Science.gov

Sample records for strong magnetic field

  1. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  2. Magnetocaloric effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tishin, A. M.

    Calculations of magnetic entropy change, Δ SM, and magnetocaloric effect, Δ T, in 3d and 4f magnetics have been carried out, based on the molecular field theory. Δ SM and Δ T have been studied as a function of Debye temperature, θ D, Lande factor, gj, quantum number of total mechanical momentum, J, and also of magnetic phase transition temperatures. Limiting values of Δ SM and Δ T have been determined in extremely strong magnetic fields. The results obtained are compared with experimental data. It is shown that the use of ferromagnetic alloys Tb x Gd 1-x as operating devices of magnetic refrigerating machines in the room temperature range is more efficient than the use of pure Gd. These alloys have been found to have high specific refrigerant capacity over a wide range of fields from 0.1 to 6 T, which enables one to develop highly economic refrigeration devices in which weak fields are applied.

  3. Quark matter under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Peres Menezes, Débora; Laércio Lopes, Luiz

    2016-02-01

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

  4. Charm production in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/ψ and Υ. We briefly comment the recent experimental data.

  5. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  6. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  7. Cold Rydberg atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Guest, J. R.; Choi, J.-H.; Povilus, A.; Raithel, G.

    2003-05-01

    The combination of laser-cooling and trapping methods with Rydberg-atom spectroscopy has opened the door to the study of novel ultracold atomic and plasma systems. In particular, the study of Rydberg atoms in strong magnetic fields, which has previously been restricted to optically accessible low azimuthal quantum numbers |m|, has been expanded to include high azimuthal quantum numbers |m| through new collisional and recombinative processes which can play a role in this regime. We describe our efforts to realize this new regime experimentally with a superconducting atom and plasma trap. In theoretical work, we have implemented an efficient method to calculate the spectra of Rydberg atoms in strong magnetic fields. We use adiabatic basis sets that reflect the disparate time scales of the electronic motion parallel and transverse to the magnetic field. We find that, with increasing absolute value of |m|, non-adiabatic corrections become negligible, the adiabatic basis states and their energies become exact solutions, and the level statistics evolve from a Wigner to a Possonian distribution of the nearest-neighbor energy separations. The analogy between the adiabatically separable regime of large |m| and the behavior of charged particles in Penning traps will be discussed.

  8. Possible adaptation to strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakhilnitskaya, Z. N.; Klimovskaya, L. D.; Kuzmina, Z. F.; Mastryukova, V. M.; Smirnova, N. P.; Strzhizhovsky, A. D.; Cherkasov, G. V.

    Animal adaptation to a strong magnetic field was investigated. Mice were exposed to 30-day total-body continuous effects of a constant magnetic field (CMF) of 1.6 T, and their physiological responses were assessed. Analysis of the data obtained showed that different parameters varied in a dissimilar manner. Red blood changes returned to normal in the course of the experiment. Leucocytosis and increased content of catecholamines and corticosterone of blood and adrenals persisted throughout the exposure. Changes in the spermatogenic epithelium were most distinct after the exposure. The recovery of certain parameters during the CMF exposure is indicative of adaptation of some physiological systems. The adaptation is, however, incomplete as suggested by the long persisting stress manifestations. Reticulocytopenia and spermatogenetic abnormalities found after the exposure are of particular importance.

  9. Compton scattering in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1986-01-01

    The relativistic cross section for Compton scattering by electrons in strong magnetic fields is derived. The results confirm and extend earlier work which has treated only transitions to the lowest or first excited Landau levels. For the teragauss field strengths expected in neutron star magnetospheres, the relative rates for excited state transitions are found to be significant, especially for incident photon energies several times the cyclotron frequency. Since these transitions must result in the rapid emission of one or more cyclotron photons as well as the Compton-scattered photon, the scattering process actually becomes a photon 'splitting' mechanism which acts to soften hard photon spectra, and also provides a specific mechanism for populating higher Landau levels in the electron distribution function. The results should be significant for models of gamma-ray bursters and pulsating X-ray sources.

  10. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  11. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (≈O(1/ln|eB|)) at large magnetic field. PMID:23679595

  12. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  13. Sodium in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    González-Férez, R.; Schmelcher, P.

    2003-05-01

    We investigate the effects of a magnetic field with low to intermediate strength on several spectroscopic properties of the sodium atom. A model potential is used to describe the core of sodium, reducing the study of the system to an effective one-particle problem. All states with principal quantum numbers n = 3, 4, 5, 6 and 7 are studied and analysed. A grid of twenty values for the field strength in the complete regime B = 0 - 0.02 a.u. is employed. Ionisation energies, transition wavelengths and their dipole oscillator strengths are presented.

  14. Meson spectrum in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.

    2013-05-01

    We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange interaction energy ⟨VOGE⟩ and spin-spin contribution ⟨aSS⟩ we have observed that these corrections remain finite at large MF, preventing the vanishing of the total ρ meson mass at some Bcrit, as previously thought. We display the ρ masses as functions of the MF in comparison with recent lattice data.

  15. Quark matter under strong magnetic fields in chiral models

    SciTech Connect

    Rabhi, Aziz; Providencia, Constanca

    2011-05-15

    The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.

  16. Warm and dense stellar matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Panda, P. K.; Providencia, C.

    2011-09-15

    We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.

  17. Properties of hyperonic matter in strong magnetic fields

    SciTech Connect

    Yue, P.; Yang, F.; Shen, H.

    2009-02-15

    We study the effects of strong magnetic fields on the properties of hyperonic matter. We employ the relativistic mean field theory, which is known to provide excellent descriptions of nuclear matter and finite nuclei. The two additional hidden-strangeness mesons, {sigma}* and {phi}, are taken into account, and some reasonable hyperon potentials are used to constrain the meson-hyperon couplings, which reflect the recent developments in hypernuclear physics. It is found that the effects of strong magnetic fields become significant only for magnetic field strength B>5x10{sup 18} G. The threshold densities of hyperons can be significantly altered by strong magnetic fields. The presence of hyperons makes the equation of state (EOS) softer than that in the case without hyperons, and the softening of the EOS becomes less pronounced with increasing magnetic field strength.

  18. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  19. Finite temperature quark matter under strong magnetic fields

    SciTech Connect

    Avancini, S. S.; Menezes, D. P.; Providencia, C.

