Science.gov

Sample records for stripa heater experiments

  1. Predicted and measured temperatures, displacements and stresses from the Stripa heater experiments

    SciTech Connect

    Chan, T.; Hood, M.; Witherspoon, P.A.

    1980-01-01

    A summary of the results of heater experiments conducted at the Stripa Mine in Sweden is given. These results for the induced temperature, displacement and stress fields, are compared with the original predictions for these parameters which were made using both analytical and finite-element calculations assuming that the material properties of the rock remained temperature independent. Discrepancies between the measured and the predicted results are discussed. Additional calculations, based on a limited amount of laboratory data for the temperature dependence of these material properties, are described. These new predictions are found to agree better with the measured field data.

  2. Thermal and thermomechanical data from in situ heater experiments at Stripa, Sweden. Technical Information Report No. 29

    SciTech Connect

    Chan, T.; Binnall, E.; Nelson, P.; Stolzman, R.; Wan, O.; Weaver, C.; Ang, K.; Braley, J.; McEvoy, M.

    1980-09-01

    Heater experiments were conducted in a granite body adjacent to a recently abandoned iron ore mine at Stripa, Sweden, to investigate the response of a hard rock mass to thermal loading. Heating commenced in June, 1978 and lasted for approximately one year. The rock was heavily instrumented to measure the temperature, displacement, and stress fields. Monitoring of the rock response continued for half a year after the heaters were deactivated. In-situ post-experiment calibrations of instrumentation were completed by June 1980. The enormous data base (approximately 50 million measurements), recorded by a computer-based data acquisition system, has now been structured, verified, and converted to engineering units. This report describes the types of data available and the procedures used for data acquisition, transfer, encoding-decoding, reorganization, storage, processing, and verification. Information is given on data structure and format and how potential users can access the computer-readable data.

  3. Ultrasonic and acoustic emission results from the Stripa heater experiments. Part I. Cross-hole investigation of a rock mass subjected to heating. Part II. Acoustic emission monitoring during cool-down of the Stripa heater experiment

    SciTech Connect

    Paulsson, B.N.P.; King, M.S.; Rachiele, R.

    1980-12-01

    A cross-hole high-frequency acoustic investigation of a granitic rock mass subjected to sustained heating is reported. Compressional and shear-wave velocity measurements along four different paths between four vertical boreholes were made prior to turning on the heater, during 398 days of heating, and after the heater was turned off. These measurements correlated well with the presence of fracture zones, in which the fractures were closed by thermal expansion of the rock upon heating. When the rock mass cooled, the velocity measurements indicated a greater intensity of fracturing than had existed before heating. Laboratory compressional and shear-wave velocity measurements were also made on intact rock specimens obtained from the site and subjected to axial stress. When used to interpret the increases in velocities measured in the field upon heating the rock mass, these measurements implied increases in horizontal normal stresses to between 30 and 40 MPa. Increases in these magnitudes agree with stress measurements made by the other techniques. The ratio of measured compressional to shear-wave velocity appears to provide a sensitive measure of the fraction of crack porosity containing water or gas.

  4. Geohydrological data from the macropermeability experiment at Stripa, Sweden

    SciTech Connect

    Wilson, C.R.; Long, J.C.S.; Galbraith, R.M.; Karasaki, K.; Endo, H.K.; DuBois, A.O.; McPherson, M.J.; Ramqvist, G.

    1981-03-01

    The Macropermeability Experiment was conducted in a granite body adjacent to a recently abandoned iron ore mine at Stripa, Sweden. This experiment was conducted to measure the permeability of a large volume of low permeability, fractured rock. The experiment was conducted over 11 months in an approximately 4m x 4m x 33m drift at the 335 m level of the mine. Groundwater seepage into the drift was measured as the net moisture pickup of the ventilation system. Water pressure and temperature were monitored at 95 locations in the rock surrounding the drift. The data collection system was designed to provide in-situ averaging of the measured parameters, to ultimately estimate the hydraulic conductivity of the rock as if it were a porous medium. This report is limited to data presentation. It describes the types of data collected, the methods of measurement, and procedures used for data collection, storage, and reduction. Experimental errors are reviewed for all principal types of data. The data presented are sufficient to estimate (1) the rate of seepage of moisture into the drift; (2) the three-dimensional distribution of hydraulic head in the rock mass to a radial distance of 30 m from the drift; and (3) the three-dimensional distribution of temperature in the rock mass, also to a radial distance of 30 m. These data can in turn be used to estimate the intrinsic permeability of the monitored rock mass. Analysis and interpretation of these results will be presented in subsequent reports.

  5. Groundwater chemistry and water-rock interactions at Stripa

    USGS Publications Warehouse

    Nordstrom, D.K.; Ball, J.W.; Donahoe, R.J.; Whittemore, D.

    1989-01-01

    Groundwaters from near surface to a depth of 1232 m in the Stripa granite have been sampled and analyzed for major and trace constituents. The groundwater composition consists of two general types: a typical recharge water of Ca-HCO3 type (700 m depth) of high pH (8-10) that reaches a maximum of 1250 mg/L in total dissolved solids (TDS). Intermediate depths show mixtures of the two types that are highly fracture-dependent rather than depth-dependent. Any borehole can vary significantly and erratically in TDS for either a horizontal or vertical direction. The general transition from Ca-HCO3 type to Na-Ca-Cl type correlates with the depth profile for hydraulic conductivity that drops from 10-8 m/s to 10-11 m/s or lower. Thermomechanical stress (from heater experiments) clearly shows an effect on the groundwater composition that could be caused by changing flow paths, leakage of fluid inclusions or both. Dissolution and precipitation of calcite, fluorite and barite, aluminosilicate hydrolysis, and addition of a saline source (possibly fluid inclusion leakage) play the major roles in defining the groundwater composition. The low permeability of the Stripa granite has produced a groundwater composition that appears intermediate between the dilute, shallow groundwaters typical of recharge in a crystalline rock terrain and the saline waters and brines typical of cratonic shield areas at depth. ?? 1989.

  6. Petrology and radiogeology of the Stripa pluton

    SciTech Connect

    Wollenberg, Harold; Flexser, Steve; Andersson, Lennart

    1980-12-01

    To better define the character of the rock encompassing the thermomechanical and hydrological experiments at the Stripa mine in central Sweden, and to help determine the size of the Stripa pluton, detailed studies were conducted of the petrology and radiogeology of the quartz monzonite and adjacent rocks. Petrologic studies emphasized optical petrography, with supplementary X-ray diffraction, X-ray fluorescence and microprobe analyses. Radiogeologic investigations were based primarily on surface and underground gamma-ray spectrometric measurements of uranium, thorium and potassium, supplemented by laboratory gamma spectrometric analyses and fission-track radiographic determinations of the locations and abundance of uranium in the rock matrix. Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monzonite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the leptite and other plutons in the region. Uranium and thorium abundances are both- 30 ppm, considerably higher than in "normal" granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat

