVal (TACTS: Transport and composition in the upper troposphere/lowermost stratosphere, ESMVal: Earth System Model Validation) aircraft campaigns. The focus of this work is on the so-called dynamics-mode data characterized by a medium-spectral and a very-high-spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3, and CFC-12) and their spatial resolution are discussed. During ESSenCe, high-resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in situ data indicate a good agreement between the data sets. During TACTS/ESMVal, a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere was performed. It was possible to reconstruct this filament at an unprecedented spatial resolution of better than 500 m vertically and 20 × 20 km horizontally.

  19. Simultaneous conjugate observations of small-scale structures in Saturn's dayside ultraviolet auroras: Implications for physical origins

    NASA Astrophysics Data System (ADS)

    Meredith, C. J.; Cowley, S. W. H.; Hansen, K. C.; Nichols, J. D.; Yeoman, T. K.

    2013-05-01

    Small-scale features in Saturn's dayside UV auroras are examined using images obtained on 32 Hubble Space Telescope visits close to Saturn equinox when both northern and southern emissions were simultaneously observed, allowing their interhemispheric conjugacy to be investigated. Eastward-propagating patches in the dawn-to-noon sector were observed on ~70% of visits, which when present were nearly always observed both north and south. The patches were generally not closely conjugate, however, but typically displaced in local time by ~0.5-1 h, with maxima in one hemisphere falling near minima in the other. Averaged angular velocities were ~80% of rigid corotation, larger than plasma angular velocities reported in the outer magnetosphere to which the emissions are likely conjugate. We suggest the patches are associated with field-aligned currents of eastward-propagating ULF waves, specifically second harmonic Alfvén resonances with typical azimuthal wave numbers m ≈ 20 and plasma rest frame periods ~80 min, plausibly driven by drift-bounce resonance with hot magnetospheric water ions. Transient dusk sector emissions of ~10-30 min duration were also observed on ~40% of visits, and found to be strictly nonconjugate, with enhancements in one hemisphere, north or south, being unaccompanied by enhancements in the other. We suggest an association with open flux tubes, and discuss one scenario where hemispheric symmetry is broken on newly opened flux tubes via the interplanetary magnetic field Y component, plausibly consistent with nonconjugate events north and south, preferential postnoon occurrence, and time scales of a few tens of minutes, though the expected relationship with the Y component remains to be established.

  20. TOWARD UNDERSTANDING THE ORIGIN OF TURBULENCE IN MOLECULAR CLOUDS: SMALL-SCALE STRUCTURES AS UNITS OF DYNAMICAL MULTI-PHASE INTERSTELLAR MEDIUM

    SciTech Connect

    Tachihara, Kengo; Higuchi, Aya E.; Saigo, Kazuya; Inoue, Tsuyohshi; Inutsuka, Shu-ichiro; Hackstein, Moritz; Haas, Martin; Mugrauer, Markus

    2012-08-01

    In order to investigate the origin of the interstellar turbulence, detailed observations in the CO J = 1-0 and 3-2 lines have been carried out in an interacting region of a molecular cloud with an H II region. As a result, several 1000-10,000 AU scale cloudlets with small velocity dispersion are detected, whose systemic velocities have a relatively large scatter of a few km s{sup -1}. It is suggested that the cloud is composed of small-scale dense and cold structures and their overlapping effect makes it appear to be a turbulent entity as a whole. This picture strongly supports the two-phase model of a turbulent medium driven by thermal instability proposed previously. On the surface of the present cloud, the turbulence is likely to be driven by thermal instability following ionization shock compression and UV irradiation. Those small-scale structures with line widths of {approx}0.6 km s{sup -1} have a relatively high CO line ratio of J 3-2 to 1-0, 1 {approx}< R{sub 3-2/1-0} {approx}< 2. The large velocity gradient analysis implies that the 0.6 km s{sup -1} width component cloudlets have an average density of 10{sup 3}-10{sup 4} cm{sup -3}, which is relatively high at cloud edges, but their masses are only {approx}< 0.05 M{sub Sun }.

  1. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  2. Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James

    2015-07-01

    The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare Ampère's law to the wavelet-transform modulus maximum method. The Hölder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially powerful tool for a statistical prediction of solar-flare activity. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with high current densities at large size scales will be the source of energy storage for solar eruptive events.

  3. MICA sounding rocket observations of conductivity-gradient-generated auroral ionospheric responses: Small-scale structure with large-scale drivers

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Hampton, D. L.; Zettergren, M.; Bekkeng, T. A.; Conde, M.; Fernandes, P. A.; Horak, P.; Lessard, M.; Miceli, R.; Michell, R.; Moen, J.; Nicolls, M.; Powell, S. P.; Samara, M.

    2015-11-01

    A detailed, in situ study of field-aligned current (FAC) structure in a transient, substorm expansion phase auroral arc is conducted using electric field, magnetometer, and electron density measurements from the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket, launched from Poker Flat, AK. These data are supplemented with larger-scale, contextual measurements from a heterogeneous collection of ground-based instruments including the Poker Flat incoherent scatter radar and nearby scanning doppler imagers and filtered all-sky cameras. An electrostatic ionospheric modeling case study of this event is also constructed by using available data (neutral winds, electron precipitation, and electric fields) to constrain model initial and boundary conditions. MICA magnetometer data are converted into FAC measurements using a sheet current approximation and show an up-down current pair, with small-scale current density and Poynting flux structures in the downward current channel. Model results are able to roughly recreate only the large-scale features of the field-aligned currents, suggesting that observed small-scale structures may be due to ionospheric feedback processes not encapsulated by the electrostatic model. The model is also used to assess the contributions of various processes to total FAC and suggests that both conductance gradients and neutral dynamos may contribute significantly to FACs in a narrow region where the current transitions from upward to downward. Comparison of Poker Flat Incoherent Scatter Radar versus in situ electric field estimates illustrates the high sensitivity of FAC estimates to measurement resolution.

  4. Small-scale variations in the galactic magnetic field - The rotation measure structure function and birefringence in interstellar scintillations

    NASA Technical Reports Server (NTRS)

    Simonetti, J. H.; Cordes, J. M.; Spangler, S. R.

    1984-01-01

    The structure function of rotation measures of extragalactic sources and birefringence in interstellar scintillations are used to investigate variations in the interstellar magnetic field on length scales of about 0.01-100 pc and 10 to the 11th cm, respectively. Model structure functions are derived for the case of a power-law power spectrum of irregularities in the quantity (n(e)B), and an estimate for the structure function is computed for several regions of the sky using data on extragalactic sources. The results indicate an outer angular scale for rotation measure (RM) variations of not less than about 5 deg (a linear scale of about 9-90 pc at a distance of 0.1-1 kpc). There is also evidence for RM variations on angular scales as small as 1 arcmin, but it cannot be determined whether these are intrinsic to the source or caused by the interstellar medium. The effect of a random, Faraday-active medium on the diffraction of radio waves is derived, and an upper limit to the variations in n(e)B on a length scale of 10 to the 11th cm is obtained from available observations.

  5. Development of a Simple Repair Method Using Structural Bonding Tape to Stop Water Leakage from Joints of Small-Scale Concrete Canals

    NASA Astrophysics Data System (ADS)

    Mori, Takehisa; Nakaya, Tetsuo; Ishigami, Akio; Kato, Tomotake

    The study of small-scale concrete canals which had been repaired using simple methods under direct management by farmers or facility managers revealed that the main cause of deterioration of these canals was water leakage caused by failures of joints between sections of the concrete. And the study also revealed that the usual repair methods were insufficiently durable and simple. To solve these problems, a simple repair method was developed in which the canal joints are covered with structural bonding tape and sealant to prevent water leakage. This method satisfied the performance requirements (leak prevention, adhesion, and allowing expansion and contraction of the joint). Moreover, the developed method made farmers possible to repair canal joints in a short time, and no defects in the repaired joints appeared for at least 2 years.

  6. Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1982-01-01

    Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.

  7. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  8. The anisotropy of the small scale structure in high Reynolds number (Rλ˜1000) turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Shen, X.; Warhaft, Z.

    2000-11-01

    The postulate of local isotropy (PLI) is tested in a wind tunnel uniform shear flow in which the Reynolds number is varied over the range 100⩽Rλ⩽1, 100(6.7×102⩽Rl⩽6.3×104). The high Rλ is achieved by using an active grid [Mydlarski and Warhaft, J. Fluid Mech. 320, 331 (1996)] in conjunction with a shear generator. We focus on the increments of the longitudinal velocity fluctuations in the direction of the mean shear. PLI requires that odd order moments of these quantities approach zero as Rλ→∞. Confirming the lower Reynolds number measurements of Garg and Warhaft [Phys. Fluids 10, 662 (1998)], we show that the skewness of ∂u/∂y decreases as Rλ-0.5 (with a value of 0.2 at Rλ˜1000). Although the decrease is slower than classical scaling arguments suggest, the result is consistent with PLI, indicating a negligible value at high Rλ. However, the normalized fifth moment, <(∂u/∂y)5>/<(∂u/∂y)2>5/2, is of order 10, and shows no diminution with Reynolds number, while the normalized seventh moment increases with Rλ. These dissipation range results are inconsistent with PLI. Within the inertial subrange we show that all the odd order moments of the increments of Δu(y) are nonzero, exhibiting scaling ranges. Here, the skewness structure function has a value ˜0.5 indicating that in the inertial subrange significant anisotropy is evident even at the third moment level. Fifth- and seventh-order inertial subrange skewness structure functions are of order 10 and 100, respectively. The results show that PLI is untenable, both at dissipation and inertial scales, at least to Rλ˜1000, and suggest it is unlikely to be so even at higher Reynolds numbers.