    2011-06-15

    In this paper, we use the mean-field approximation to investigate quark matter described by both SU(2) and SU(3) versions of the Nambu-Jona-Lasinio model at temperatures below 150 MeV and subject to a strong magnetic field. This kind of matter is possibly present in the early stages of heavy-ion collisions and in the interior of protoneutron stars. We have studied symmetric and asymmetric quark matter. The effect of the magnetic field on the effective quark masses and chemical potentials is only felt for quite strong magnetic fields, above 5x10{sup 18} G, with larger effects for the lower densities. Spin polarizations are more sensitive to weaker magnetic fields and are larger for lower temperatures and lower densities. Temperature tends to wash out the magnetic field effects.

  20. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  1. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  2. Vacuum in a strong magnetic field as a hyperbolic metamaterial.

    PubMed

    Smolyaninov, Igor I

    2011-12-16

    As demonstrated by Chernodub, vacuum in a strong magnetic field behaves as Abrikosov vortex lattice in a type-II superconductor. We investigate electromagnetic behavior of vacuum in this state and demonstrate that vacuum behaves as a hyperbolic metamaterial. If the magnetic field is constant, low frequency extraordinary photons experience this medium as a (3+1) Minkowski spacetime in which the role of time is played by the spatial z coordinate. Variations of the magnetic field curve this spacetime, and may lead to formation of "electromagnetic black holes." Since hyperbolic metamaterials behave as diffractionless "perfect lenses," and large enough magnetic fields probably existed in the early Universe, the demonstrated hyperbolic behavior of early vacuum may have imprints in the large scale structure of the present-day Universe. PMID:22243076

  3. Thermal properties of stellar matter in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine

    2012-07-01

    Low statistics and selection effects of the existing observational records of neutron stars ( NSs) do not allow to draw a coherent picture of the NSs typology only from observations. From theoretical point of view the unsufficient understanding of the mechanism of Supernovae explosion as well as the uncertainties in the modeling of the stellar matter equation of state make the knowledge of the parameters of the NS's structure and thermal, magnetic field or spin evolution non robust. The model's which are including the effects of superfluidity, superconductivity in dense matter and electro dynamics of super strong magnetic fields due to The complicated physics of matter under extrim conditions need further detailed investigations. The results are demonstrating the influence of magnetic field on the cooling regulators of NSs such as neutrino emissivity, heat conductivity and specific heat in the presence of magnetic fields for the investigations of cooling evolution of magnetars.

  4. Laser ablation and target acceleration under the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Matsuo, K.; Breil, J.; Nicolai, P.; Feugeas, J.-L.; Asahina, T.; Sunahara, A.; Johzaki, T.; Fujioka, S.; Sano, T.; Mima, K.

    2015-11-01

    Various discussion and experiments have been made about the laser plasma phenomena under the strong magnetic field recently. One of the advantage is guiding electron beam for heating core plasma in last phase of Fast Ignition scheme. However, the implosion dynamics in FI is influenced by the magnetic field due to the anisotropic of electron heat conduction. Some simple experiments where target is accelerated by laser driven ablation under the strong magnetic field were conducted to benchmark the simulation code. Related to the experiment, we focus on the early stage of the acceleration in this study. 2-D radiative MHD code (PINOCO-MHD) is used for the simulation. In the simulation magnetic field transport, diffusion and Braginskii coefficient for electron heat conduction are taken account. In preliminary simulation result suggests that the magnetic pressure may have an influence on the target surface and/or ablated plasma at very early phase. The effect of the magnetic pressure is very sensitive to the vacuum, initial and boundary conditions, and they should be treated carefully. These numerical conditions will be discussed as well. This study was partially supported by JSPS KAKENHI Grant No. 26400532.

  5. Anomalously Strong Vertical Magnetic Fields from Distant Lightning

    NASA Astrophysics Data System (ADS)

    Silber, I.; Price, C. G.; Galanti, E.; Shuval, A.

    2014-12-01

    At distances of thousands of kilometers from lightning the vertical component of the magnetic field in the Very Low Frequencies (VLF - 3-30 kHz) and Extremely Low Frequencies (ELF - 3-3000 Hz) is expected to be very weak and several orders of magnitude lower than the horizontal magnetic components. However, measurements in Israel show a relatively strong vertical magnetic component in both the ELF and VLF bands, at the same order of magnitude as the horizontal components. Our measurements suggest that the real Earth-ionosphere waveguide might often be very different from the theoretical waveguide used in model calculations.

  6. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy in incompressible MHD turbulence. The modifications that this is likely to produce in the properties of the turbulence are investigated for high Reynolds numbers. It is found that the turbulent spectrum splits into two parts: (1) an essentially two-dimensional spectrum with both the velocity field and the magnetic fluctuations perpendicular to the dc magnetic field, and (2) a generally weaker and more nearly isotropic spectrum of Alfven waves. These results are discussed in relation to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrorotor tokamak, as well as in relation to measurements of MHD turbulence in the solar wind.

  7. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.

  8. RF breakdown of 805 MHz cavities in strong magnetic fields

    SciTech Connect

    Bowring, D.; Stratakis, D.; Kochemirovskiy, A.; Leonova, M.; Moretti, A.; Palmer, M.; Peterson, D.; Yonehara, K.; Freemire, B.; Lane, P.; Torun, Y.; Haase, A.

    2015-05-03

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.

  9. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  10. Strongly interacting photons in a synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Roushan, Pedram; Neill, C.; Megrant, A.; Chen, Y.; Barends, R.; Cambell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O'Malley, P.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Martinis, J.

    Interacting electrons in the presence of magnetic fields exhibit some of the most fascinating phases in condensed matter systems. Realizing these phases in an engineered platform could provide deeper insight into their. Using three superconducting qubits, we synthesize artificial magnetic fields by modulating the inter-qubit coupling. In the closed loop formed by the qubits, we observe the directional circulation of a microwave photon as well as chiral groundstate currents, the signatures of broken time-reversal symmetry. The existence of strong interactions in our system is seen via the creation of photon vacancies, or ''holes'', which circulate in the opposite direction from the photons. Our work demonstrates an experimental approach for engineering quantum phases of strongly interacting bosons.