  7. Eleana near-surface heater experiment final report

    SciTech Connect

    Lappin, A R; Thomas, R K; McVey, D F

    1981-04-01

    This report summarizes the results of a near-surface heater experiment operated at a depth of 23 m in argillite within the Eleana Formation on the Nevada Test Site (NTS). The test geometrically simulated emplacement of a single canister of High-Level Waste (HLW) and was operated at a power level of 2.5 kW for 21 days, followed by 3.8 kW to 250 days, when the power was turned off. Below 85 to 100{sup 0}C, there was good agreement between modeled and measured thermal results in the rock and in the emplacement hole, except for transient transport of water in the heater hole. Above 100{sup 0}C, modeled and measured thermal results increasingly diverged, indicating that the in-situ rock-mass thermal conductivity decreased as a result of dehydration more than expected on the basis of matrix properties. Correlation of thermomechanical modeling and field results suggests that this decrease was caused by strong coupling of thermal and mechanical behavior of the argillite at elevated temperatures. No hole-wall decrepitation was observed in the experiment; this fact and the codrrelation of modeled and measured results at lower temperatures indicate that there is no a priori reason to eliminate argillaceous rocks from further consideration as a host rock for nuclear wastes.

  8. Thermal Design and Flight Experience of the Mars Exploration Rover Spacecraft Computer-Controlled, Propulsion Line Heaters

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kinsella, Gary M; Krylo, Robert J.; Sunada, Eric T.

    2004-01-01

    This paper covers the design, thermal testing and flight experiences with the computer-controlled thermostats on the propulsion line heaters. Flight experience revealed heater control behavior with propellant loaded into the system and during thruster firings that was not observable during system level testing. Explanations of flight behavior, lessons learned, and suggestions for improvement of the propellant line heater design are presented in this paper.

  9. Progress with field investigations at Stripa

    SciTech Connect

    Witherspoon, P.A.; Cook, N.G.W.; Gale, J.E.

    1980-02-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by the excavation of the repository and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements at depths below surface and in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa in Sweden at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions virtually without delay. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of being able to carry out large scale investigations in a field test facility.

  10. Petrology and radiogeology of the Stripa pluton

    SciTech Connect

    Wollenberg, H.; Flexser, S.; Andersson, L.

    1980-12-01

    Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monozite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region, biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the the leptite and other plutons in the region. Uranium and thorium abundances are both approx. 30 ppM, considerably higher than in normal granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat productivity considerations show that although Stripa quartz monzonite contains high abundances of radioelements, the pluton has little efect on the regional heat flow. If it occurs in a layered plutonic setting, it is not more than 1.5 km thick; otherwise it may comprise a stock, dike, or border phase that is relatively small compared with the large granitic plutons exposed in the region.

  11. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  12. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  13. In-situ tuff water migration/heater experiment: experimental plan

    SciTech Connect

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content ({le}40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details.

  14. Thermal Design and Flight Experience of the Mars Exploration Rover Spacecraft Computer-Controlled, Propulsion Line Heaters

    NASA Technical Reports Server (NTRS)

    Novak, Keith; Kinsella, Gary; Krylo, Robert; Sunada, Eric

    2004-01-01

    The viewgraph presentation examines propulsion line heater design and problems in the Mars Rover. Topics include a Mars Exploration Rover (MER) project description and MER spacecraft configuration, mission overview, MER cruise stage hardware, thermal design drivers in the propulsion lines, propulsion line control set points prior to launch, MER A and B flight trajectories, MER A early and mid cruise flight experience, MER A and B mid cruise flight experience, MER B late cruise flight experience, and lessons learned

  15. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  16. Some experience with arc-heater simulation of outer planet entry radiation

    NASA Technical Reports Server (NTRS)

    Wells, W. L.; Snow, W. L.

    1980-01-01

    An electric arc heater was operated at 800 amperes and 100,000 pa (1 atm) with hydrogen, helium, and two mixtures of hydrogen and helium. A VUV-scanning monochromator was used to record the spectra from an end view while a second spectrometer was used to determine the plasma temperature using hydrogen continuum radiation at 562 nm. Except for pure helium, the plasma temperature was found to be too low to produce significant helium radiation, and the measured spectra were primarily the hydrogen spectra with the highest intensity in the pure hydrogen case. A radiation computer code was used to compute the spectra for comparison to the measurements and to extend the study to simulation of outer planet entry radiation. Conductive cooling prevented ablation of phenolic carbon material samples mounted inside the arc heater during a cursory attempt to produce radiation absorption by ablation gases.

  17. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it

  18. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  19. Simulation of tracer transport for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Karasaki, K.

    1992-01-01

    This report describes a series of numerical simulations of tracer tests that were performed in a fracture zone (the H-zone) at the Stripa Mine in Sweden. The tracer simulations are bases on Equivalent Discontinuum models which were developed bases on geophysical measurements and hydraulic interference data (Long et al., 1992). The transport simulations are calibrated to one set of saline tracer breakthrough curves (from the first radar/saline experiment, RSI) and these calibrated models are used to predict another series of breakthrough curves. Predicted breakthrough curves can be compared to the actual data and simulated snapshots'' of concentration in the plan of the fracture zone can be compared to radar difference tomograms made during the saline tracer experiments.

  20. Simulation of tracer transport for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Karasaki, K.

    1992-01-01

    This report describes a series of numerical simulations of tracer tests that were performed in a fracture zone (the H-zone) at the Stripa Mine in Sweden. The tracer simulations are bases on Equivalent Discontinuum models which were developed bases on geophysical measurements and hydraulic interference data (Long et al., 1992). The transport simulations are calibrated to one set of saline tracer breakthrough curves (from the first radar/saline experiment, RSI) and these calibrated models are used to predict another series of breakthrough curves. Predicted breakthrough curves can be compared to the actual data and simulated ``snapshots`` of concentration in the plan of the fracture zone can be compared to radar difference tomograms made during the saline tracer experiments.

  1. Fracture mapping in the ventilation drift at Stripa: procedures and results

    SciTech Connect

    Rouleau, A.; Gale, J.E.; Baleshta, J.

    1981-03-01

    Detail maps of the fracture system in the ventilation drift at the Stripa mine have been prepared. The procedures used in preparing the maps of the floor and walls of the ventilation drift are documented in this report. The fracture data presented in the detailed maps are heavily supplemented by a coded data file. Each discrete fracture, vein, or fracture zone has been identified by a number on the map and this number has been used to link the map to the data file. This approach permits maximum use of the fracture data by other researchers interpreting completed and on-going experiments or as an aid in planning and interpreting future experiments. 9 refs., 7 figs., 2 tabs.

  2. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  3. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  4. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  5. A statistical study of the spatial distribution of Co-operative UK Twin Located Auroral Sounding System (CUTLASS) backscatter power during EISCAT heater beam-sweeping experiments

    NASA Astrophysics Data System (ADS)

    Shergill, H.; Robinson, T. R.; Dhillon, R. S.; Lester, M.; Milan, S. E.; Yeoman, T. K.