  9. Results from a high-speed imaging system for the observation of transient features in OH-Airglow with focus on small-scale structures

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Kazlova, Aliaksandra; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    The OH-airglow layer in about 87 km altitude is suited to investigate atmospheric dynamics in a unique way, allowing continuous observations of the night-sky throughout the year. Especially, atmospheric gravity waves are prominent features in the data of airglow imaging systems. In the year 2014 the imaging system FAIM (Fast Airglow IMager) for the study of small-scale features (both in space and time) was operational at the NDMC (Network for the detection of mesospheric change) station Oberpfaffenhofen. The instrument covers many of the brightest OH vibrational bands between 1.0 μm and 1.7 μm and acquires images with a temporal resolution of 2 frames per second. It measures the night sky with an aperture angle of about 20° and a zenith angle of 45° oriented to the Southern Germany Alpine region. Hence, the field of view (FOV) is about 50 km times 60 km in the height of the mesopause (87 km) with a mean spatial resolution of about 200 m. With this resolution, the focus of the instrument is on small-scale wave structures ranging from about 1 km to 30 km and instability structures like so-called ripples or Kelvin-Helmholtz-Instabilities. Case studies will be presented showing dissipating gravity waves and the results of spectral analyses will give an overview of the prominent directions of propagation and the horizontal wavelengths within the year 2014. This work is funded by the Bavarian State Ministry of the Environment and Consumer Protection by grant no. TUS01UFS-67093. The project aims to analyse the influence of the Alpine region on the generation of atmospheric waves.

  10. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    NASA Astrophysics Data System (ADS)

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  11. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    SciTech Connect

    Van Kempen, T. A.; Longmore, S. N.; Johnstone, D.; Pillai, T.; Fuente, A.

    2012-06-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of {approx}200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M{sub Sun }, is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M{sub Sun }. No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  12. Resolving the fine-scale density structure of oceanic lithosphere and asthenosphere from small-scale geoid anomalies: a case study from the Mendocino Fracture zone

    NASA Astrophysics Data System (ADS)

    Cadio, C.; Korenaga, J.

    2013-12-01

    As oceanic lithosphere corresponds to the top boundary layer of mantle convection, its gross density structure reflects how the convecting mantle is actually cooled near the surface. A recent wavelet analysis of the geoid data around the Mendocino fracture zone has revealed 100- to 200-km scale anomalies, which notably deviate from any of reference evolution models and therefore call for prominent density anomalies at relatively shallow depths (Cadio and Korenaga, 2012). Given their spatial scales and weak correlation with seafloor topography, their sources must be within or right beneath the oceanic lithosphere. Such short-wavelength geoid anomalies carry important information regarding the fine-scale density structure of the oceanic lithosphere and asthenosphere. A new inversion scheme has been developed to investigate these local anomalies. To overcome the nonuniqueness of potential-field data, we reduce the model space by using spectral localization, reference models, and a priori bounds on the amplitude of geologically possible density perturbations that can be caused by thermal or chemical processes within the convecting mantle. Our approach is based on Bayesian statistics and is implemented by combining forward modeling with Markov chain Monte Carlo sampling. The depth and the vertical extent of density anomalies derived from our inversion indicate that they are intimately related to the structure of the lowermost lithosphere. They reflect very likely small-scale convection induced by lateral temperature gradient across the fracture zone. The amplitude of density perturbations varying between -25 to 30 kg m-3 and their spatial organization are also in agreement with predictions derived from numerical simulations of such instabilities (Huang et al., 2003; Dumoulin et al., 2008). A global analysis of these local anomalies will allow us to resolve the fine-scale density structure of shallow oceanic mantle not only along fracture zones, but also in other parts

  13. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  14. Bounds on cosmic strings from WMAP and SDSS

    SciTech Connect

    Wyman, Mark; Wasserman, Ira; Pogosian, Levon

    2005-07-15

    We find the constraints from Wilkinson microwave anisotropy probe (WMAP) and Sloan digital sky survey (SDSS) data on the fraction of cosmological fluctuations sourced by local cosmic strings using a Markov Chain Monte Carlo (MCMC) analysis. In addition to varying the usual 6 cosmological parameters and the string tension ({mu}), we also varied the amount of small-scale structure on the strings. Our results indicate that cosmic strings can account for up to 7 (14)% of the total power of the microwave anisotropy at 68 (95)% confidence level. The corresponding bound on the string mass per unit length, within our string model, is G{mu}<3.4(5)x10{sup -7} at 68 (95)% C.L. We also calculate the B-type polarization spectra sourced by cosmic strings and discuss the prospects of their detection.

  15. ETHOS - An Effective Theory of Structure Formation: Dark matter physics as a possible explanation of the small-scale CDM problems

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Zavala, Jesús; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Bringmann, Torsten; Sigurdson, Kris

    2016-05-01

    We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of 2.8× 10^4{ M_⊙} and a softening length of 72.4 pc. We demonstrate that all alternative models have only a negligible impact on large scale structure formation. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small scale primordial damping in the power spectrum and late time self-interactions. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that certain models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. The primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles, which is larger than that found for cold dark matter simulations. We show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some models may be challenged by the missing satellite problem if baryonic processes were to be included and even over-solve the too-big-to-fail problem; thus ruling them out.

  16. ETHOS - an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Zavala, Jesús; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Bringmann, Torsten; Sigurdson, Kris

    2016-08-01

    We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of 2.8 × 104 M⊙ and a softening length of 72.4 pc. We demonstrate that all alternative models have only a negligible impact on large-scale structure formation. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small-scale primordial damping in the power spectrum and late-time self-interactions. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that certain models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. The primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles, which is larger than that found for cold dark matter simulations. We show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some models may be challenged by the missing satellite problem if baryonic processes were to be included and even oversolve the too-big-to-fail problem; thus ruling them out.

  17. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.

    2002-01-01

    Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  18. Composite strings in (2+1)-dimensional anisotropic weakly coupled Yang-Mills theory

    SciTech Connect

    Orland, Peter

    2008-01-15

    The small-scale structure of a string connecting a pair of static sources is explored for the weakly coupled anisotropic SU(2) Yang-Mills theory in (2+1) dimensions. A crucial ingredient in the formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents. The quark-antiquark potential is determined. We close with some discussion of the standard, fully Lorentz-invariant Yang-Mills theory.

  19. APEX/SABOCA observations of small-scale structure of infrared-dark clouds . I. Early evolutionary stages of star-forming cores

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.; Henning, Thomas; Beuther, Henrik

    2013-11-01

    Infrared-dark clouds (IRDCs) harbor the early phases of cluster and high-mass star formation and are comprised of cold (~20 K), dense (n > 104 cm-3) gas. The spectral energy distribution (SED) of IRDCs is dominated by the far-infrared and millimeter wavelength regime, and our initial Herschel study examined IRDCs at the peak of the SED with high angular resolution. Here we present a follow-up study using the SABOCA instrument on APEX which delivers 7.8″ angular resolution at 350 μm, matching the resolution we achieved with Herschel/PACS, and allowing us to characterize substructure on ~0.1 pc scales. Our sample of 11 nearby IRDCs are a mix of filamentary and clumpy morphologies, and the filamentary clouds show significant hierarchical structure, while the clumpy IRDCs exhibit little hierarchical structure. All IRDCs, regardless of morphology, have about 14% of their total mass in small scale core-like structures which roughly follow a trend of constant volume density over all size scales. Out of the 89 protostellar cores we identified in this sample with Herschel, we recover 40 of the brightest and re-fit their SEDs and find their properties agree fairly well with our previous estimates (⟨ T ⟩ ~ 19 K). We detect a new population of "cold cores" which have no 70 μm counterpart, but are 100 and 160 μm-bright, with colder temperatures (⟨ T ⟩ ~ 16 K). This latter population, along with SABOCA-only detections, are predominantly low-mass objects, but their evolutionary diagnostics are consistent with the earliest starless or prestellar phase of cores in IRDCs. Based on observations carried out with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between Max Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO).Appendices are available in electronic form at http://www.aanda.org

  20. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and

  1. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  2. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  3. On Ramachandran angles, closed strings and knots in protein structure

    NASA Astrophysics Data System (ADS)

    Chen, Si; Niemi, Antti J.

    2016-08-01

    The Ramachandran angles (φ,\\psi ) of a protein backbone form the vertices of a piecewise geodesic curve on the surface of a torus. When the ends of the curve are connected to each other similarly, by a geodesic, the result is a closed string that in general wraps around the torus a number of times both in the meridional and the longitudinal directions. The two wrapping numbers are global characteristics of the protein structure. A statistical analysis of the wrapping numbers in terms of crystallographic x-ray structures in the protein data bank (PDB) reveals that proteins have no net chirality in the ϕ direction but in the ψ direction, proteins prefer to display chirality. A comparison between the wrapping numbers and the concept of folding index discloses a non-linearity in their relationship. Thus these three integer valued invariants can be used in tandem, to scrutinize and classify the global loop structure of individual PDB proteins, in terms of the overall fold topology.