  11. Hig Resolution Seismometer Insensitive to Extremely Strong Magnetic Fields

    SciTech Connect

    Abramovich, Igor A

    2009-07-14

    A highly sensitive broadband seismic sensor has been developed successfully to be used in beam focusing systems of particale accelerators. The sensor is completely insensitive to extremely strong magnetic fields and to hard radiation conditions that exist at the place of their installation. A unique remote sensor calibration method has been invented and implemented. Several such sensors were sold to LAPP (LAPP-IN2P3/CNRS-Université de Savoie; Laboratoire d'Annecy-le-Vieux de Physique des Particules)

  12. Selective NMR excitation in strongly inhomogeneous magnetic fields.

    PubMed

    Todica, M; Fechete, R; Blümich, B

    2003-10-01

    The NMR-MOUSE is a unilateral and mobile NMR sensor which operates with highly inhomogeneous magnetic fields. To produce a mobile NMR unit, RF excitation is sought, which can be produced with the most simple equipment, in particular nonlinear, low-power amplifiers, and to observe a free induction decay in strongly inhomogeneous fields, the excitation needs to be selective. The possibility to produce selective excitation by sequences of hard low-power radiofrequency pulses in the strongly inhomogeneous magnetic fields of the NMR-MOUSE is explored. The use of the DANTE sequence for selection of magnetization from parts of the sensitive volume was investigated for longitudinal and transverse magnetization by computer simulations and experiments. The spectra of the recorded FIDs and echo signals are in good agreement with those simulated for the excitation, which verifies the concept of the DANTE excitation. The results obtained are an important step towards a low-power operation of the NMR-MOUSE to improve its mobility. PMID:14511590

  13. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  14. Strong magnetic fields in normal galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.; Kronberg, Philipp P.; Dessauges-Zavadsky, Miroslava

    2008-07-01

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong MgII absorption lines are unambiguously associated with larger rotation measures. Because MgII absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  15. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  16. Polarization in cyclotron radiation in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Semionova, Luidmila; Leahy, Denis; Paez, Jorge

    2010-10-01

    We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is in(2).

  17. Diffusion of fast rising strong magnetic fields into conductors

    NASA Astrophysics Data System (ADS)

    Labetskaya, N. A.; Oreshkin, V. I.; Chaikovsky, S. A.; Datsko, I. M.; Kuskova, N. I.; Rud, A. D.

    2014-11-01

    The basic processes occurring in a conductor exploding in a current skinning mode are the propagation of a nonlinear magnetic diffusion wave in the conductor and the formation of low-temperature plasma at its surface. An experimental study of the phenomenon of nonlinear magnetic diffusion into conductors in magnetic fields of induction rising at a rate up to 3·109 T/s was carried out on the MIG generator capable of producing a peak current up to 2.5 MA within a rise time of 100 ns. It has been found experimentally that the average velocity of a nonlinear magnetic diffusion wave in an aluminum conductor placed in a strong magnetic field (up to 300 T) rising at a high rate (on average, 3·109 T/s) is (2.7÷3.3)·105 cm/s. This is comparable to the velocity of sound in aluminum under normal conditions and reasonably agrees with predictions of numerical simulations.

  18. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  19. Mesons in strong magnetic fields: (I) General analyses

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-07-01

    We study properties of neutral and charged mesons in strong magnetic fields | eB | ≫ ΛQCD2 with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe-Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.

  20. Mesons in strong magnetic fields: (I) General analyses

    DOE PAGESBeta

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-03-21

    Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number ofmore » meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less

  1. Helium atoms and molecules in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  2. Kubo formulas for relativistic fluids in strong magnetic fields

    SciTech Connect

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-12-15

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

  3. Oriented fibrin gels formed by polymerization in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Torbet, J.

    1981-01-01

    Fibrinogen is a soluble plasma protein which, after cleavage by the specific proteolytic enzyme thrombin, polymerizes to form the filamentous fibrin network during blood clotting (see refs 1 and 2 for reviews). Fibrinogen has a molecular weight of 340,000 and is composed of two identical halves, each containing three peptide chains designated Aα, Bβ and γ. Fibrin monomers are produced by thrombin which releases the small negatively charged fibrinopeptides A and B. The overall shape of the fibrinogen molecule has not been unequivocally established1,2. The trinodular, elongated (~450 Å long) structure proposed by Hall and Slayter3 is the most widely accepted model and it has obtained additional support from recent work4-6. Fibrin monomers are also about 450 Å long7 and in fibres they probably have a half-staggered arrangement along the axis7,8. The fibres are an assembly of protofibrils whose structure and packing are not reliably known. We report here that highly oriented fibrin gels are formed when polymerization takes place slowly in a strong magnetic field. It is shown that the protofibrils pack into a three-dimensional crystalline lattice. We introduce magnetically induced birefringence as a potential tool for studying polymerization and briefly speculate on the applications of strong magnetic fields.

  4. Pair Production and Annihilation in Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon (which dominates the two-photon annihilation for B ( 10 the 13th power Gauss). The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  5. Observations of Strong Magnetic Fields in Nondegenerate Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Schöller, Markus

    2015-10-01

    We review magnetic-field measurements of nondegenerate stars across the Hertzprung-Russell diagram for main sequence, premain sequence, and postmain sequence stars. For stars with complex magnetic-field morphologies, which includes all G-M main sequence stars, the analysis of spectra obtained in polarized vs unpolarized light provides very different magnetic measurements because of the presence or absence of cancellation by oppositely directed magnetic fields within the instrument's spatial resolution. This cancellation can be severe, as indicated by the spatially averaged magnetic field of the Sun viewed as a star. These averaged fields are smaller by a factor of 1000 or more compared to spatially resolved magnetic-field strengths. We explain magnetic-field terms that characterize the fields obtained with different measurement techniques. Magnetic fields typically control the structure of stellar atmospheres in and above the photosphere, the heating rates of stellar chromospheres and coronae, mass and angular momentum loss through stellar winds, chemical peculiarity, and the emission of high energy photons, which is critically important for the evolution of protoplanetary disks and the habitability of exoplanets. Since these effects are governed by the star's magnetic energy, which is proportional to the magnetic-field strength squared and its fractional surface coverage, it is important to measure or reliably infer the true magnetic-field strength and filling factor across a stellar disk. We summarize magnetic-field measurements obtained with the different observing techniques for different types of stars and estimate the highest magnetic-field strengths. We also comment on the different field morphologies observed for stars across the H-R diagram, typically inferred from Zeeman-Doppler imaging and rotational modulation observations,

  6. Fluid vs. kinetic magnetic reconnection with strong guide fields

    SciTech Connect

    Stanier, A. Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-10-15

    The fast rates of magnetic reconnection found in both nature and experiments are important to understand theoretically. Recently, it was demonstrated that two-fluid magnetic reconnection remains fast in the strong guide field regime, regardless of the presence of fast-dispersive waves. This conclusion is in agreement with recent results from kinetic simulations, and is in contradiction to the findings in an earlier two-fluid study, where it was suggested that fast-dispersive waves are necessary for fast reconnection. In this paper, we give a more detailed derivation of the analytic model presented in a recent letter and present additional simulation results to support the conclusions that the magnetic reconnection rate in this regime is independent of both collisional dissipation and system-size. In particular, we present a detailed comparison between fluid and kinetic simulations, finding good agreement in both the reconnection rate and overall length of the current layer. Finally, we revisit the earlier two-fluid study, which arrived at different conclusions, and suggest an alternative interpretation for the numerical results presented therein.