    2010-05-01

    High-power electromagnetic waves can excite a variety of plasma instabilities in Earth's ionosphere. These lead to the growth of plasma waves and plasma density irregularities within the heated volume, including patches of small-scale field-aligned electron density irregularities. This paper reports a statistical study of intensity distributions in patches of these irregularities excited by the European Incoherent Scatter (EISCAT) heater during beam-sweeping experiments. The irregularities were detected by the Co-operative UK Twin Located Auroral Sounding System (CUTLASS) coherent scatter radar located in Finland. During these experiments the heater beam direction is steadily changed from northward to southward pointing. Comparisons are made between statistical parameters of CUTLASS backscatter power distributions and modeled heater beam power distributions provided by the EZNEC version 4 software. In general, good agreement between the statistical parameters and the modeled beam is observed, clearly indicating the direct causal connection between the heater beam and the irregularities, despite the sometimes seemingly unpredictable nature of unaveraged results. The results also give compelling evidence in support of the upper hybrid theory of irregularity excitation.

  6. Atmospheric and radiogenic gases in groundwaters from the Stripa granite

    NASA Astrophysics Data System (ADS)

    Andrews, J. N.; Hussain, N.; Youngman, M. J.

    1989-08-01

    Groundwaters from depths of 350 m to 1250 m in the Stripa granite contain dissolved radiogenic He in amounts up to 50,000 times that due to air-saturation. The groundwater He-contents increase with depth and lie close to the expected profile for He loss by aqueous diffusion ( D = 0.032 m 2 a -1). Measurements on core samples show that the rock has retained about 10% of the possible cumulative radiogenic He and that this component is lost by matrix diffusion ( D = 5 × 10 -7 m 2 a -1). Diffusive equilibrium between He in fracture fluids and in the adjacent rock matrix is rapidly established for the narrow fracture widths of the flow system. A major loss of stored He by both diffusion and advection along fluid-filled fractures is attributed to the proximity of a major fraction of uranium to the aqueous flow system because of its deposition within an interconnective microfracture system. The crustal flux of He is limited by its diffusion coefficient in the matrix of a granitic crust but may be supplemented by transport due to fluid circulation. The 3He /4He ratio of the excess He present in the Stripa groundwaters, corresponds to that expected for radiogenic He production within the granite. The 40Ar /36Ar ratio of dissolved Ar shows that radiogenic 40Ar has been released from the rock matrix, especially for groundwaters from greater than 450 m depth. Slow alteration reactions are the most probable cause of this radiogenic 40Ar release which has occurred in the more saline groundwaters. Groundwater recharge temperatures, estimated from their noble gas contents, are about 3°C lower than those for modern shallow groundwaters in the locality and are related to the stable isotope composition of the groundwater. Most groundwater age measures at Stripa are the result of mixing between recent recharge waters (<100 a) and a much older fracture-stored brine.

  7. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as ``equivalent discontinuum`` models. Equivalent discontinuum models are derived starting from a specified lattice or 6 ``template``. An inverse analysis called ``Simulated Annealing`` is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1.

  8. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as equivalent discontinuum'' models. Equivalent discontinuum models are derived starting from a specified lattice or 6 template''. An inverse analysis called Simulated Annealing'' is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1.

  9. Introduction to the hydrogeochemical investigations within the International Stripa Project

    USGS Publications Warehouse

    Nordstrom, D.K.; Olsson, T.; Carlsson, L.; Fritz, P.

    1989-01-01

    The International Stripa Project (1980-1990) has sponsored hydrogeochemical investigations at several subsurface drillholes in the granitic portion of an abandoned iron ore mine, central Sweden. The purpose has been to advance our understanding of geochemical processes in crystalline bedrock that may affect the safety assessment of high-level radioactive waste repositories. More than a dozen investigators have collected close to a thousand water and gas samples for chemical and isotopic analyses to develop concepts for the behavior of solutes in a granitic repository environment. The Stripa granite is highly radioactive and has provided an exceptional opportunity to study the behavior of natural radionuclides, especially subsurface production. Extensive microfracturing, low permeability with isolated fracture zones of high permeability, unusual water chemistry, and a typical granitic mineral assemblage with thin veins and fracture coatings of calcite, chlorite, seriate, epidote and quartz characterize the site. Preliminary groundwater flow modeling indicates that the mine has perturbed the flow environment to a depth of about 3 km and may have induced deep groundwaters to flow into the mine. ?? 1989.

  10. Radioactive waste storage in mined caverns in crystalline rock: results of field investigations at Stripa, Sweden

    SciTech Connect

    Witherspoon, P.A.

    1980-10-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by excavation and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements below the surface in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa, Sweden, at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of carrying out large-scale investigations in a field test facility.

  11. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  12. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  13. Grouped exposed metal heaters

    SciTech Connect

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  14. Preliminary prediction of inflow into the D-holes at the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Karasaki, K.; Davey, A.; Peterson, J.; Landsfeld, M.; Kemeny, J.; Martel, S.

    1990-02-01

    Lawrence Berkeley Laboratory (LBL) is contracted by the US Department of Energy to provide an auxiliary modeling effort for the Stripa Project. Within this effort, we are making calculations of inflow to the Simulated Drift Experiment (SDE), i.e. inflow to six parallel, closely spaced D-holes, using a preliminary set of data collected in five other holes, the N- and W-holes during Stages 1 and 2 of the Site Characterization and Validation (SCV) project. Our approach has been to focus on the fracture zones rather than the general set of ubiquitous fractures. Approximately 90% of all the water flowing in the rock is flowing in fracture zones which are neither uniformly conductive nor are they infinitely extensive. Our approach has been to adopt the fracture zone locations as they have been identified with geophysics. We use geologic sense and the original geophysical data to add one zone where significant water inflow has been observed that can not be explained with the other geophysical zones. This report covers LBL's preliminary prediction of flow into the D-holes. Care should be taken in interpreting the results given in this report. As explained below, the approach that LBL has designed for developing a fracture hydrology model requires cross-hole hydrologic data. Cross-hole tests are planned for Stage 3 but were unavailable in Stage 1. As such, we have inferred from available data what a cross-hole test might show and used this synthetic data to make a preliminary calculation of the inflow into the D-holes. Then using all the Stage 3 data we will calculate flow into the Validation Drift itself. The report mainly demonstrates the use of our methodology and the simulated results should be considered preliminary.

  15. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  16. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  17. An Electrical Micro-Heater Technique for High-Pressure and High-Temperature Diamond Anvil Cell Experiments

    SciTech Connect

    Weir, S T; Jackson, D D; Falabella, S; Samudrala, G; Vohra, Y K

    2008-10-10

    Small electrical heating elements have been lithographically fabricated onto the culets of 'designer' diamond anvils for the purpose of performing high-pressure and high-temperature experiments on metals. The thin-film geometry of the heating elements makes them very resistant to plastic deformation during high pressure loading, and their small cross-sectional area enables them to be electrically heated to very high temperatures with relatively modest currents ({approx}1 Amp). The technique also offers excellent control and temporal stability of the sample temperature. Test experiments on gold samples have been performed for pressures up to 21 GPa and temperatures of nearly 2000K.