  4. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  5. The large- and small-scale Ca II K structure of the Milky Way from observations of Galactic and Magellanic sightlines⋆

    NASA Astrophysics Data System (ADS)

    Smoker, J. V.; Keenan, F. P.; Fox, A. J.

    2015-10-01

    Aims: The large and small-scale (pc) structure of the Galactic interstellar medium can be investigated by utilising spectra of early-type stellar probes of known distances in the same region of the sky. This paper determines the variation in line strength of Ca ii at 3933.661 Å as a function of probe separation for a large sample of stars, including a number of sightlines in the Magellanic Clouds. Methods: FLAMES-GIRAFFE data taken with the Very Large Telescope towards early-type stars in 3 Galactic and 4 Magellanic open clusters in Ca ii are used to obtain the velocity, equivalent width, column density, and line width of interstellar Galactic calcium for a total of 657 stars, of which 443 are Magellanic Cloud sightlines. In each cluster there are between 43 and 111 stars observed. Additionally, FEROS and UVES Ca ii K and Na i D spectra of 21 Galactic and 154 Magellanic early-type stars are presented and combined with data from the literature to study the calcium column density - parallax relationship. Results: For the four Magellanic clusters studied with FLAMES, the strength of the Galactic interstellar Ca ii K equivalent width on transverse scales from ~0.05-9 pc is found to vary by factors of ~1.8-3.0, corresponding to column density variations of ~0.3-0.5 dex in the optically-thin approximation. Using FLAMES, FEROS, and UVES archive spectra, the minimum and maximum reduced equivalent widths for Milky Way gas are found to lie in the range ~35-125 mÅ and ~30-160 mÅ for Ca ii K and Na i D, respectively. The range is consistent with a previously published simple model of the interstellar medium consisting of spherical cloudlets of filling factor ~0.3, although other geometries are not ruled out. Finally, the derived functional form for parallax (π) and Ca ii column density (NCaII) is found to be π(mas) = 1 / (2.39 × 10-13 × NCaII (cm-2) + 0.11). Our derived parallax is ~25 per cent lower than predicted by Megier et al. (2009, A&A, 507, 833) at a distance of

  6. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  7. Spider silk violin strings with a unique packing structure generate a soft and profound timbre.

    PubMed

    Osaki, Shigeyoshi

    2012-04-13

    We overcome the difficulties in pulling long draglines from spiders, twist bundles of dragline filaments, and succeed in preparing violin strings. The twisting is found to change the cross section shapes of filaments from circular to polygonal and to optimize the packing structure with no openings among filaments providing mechanically strong and elastic strings. The spider string signal peaks of overtones for the violin are relatively large at high frequencies, generating a soft and profound timbre. Such a preferable timbre is considered to be due to the unique polygonal packing structure which provides valuable knowledge for developing new types of materials. PMID:22587257

  8. Spider Silk Violin Strings with a Unique Packing Structure Generate a Soft and Profound Timbre

    NASA Astrophysics Data System (ADS)

    Osaki, Shigeyoshi

    2012-04-01

    We overcome the difficulties in pulling long draglines from spiders, twist bundles of dragline filaments, and succeed in preparing violin strings. The twisting is found to change the cross section shapes of filaments from circular to polygonal and to optimize the packing structure with no openings among filaments providing mechanically strong and elastic strings. The spider string signal peaks of overtones for the violin are relatively large at high frequencies, generating a soft and profound timbre. Such a preferable timbre is considered to be due to the unique polygonal packing structure which provides valuable knowledge for developing new types of materials.

  9. Small scale folding observed in the NEEM ice core

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Llorens, Maria-Gema; Westhoff, Julien; Steinbach, Florian; Bons, Paul D.; Kipfstuhl, Sepp; Griera, Albert; Weikusat, Ilka

    2015-04-01

    Disturbances on the centimeter scale in the layering of the NEEM ice core (North Greenland) can be mapped by means of visual stratigraphy as long as the ice does have a visual layering, such as, for example, cloudy bands. Different focal depths of the visual stratigraphy method allow, to a certain extent, a three dimensional view of the structures. In this study we present a structural analysis of the visible folds, discuss characteristics and frequency and present examples of typical fold structures. With this study we aim to quantify the potential impact of small scale folding on the integrity of climate proxy data. We also analyze the structures with regard to the stress environment under which they formed. The structures evolve from gentle waves at about 1700 m to overturned z-folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their shape indicates that they are passive features and are probably not initiated by rheology differences between layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. Lattice orientation distributions for the corresponding core sections were analyzed where available in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c.axis orientations that deviate from that of the matrix, which has more or less a single-maximum fabric at the depth where the folding occurs. We conclude from these data that folding is a consequence of deformation along localized shear planes and kink bands. The findings are compared with results from other deep ice cores. The observations presented are supplemented by microstructural modeling using a crystal plasticity code that reproduces deformation, applying a Fast Fourier Transform (FFT), coupled with ELLE to include dynamic recrystallization processes. The model results reproduce the development of bands of grains with a tilted orientation relative to the single maximum

  10. Philippines: Small-scale renewable energy update

    SciTech Connect

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  11. The structural dynamics of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  12. The structural dynamics of the American five-string banjo.

    PubMed

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices. PMID:14650029

  13. Structure of a confining gluon string within the field correlator method

    SciTech Connect

    Kozlov, I. E.; Chernodub, M. N.

    2009-02-15

    The structure of the chromoelectric string in the Euclidian formulation of Yang-Mills theory is studied by using multipoint correlation functions involving Wilson loop operators and the strength tensors of the gluon field. It is shown that the local densities of the action functional and the squared topological charge in the vicinity of the static-string axis must be markedly smaller than the corresponding values far off the string. Analytic results obtained in this study are in agreement with the results of a lattice simulation of Yang-Mills theory.

  14. Note on structure formation from cosmic string wakes

    SciTech Connect

    Duplessis, Francis; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2013-04-01

    The search for cosmic strings has been of renewed interest with the advent of precision cosmology. In this note we give a quantitative description of the nonlinear matter density fluctuations that can form from a scaling network of cosmic string wakes. Specifically, we compute the distribution of dark matter halos. These halos would possess strong correlations in position space that should have survived until today. We also discuss the challenges involved in their detection due to their small size and the complex dynamics of their formation.

  15. A small scale honey dehydrator.

    PubMed

    Gill, R S; Hans, V S; Singh, Sukhmeet; Pal Singh, Parm; Dhaliwal, S S

    2015-10-01

    A small scale honey dehydrator has been designed, developed, and tested to reduce moisture content of honey below 17 %. Experiments have been conducted for honey dehydration by using drying air at ambient temperature, 30 and 40 °C and water at 35, 40 and 45 °C. In this dehydrator, hot water has been circulated in a water jacket around the honey container to heat honey. The heated honey has been pumped through a sieve to form honey streams through which drying air passes for moisture removal. The honey streams help in increasing the exposed surface area of honey in contact with drying air, thus resulting in faster dehydration of honey. The maximum drying rate per square meter area of honey exposed to drying air was found to be 197.0 g/h-m(2) corresponding to the drying air and water temperature of 40 and 45 °C respectively whereas it was found to be minimum (74.8 g/h-m(2)) corresponding to the drying air at ambient temperature (8-17 °C) and water at 35 °C. The energy cost of honey moisture content reduction from 25.2 to 16.4 % was Rs. 6.20 to Rs. 17.36 (US $ 0.10 to US $ 0.28 (One US $ = 62.00 Indian Rupee on February, 2014) per kilogram of honey. PMID:26396418

  16. Small-scale eruptive filaments on the quiet sun

    NASA Technical Reports Server (NTRS)

    Hermans, Linda M.; Martin, Sara F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments.

  17. A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-01-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Ha image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Ha, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the

  18. A High-resolution X-Ray and Optical Study of SN 1006: Asymmetric Expansion and Small-scale Structure in a Type Ia Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-02-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Hα image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of ~7400 km s-1 (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NW rim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Hα, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006 an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the northeast

  19. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  20. Effects of cosmic strings on free streaming

    SciTech Connect

    Takahashi, Tomo; Yamaguchi, Masahide

    2006-09-15

    We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter.

  1. Investigating dark matter substructure with pulsar timing - II. Improved limits on small-scale cosmology

    NASA Astrophysics Data System (ADS)

    Clark, Hamish A.; Lewis, Geraint F.; Scott, Pat

    2016-02-01

    Ultracompact minihaloes (UCMHs) have been proposed as a type of dark matter substructure seeded by large-amplitude primordial perturbations and topological defects. UCMHs are expected to survive to the present era, allowing constraints to be placed on their cosmic abundance using observations within our own Galaxy. Constraints on their number density can be linked to conditions in the early Universe that impact structure formation, such as increased primordial power on small scales, generic weak non-Gaussianity, and the presence of cosmic strings. We use new constraints on the abundance of UCMHs from pulsar timing to place generalized limits on the parameters of each of these cosmological scenarios. At some scales, the limits are the strongest to date, exceeding those from dark matter annihilation. Our new limits have the added advantage of being independent of the particle nature of dark matter, as they are based only on gravitational effects.