  7. Fluid vs. kinetic magnetic reconnection with strong guide fields

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-10-01

    The fast rates of magnetic reconnection found in both nature and experiments are important to understand theoretically. Recently, it was demonstrated that two-fluid magnetic reconnection remains fast in the strong guide field regime, regardless of the presence of fast-dispersive waves. This conclusion is in agreement with recent results from kinetic simulations, and is in contradiction to the findings in an earlier two-fluid study, where it was suggested that fast-dispersive waves are necessary for fast reconnection. In this paper, we give a more detailed derivation of the analytic model presented in a recent letter and present additional simulation results to support the conclusions that the magnetic reconnection rate in this regime is independent of both collisional dissipation and system-size. In particular, we present a detailed comparison between fluid and kinetic simulations, finding good agreement in both the reconnection rate and overall length of the current layer. Finally, we revisit the earlier two-fluid study, which arrived at different conclusions, and suggest an alternative interpretation for the numerical results presented therein.

  8. Laser cooling at low intensity in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    van der Straten, P.; Shang, S.-Q.; Sheehy, B.; Metcalf, H.; Nienhuis, G.

    1993-05-01

    We have studied theoretically and experimentally the effect of a relatively strong magnetic field on sub-Doppler laser cooling in a one-dimensional optical molasses. We used the operator description of laser cooling with the Larmor precession frequency ωZ being much higher than the optical pumping rate. We found velocity-selective resonances (VSR) in the force at velocities vr=nωZ, with n=0,+/-1,+/-2 for both the scattering and redistribution force operators. These depend on the relative direction of the magnetic field and the polarization vectors of the light beams. Analytical results for the force on the atom are obtained in two cases that illustrate the effect of the VSR on the force. These formulas are compared with numerical calculations of the force. We also discovered a redistribution mechanism that relies on the gradient of the eigenstates of the light-shift operator, with eigenvalues that are independent of position so that a ``Sisyphus cooling'' picture does not apply. The theory is compared with many experimental results and excellent agreement is found. We believe that all essential features of laser cooling at low intensity are well described by this operator theory.

  9. Elevator mode convection in flows with strong magnetic fields

    SciTech Connect

    Liu, Li; Zikanov, Oleg

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  10. Nonlinear response of the benzene molecule to strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2005-02-01

    The fourth-rank hypermagnetizability tensor of the benzene molecule has been evaluated at the coupled Hartree-Fock level of accuracy within the conventional common-origin approach, adopting gaugeless basis sets of increasing size and flexibility. The degree of convergence of theoretical tensor components has been estimated allowing for two different coordinate systems. It is shown that a strong magnetic field perpendicular to the plane of the molecule causes a distortion of the electron charge density, which tends to concentrate in the region of the C-C bonds. This charge contraction has a dynamical origin, and can be interpreted as a feedback effect in terms of the classical Lorentz force acting on the electron current density.

  11. Nonlinear response of the benzene molecule to strong magnetic fields.

    PubMed

    Pagola, G I; Caputo, M C; Ferraro, M B; Lazzeretti, P

    2005-02-15

    The fourth-rank hypermagnetizability tensor of the benzene molecule has been evaluated at the coupled Hartree-Fock level of accuracy within the conventional common-origin approach, adopting gaugeless basis sets of increasing size and flexibility. The degree of convergence of theoretical tensor components has been estimated allowing for two different coordinate systems. It is shown that a strong magnetic field perpendicular to the plane of the molecule causes a distortion of the electron charge density, which tends to concentrate in the region of the C-C bonds. This charge contraction has a dynamical origin, and can be interpreted as a feedback effect in terms of the classical Lorentz force acting on the electron current density. PMID:15743243

  12. Elevator mode convection in flows with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  13. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  14. Properties of mesons in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Fu, Wei-jie; Liu, Yu-xin

    2016-06-01

    By extending the Φ -derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, σ , and ρ mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of π 0 and σ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the π ^{± } mass ascends suddenly at almost the same critical temperature. Meanwhile the ρ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, T_c^{χ }, is always enhanced by the magnetic field. Moreover, our calculations indicate that the ρ mesons will get melted as the chiral symmetry has not yet been restored, but the σ meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.

  15. Electron beam guiding by strong longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Johzaki, T.; Mima, K.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Shiraga, H.

    2016-03-01

    In electron-driven fast ignition, the guiding of fast electron beam having significantly large beam divergence is one of the most critical issues for efficient core heating. To guide the fast electron beam to the core, we consider to externally apply longitudinal magnetic fields. From the 2D PIC simulations applying uniform magnetic fields, it was shown that the field strength of 1∼10kT is required for efficient guiding for the heating laser intensity of 1018∼1020W/cm2.

  16. Plasma waves in a relativistic, strongly anisotropic plasma propagated along a strong magnetic field

    NASA Technical Reports Server (NTRS)

    Onishchenko, O. G.

    1980-01-01

    The dispersion properties of plasma waves in a relativistic homogeneous plasma propagated along a strong magnetic field are studied. It is shown that the non-damping plasma waves exist in the frequency range omega sub p or = omega or = omega sub L. The values of omega sub p and omega sub L are calculated for an arbitrary homogeneous relativistic function of the particle distribution. In the case of a power ultrarelativistic distribution, it is shown that, if the ultrarelativistic tail of the distribution drops very rapidly, slightly damping plasma waves are possible with the phase velocity (omega/K)c.

  17. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Granot, Jonathan; Piran, Tsvi; Bromberg, Omer; Racusin, Judith L.; Daigne, Frédéric

    2015-10-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their γ-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  18. Can Induced Orbital Paramagnetism Be Controlled by Strong Magnetic Fields?