  18. The CERTO Beacon on CASSIOPE/e-POP and Experiments Using High-Power HF Ionospheric Heaters

    NASA Astrophysics Data System (ADS)

    Siefring, Carl L.; Bernhardt, Paul A.; James, H. Gordon; Parris, Richard Todd

    2015-06-01

    A new Coherent Electromagnetic Radio Tomography (CERTO) beacon is on the CASSIOPE satellite and part of the enhanced-Polar Outflow Probe (e-POP) suite of scientific instruments. CERTO signals can be used to measure ionospheric Total Electron Content (TEC) and radio scintillations along propagation paths between CERTO and receivers. The combination of CERTO and the array of e-POP in-situ diagnostics form a powerful tool for studying ionospheric plasma processes that have not been previously possible. Of note, the combination CERTO and the Radio Receiver Instrument (RRI), a modern digital receiver, which measures between 10 Hz to 18 MHz in selectable bands allows for innovative High Frequency (HF) radio propagation experiments. The use of high-power HF ionospheric heating facilities for such experiments further allows for repeatable studies of a number of important plasma processes. The new CERTO beacon transmits un-modulated, phase-coherent waves at 150, 400, and 1067 MHz with either right-hand-circular or linear polarization and TEC is measured using either differential phase and/or Faraday rotation. With a linear array of CERTO receivers, TEC data can be used for tomographic imaging of the ionosphere yielding two-dimensional maps of the plasma below the satellite orbit. In addition, the three CERTO frequencies cover a wide range for determination of radio scintillation effects caused by diffraction from propagation through ionospheric irregularities. We will describe the CERTO beacon and several potential innovative experiments using HF heating facilities in conjunction with CERTO, the RRI and other e-POP instruments.

  19. Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine

    SciTech Connect

    Martel, S.J.

    1992-04-01

    A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. this report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implications of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone.

  20. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  1. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  2. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  3. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.

  4. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  5. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  6. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  7. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  8. Implementation of heaters on thermally actuated spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  9. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry

    USGS Publications Warehouse

    Nordstrom, D.K.; Lindblom, S.; Donahoe, R.J.; Barton, C.C.

    1989-01-01

    Fluid inclusions in quartz and calcite of the Proterozoic Stripa granite, central Sweden, demonstrate that the rock and its fracture fillings have a complex evolutionary history. The majority of inclusions indicate formation during a hydrothermal stage following emplacement of the Stripa pluton. Total salinities of quartz inclusions range from 0-18 eq.wt% NaCl for unfractured rock and from 0-10 eq.wt% for fractured rock. Vein calcites contain up to 25 eq.wt% NaCl but the inclusion size is larger and the population density is lower. Homogenization temperatures are 100-150??C for unfractured rock and 100-250?? for fractured rock. Pressure corrections, assuming immediate post-emplacement conditions of 2 kbar, give temperatures about 160??C higher. Measurements of fluid-inclusion population-densities in quartz range from about 108 inclusions/cm3 in grain quartz to 109 inclusions/cm3 in vein quartz. Residual porosity from inclusion densities has been estimated to be at least 1% which is two orders of magnitude greater than the flow porosity. Breakage and leaching of fluid inclusions is proposed as an hypothesis for the origin of major solutes (Na-Ca-Cl) in the groundwater. Evidence for the hypothesis is based on (1) mass balance-only a small fraction of the inclusions need to leak to account for salt concentrations in the groundwater, (2) chemical signatures- Br Cl ratios of fluid inclusion leachates (0.0101) match those ratios for the deep groundwaters (0.0107), (3) leakage mechanisms-micro-stresses from isostatic rebound or mining activities acting on irregular-shaped inclusions could cause breakage and provide connection with the flow porosity, and (4) experimental studies-water forced through low permeability granites leach significant quantities of salt. This hypothesis is consistent with the available data although alternate hypotheses cannot be excluded. ?? 1989.

  10. Subsurface heaters with low sulfidation rates

    SciTech Connect

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  11. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  12. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  13. Visibly Transparent Heaters.

    PubMed

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  14. Dynamic heater for display elements

    NASA Astrophysics Data System (ADS)

    Dehmlow, Brian P.; Bishop, Gary D.; Steffensmeier, Martin J.; Sampica, James D.; Skarohlid, Mark C.

    1997-07-01

    Liquid crystal display (LCD) deliver optimal performance when the entire display surface is isothermal and at a controllable temperature. This condition creates uniform electro-optical properties within the liquid crystal layer. This paper describes a dynamic, multicontact heater system that actively compensates for uneven heat loads, thereby creating the desired isothermal condition. The heater system includes a uniform resistive sheet, with multiple electrical contacts around the perimeter. A switch network connects each heater contact to a power supply, ground potential, or a high impedance. A microprocessor monitors the display temperature, and detects non-uniformity, and selectively applies heat to cold areas of the display. The dynamic heater system employs a variety of heating patterns to create the desired isothermal condition.Heating patterns vary in duration, power applied, and location on the display face. The microprocessor control loop can also detect and isolate faulty drive elements, and compensate for non- uniformity in the heater itself. The heater prevents stress- induced delaminations, mechanical distortions, and stress- induced birefringence in optical components. Test results indicate that a dynamic heater can be beneficial in the thermal design of LCD products.

  15. Tuning The Laser Heater Undulator

    SciTech Connect

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  16. Thermometry of a high temperature high speed micro heater.

    PubMed

    Xu, M; Slovin, G; Paramesh, J; Schlesinger, T E; Bain, J A

    2016-02-01

    A high temperature high-speed tungsten micro heater was fabricated and tested for application in phase change switches to indirectly heat and transform phase change material. Time domain transmissometry was used to measure heater temperature transients for given electrical inputs. Finite element modeling results on heater temperature transients show a good consistency between experiments and simulations with 0.2% mismatch in the best case and 13.1% in the worst case. The heater described in this work can reliably reach 1664 K at a rate of 1.67 × 10(10) K/s and quench to room temperature with a thermal RC time constant (time for T to fall by a factor of e) of less than 40 ns. PMID:26931881

  17. Corrosion-related failures in feedwater heaters. Final report

    SciTech Connect

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1983-07-01

    A survey of the literature was performed for the Electric Power Research Institute on corrosion-related failures in feedwater heaters. The survey was directed toward failures in fossil and in pressurized water reactor (PWR) nuclear power plants, but includes some pertinent information related to failures in boiling water reactor (BWR) power plants. The survey was organized into sections on the commonly used feedwater heater materials; C steel, brasses, Cu-Ni alloys, MONEL Alloy 400, and Type 304 Stainless Steel. A section on Ti as a potential feedwater heater material also is given in the appendices. Each section is divided into subsections on field experience and laboratory studies tat relate to the field failures that have been observed. Appendices are given on a feedwater heater description, water quality in power plants, forms of corrosion, and failure analysis techniques.

  18. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  19. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  20. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  1. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  2. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  3. Methods for forming long subsurface heaters

    DOEpatents

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  4. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  5. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  6. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  7. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  8. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  9. Computer simulation of heat transfer mechanism in SRC-I slurry fired heater

    SciTech Connect

    Mehta, D.C.; Fox, V.G.; Weimer, R.F.