  2. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives.

  3. Structure formation in a string-inspired modification of the cold dark matter model

    SciTech Connect

    Gubser, Steven S.; Peebles, P.J.E.

    2004-12-15

    Motivated in part by string theory, we consider the idea that the standard {lambda}CDM cosmological model might be modified by the effect of a long-range scalar dark matter interaction. The variant of this widely-discussed notion considered here is suggested by the Brandenberger-Vafa [R. H. Brandenberger and C. Vafa, Nucl. Phys. B316, 391 (1989).] picture for why we perceive three spatial dimensions. In this picture there may be at least two species of dark matter particles, with scalar charges such that the scalar interaction attracts particles with like sign and repels unlike signs. The net charge vanishes. Under this condition the evolution of the mass distribution in linear perturbation theory is the same as in the {lambda}CDM cosmology, and both models therefore can equally well pass the available cosmological tests. The physics can be very different on small scales, however: if the scalar interaction has the strength suggested by simple versions of the string scenario, nonlinear mass concentrations are unstable against separation into charged halos with properties unlike the standard model prediction and possibly of observational interest.

  4. Structure formation in a string-inspired modification of the cold dark matter model

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Peebles, P. J. E.

    2004-12-01

    Motivated in part by string theory, we consider the idea that the standard ΛCDM cosmological model might be modified by the effect of a long-range scalar dark matter interaction. The variant of this widely-discussed notion considered here is suggested by the Brandenberger-Vafa [R. H. BrandenbergerC. Vafa, Nucl. Phys.B3161989391] picture for why we perceive three spatial dimensions. In this picture there may be at least two species of dark matter particles, with scalar charges such that the scalar interaction attracts particles with like sign and repels unlike signs. The net charge vanishes. Under this condition the evolution of the mass distribution in linear perturbation theory is the same as in the ΛCDM cosmology, and both models therefore can equally well pass the available cosmological tests. The physics can be very different on small scales, however: if the scalar interaction has the strength suggested by simple versions of the string scenario, nonlinear mass concentrations are unstable against separation into charged halos with properties unlike the standard model prediction and possibly of observational interest.

  5. Axions, neutrinos and strings: The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1984-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  6. Axions, neutrinos and strings - The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1986-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  7. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  8. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  9. APOGEE strings: A fossil record of the gas kinematic structure

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Alves, J.; Forbrich, J.; Meingast, S.; Kubiak, K.; Großschedl, J.

    2016-05-01

    We compare APOGEE radial velocities (RVs) of young stars in the Orion A cloud with CO line gas emission and find a correlation between the two at large scales in agreement with previous studies. However, at smaller scales we find evidence for the presence of a substructure in the stellar velocity field. Using a friends-of-friends approach we identify 37 stellar groups with almost identical RVs. These groups are not randomly distributed, but form elongated chains or strings of stars with five or more members with low velocity dispersion across lengths of 1-1.5 pc. The similarity between the kinematic properties of the APOGEE strings and the internal velocity field of the chains of dense cores and fibers recently identified in the dense interstellar medium is striking and suggests that for most of the Orion A cloud, young stars keep memory of the parental gas substructure where they originated. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A80

  10. APOGEE strings: A fossil record of the gas kinematic structure

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Alves, J.; Forbrich, J.; Meingast, S.; Kubiak, K.; Großschedl, J.

    2016-04-01

    We compare APOGEE radial velocities (RVs) of young stars in the Orion A cloud with CO line gas emission and find a correlation between the two at large scales in agreement with previous studies. However, at smaller scales we find evidence for the presence of a substructure in the stellar velocity field. Using a friends-of-friends approach we identify 37 stellar groups with almost identical RVs. These groups are not randomly distributed, but form elongated chains or strings of stars with five or more members with low velocity dispersion across lengths of 1-1.5 pc. The similarity between the kinematic properties of the APOGEE strings and the internal velocity field of the chains of dense cores and fibers recently identified in the dense interstellar medium is striking and suggests that for most of the Orion A cloud, young stars keep memory of the parental gas substructure where they originated. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A80

  11. Small-scale sedimentary structures and their implications in recognizing large-scale ancient tidal bedforms. Example from Dur At Talah outcrop, Late Eocene, Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Abouessa, Ashour; Duringer, Philippe; Schuster, Mathieu; Pelletier, Jonathan; Rubino, Jean-Loup

    2014-12-01

    The Dur At Talah escarpment (150 m thick and 150 km long) is exposed at the southern side of the Sirt Basin, central Libya. This outcrop exposes an Upper Eocene succession, composed by highly bioturbated fine grained sandstones to claystones at the base (New Idam Unit; 80-100 m thick), overlain by medium grained to microconglomeratic sandstones at the top (Sarir Unit; 60 m thick). The latter is split into two subunits of nearly equal thickness: the lower Sarir subunit, composed of medium to coarse cross-bedded sandstones; and the upper Sarir subunit, composed of very coarse to microconglomeratic sandstones. The whole succession evolves from shallow marine estuarine (the New Idam Unit) to fluvial deposits (the upper Sarir subunit). The sandstone of the lower Sarir subunit, which is the focus of this article, is previously misinterpreted as being deposited in a purely fluvial environment. However, close observations revealed that the depositional environment is largely tide-influenced. It is notably marked by conspicuous subaqueous dune cross-stratifications that bear a variety of discrete, multi-scale, sedimentary structures evidencing their deposition in tidal rather than fluvial setting. Mud drapes, tidal bundles, and perpendicularly draining and oppositely climbing ripples are largely developed. Among these structures, the most diagnostic are of millimetric to centimetric scale. As a prime aim of this article, all these sedimentary structures are described, interpreted, and discussed for the first time from this outcrop. Their style of association and the quality of their preservation provide an outstanding ancient example of tide-dominated siliciclastic systems. Such structures are rarely found together in one outcrop as they are in Dur At Talah, and they provide a significant indicators in identifying ancient bedforms of tidal origin. Evidences of subtidal and intertidal depositional environments are afforded by these structures. Criteria indicative of

  12. Method and system for small scale pumping

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  13. Small scale bipolar nickel-hydrogen testing

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1988-01-01

    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value.

  14. A structural dynamics and experimental investigation of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe; Wakland, Ray

    2003-04-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems, i.e., plucked strings that drive a circular, radiating, membrane. A structural dynamics model and experiment are used to characterize the sound and relate changes in sound to setup parameters. Three figures-of-merit, FOMs, are defined; they are loudness, brightness, and decay rate of the sound. The effects of a number of parameters on the FOMs are investigated analytically and experimentally. Among these are the loss factor and tension of the membrane, mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  15. Supersymmetric structure of the bosonic string theory in the Beltrami parametrization

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. Werneck; Schweda, M.; Sorella, S. P.

    1993-09-01

    We show that the bosonic string theory quantized in the Beltrami parametrization possesses a supersymmetric structure like the vector-supersymmetry already observed in topological field theories. Supported in part by the ``Fonds zur Förderung der Wissenschaftlichen Forschung'', M008-Lise Meitner Fellowship.

  16. Associations between small-scale structure in the GALFA survey data of HI in the galactic disk and similar features in the Cosmic Microwave Background observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2016-01-01

    High-resolution HI data obtained as part of the Arecibo GALFA survey have been compared with PLANCK data at 143 GHz and 857 GHz. The analysis confirms what has been reported previously, that sources of high-frequency continuum radiation exist in the galactic interstellar medium that produce structure that has been incorrectly interpreted as being cosmological in origin. The mechanism appears to be free-free emission from electron concentrations in regions where the dust and HI are similarly clumped or otherwise enhanced due to geometric effects. By comparing model calculations with the data it is concluded that the source of the radiation is relatively close to the sun, or order 25 to 50 pc distant. The required ionization fraction relative to HI is of order 0.05 - 0.08 for the areas tested.

  17. Slip Dynamics in Small Scale Crystals

    NASA Astrophysics Data System (ADS)

    Maass, Robert; Derlet, Peter; Greer, Julia; Volkert, Cynthia

    2015-03-01

    Classical work showed that dislocation velocities are strongly dependent on applied stress. Numerous experiments have validated this for individual or groups of dislocations in macroscopic crystals by using imaging techniques combined with either mechanical data or time resolved topological data. Developments in small scale mechanical testing allow to correlate the intermittency of collective dislocation motion with the mechanical response. Discrete forward surges in displacement can be related to dislocation avalanches, which are triggered by the evolving dislocation sub-structure. We study the spatiotemporal characteristics of intermittent plastic flow in quasi-statically sheared single crystalline Au crystals with diameters between 300 nm and 10000 nm, whose displacement bursts were recorded at several kHz (Scripta Mater. 2013, 69, 586; Small, available online). Both the crystallographic slip magnitude, as well as the velocity of the slip events are exhibiting power-law scaling as. The obtained slip velocity distribution has a cubic decay at high values, and a saturated flat shoulder at lower velocities. No correlation between the slip velocity and the applied stress or plastic strain is found. Further, we present DD-simulations that are supportive of our experimental findings. The simulations suggest that the dynamics of the internal stress fields dominate the evolving dislocation structure leading to velocities that are insensitive to the applied stress - a regime indicative of microplasticity.