    PubMed

    Pagola, G I; Ferraro, M B; Lazzeretti, P

    2009-11-10

    Magnetic hypersusceptibilities and hypershielding at the nuclei of BH, CH(+), C4H4, and C8H8 molecules in the presence of an external spatially uniform, time-independent magnetic field have been investigated accounting for cubic response contributions via Rayleigh-Schrödinger perturbation theory. Numerical estimates have been obtained at the coupled Hartree-Fock and density-functional levels of theory within the conventional common-origin approach, using extended gaugeless basis sets. The fundamental role of electron correlation effects was assessed. Critical values of the applied magnetic field at which transition from paramagnetic to diamagnetic behavior would occur were estimated. It is shown that perturbative methods may successfully be employed to estimate the interaction energy for big cyclic molecules. PMID:26609984

  19. New QED calculations for processes in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Leahy, D.; Semionova, L.

    2000-09-01

    The results of some new QED calculations are presented. We consider two-photon emission by electrons, and determine magnetic field, spin and polarization dependence of the transition rates. We utilize the electron wave functions of Sokolov and Ternov (1968, Synchrotron Radiation, Berlin: Akademie), rather than those of Johnson and Lippmann (1949, Physical Review D, 76, 828). As pointed out by Graziani (1993, Astrophysical Journal, 412, 351), use of the former wave functions is necessary to obtain results valid outside the weak field limit. The results are of particular interest for processes in magnetars, for which the magnetic field is near, or can exceed, the critical value (Bcr=4.414×1013 G). .

  20. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  1. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease. PMID:12929156

  2. Cigar-shaped quarkonia under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Suzuki, Kei; Yoshida, Tetsuya

    2016-03-01

    Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.

  3. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    PubMed

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. PMID:20891027

  4. Collisional excitation of electron Landau levels in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Langer, S. H.

    1981-01-01

    The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.

  5. Sharp-front wave of strong magnetic field diffusion in solid metal

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng

    2016-08-01

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  6. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  7. Quark-hadron phase transition in a neutron star under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Rabhi, A.; Pais, H.; Panda, P. K.; Providência, C.

    2009-11-01

    We study the effect of a strong magnetic field on the properties of neutron stars with a quark-hadron phase transition. It is shown that the magnetic field prevents the appearance of a quark phase, enhances the leptonic fraction, decreases the baryonic density extension of the mixed phase and stiffens the total equation of state, including both the stellar matter and the magnetic field contributions. Two parametrizations of a density-dependent static magnetic field, increasing, respectively, fast and slowly with the density and reaching 2-4 × 1018 G in the centre of the star, are considered. The compact stars with strong magnetic fields have maximum mass configurations with larger masses and radii and smaller quark fractions. The parametrization of the magnetic field with density has a strong influence on the star properties.

  8. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young. PMID:25327247

  9. Turbulent Magnetic Field Amplification behind Strong Shock Waves in GRB and SNR

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi

    2012-09-01

    Using three-dimensional (special relativistic) magnetohydrodynamics simulations, the amplification of magnetic field behind strong shock wave is studied. In supernova remnants and gamma-ray bursts, strong shock waves propagate through an inhomogeneous density field. When the shock wave hit a density bump or density dent, the Richtmyer-Meshkov instability is induced that cause a deformation of the shock front. The deformed shock leaves vorticity behind the shock wave that amplifies the magnetic field due to the stretching of field lines.

  10. Decreased chemotaxis of human peripheral phagocytes exposed to a strong static magnetic field.

    PubMed

    Sipka, S; Szöllosi, I; Batta, Gy; Szegedi, Gy; Illés, A; Bakó, Gy; Novák, D

    2004-01-01

    The chemotaxis of human peripheral phagocytes, neutrophils and monocytes was examined in a strong static magnetic field (0.317+/-0.012 Tesla). The chemotaxis of the suspension of purified neutrophils and monocytes was tested in the Boyden chamber using C5a as a chemotactic signal. The chambers were placed into a temperature regulated (36.6 degrees C) equipment producing a strong static magnetic field (0.317 Tesla) for 60 minutes. The movement of cells proceeded into a nitrocellulose membrane toward the north-pole of the magnet, i.e. in the direction of the Earth's gravitational pull. The C5a induced chemotaxis of human neutrophils decreased significantly in the strong static magnetic field. Monocytes were not significantly effected. The strong static magnetic field decreased the chemotactic movement of neutrophils and this phenomenon may have implications when humans are exposed to magnetic resonance imaging for extended periods of time. PMID:15334831

  11. Dynamical behavior of strong magnetic fields in the solar convection zone

    NASA Technical Reports Server (NTRS)

    Vainshtein, S.; Levy, E. H.

    1991-01-01

    Magnetic buoyancy is thought to play an important role in the dynamical behavior of the sun's magnetic field in the convection zone. Magnetic buoyancy is commonly thought to cause inescapable rapid loss of toroidal flux from much of the convection zone, thereby suppressing effective operation of a solar dynamo. This paper reexamines the detailed character of magnetic buoyancy, especially as it is influenced by the magnetic field's effect on heat transport and temperature gradients in the convection zone. It is suggested that suppression of convective heat transport across strong magnetic flux tubes can alter the temperature within the tubes and can subdue, or even reverse, the effect of magnetic buoyancy.

  12. Aversive responses of captive sandbar sharks Carcharhinus plumbeus to strong magnetic fields.

    PubMed

    Siegenthaler, A; Niemantsverdriet, P R W; Laterveer, M; Heitkönig, I M A

    2016-09-01

    This experimental study focused on the possible deterrent effect of permanent magnets on adult sandbar sharks Carcharhinus plumbeus. Results showed that the presence of a magnetic field significantly reduced the number of approaches of conditioned C. plumbeus towards a target indicating that adult C. plumbeus can be deterred by strong magnetic fields. These data, therefore, confirm that the use of magnetic devices to reduce shark by-catch is a promising avenue. PMID:27323691

  13. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  14. Thin accretion discs are stabilized by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2016-07-01

    By studying three-dimensional, radiative, global simulations of sub-Eddington, geometrically thin (H/R ≈ 0.15) black hole accretion flows we show that thin discs which are dominated by magnetic pressure are stable against thermal instability. Such discs are thicker than predicted by the standard model and show significant amount of dissipation inside the marginally stable orbit. Radiation released in this region, however, does not escape to infinity but is advected into the black hole. We find that the resulting accretion efficiency (5.5 ± 0.5 per cent for the simulated 0.8dot{M}_Edd disc) is very close to the predicted by the standard model (5.7 per cent).

  15. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Buividovich, P. V.; Chernodub, M. N.; Kotov, A. Yu.; Polikarpov, M. I.

    2012-12-01

    Using numerical simulations of quenched SU (2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged ρ mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927 (77) GeV2 or Bc = (1.56 ± 0.13) ṡ1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  16. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  17. Hydromagnetic waves for a collisionless plasma in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Duhau, S.; de La Torre, A.

    1985-08-01

    A system of hydrodynamic equations is used to model the behavior of small-amplitude hydromagnetic waves in order to quantify the effects of the electron thermodynamic variables. The system of equations yields a dispersion relationship which is solved with a linear approximation when small perturbations are introduced into the steady state. The disturbances are expressed as a superposition of small amplitude, plane harmonic waves, which are traced as they propagate through a collisionless heat-conducting plasma. Only the mirror stability criterion is found to change when the electron pressure is considered in a zero heat flux. The phase speed will be symmetric with respect to arising from the presence of the heat flux will strongly couple the slow and fast magnetosonic modes with wavenumber vectors in the positive flux vector directions. The subsequent overstability will be independent of the ion anisotropy.