    1984-05-01

    A computer simulation of the heat transfer mechanism was performed for the slurry fired heater in the SRC-I Demonstration Plant. The operating conditions were based on the fired heater design, and the data on pressure drop, slug characteristics, and heat transfer were obtained from the cold-flow modelling experiments at Creare, Inc. The computer program solves the partial differential equation describing heat transfer in the fired heater pipe. 7 references, 6 figures, 5 tables.

  10. Advanced Process Heater

    SciTech Connect

    Tom Briselden, Chris Parrish

    2005-03-07

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; Improved methods for stabilizing low emission flames; Heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer. This Category I award entitled ''Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future'' met the technical feasibility goals of: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 100 degrees F and (4) simultaneously reducing NOx and CO2 emissions. The APH address EERE's mission priority of increasing efficiency/reducing fuel usage in energy intensive industries. One component of the APH, the SpyroCorTM, was commercialized by STORM Development's partner, Spinworks LLC. Over 2000 SpyrCorsTM were sold in 2004 resulting in 480 million BTU's of energy savings, 20% reduction in NOx and CO2 levels, and 9 jobs in N.W. Pennsylvania. A second component, the HeatCorTM, a low-cost high-temperature heat exchanger will be demonstrated by Spinworks in 2005 in preparation for commercial sales in 2006. The project occurred in the 21st Congressional District of Pennsylvania. Once fully commercialized, the APH energy savings potential is 339 trillion BTUs annually in the U.S. and will process 1.5 million more tons annually without major capital equipment expenditures. Spinworks will commercialize the APH and add over 100 U.S. workers. To accomplish the objective, STORM Development LLC teamed with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. The project consisted of component engineering and integration of the APH followed by parametric testing. All components of the system were tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM

  11. Pool boiling heat transfer from vertical heater array in liquid nitrogen

    SciTech Connect

    Chui, C.J.; Sehmbey, M.S.; Chow, L.C.; Hahn, O.J.

    1995-04-01

    The heat transfer from an array of discrete sources is expected to differ from the behavior of a single heat source due to the interaction between the flow induced by individual heat sources. This study details the results from experiments conducted to study the pool boiling heat transfer characteristics from a vertical heater array with flush-mounted heat sources. The lower heaters were found to enhance the heat transfer from upper heaters. The bubble pumped convection due to the lower heaters enhanced the preboiling heat transfer coefficient at the upper heater by as much as 700%. The critical heat flux from the upper heaters was also enhanced up to 15%. Correlations are presented for both these effects. 21 refs.

  12. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  13. Herbert Easterly auxiliary truck heater

    SciTech Connect

    Not Available

    1991-12-09

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work nine different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.

  14. Solar heater for swimming pools

    SciTech Connect

    Babcock, H.W.

    1984-12-04

    A solar heater for swimming pools is provided having one or more heating panels installable on a roof or the like and arranged to discharge into a pool equipped with an apron without need for disturbing or obstructing the apron. This is accomplished by the provision of an elevated bistable dumper adjacent the perimeter of the apron having a dispensing spout normally inclined upwardly but pivoting at intervals to discharge into the pool across the apron without obstructing it. Water to be heated is diverted from the pool filtering system to the solar heater via a pressure regulator and a solar responsive flow control.

  15. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  16. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  17. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  18. FIRED HEATERS: NITROGEN OXIDES EMISSIONS AND CONTROLS

    EPA Science Inventory

    The report gives results of a study of nitrogen oxide (NOx) emissions from, and controls for, fired heaters. The petroleum refining and chemical manufacturing industries account for most of fired-heater energy use with an estimated 4600 fired heaters in operation, in these two in...

  19. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  20. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  1. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  2. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  3. 21 CFR 884.5390 - Perineal heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Perineal heater. 884.5390 Section 884.5390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Perineal heater. (a) Identification. A perineal heater is a device designed to apply heat directly...

  4. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  5. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  6. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  7. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  8. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  9. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  10. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  11. FFTF reactor immersion heaters. Revision 1

    SciTech Connect

    Romrell, D.M.

    1994-08-26

    This specification establishes requirements for design, testing, and quality assurance for electric heaters that will be used to maintain primary Sodium temperature in the Fast Test Facility (FFTF) reactor vessel. The Test Specification (WHC-SD-FF-SDS-003) has been revised to Rev. 1. This change modifies the fabrication of approximately 25 feet of the subject heater using ceramic insulators over the heater lead wire rather than compressed magnesium oxide. Also, 304 or 316 stainless steel can be used for the heater sheath. This change should simplify fabrication and improve the heater operational reliability.

  12. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  13. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  14. Heater drain system transient monitoring

    SciTech Connect

    Voll, B.J.; Farsaci, C.D.

    1995-12-01

    Feedwater heater drain systems are susceptible to unstable, two phase flow conditions. These instabilities are difficult to predict and are dependent on plant-specific system designs and operating conditions. Therefore, significant vibrations and transient events can occur that the systems are not specifically designed for. This paper describes how heater drain system responses due to unanticipated transient events at a nuclear plant were captured and quantified using a digital data acquisition system. The setup of the data acquisition system, including the determination of what parameters to monitor and how to effectively capture potential transient events, is discussed. This paper also discusses the monitoring results and their relevance to system modification evaluations and root cause evaluations.

  15. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  16. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  17. Full-scale cold-flow modelling of the SRC-I slurry fired heater at Creare, Inc

    SciTech Connect

    Mehta, D.C.

    1983-09-01

    The slurry fired heater is a crucial piece of equipment in the SRC-I Demonstration Plant. The design of the fired heater has not been tested in any other plant under a similar combination of operating severity and multiphase flow. The cold-flow modelling experiments were conducted to confirm the fired heater design and to develop acceptable boundaries of flow rates for proper operation of the fired heater. The primary objectives were to identify the flow regimes, estimate pressure drops and measure heat transfer coefficients at a variety of fired heater operating conditions. The results definitively confirm the presence of a slug flow regime in the fired heater at the full range of operating conditions. Slug flow is desirable to avoid coking and excessive temperature gradients in the heater pipes and because of its relatively low pressure drop. The gas holdup predictions by the Hughmark correlation were in good agreement with the experimental results. A simplified correlation was developed to calculate gas holdup in the SRC-I fired heater pipes. The pressure drop results also confirmed that the experimental values were less than the design values. The Hughmark correlation was able to predict the pressure drop for the viscous fluids within +-20% of the measured value. The heat transfer coefficients calculated from the experiments were almost twice as high as those used in the design of the fired heater. The tests were successful based on the data developed, and the results confirm the fired heater design and indicate flexibilities in its operation.

  18. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOEpatents

    Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  19. A theoretical model for flow boiling CHF from short concave heaters

    SciTech Connect

    Galloway, J.E.; Mudawar, I.

    1995-08-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs.