  18. Large and small scale structural evolution of salt controlled minibasin in a fold and thrust belt setting: the case of the Sivas Basin, Turkey.

    NASA Astrophysics Data System (ADS)

    Kergaravat, Charlie; Ribes, Charlotte; Legeay, Etienne; Callot, Jean-Paul; Aubourg, Charles; Ringenbach, Jean-Claude

    2016-04-01

    The Sivas Basin in the Central Anatolian Plateau (Turkey) is a foreland fold-and-thrust belt, showing a core composed by a typical wall and basin structure (WABS), where the quality of reservoir rocks is governed primarily by the fracture and matrix damage, in relation to the macroscopic structure. Based on extensive fieldwork including detailed mapping of minibasins contacts, along with interpretation of a 2D regional seismic line, provide evidence for the development of a canopy separating two generations of MBs. The quality of reservoir rocks in these minibasins framed by evaporites is studied through (1) the characterization of the fracture network in two mini-basins, where 40 sites have been acquired, and (2) the magnetic fabric of 135 samples from sandstones to siltstones rocks from both Emirhan and Karayun mini-basins. The Late Eocene-early Oligocene evaporite level was remobilized during the northward migration of the sedimentary load during propagation of the foreland FTB. Evaporites occur at the base of several MBs, overlain by formations younger than those filling the initial generation of MBs. This support a second generation of MBs developped over an allochthonous evaporite level. The wavelength of tectonic structures increases away from the WABS domain and suggests a deepening of the decollement level. The polygonal pattern of the WABS influences the growing FTB system during the late stage of secondary MBs development, acting as a transfer zone between a forelandward thrust sheet propagating to the west and a triangular zone with hinterlandward thrusts to the east. The shortening is accommodated within the WABS by squeezed walls and diapirs, and by the translation/rotation of MBs, recorded by strike-slip fault zones. Considering the reservoir scale damage, both mini-basins display similar fracture network of pre-tilt fractures. In both mini-basins, we observed an early N-S fracture network, bed-perpendicular and parallel to the shortening. It is

  19. Interfacial structure of multi-layered thin-films produced by pulsed laser deposition for use in small-scale ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Araki, Takao; Hino, Takanori; Ohara, Masahiro

    2014-08-01

    The aim of this study was to develop thin film capacitors with superior properties that could provide an alternative to materials currently used in conventional multi-layer ceramic capacitors fabricated by sintering. To this end, an artificial dielectric super lattice technique, incorporating pulsed laser deposition, was applied to improving the dielectric properties of thin film capacitors. This method permits the A-site atoms of a perovskite ABO3 structure to be selected layer by layer at a nanoscopic scale; consequently, multi-layer BaTiO3- SrTiO3 thin films were produced on Pt(111)/Ti/SiO2/Si(100) and SrTiO3(111) substrates. Hetero-epitaxial grain growth was observed between BaTiO3 and SrTiO3, with the lattice mismatch between them introducing a compressive residual strain at the interface. The dielectric properties of these multi-layer thin-film capacitors were found to be superior to those of conventional solid-solution thin films once the thickness of the layers and the ratio of the two oxides were optimized.

  20. X-ray computed tomography investigation of structures in Opalinus Clay from large-scale to small-scale after mechanical testing

    NASA Astrophysics Data System (ADS)

    Kaufhold, Annette; Halisch, Matthias; Zacher, Gerhard; Kaufhold, Stephan

    2016-08-01

    In the past years X-ray computed tomography (CT) has became more and more common for geoscientific applications and is used from the µm-scale (e.g. for investigations of microfossils or pore-scale structures) up to the dm-scale (full drill cores or soil columns). In this paper we present results from CT imaging and mineralogical investigations of an Opalinus Clay core on different scales and different regions of interest, emphasizing especially the 3-D evaluation and distribution of cracks and their impact on mechanical testing of such material. Enhanced knowledge of the testing behaviour of the Opalinus Clay is of great interest, especially since this material is considered for a long-term radioactive waste disposal and storage facility in Switzerland. Hence, results are compared regarding the mineral (i.e. phase) contrast resolution, the spatial resolution, and the overall scanning speed.With this extensive interdisciplinary scale-down approach it has been possible to characterize the general fracture propagation in comparison to mineralogical and textural features of the Opalinus Clay. Additionally, and as far as we know, a so-called mylonitic zone, located at an intersect of two main fractures, has been observed for the first time for an experimentally deformed Opalinus sample. The multi-scale results are in good accordance to data from naturally deformed Opalinus Clay samples, which enables us to perform systematical research under controlled laboratory conditions. Accompanying 3-D imaging greatly enhances the capability of data interpretation and assessment of such a material.

  1. Small-scale Anisotropies of Cosmic Rays from Relative Diffusion

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  2. Mapping hydrogeophysical structures with time--domain electromagnetic methods: Resolving small-scale details with large loops and three--component measurements

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Li, Y.; Nabighian, M.

    2004-12-01

    One of the outstanding problems in managing water resources in geologically complex aquifers is to develop improved techniques for mapping compartmentalization due to faulting. And although the role of faults in aquifer dynamics can vary considerably, knowledge of their location is key to understanding aquifer recharge and developing a sensible model for predicting aquifer response due to anthropogenic loads. We have explored the application of time--domain electromagnetic methods for mapping shallow aquifer faults on the western flanks of the Estancia Basin, central New Mexico. The field site is underlain by massive Pennsylvanian limestones (Madera Group) subsequently faulted by Laramide tectonics of the Ancestral Rockies and Neogene extension of the Rio Grande Rift. Two experimental configurations were deployed: a large 50 × 40 m transmitter loop with receiver stations located on a 5 m grid over the loop's interior; and an azimuthal survey consisting of a smaller fixed transmitter with receiver stations at ˜2 m intervals along a 30 m radius circle centered on the transmitter. Three--component transients of magnetic field due to a fast linear ramp--off in the transmitter were recorded at each station. As a rapid reconnaisance tool, the azimuthal experiment is well--suited for identification of subsurface fault planes since symmetry constraints require a vanishing azimuthal ̂ φ component of magnetic field when the electrical strike, or fault plane, lies in the ̂ φ direction. However, each of the experimental configurations revealed that the site's electrical structure is far more three--dimensional than previously believed and is not dominated by the response of a previously identified fault plane. Instead, we have observed spatially coherent transient signals which may indicate compartmentalization over length scales as small as a few tens of meters. Sections of this work were performed at Sandia National Laboratories. Sandia is a multi--program laboratory

  3. Reconnection rates, small scale structures and simulations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.

    1983-01-01

    The study of reconnection in the context of one fluid, two dimensional magnetohydrodynamics (MHD), with spatially uniform constant density, viscosity and resistivity is though to retain most of the physics important in reconnection. Much of the existing reconnection literature makes use of this approach. This discussion focuses on attempts to determine the properties of reconnection solutions to MHD as precisely as possible without regard to the intrinsic limitations of the model.

  4. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B)(exp 1): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.; Ohashi, N.; Okamoto, Y.; Momose, M.; Honda, M.; Inutsuka, S.; Takeuchi, T.; Dong, R.; Abe, L.; Brandner, W.; Brandt, T.; Carson, J.; Egner, S.; Feldt, M.; Fukue, T.; Goto, M.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,

  5. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Currie, T.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.

  6. DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY

    SciTech Connect

    Muto, T.; Takeuchi, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M.; Currie, T.; Ohashi, N.; Okamoto, Y.; Momose, M.; Honda, M.; Inutsuka, S.; Dong, R.; Brandt, T.; Abe, L.; Brandner, W.; and others

    2012-04-01

    We present high-resolution, H-band imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of a dust-depleted cavity at r {<=} 46 AU, our observations reveal the presence of scattered light components as close as 0.''2 ({approx} 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.''5 ({approx} 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h {approx} 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelength observations.

  7. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, D. R.

    1983-01-01

    Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.

  8. Formation of large-scale structure from cosmic-string loops and cold dark matter

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1987-01-01

    Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.

  9. Large-scale structure from cosmic-string loops in a baryon-dominated universe

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1988-01-01

    The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.

  10. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  11. SMALL SCALE ETHANOL DRYING - PHASE II

    EPA Science Inventory

    This program exceeded all key milestones. Using cellulose Waste, CMS demonstrated novel ethanol drying membranes via small scale dephlegmation process that yields fuel grade ethanol (FGE) at a lower cost than large switch grass ethanol plants. This success yields positive valu...

  12. IAPSA 2 small-scale system specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Torkelson, Thomas C.

    1990-01-01

    The details of a hardware implementation of a representative small scale flight critical system is described using Advanced Information Processing System (AIPS) building block components and simulated sensor/actuator interfaces. The system was used to study application performance and reliability issues during both normal and faulted operation.

  13. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  14. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  15. Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1988-01-01

    These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.