  18. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. PMID:21441722

  19. Upper bound on the magnetic field strength in the quark core of a strongly-magnetized compact star

    NASA Astrophysics Data System (ADS)

    Isayev, Alexander; Yang, Jongmann

    2014-09-01

    Two types of strongly-magnetized compact stars, represented by magnetized strange quark stars and magnetized hybrid stars, are considered. In each case, there exists an upper bound H max on the magnetic field strength in the interior of a compact star. For a magnetized strange quark star, H max is determined by the magnetic field at which the upper bound on the bag pressure from the absolute stability window of magnetized strange quark matter (SQM) vanishes, assuming the Massachusetts Institute of Technology bag model description of SQM. For a hybrid star, H max is represented by the critical magnetic field for the occurrence of a longitudinal (along the magnetic field) instability in the quark core, at which the longitudinal pressure in magnetized SQM vanishes.

  20. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  1. Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms

    NASA Astrophysics Data System (ADS)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2004-12-01

    Strong uniform static magnetic fields compress the electronic distribution of rare gas atoms and cause a 'spindle effect', which can be illustrated by plotting charge-density functions which depend quadratically on the flux density of the applied field. The fourth rank hypermagnetisabilities of He, Ne, Ar and Kr are predicted to have small positive values. Accordingly, the diamagnetism of rare gas atoms diminishes by a very little amount in the presence of intense magnetic field.

  2. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  3. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism.

    PubMed

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered "solid-cored" CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  4. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  5. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. PMID:26494754

  6. Magneto-Chemical Systems Under Strong Magnetic Fields:. Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Yamamoto, I.

    2005-07-01

    Magnetic field-induced effects were investigated for two extreme cases of strongly ferromagnetic and weakly diamagnetic chemical systems. The thermodynamic quantities of a chemical reaction were changed by applied magnetic fields. The magnetic effects were systematically formulated as the magneto-thermodynamic effects and experimentally verified by applying fields of 10-30 T to a ferromagnetic system. Agarose gels, as weakly diamagnetic systems, were magnetically aligned by fields of 2 - 10 T. This magnetic alignment was confirmed by optical measurements. The magnetically aligned agarose gel was used as the matrix for DNA electrophoresis. The electrophoretic velocity of DNA varied with the aligned or random structure of the matrix gel, as well as the structure of the DNA, itself. Utilizing the aligned gel provides a new method for separating DNAs at high resolutions.

  7. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  8. Dynamical mass generation in strongly coupled quantum electrodynamics with weak magnetic fields

    SciTech Connect

    Ayala, Alejandro; Raya, Alfredo; Rojas, Eduardo; Bashir, Adnan

    2006-05-15

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of weak magnetic fields using Schwinger-Dyson equations. Contrary to the case where the magnetic field is strong, in the weak field limit the coupling should exceed certain critical value in order for the generation of masses to take place, just as in the case where no magnetic field is present. The weak field limit is defined as eB<field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB){sup 2}.

  9. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  10. Equation of State of the Strong Interaction Matter in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Yu-Xin

    2015-10-01

    We investigate the equation of state of the strong interaction matter in a background magnetic field via the two flavor Nambu-Jona-Lasinio model. Starting from the mean-field thermodynamical potential density Ω, we calculate the pressure density p, the entropy density s, the energy density ɛ, and the interaction measure (ɛ - 3p)/T4 of the strong interaction matter at finite temperature and finite magnetic field. The results manifest that the chiral phase transition is just a crossover but not a low order phase transition. Moreover there may exist magnetic catalysis effect, and its mechanism is just the effective dimension reduction induced by the magnetic field. Supported by the National Natural Science Foundation of China under Grant Nos. 10935001, 11175004 and 11435001, and the National Key Basic Research Program of China under Grant Nos. G2013CB834400 and 2015CB856900

  11. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  12. Statistical Study of Interplanetary Coronal Mass Ejections with Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, Matthew E.

    Coronal Mass Ejections (CMEs) with strong magnetic fields (B ) are typically associated with significant Solar Energetic Particle (SEP) events, high solar wind speed and solar flare events. Successful prediction of the arrival time of a CME at Earth is required to maximize the time available for satellite, infrastructure, and space travel programs to take protective action against the coming flux of high-energy particles. It is known that the magnetic field strength of a CME is linked to the strength of a geomagnetic storm on Earth. Unfortunately, the correlations between strong magnetic field CMEs from the entire sun (especially from the far side or non-Earth facing side of the sun) to SEP and flare events, solar source regions and other relevant solar variables are not well known. New correlation studies using an artificial intelligence engine (Eureqa) were performed to study CME events with magnetic field strength readings over 30 nanoteslas (nT) from January 2010 to October 17, 2014. This thesis presents the results of this study, validates Eureqa to obtain previously published results, and presents previously unknown functional relationships between solar source magnetic field data, CME initial speed and the CME magnetic field. These new results enable the development of more accurate CME magnetic field predictions and should help scientists develop better forecasts thereby helping to prevent damage to humanity's space and Earth assets.

  13. Influence of strong static magnetic field on human cancer HT 1080 cells

    NASA Astrophysics Data System (ADS)

    Rodins, Juris; Korhovs, Vadims; Freivalds, Talivaldis; Buikis, Indulis; Ivanova, Tatjana

    2001-10-01

    The aim of this study was to investigate strong uniform magnetic field influence on the human cancer cells HT 1080. The cells were treated with magnetic field of intensity 1,16 Tesla and with anticancer agent - cis-platinum 0.025 mg/ml or vincristinum 2-3 ng/ml. The intact and the treated cell samples were incubated in a medium with acridine orange (AO). The magnetic field after 15 minutes of influence significantly increased cytoplasmic red fluorescence. Increased AO accumulation in lysosomes suggested to cancer cell metabolic activity stimulation.

  14. Magnetic Field-Induced Giant Enhancement of Electron-Phonon Energy Transfer in Strongly Disordered Conductors

    NASA Astrophysics Data System (ADS)

    Shtyk, A. V.; Feigel'man, M. V.; Kravtsov, V. E.