  20. Joint used for coupling long heaters

    DOEpatents

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  1. Resistance Heater Helps Stirling-Engine Research

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

  2. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  3. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin; Karanikas, John Michael; Nguyen, Scott Vinh

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  4. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  5. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  6. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  7. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  8. Precise Heater Controller with rf-Biased Josephson Junctions

    NASA Technical Reports Server (NTRS)

    Green, Colin J.; Sergatskov, Dmitri A.; Duncan, R. V.

    2003-01-01

    Paramagnetic susceptibility thermometers used in fundamental physics experiments are capable of measuring temperature changes with a precision of a part in 2 x 10(exp 10). However, heater controllers are only able to control open-loop power dissipation to about a part in 10(exp 5). We used an array of rf-biased Josephson junctions to precisely control the electrical power dissipation in a heater resistor mounted on a thermally isolated cryogenic platform. Theoretically, this method is capable of controlling the electrical power dissipation to better than a part in 10(exp 12). However, this level has not yet been demonstrated experimentally. The experiment consists of a liquid helium cell that also functions as a high-resolution PdMn thermometer, with a heater resistor mounted on it. The cell is thermally connected to a temperature-controlled cooling stage via a weak thermal link. The heater resistor is electrically connected to the array of Josephson junctions using superconducting wire. An rf-biased array of capacitively shunted Josephson junctions drives the voltage across the heater. The quantized voltage across the resistor is Vn = nf(h/2e), where h is Planck's constant, f is the array biasing frequency, e is the charge of an electron, and n is the integer quantum state of the Josephson array. This results in an electrical power dissipation on the cell of Pn = (Vn)(sup 2/R), where R is the heater resistance. The change of the quantum state of the array changes the power dissipated in the heater, which in turn, results in the change of the cell temperature. This temperature change is compared to the expected values based on the known thermal standoff resistance of the cell from the cooling stage. We will present our initial experimental results and discuss future improvements. This work has been funded by the Fundamental Physics Discipline of the Microgravity Science Office of NASA, and supported by a no-cost equipment loan from Sandia National Laboratories.

  9. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters

    NASA Astrophysics Data System (ADS)

    Xiong, Feng; Liao, Albert; Pop, Eric

    2009-12-01

    Carbon nanotube (CNT) heaters with sub-5 nm diameter induce highly localized phase change in Ge2Sb2Te5 (GST) chalcogenide. A significant reduction in resistance of test structures is measured as the GST near the CNT heater crystallizes. Effective GST heating occurs at currents as low as 25 μA, significantly lower than in conventional phase change memory with metal electrodes (0.1-0.5 mA). Atomic force microscopy reveals nucleation sites associated with phase change in GST around the CNT heater. Finite element simulations confirm electrical characteristics consistent with the experiments, and reveal the current and phase distribution in GST.

  10. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  11. "Starfish" Heater Head For Stirling Engine

    NASA Technical Reports Server (NTRS)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  12. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  13. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  14. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  15. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  16. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  17. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  18. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  19. The triggering of local substorm activity by HF SURA heater

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Parrot, Michel; Kovalev, Victor; Plastinin, Yuri; Kuznetsov, Vladimir; Vladimir Frolov, S.

    The results of analysis of helio-geophisical conditions of experiments 2007-2012 on local modification of ionosphere by powerful HF radio waves of SURA facility are presented. All experiment were conducted at sector of local time of Harang discontinuity for most probable influence of powerful HF pumping during the heater functioning on activation of natural processes at subauroral ionosphere - magnetosphere region. The peculiarity of these experiments was that all of these were executed with use of operative frequency, which was higher than upper hybrid frequency for background plasma of F2-layer maximum. It was obtained that, at least, in two experiments the observed substorm activity in zone northern SURA heater could be stimulated by its functionment.In the present study the ray tracing analysis clearly shows that ionosphere density decreasing (from DEMETER and IONEX data) at higher than SURA latitudes can redirect and refocused transmitter beam power in northward structure away from the beam center by refraction. By this way we have chance to participate by means of radiated SURA HF power in subauroral and auroral processes It is shown that results of groundbased, International Space Station and satellite DEMETER measurements as in vicinity a SURA location and in magnetic conjugated region support the conclusion (output) about reasons and possibility of substorm localization by action of SURA heater. The possible mechanisms of the local substorm activation are discussed.

  20. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  1. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  2. Infrared microradiometry of thermal ink jet heaters

    NASA Astrophysics Data System (ADS)

    Muller, Olaf; Drews, Reinhold E.

    1989-07-01

    Thermal inkjet heaters were studied by infrared microradiometry using an apparatus similar to that reported in the literature. An InSb infrared sensor is mounted on a modified Leitz microscope equipped with a 36X reflecting objective. The system looks at a spot on the heater about 14 μm in diameter. The locally emitted infrared output is used as a qualitative measure of the local temperature. The temperature distribution on the heater surface is studied by constructing two-dimensional temperature contour maps. Current pulsing is carried out in air or in the presence of a high boiling point liquid. Other variables include pulse width, frequency, voltage, and heater geometry. Temperature profiles obtained in this way are in good agreement with those obtained from modeling calculations. Cycling has been carried out with several different passivation coatings with an emphasis on Ta passivation. Microradiometry of Ta-passivated heaters is complicated by the formation of Ta2O5 under most pulsing conditions and Ta2O5 has a much higher emissivity than tantalum. Burn-in curves (infrared output versus time) are used to monitor this oxidation process. Since the Ta2O5 thickness is not uniform over the heater surface, an accurate interpretation of the temperature contour maps of Ta-covered heaters is not easy. Microradiometry data of oxidized Ta heaters are supplemented with data obtained using optical microscopy, SEM, and profilometry. By overstressing heaters, hot spots were generated and studied using temperature contour maps. Subsequently, failed heaters were studied using SEM, and from these data failure mechanisms are postulated.

  3. D-Zero End Cap Calorimeter Inner Vessel Heater Documentation

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-06-15

    There will be 48 finned strip heaters installed in each end cap calorimeter vessel. The strip heaters were specified and the lowest bid vendor submitted a sample heater which was tested. This engineering note will document specifications of the heater, test procedure used, and results of the test. The finned strip heaters were of stainless steel construction. The lowest bid was $45.00 per heater from TEMPCO Electric Heater Corporation. A sample heater from TEMPCO was inspected, cold shocked tested to -320 F, and found to be acceptable.

  4. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  5. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  6. Convective polymerase chain reaction around micro immersion heater

    NASA Astrophysics Data System (ADS)

    Hennig, Martin; Braun, Dieter

    2005-10-01

    Polymerase chain reaction (PCR) is performed in the thermal convection created by a micro immersion heater. Instead of repetitive heating and cooling, the temperature gradient induces thermal convection which drives the reaction liquid between hot and cold parts of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates with the use of proteins into twice the amount in the cold region. The constant heater is simply dipped into the reaction solution. Compared to previous experiments, we demonstrate that convective PCR is possible in a robotically accessible open vessel. Our approach compares well with fast PCR cyclers and replicates DNA 500 000 fold within 20minutes. We reduce the necessary components for PCR to cheap, single-use components and therefore increasing the prospects of bringing PCR to point of care applications—even in third world countries.