  16. Fast randomized approximate string matching with succinct hash data structures

    PubMed Central

    2015-01-01

    Background The high throughput of modern NGS sequencers coupled with the huge sizes of genomes currently analysed, poses always higher algorithmic challenges to align short reads quickly and accurately against a reference sequence. A crucial, additional, requirement is that the data structures used should be light. The available modern solutions usually are a compromise between the mentioned constraints: in particular, indexes based on the Burrows-Wheeler transform offer reduced memory requirements at the price of lower sensitivity, while hash-based text indexes guarantee high sensitivity at the price of significant memory consumption. Methods In this work we describe a technique that permits to attain the advantages granted by both classes of indexes. This is achieved using Hamming-aware hash functions--hash functions designed to search the entire Hamming sphere in reduced time--which are also homomorphisms on de Bruijn graphs. We show that, using this particular class of hash functions, the corresponding hash index can be represented in linear space introducing only a logarithmic slowdown (in the query length) for the lookup operation. We point out that our data structure reaches its goals without compressing its input: another positive feature, as in biological applications data is often very close to be un-compressible. Results The new data structure introduced in this work is called dB-hash and we show how its implementation--BW-ERNE--maintains the high sensitivity and speed of its (hash-based) predecessor ERNE, while drastically reducing space consumption. Extensive comparison experiments conducted with several popular alignment tools on both simulated and real NGS data, show, finally, that BW-ERNE is able to attain both the positive features of succinct data structures (that is, small space) and hash indexes (that is, sensitivity). Conclusions In applications where space and speed are both a concern, standard methods often sacrifice accuracy to obtain

  17. DOE small scale fuel alcohol plant design

    SciTech Connect

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  18. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  19. TS-AMIR: a topology string alignment method for intensive rapid protein structure comparison

    PubMed Central

    2012-01-01

    Background In structural biology, similarity analysis of protein structure is a crucial step in studying the relationship between proteins. Despite the considerable number of techniques that have been explored within the past two decades, the development of new alternative methods is still an active research area due to the need for high performance tools. Results In this paper, we present TS-AMIR, a Topology String Alignment Method for Intensive Rapid comparison of protein structures. The proposed method works in two stages: In the first stage, the method generates a topology string based on the geometric details of secondary structure elements, and then, utilizes an n-gram modelling technique over entropy concept to capture similarities in these strings. This initial correspondence map between secondary structure elements is submitted to the second stage in order to obtain the alignment at the residue level. Applying the Kabsch method, a heuristic step-by-step algorithm is adopted in the second stage to align the residues, resulting in an optimal rotation matrix and minimized RMSD. The performance of the method was assessed in different information retrieval tests and the results were compared with those of CE and TM-align, representing two geometrical tools, and YAKUSA, 3D-BLAST and SARST as three representatives of linear encoding schemes. It is shown that the method obtains a high running speed similar to that of the linear encoding schemes. In addition, the method runs about 800 and 7200 times faster than TM-align and CE respectively, while maintaining a competitive accuracy with TM-align and CE. Conclusions The experimental results demonstrate that linear encoding techniques are capable of reaching the same high degree of accuracy as that achieved by geometrical methods, while generally running hundreds of times faster than conventional programs. PMID:22336468

  20. Small-Scale High-Performance Optics

    SciTech Connect

    WILSON, CHRISTOPHER W.; LEGER, CHRIS L.; SPLETZER, BARRY L.

    2002-06-01

    Historically, high resolution, high slew rate optics have been heavy, bulky, and expensive. Recent advances in MEMS (Micro Electro Mechanical Systems) technology and micro-machining may change this. Specifically, the advent of steerable sub-millimeter sized mirror arrays could provide the breakthrough technology for producing very small-scale high-performance optical systems. For example, an array of steerable MEMS mirrors could be the building blocks for a Fresnel mirror of controllable focal length and direction of view. When coupled with a convex parabolic mirror the steerable array could realize a micro-scale pan, tilt and zoom system that provides full CCD sensor resolution over the desired field of view with no moving parts (other than MEMS elements). This LDRD provided the first steps towards the goal of a new class of small-scale high-performance optics based on MEMS technology. A large-scale, proof of concept system was built to demonstrate the effectiveness of an optical configuration applicable to producing a small-scale (< 1cm) pan and tilt imaging system. This configuration consists of a color CCD imager with a narrow field of view lens, a steerable flat mirror, and a convex parabolic mirror. The steerable flat mirror directs the camera's narrow field of view to small areas of the convex mirror providing much higher pixel density in the region of interest than is possible with a full 360 deg. imaging system. Improved image correction (dewarping) software based on texture mapping images to geometric solids was developed. This approach takes advantage of modern graphics hardware and provides a great deal of flexibility for correcting images from various mirror shapes. An analytical evaluation of blur spot size and axi-symmetric reflector optimization were performed to address depth of focus issues that occurred in the proof of concept system. The resulting equations will provide the tools for developing future system designs.

  1. Small-scale dynamic gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm David

    2012-03-01

    In this paper we describe a new small-scale test, requiring small quantities of energetic material, designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. This arrangement allows less reactive materials that are below their critical diameter, more time to react. We present details of the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  2. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  3. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  4. Small-scale clumps in the Galactic halo

    SciTech Connect

    Berezinsky, V. S.; Dokuchaev, V. I. Eroshenko, Yu. N.

    2010-01-15

    A mass function of small-scale dark matter clumps is calculated. We take into account the tidal destruction of clumps at early stages of structure formation starting from a time of clump detachment from the Universe expansion. Only a small fraction of these clumps, {approx}0.1%, in each logarithmic mass interval {Delta} log M {approx} 1 survives the stage of hierarchical clustering. We calculate the probability of surviving of the remnants of dark matter clumps in the Galaxy by modelling the tidal destruction of the small-scale clumps by disk and stars. It is demonstrated that a substantial fraction of clump remnants may survive through the tidal destruction during the lifetime of the Galaxy if a radius of core is rather small. The resulting mass spectrum of survived clumps is extended down to the mass of the core of the cosmologically produced clumps with a minimal mass. The survived dense remnants of tidally destructed clumps provides a large contribution to the annihilation signal in the Galaxy. We describe the anisotropy of dark matter clump distribution caused by tidal destruction of clumps in the Galactic disk. A corresponding annihilation of dark matter particles in small-scale clumps produces the anisotropic gamma-ray signal with respect to the Galactic disk.

  5. Empirical spatial econometric modelling of small scale neighbourhood

    NASA Astrophysics Data System (ADS)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  6. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  7. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

    NASA Astrophysics Data System (ADS)

    Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.

    2015-01-01

    A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

  8. Small-scale modular wind turbine

    NASA Astrophysics Data System (ADS)

    Bressers, Scott; Vernier, Chris; Regan, Jess; Chappell, Stephen; Hotze, Mark; Luhman, Stephen; Avirovik, Dragan; Priya, Shashank

    2010-04-01

    This study reports the design, fabrication, and implementation of a horizontal-axis, small-scale modular wind turbine termed as "small-scale wind energy portable turbine (SWEPT)". Portability, efficient operation at low wind speeds, and cost-effectiveness were the primary goals of SWEPT. The fabrication and component design for SWEPT are provided along with the modifications that can provide improvement in performance. A comparative analysis is presented with the prototype reported in literature. The results show that current version of SWEPT leads to 150% increase in output power. It was found that SWEPT can generate 160 mW power at rated wind speed of 7 mph and 500mW power at wind speeds above 10 mph with a cut-in wind speed of 3.8 mph. Furthermore, the prototype was subjected to field testing in which the average output was measured to be 40 mW despite the average wind distribution being centered around 3 mph.

  9. Expanded Small-Scale Shock Reactivity Test

    NASA Astrophysics Data System (ADS)

    Granholm, Richard

    2005-07-01

    Explosives react from a strong shock, even in quantities too small for detonation. The potential for a new material to be an explosive can be evaluated from this shock reactivity. The recently developed small-scale shock reactivity test (SSRT)ootnotetextH. W. Sandusky, R. H. Granholm, D. G. Bohl, ``Small-Scale Shock Reactivity Test,'' NSWC Technical Report (in publication), Naval Surface Warfare Center, Indian Head, MD 20640 uses very high confinement to allow prompt reactions to occur in less than half-gram samples well below critical diameter, with the reactions quantified by a dent in a soft aluminum witness block. This test has been expanded to simultaneously measure both early and late-time reactions from a single sample subjected to the output from an RP-80 detonator. The sample apparatus is further confined within a small chamber instrumented with a pressure gage for internal air blast. This provides a measure of late-time reactions, such as from fuel/air combustion. Results are shown from several simultaneous early- and late-reaction measurements.

  10. Small-scale universality in fluid turbulence

    PubMed Central

    Schumacher, Jörg; Scheel, Janet D.; Krasnov, Dmitry; Donzis, Diego A.; Yakhot, Victor; Sreenivasan, Katepalli R.

    2014-01-01

    Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re ∼ 102 the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range. PMID:25024175

  11. Large- and small-scale constraints on power spectra in Omega = 1 universes

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.

    1993-01-01

    The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.

  12. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy Dennis J., Jr.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. Additional information is contained in the original extended abstract.

  13. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  14. Stringlike structures in Kerr-Schild geometry: The N=2 string, twistors, and the Calabi-Yau twofold

    NASA Astrophysics Data System (ADS)

    Burinskii, A. Ya.