    2013-10-01

    Relaxation of soft modes (e.g., charge density in gated semiconductor heterostructures, spin density in the presence of magnetic field) slowed down by disorder may lead to giant enhancement of energy transfer (cooling power) between overheated electrons and phonons at low bath temperature. We show that in strongly disordered systems with time-reversal symmetry broken by external or intrinsic exchange magnetic field the cooling power can be greatly enhanced. The enhancement factor as large as 102 at magnetic field B˜10T in 2D InSb films is predicted. A similar enhancement is found for the ultrasound attenuation.

  15. A simple model for optical capture of atoms in strong magnetic quadrupole fields

    NASA Astrophysics Data System (ADS)

    Haubrich, D.; Höpe, A.; Meschede, D.

    1993-10-01

    The radiative capture of cesium atoms from the gas phase in a magnetooptic trap with strong magnetic field gradients is studied. A simplified analytic model is used to derive an upper limit for capture velocities. The resulting scaling law agrees well with the observed number of atoms and with the density as a function of field gradient.

  16. Orbital effects of strong magnetic field on a two-dimensional Holstein polaron

    NASA Astrophysics Data System (ADS)

    Pradhan, Subhasree; Chakraborty, Monodeep; Taraphder, A.

    2016-03-01

    We investigate the orbital effects of a strong external magnetic field on the ground-state properties of a two-dimensional (2D) Holstein polaron, employing variational approaches based on exact diagonalization. From the ground-state energy and the wave function, we calculate the electron-phonon correlation function, the average phonon number, and the Drude weight and investigate the evolution of a 2D Holstein polaron as a function of the magnetic flux. Although the external magnetic field affects the polaron throughout the parameter regime, we show that the magnetic field has a stronger effect on a loosely bound (spatially extended) polaron. We also find that the magnetic field can be used as a tuning parameter, particularly for a weakly coupled polaron, to reduce the spatial extent of a large polaron.

  17. Anisotropic hydrodynamics, bulk viscosities, and r-modes of strange quark stars with strong magnetic fields

    SciTech Connect

    Huang Xuguang; Huang Mei; Rischke, Dirk H.; Sedrakian, Armen

    2010-02-15

    In strong magnetic fields the transport coefficients of strange quark matter become anisotropic. We determine the general form of the complete set of transport coefficients in the presence of a strong magnetic field. By using a local linear response method, we calculate explicitly the bulk viscosities {zeta}{sub perpendicular} and {zeta}{sub ||} transverse and parallel to the B field, respectively, which arise due to the nonleptonic weak processes u+s{r_reversible}u+d. We find that for magnetic fields B<10{sup 17} G, the dependence of {zeta}{sub perpendicular} and {zeta}{sub ||} on the field is weak, and they can be approximated by the bulk viscosity for the zero magnetic field. For fields B>10{sup 18} G, the dependence of both {zeta}{sub perpendicular} and {zeta}{sub ||} on the field is strong, and they exhibit de Haas-van Alphen-type oscillations. With increasing magnetic field, the amplitude of these oscillations increases, which eventually leads to negative {zeta}{sub perpendicular} in some regions of parameter space. We show that the change of sign of {zeta}{sub perpendicular} signals a hydrodynamic instability. As an application, we discuss the effects of the new bulk viscosities on the r-mode instability in rotating strange quark stars. We find that the instability region in strange quark stars is affected when the magnetic fields exceed the value B=10{sup 17} G. For fields which are larger by an order of magnitude, the instability region is significantly enlarged, making magnetized strange stars more susceptible to r-mode instability than their unmagnetized counterparts.

  18. Synthesis models of dayside field-aligned currents for strong interplanetary magnetic field By

    NASA Astrophysics Data System (ADS)

    Watanabe, Masakazu; Iijima, Takesi; Rich, Frederick J.

    1996-06-01

    Using particle and magnetic field data acquired with DMSP-F6 and DMSP-F7 satellites, we have investigated interplanetary magnetic field (IMF) By dependence of the global pattern of plasma regime and field-aligned currents (FACs) on dayside high latitudes during strong IMF By (averaged |By|>3.7 nT) and geomagnetically disturbed (mainly IMF Bz<0) periods. From particle data we have identified five plasma regimes: inner plasma sheet, outer plasma sheet, cleft, cusp, and mantle. All the plasma domains except the inner plasma sheet show By dependence in spatial distribution. Region 1 and ``traditional cusp'' currents appear in cusp/mantle domains, which we call midday region 1 and region 0 currents, respectively, in this paper. These currents perfectly reverse their flow directions depending on IMF By polarity. Traditional region 1 currents occurring in cleft and outer plasma sheet almost always flow into the ionosphere in the prenoon sector and flow away from the ionosphere in the postnoon sector regardless of By polarity. Thus the midday region 1 and region 0 current system that appears at local noon is not a simple continuation of flankside region 1/region 2 current system. Midday region 1 and region 0 currents are not necessarily balanced in intensity; region 0 current intensity occasionally exceeds midday region 1 current intensity. Furthermore, intensity imbalance also appears in cleft-associated region 1 currents; that is, region 1 current in the farside cleft from the reconnection site (``downstreamside'' cleft) is larger than region 1 current in the nearside cleft (``upstreamside'' cleft). On the basis of these observational facts we discuss the source mechanisms of the dayside FAC system: (1) directly coupled generation of region 0 and midday region 1 current in the cusp/mantle domains around noon and (2) generation of extra region 0 current in the tail magnetopause which is connected to the extra downstreamside cleft-associated region 1 current.

  19. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    PubMed

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. PMID:25708622

  20. Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish

    PubMed Central

    Ward, Bryan K.; Tan, Grace X-J; Roberts, Dale C.; Della Santina, Charles C.; Zee, David S.; Carey, John P.

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  1. Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish.

    PubMed

    Ward, Bryan K; Tan, Grace X-J; Roberts, Dale C; Della Santina, Charles C; Zee, David S; Carey, John P

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for 'high-throughput' investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  2. Study of Strong Magnetic Fields Using Parametric Instability in a Magnetised Plasma

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Anderson, A. A.; Bauer, B. S.; Yates, K.