  7. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  8. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.

    PubMed

    Chen, Xing; Song, Lele; Assadsangabi, Babak; Fang, Jie; Mohamed Ali, Mohamed Sultan; Takahata, Kenichi

    2013-01-01

    Localized temperature control and heater interface remain challenges in centrifugal microfluidics and integrated lab-on-a-chip devices. This paper presents a new wireless heating method that enables selective activation of micropatterned resonant heaters using external radiofrequency (RF) fields and its applications. The wireless heaters in an array are individually activated by modulating the frequency of the external field. Temperature of 93 °C is achieved in the heater when resonated with a 0.49-W RF output power. The wireless method is demonstrated to be fully effective for heating samples under spinning at high speeds, showing its applicability to centrifugal systems. Selective sterilization of Escherichia coli through the wireless heating is also demonstrated. Healthcare applications with a focus on wound sterilization are discussed along with preliminary experiments, showing promising results. PMID:24110983

  9. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  10. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  11. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved... each compartment. (b) Each interior heater system shall be hydrostatically tested at not less than...

  12. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Interior heater systems. 179.12 Section 179.12... § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials...) Each interior heater system shall be hydrostatically tested at not less than 13.79 bar (200 psig)...

  13. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  14. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  15. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  16. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  17. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  18. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  19. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  20. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  1. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  2. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  3. Design data brochure: Solar hot air heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  4. Heater head for a Stirling engine

    SciTech Connect

    Darooka, D.K.

    1988-09-06

    A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

  5. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    PubMed Central

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; Müller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.

  6. Varying properties along lengths of temperature limited heaters

    DOEpatents

    Vinegar, Harold J.; Xie, Xueying; Miller, David Scott; Ginestra, Jean Charles

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  7. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  8. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  9. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  10. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  11. Intelligent annunciator for solar water heater

    NASA Astrophysics Data System (ADS)

    Chen, Xiao

    2009-07-01

    The solar water heater has advantages of low cost, no pollution, safety, energy conservation and is very suitable for users in rural area. But many now used solar water heater has no alarm device resulting water and resource wasting because of forgetting to turn off the valve after water sailing upstream. To overcome this defect, an intelligent annunciator for solar water heater installed at the end of the return pipe is presented and designed in order to remind the user. Firstly, the advantages and disadvantages of automatic and manual sailing upstream are compared concluding that manual sailing upstream is more trustiness. Then an annunciator for solar water heater is studied and ameliorated. Its principle, parameters index and functions are introduced. The annunciator uses CD4069 chip as the core circuit with very little assistant circuit. It can provide sound and light alarm at the same time. This annunciator for solar water heater water is very simple in production, low cost, the use of safe and convenient. The annunciator is applicable to all solar power products, including various types of early installation of solar power water heaters and water tanks without changing their structures. It can meet family and industrial environmental applications.

  12. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  13. Heater Applications for High Speed Jets

    NASA Astrophysics Data System (ADS)

    Rossetti, Jack; Berger, Zachary; Berry, Matthew; Hall, Andre; Glauser, Mark

    2013-11-01

    In this investigation, we study a high speed jet flow for noise reduction techniques. Here we specifically examine a heated jet for practical jet noise applications. Experiments are conducted in the Syracuse University anechoic chamber at the Skytop campus. This 206 m3 facility is lined with fiberglass wedges having a cutoff frequency of 150 Hz. Far-field microphones and near-field pressure sensors measure the acoustics and hydrodynamics, respectively. A 470 kW Chromalox heating unit is used to heat the flow to 1000°F at the nozzle exit. The controller for the heating unit has an associated time lag based on the Mach number and temperature. Therefore, this study will primarily focus on the heat transfer between the heating elements and the nozzle flow. Optimization of the heater's controller will allow for sufficient run time for data acquisition capabilities. Previous investigations at Syracuse University indicate significant differences between heated and cold jets, with regards to the acoustics and potential core characteristics (Hall et al. 2009).

  14. Protection heater design validation for the LARP magnets using thermal imaging

    DOE PAGESBeta

    Marchevsky, M.; Turqueti, M.; Cheng, D. W.; Felice, H.; Sabbi, G.; Salmi, T.; Stenvall, A.; Chlachidze, G.; Ambrosio, G.; Ferracin, P.; et al

    2016-03-16

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less

  15. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  16. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  17. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  18. Predicting canopy temperatures and infrared heater energy requirements for warming field plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warming open-field plots using arrays of infrared heaters has proven feasible for conducting experiments to determine the likely effects of global warming on various ecosystems. To date, however, such experiments have been done for only a few degrees (= 3.5°C) of warming, yet climate projections, es...

  19. Applications of infrared thermography for petrochemical process heaters

    NASA Astrophysics Data System (ADS)

    Weigle, Robert K.

    2005-03-01

    Process heaters are a critical component in the refining of crude oil. Traditional means of monitoring these high temperature vessels have frequently been more art than science, often relying on highly subjective analyses and/or frequently inaccurate thermocouple data. By utilizing an imaging radiometer specifically designed for heater inspections, valuable performance information can be obtained for operating heaters. In the hands of a knowledgeable engineering team, accurate infrared data can be utilized to significantly increase heater throughput while helping to ensure safe operation of the heater. This paper discusses the use of infrared thermography for online monitoring of operating crude heaters and the special challenges associated with this application.

  20. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  1. Bonded Invar Clip Removal Using Foil Heaters

    NASA Technical Reports Server (NTRS)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  2. Electrical Resistive Heaters for Magnetically Sensitive Instruments

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2014-05-01

    US Patent 8,138,760 ``Temperature System with Magnetic Field Suppression'' describes design concepts and examples for development of electrical resistive heaters and temperature detectors suitable for temperature control of the alkali vapor cells of magnetically sensitive atomic instruments such as spin-exchange relaxation free (SERF) magnetometers. This is achieved through careful manipulation of electromagnetic multi-pole moments in the design of these resistive heaters for substantial self-cancellation of electrically generated magnetic fields. The magnetic performance of electrical resistive heaters produced according to these design principles and directly attached to a rubidium vapor cell has been demonstrated to cause no measurable degradation of the performance of a SERF magnetometer exhibiting noise below 2 femto-Tesla per square root Hz.

  3. Economic analysis of residential solar water heaters

    SciTech Connect

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  4. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  5. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  6. Active heater control and regulation for the Varian VGT-8011 gyrotron

    SciTech Connect

    Harris, T.E.

    1991-10-01

    The Varian VGT-8011 gyrotron is currently being used in the new 110 GHz 2 MW ECH system installed on D3-D. This new ECH system augments the 60 GHz system which uses Varian VA-8060 gyrotrons. The new 110 GHz system will be used for ECH experiments on D3-D with a pulse width capability of 10 sec. In order to maintain a constant RF outpower level during long pulse operation, active filament-heater control and regulation is required to maintain a constant cathode current. On past D3-D experiments involving the use of Varian VA-8060 gyrotrons for ECH power, significant gyrotron heater-emission depletion was experienced for pulse widths > 300 msec. This decline in heater-emission directly results in gyrotron-cathode current droop. Since RF power from gyrotrons decreases as cathode current decreases, it is necessary to maintain a constant cathode current level during gyrotron pulses for efficient gyrotron operation. Therefore, it was determined that a filament-heater control system should be developed for the Varian VGT-8011 gyrotron which will include cathode-current feed-back. This paper discusses the mechanisms used to regulate gyrotron filament-heater voltage by using cathode-current feed-back. 1 fig.