    2013-11-01

    The four-dimensional Kerr-Schild geometry contains two stringy structures. The first is the closed string formed by the Kerr singular ring, and the second is an open complex string obtained in the complex structure of the Kerr-Schild geometry. The real and complex Kerr strings together form a membrane source of the over-rotating Kerr-Newman solution without a horizon, a = J/m ≫ m. It was also recently found that the principal null congruence of the Kerr geometry is determined by the Kerr theorem as a quartic in the projective twistor space, which corresponds to an embedding of the Calabi-Yau twofold into the bulk of the Kerr geometry. We describe this embedding in detail and show that the four sheets of the twistorial K3 surface represent an analytic extension of the Kerr congruence created by antipodal involution.

  15. Overview of the Testing of a Small-Scale Proprotor

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yamauchi, Gloria K.; Booth, Earl R., Jr.; Botha, Gavin; Dawson, Seth

    1999-01-01

    This paper presents an overview of results from the wind tunnel test of a 1/4-scale V-22 proprotor in the Duits-Nederlandse Windtunnel (DNW) in The Netherlands. The small-scale proprotor was tested on the isolated rotor configuration of the Tilt Rotor Aeroacoustic Model (TRAM). The test was conducted by a joint team from NASA Ames, NASA Langley, U.S. Army Aeroflightdynamics Directorate, and The Boeing Company. The objective of the test was to acquire a benchmark database for validating aeroacoustic analyses. Representative examples of airloads, acoustics, structural loads, and performance data are provided and discussed.

  16. Soft-shear induced phase-separated nanoparticle string-structures in polymer thin films.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Berry, Brian C; Karim, Alamgir

    2016-04-12

    Application of shear stress has been shown to unidirectionally orient the microstructures of block copolymers and polymer blends. In the present work, we study the phase separation of a novel nanoparticle (NP)-polymer blend thin film system under shear using a soft-shear dynamic zone annealing (DZA-SS) method. The nanoparticles are densely grafted with polymer chains of chemically dissimilar composition from the matrix polymer, which induces phase separation upon thermal annealing into concentrated nanoparticle domains. We systematically examine the influence of DZA-SS translation speed and thus the effective shear rate on nanoparticle domain elongation and compare this with the counterpart binary polymer blend behavior. Unidirectionally aligned nanoparticle string-domains are fabricated in the presence of soft-shear in confined thin film geometry. We expect this DZA-SS method to be applicable to various NP-polymer blends towards unidirectionally aligned nanoparticle structures, which are important to functional nanoparticle structure fabrication. PMID:26814827

  17. Open String on Symmetric Product

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroyuki; Matsuo, Yutaka

    We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).

  18. Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree.

    PubMed

    Zhang, Ke; Hughes-Oliver, Jacqueline M; Young, S Stanley

    2013-01-01

    A new classification method called the Optimal Bit String Tree is proposed to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its optimal chromosome form the splitting variable. A new stochastic searching scheme that contains a weighted sampling scheme, simulated annealing, and a trimming procedure optimizes the choice of splitting variable. Simulation studies and an application to screening monoamine oxidase (MAO) inhibitors show that OBSTree is advantageous in accurately and effectively identifying QSAR rules and finding different classes of active compounds. Details of the algorithm, SAS code, and simulated and real datasets are available online as supplementary materials. PMID:23878407

  19. Simulations of Small-Scale Liquid Film Combustors

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sirignano, William

    2015-11-01

    Recent technological advances have generated need for small-scale combustor designs. The reduction of scale, however, leads to a higher area to volume ratio and thus greater relative heat loss. Liquid film combustors are one proposed design which aims to overcome this obstacle. In them, the fuel is injected as a liquid film on the combustor wall, and heat transfer is reduced due to evaporative cooling of the liquid film leading to reduced temperature gradients at the combustor walls. In this work, we present simulation results for a cylindrical small scale liquid film combustor, in which the reactants are liquid heptane and gaseous air. A computational procedure has been developed to simulate this two-phase combustion problem, using detailed chemical mechanisms. A cubic equation of state is applied for the simulation of the gaseous phase at high pressures. The present study examines the structure of the triple flame inside this combustor design, which has been analyzed in previous experimental work. Comparison between simulation and experimental work is made, with particular emphasis on the influence of the chemical mechanism, high-pressure equation of state, and the effect of swirl amplitudes in the liquid and gas phases on the structure of the flame. Supported by AFOSR grant FA9550-12-1-0156, AFOSR scientific manager: Dr. Mitat Birkan.

  20. Hall-magnetohydrodynamic small-scale dynamos.

    PubMed

    Gómez, Daniel O; Mininni, Pablo D; Dmitruk, Pablo

    2010-09-01

    Magnetic field generation by dynamo action is often studied within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect may become non-negligible. We present results from three-dimensional simulations of the Hall-MHD equations subjected to random nonhelical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter. For small values of the Hall parameter, the small-scale dynamo is more efficient, displaying faster growth and saturating at larger amplitudes of the magnetic field. For larger values of the Hall parameter, saturation of the magnetic field is reached at smaller amplitudes than in the MHD case. We also study energy transfer rates among spatial scales and show that the Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, therefore leading to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in the hot and diffuse interstellar medium. In the range of magnetic Prandtl numbers considered, the Hall effect moves the peak of the magnetic energy spectrum as well as other relevant magnetic length scales toward the Hall scale. PMID:21230195

  1. Small-scale dynamic confinement gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm

    2011-06-01

    Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  2. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  3. String Cosmology

    NASA Astrophysics Data System (ADS)

    Kraniotis, G. V.

    In this work, we review recent work on string cosmology. The need for an inflationary era is well known. Problems of Standard Cosmology such as horizon, flatness, monopole and entropy find an elegant solution in the inflationary scenario. On the other hand no adequate inflationary model has been constructed so far. In this review we discuss the attempts that have been made in the field of string theory for obtaining an adequate Cosmological Inflationary Epoch. In particular, orbifold compactifications of string theory which are constrained by target-space duality symmetry offer as natural candidates for the role of inflatons the orbifold moduli. Orbifold moduli dynamics is very constrained by duality symmetry and offers a concrete framework for discussing Cosmological Inflation. We discuss the resulting cosmology assuming that nonperturbative dynamics generates a moduli potential which respects target-space modular invariance. Various modular forms for the nonperturbative superpotential and Kähler potential which include the absolute modular invariant j(T) besides the Dedekind eta function η(T) are discussed. We also review scale-factor duality and pre-Big-Bang scenarios in which inflation is driven by the kinetic terms of the dilaton modulus. In this context we discuss the problem of graceful exit and review recent attempts for solving the problem of exiting from inflation. The possibility of obtaining inflation through the D-terms in string models with anomalous UA(1) and other Abelian factors is reviewed. In this context we discuss how the slow-roll problem in supergravity models with F-term inflation can be solved by D-term inflation. We also briefly review the consequences of duality for a generalized Heisenberg uncertainty principle and the structure of space-time at short scales. The problem of the Cosmological Constant is also briefly discussed.

  4. TURBULENT SMALL-SCALE DYNAMO ACTION IN SOLAR SURFACE SIMULATIONS

    SciTech Connect

    Graham, Jonathan Pietarila; Cameron, Robert; Schuessler, Manfred

    2010-05-10

    We demonstrate that a magneto-convection simulation incorporating essential physical processes governing solar surface convection exhibits turbulent small-scale dynamo action. By presenting a derivation of the energy balance equation and transfer functions for compressible magnetohydrodynamics, we quantify the source of magnetic energy on a scale-by-scale basis. We rule out the two alternative mechanisms for the generation of the small-scale magnetic field in the simulations: the tangling of magnetic field lines associated with the turbulent cascade and Alfvenization of small-scale velocity fluctuations ('turbulent induction'). Instead, we find that the dominant source of small-scale magnetic energy is stretching by inertial-range fluid motions of small-scale magnetic field lines against the magnetic tension force to produce (against Ohmic dissipation) more small-scale magnetic field. The scales involved become smaller with increasing Reynolds number, which identifies the dynamo as a small-scale turbulent dynamo.

  5. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    SciTech Connect

    Zhang, Hao; Zhong, Cheng; Wang, Xiaodong; Cao, Qingping; Jiang, Jian-Zhong E-mail: jack.douglas@nist.gov; Douglas, Jack F. E-mail: jack.douglas@nist.gov; Zhang, Dongxian

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  6. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.

    PubMed

    Zhang, Hao; Zhong, Cheng; Douglas, Jack F; Wang, Xiaodong; Cao, Qingping; Zhang, Dongxian; Jiang, Jian-Zhong

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations. PMID:25933773

  7. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhong, Cheng; Douglas, Jack F.; Wang, Xiaodong; Cao, Qingping; Zhang, Dongxian; Jiang, Jian-Zhong

    2015-04-01

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  8. Experimental, theoretical, and numerical studies of small scale combustion

    NASA Astrophysics Data System (ADS)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  9. Cosmic string with a light massive neutrino

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8/h Mpc, we find that the spectrum has more power on small scales than HDM + inflation, less than cold dark matter (CDM) + inflation, and significantly less the CDM + strings. With HDM, large wakes give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.

  10. The social structure of experimental'' strings at Fermilab; a physics and detector driven model

    SciTech Connect

    Bodnarczuk, M.

    1990-12-12

    Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP.

  11. String Theory

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    2013-01-01

    After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.