  7. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  8. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  9. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  10. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  11. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  12. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  13. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  14. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  15. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  16. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  18. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  19. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  20. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  1. 7 CFR 58.215 - Pre-heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....215 Pre-heaters. The pre-heaters shall be of stainless steel or other equally corrosion...

  2. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  3. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  4. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  5. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  6. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  7. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  8. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  9. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  10. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  11. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  12. Infrared heater arrays for warming grazingland field plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to study the likely effects of global warming on rangeland and other ecosystems in the future, we developed arrays of infrared heaters that can produce uniform warming across 3-m-diameter field plots. The efficiency of the heaters was higher than that of the heaters used in most previous in...

  13. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Boilers and process heaters....

  14. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Boilers and process heaters....

  15. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Boilers and process heaters....

  16. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Boilers and process heaters....

  17. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters....

  18. A modernized high-pressure heater protection system for nuclear and thermal power stations

    NASA Astrophysics Data System (ADS)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  19. Infrared heater arrays for warming field plots scaled up to 5-m diameter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As Earth continues to warm globally, there is a need to conduct ecosystem plot warming experiments under conditions as representative of open fields in the future as possible. One promising approach is to use hexagonal arrays of infrared heaters such as described by Kimball et al. (2008). However, t...

  20. Single-heater test final report

    SciTech Connect

    Blair, S. C.; Buscheck, T. A.; DeLoach, L. D.; Lin, W.; Ramirez, A. I.

    1998-09-01

    The Single-Heater Test (SHT) was one phase of the field-scale thermal testing program of the Yucca Mountain Site Characterization Project. The primary purpose of the SHT was to study the thermomechanical (TM) behavior of the densely welded, non-lithophysal Topopah Spring tuff at the Exploratory Studies Facility. The SHT was also used as a shake-down for testing thermal-hydrologic-chemical-mechanical processes in situ, testing that will be conducted in the Drift-Scale Test. In the SHT, a line-heat source 5-m long was emplaced in a pillar and used to heat the pillar for approximately nine months. The thermal field was relatively cylindrical about the line-heat source. The heater was turned off after nine months of heating, and the rock mass was monitored during the cool-down for another nine months, until May 28, 1997, when the test was terminated.

  1. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  2. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  3. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  4. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  5. Tubular electric heater with a thermocouple assembly

    DOEpatents

    House, R.K.; Williams, D.E.

    1975-08-01

    This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube. (auth)

  6. (''Breadbox'' solar water heater). Final technical report

    SciTech Connect

    Shippee, P.

    1980-10-14

    Progress is reported on a project to study and construct a prototype bread box type solar water heater with movable insulation integral to a Trombe-Meinel cusp reflector. Performance tests were carried out to determine the all day heat gain, instantaneous efficiency at various tank temperatures, and heat loss coefficient of the cusp in the closed position. The same tank was tested with a black paint coating and then with a selective black coating of adhesive foil of etched nickel. (LEW)

  7. Water heaters subject to new regulations.

    PubMed

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more. PMID:25004554

  8. Field Monitoring Protocol. Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, C. E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  9. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  10. Cryostat including heater to heat a target

    DOEpatents

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  11. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  12. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  13. Multi-step heater deployment in a subsurface formation

    SciTech Connect

    Mason, Stanley Leroy

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  14. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  15. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  16. Shipping device for heater unit assembly

    DOEpatents

    Blaushild, Ronald M.; Abbott, Stephan L.; Miller, Phillip E.; Shaffer, Robert

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  17. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  18. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  19. Heat Pump Water Heater Durabliltiy Testing - Phase II

    SciTech Connect

    Baxter, VAND.

    2004-05-29

    efficiencies than conventional electric water heaters (EWH). DOE Simulated Use Tests conducted prior to starting the durability testing resulted in energy factors (EF) of about 2.3 for the integral design and 1.4 for the add-on design compared to the minimum value of 0.86 prescribed for EWHs. Based on the experience from this and the previous durability testing, there is no evidence that strongly suggests that any of the HPWHs suffered significant performance degradation after undergoing over 7000 water heat cycles.

  20. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, Reg W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1990-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  1. Combined grate and hot water heater

    SciTech Connect

    Milano, E.

    1984-09-25

    A combined grate and hot water heater for a fireplace which can be easily fabricated using conventional parts, easily installed and easily used is disclosed. The combined grate and hot water heater includes a rectangular shaped cradle for holding combustible materials to be burned which is sized and configured to fit into the fire chamber of the fireplace and a set of supporting legs for supporting the cradle on the floor of the fire chamber in spaced apart relationship. The cradle is made of a plurality of longitudinally extending and laterally extending heavy duty cast iron pipes interconnected by suitable pipe couplings so as to be in fluid communication with one another. A water inlet pipe and a water outlet pipe are connected to and in fluid communication with the pipes in the cradle for supplying water to be heated into the pipes and then allowing exit of the water after it has circulated through the pipes and has been heated by the fire produced on burning of the combustible materials. An inverted U shaped pipe section also made of heavy duty cast iron is coupled in fluid communication with the pipes in the cradle and extends vertically upward into the flue of the fireplace to utilize the heat present in the flue to further heat the water circulated through the pipes.

  2. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  3. Probe with integrated heater and thermocouple pack

    DOEpatents

    McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1988-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  4. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  5. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection....

  6. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859 Section 25.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection....

  7. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  8. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  9. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  10. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  11. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  12. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  13. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  14. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  15. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  16. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  17. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  18. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  19. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  20. INFRARED HEATER ARRAYS FOR WARMING ECOSYSTEM FIELD PLOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TThere is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 de...

  1. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  2. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  3. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  4. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  5. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  6. Performance test plan for a space station toluene heater tube

    SciTech Connect

    Parekh, M.B.

    1987-10-01

    Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

  7. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  8. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed. PMID:27137229

  9. ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Heater utilizing copper-nickel alloy core

    SciTech Connect

    Van Egmond, C.F.H.

    1991-10-22

    This patent describes a well heater. It comprises: at least one heating section which is capable of extending for at least a hundred feet within a well borehole adjacent to an interval of subterranean earth formation to be heated, contains at least one electrical heating cable, and contains a combination of heating cable core resistance and core cross-sectional areas capable of producing temperatures between about 600[degrees]C and 1000[degrees]C within the subterranean earth formation, wherein the heating cable is an electrical resistance heating cable comprising: a core consisting essentially of 6 percent by weight nickel and 94 percent by weight copper; electrical insulation surrounding the core; and surrounding the electrical insulation, a metal sheath; and a means of supplying electrical power to the heating cable core.