  12. String Things.

    ERIC Educational Resources Information Center

    Mesa Public Schools, AZ.

    Designed for music educators instructing grades 4 through 8 in string instruments, this Mesa (Arizona) public schools guide presents information on the string curriculum, orchestras, and practicing. The goals and objectives for string instruments delineate grade levels and how student skills will be verified. Following 17 curriculum goal tests,…

  13. Hammered Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.

  14. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure

    PubMed Central

    Atkin-Smith, Georgia K.; Tixeira, Rochelle; Paone, Stephanie; Mathivanan, Suresh; Collins, Christine; Liem, Michael; Goodall, Katharine J.; Ravichandran, Kodi S.; Hulett, Mark D.; Poon, Ivan K.H.

    2015-01-01

    Disassembly of apoptotic cells into smaller fragments (a form of extracellular vesicle called apoptotic bodies) can facilitate removal of apoptotic debris and intercellular communication. However, the mechanism underpinning this process is unclear. While observing monocytes undergoing apoptosis by time-lapse microscopy, we discovered a new type of membrane protrusion that resembles a ‘beads-on-a-string' structure. Strikingly, the ‘beads' are frequently sheared off the ‘string' to form apoptotic bodies. Generation of apoptotic bodies via this mechanism can facilitate a sorting process and results in the exclusion of nuclear contents from apoptotic bodies. Mechanistically, generation of ‘beads-on-a-string' protrusion is controlled by the level of actomyosin contraction and apoptopodia formation. Furthermore, in an unbiased drug screen, we identified the ability of sertraline (an antidepressant) to block the formation of ‘beads-on-a-string' protrusions and apoptotic bodies. These data uncover a new mechanism of apoptotic body formation in monocytes and also compounds that can modulate this process. PMID:26074490

  15. Implications of cosmic strings with time-varying tension on the CMB and large scale structure

    SciTech Connect

    Ichikawa, Kazuhide; Takahashi, Tomo; Yamaguchi, Masahide

    2006-09-15

    We investigate cosmological evolution and implications of cosmic strings with time-dependent tension. We derive basic equations of time development of the correlation length and the velocity of such strings, based on the one-scale model. Then, we find that, in the case where the tension depends on some power of the cosmic time, cosmic strings with time-dependent tension goes into the scaling solution if the power is lower than a critical value. We also discuss cosmic microwave background anisotropy and matter power spectra produced by these strings. The constraints on their tensions from the Wilkinson microwave anisotropy probe (WMAP) 3 yr data and Sloan digital sky survey (SDSS) data are also given.

  16. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  17. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  18. Small scale tests on the progressive retreat of soil slopes

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  19. Small-scale upper mantle extension beneath a destroyed craton

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zheng, T.; Chen, L.; Ai, Y.; He, Y.; Xu, X.

    2014-12-01

    The North China Craton (NCC), as an unusual craton with part of its thick lithosphere destructed, records the geodynamic processes associated with the convergence of Eurasia and the Pacific and Philippine plates lasting from the Mesozoic to the Cenozoic. How the cratonic lithosphere deformed in response to the extensional tectonics caused by the oceanic plate subduction, however, remains debated. In order to investigate the mantle deformation of the NCC, we present new shear wave splitting measurements and updated tomographic models beneath a 900-km long profile across the north NCC. Compared to our other observations in the NCC, this profile is shorter but also crosses a region that experienced strong lithospheric destruction, therefore provides a good opportunity to improve our understanding of upper mantle deformation during the craton destruction. The upper mantle deformation is studied using SKS data from 60 broadband stations with average spacing of 15 km. For the data from events occurring at distances of 85º-115º, fast polarization directions and delay times (fδt) are retrieved by a routine method, while for the events at distances < 85º, waveform modeling are applied to obtain (fδt) after separating the effects of S and SKS. The measured splitting parameters show small-scale variations from east to west: the major fast directions, trending NE-SW or NW-SE in contrast, distribute intermittently along the profile. We plot the splitting parameters overlapping on the geological map and the tomography image for a depth range of 120-300 km. Comparison shows good consistency of the splitting pattern and structural features both at shallow and deep depths: NW-SE trending fast directions are observed at stations located within the basins or extensional zones like metamorphic core complexes, with the fast direction parallel to the extensional or stretching directions; the fast directions and the shear-wave velocity anomalies within the upper mantle

  20. Elastocapillarity can control the formation and the morphology of beads-on-string structures in solid fibers

    NASA Astrophysics Data System (ADS)

    Taffetani, M.; Ciarletta, P.

    2015-03-01

    Beads-on-string patterns have been experimentally observed in solid cylinders for a wide range of material properties and structural lengths, from millimetric soft gels to nanometric hard fibers. In this work, we combine theoretical analysis and numerical tools to investigate the formation and nonlinear dynamics of such beaded structures. We show that this morphological transition is driven by elastocapillarity, i.e., a complex interplay between the effects of surface tension and bulk elasticity. Unlike buckling or wrinkling, the presence of an axial elongation is found here to favor the onset of fiber beading, in agreement with existing experimental results on electrospun fibers, hydrogels, and nerves. Our results also prove that the applied stretch can be used in fabrication techniques to control the morphology of the emerging beads-on-string patterns. Such quantitative predictions open the way for several applications, from tissue engineering to the design of stretchable electronics and the microfabrication of functionalized surfaces.

  1. Small-Scale Farming: A Portrait from Polk County, Oregon.

    ERIC Educational Resources Information Center

    Young, John A.; Caday, Peter

    A study of small-scale farmers in Polk County, Oregon, examined characteristics of, and variations among, small-scale farmers and developed some guidelines for assistance programs targeted for such a group. During the months of May, June, and July of 1978 an average of 4 days a week was spent locating and interviewing 44 small farm operators in…

  2. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  3. Small-scale Materials Behavior from X-ray Microdiffraction and Imaging

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E

    2010-01-01

    This commentary introduces a JOM topic that highlights novel applications of x-ray microdiffraction and imaging to study structural properties of materials at a small scale. The development of ultra-brilliant synchrotron x-ray sources provides important new opportunities for the analysis of local and near-surface material structures. This topic includes manuscripts that describe how different versions of polychromatic and monochromatic microdiffraction can be used to study small scale plasticity in a range of materials. A variety of ingenious methods are described as developed in laboratories around the world.

  4. Risk of Resource Failure and Toolkit Variation in Small-Scale Farmers and Herders

    PubMed Central

    Collard, Mark; Ruttle, April; Buchanan, Briggs; O’Brien, Michael J.

    2012-01-01

    Recent work suggests that global variation in toolkit structure among hunter-gatherers is driven by risk of resource failure such that as risk of resource failure increases, toolkits become more diverse and complex. Here we report a study in which we investigated whether the toolkits of small-scale farmers and herders are influenced by risk of resource failure in the same way. In the study, we applied simple linear and multiple regression analysis to data from 45 small-scale food-producing groups to test the risk hypothesis. Our results were not consistent with the hypothesis; none of the risk variables we examined had a significant impact on toolkit diversity or on toolkit complexity. It appears, therefore, that the drivers of toolkit structure differ between hunter-gatherers and small-scale food-producers. PMID:22844421

  5. Bowed Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  6. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-01-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  7. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.

  8. Higher order intercommutations in cosmic string collisions.

    PubMed

    Achúcarro, A; Verbiest, G J

    2010-07-01

    We report the first observation of multiple intercommutation (more than two successive reconnections) of Abelian Higgs cosmic strings at ultrahigh collision speeds, and the formation of "kink trains" with up to four closely spaced left- or right-moving kinks, in the deep type-II regime 16 ≤ β ≤ 64 (where β=m(scalar)2/m(gauge)2). The minimum critical speed for double reconnection goes down from ∼0.98c at β = 1 to ∼0.86c for β = 64. The process leading to the second intercommutation changes with β: it involves an expanding loop if β ≥ 16, but only a radiation blob if 1 < β ≤ 8. Triple reconnections are generic in the loop-mediated regime for collision parameters on the boundary between single and double reconnection. For β = 16 we observe quadruple events. We comment on the effect of strongly repulsive core interactions on the small scale structure on the strings and their gravitational wave emission. PMID:20867697

  9. Higher Order Intercommutations in Cosmic String Collisions

    SciTech Connect

    Achucarro, A.; Verbiest, G. J.

    2010-07-09

    We report the first observation of multiple intercommutation (more than two successive reconnections) of Abelian Higgs cosmic strings at ultrahigh collision speeds, and the formation of ''kink trains'' with up to four closely spaced left- or right-moving kinks, in the deep type-II regime 16{<=}{beta}{<=}64 (where {beta}=m{sub scalar}{sup 2}/m{sub gauge}{sup 2}). The minimum critical speed for double reconnection goes down from {approx}0.98c at {beta}=1 to {approx}0.86c for {beta}=64. The process leading to the second intercommutation changes with {beta}: it involves an expanding loop if {beta}{>=}16, but only a radiation blob if 1<{beta}{<=}8. Triple reconnections are generic in the loop-mediated regime for collision parameters on the boundary between single and double reconnection. For {beta}=16 we observe quadruple events. We comment on the effect of strongly repulsive core interactions on the small scale structure on the strings and their gravitational wave emission.

  10. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.