    2014-10-01

    Generation of strong magnetic fields with a strength of 10--50 MG plays a key role in some recent conceptions for controlled fusion. We suggest a laser method for measuring the local magnetic field, B > 10 MG, based on the parametric decay of the laser radiation to ω/2 and 3/2 ω harmonics which are generated in the area with the electron density of a quarter of the critical plasma density. Spectral components of parametric harmonics carry a signature of both the plasma temperature and strong magnetic field. A two-plasmon decay of laser radiation was studied in a magnetized plasma at the 1 MA pulsed power Zebra facility at the University of Nevada, Reno. Dense magnetized plasma with a magnetic field of 1--3 MG was created by the 1MA current flowing in the metal rod 0.7--2 mm in diameter. Radiation from the narrowband laser with intensity >1014 W/cm2 was focused on the surface plasma. Spectrum of the backscattering 3/2 ω harmonic included ``red'' and ``blue'' shifted components. Large 2-3 nm shifts of spectral components was identified with laser heating of plasma. Components with a small 0.1 nm spectral shift of may be linked to the magnetic field. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  3. The asteroseismic signature of strong magnetic fields in the cores of red giant stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael; Bildsten, Lars

    2016-01-01

    Internal stellar magnetic fields are inaccessible to direct observations and little is known about their amplitude, geometry and evolution. I will discuss how strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields manifest themselves via depressed dipole stellar oscillation modes, which arises from a magnetic greenhouse effect that scatters and traps oscillation mode energy within the core of the star. Physically, the effect stems from magnetic tension forces created by sufficiently strong fields, which break the spherical symmetry of the wave propagation cavity. The loss of wave energy within the core reduces the mode visibility at the stellar surface, and we find that our predicted visibilities are in excellent agreement with a class of red giants exhibiting depressed dipole oscillation modes. The Kepler satellite has already observed hundreds of these red giants, which we identify as stars with strongly magnetized cores. Field strengths larger than roughly 10^5 G can produce the observed depression, and in one case we measure a core field strength of 10^7 G.

  4. Barrier-bound resonances in semiconductor superlattices in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Duffield, T.; Bhat, R.; Koza, M.; Derosa, F.; Rush, K. M.; Allen, S. J., Jr.

    1987-12-01

    The effective ``miniband'' mass approximation is shown to break down in strong magnetic fields when the magnetic length is smaller than the superlattice period. Under these conditions a real-space description must be used and features in the inhomogeneously broadened cyclotron resonance can be indexed by the position of the cyclotron orbit with respect to the barriers and wells. The line shape agrees with a calculation of the quantum states in a magnetic field in a one-dimensional periodic potential and these experiments give us a rare view of Landau states in the limit where the periodic potential has a period that is larger than the cyclotron diameter.

  5. Biological effects of strong static magnetic fields on insulin-secreting cells

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Miyakoshi, J.

    2009-03-01

    The magnetic flux density of MRI for clinical diagnosis has been increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the biological effects of strong SMFs, we cultured INS-1 cells under exposure to sham and SMF conditions for 1 or 2 h, and analyzed insulin secretion, mRNA expression, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF did not affect cell proliferation and cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells.

  6. On the theory of magnetic field generation by relativistically strong laser radiation

    SciTech Connect

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M. |

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields {approximately} 100 Mg and greater.

  7. Yeast cells proliferation on various strong static magnetic fields and temperatures

    NASA Astrophysics Data System (ADS)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  8. Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields

    SciTech Connect

    Dexheimer, V.; Negreiros, R.; Schramm, S.; Hempel, M.

    2013-03-25

    We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.

  9. Discovery of a strong magnetic field in the rapidly rotating B2Vn star HR 7355

    NASA Astrophysics Data System (ADS)

    Oksala, M. E.; Wade, G. A.; Marcolino, W. L. F.; Grunhut, J.; Bohlender, D.; Manset, N.; Townsend, R. H. D.; Mimes Collaboration

    2010-06-01

    We report the detection of a strong, organized magnetic field in the He-variable early B-type star HR 7355 using spectropolarimetric data obtained with ESPaDOnS on the 3.6-m Canada-France-Hawaii Telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Program. HR 7355 is both the most rapidly rotating known main-sequence magnetic star and the most rapidly rotating He-strong star, with v sin i = 300 +/- 15 km s-1 and a rotational period of 0.5214404+/-0.0000006 d. We have modelled our eight longitudinal magnetic field measurements assuming an oblique dipole magnetic field. Constraining the inclination of the rotation axis to be between 38° and 86°, we find the magnetic obliquity angle to be between 30° and 85°, and the polar strength of the magnetic field at the stellar surface to be between 13-17 kG. The photometric light curve constructed from HIPPARCOS archival data and new CTIO measurements shows two minima separated by 0.5 in rotational phase and occurring 0.25 cycles before/after the magnetic extrema. This photometric behaviour, coupled with previously reported variable emission of the Hα line (which we confirm), strongly supports the proposal that HR 7355 harbours a structured magnetosphere similar to that in the prototypical He-strong star, σ Ori E. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii.

  10. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    NASA Astrophysics Data System (ADS)

    Endrödi, Gergely

    2015-07-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB < 1 GeV2. On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1 + 1 + 1-flavor QCD at an unprecedentedly high value of the magnetic field eB = 3 .25 GeV2. Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  11. Compton scattering S matrix and cross section in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Nagirner, Dmitrij I.; Poutanen, Juri

    2016-05-01

    Compton scattering of polarized radiation in a strong magnetic field is considered. The recipe for calculation of the scattering matrix elements, the differential and total cross sections based on quantum electrodynamic second-order perturbation theory is presented for the case of arbitrary initial and final Landau level, electron momentum along the field and photon momentum. Photon polarization and electron spin state are taken into account. The correct dependence of natural Landau level width on the electron spin state is taken into account in a general case of arbitrary initial photon momentum for the first time. A number of steps in the calculations were simplified analytically making the presented recipe easy to use. The redistribution functions over the photon energy, momentum and polarization states are presented and discussed. The paper generalizes already known results and offers a basis for the accurate calculation of radiation transfer in a strong B field, for example, in strongly magnetized neutron stars.

  12. Niobium thin films are superconductive in strong magnetic fields at low temperatures

    NASA Technical Reports Server (NTRS)

    Clough, P. J.; Fowler, P.

    1966-01-01

    Niobium film superconductor carries high currents in strong magnetic fields. The thin niobium film is formed on an inert substrate through evaporation in a vacuum environment. Control of temperature and vacuum results in rejection of gaseous impurities so that the film is of a very high purity.

  13. Modification of X-Ray Tissue Doses with Strong Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Borke, Michael Faison

    1990-01-01

    The modification of dose distributions from secondary electrons produced by accelerator-generated photon or electron beams in the presence of strong magnetic fields was studied. A need exists to predict the action of magnetic fields on X-ray tissue doses and to identify those combinations of X-ray energies, magnetic field strengths, and tissue factors where the dose might be changed significantly from an exposure without the presence of a magnetic field. Modification of X-ray produced tissue dose arises from the ability of a strong magnetic field to induce deflections on the path of secondary electrons. In order to demonstrate the existence of this deflection, measurements were made of the relative dose distributions present within a tissue -equivalent phantom produced by exposures to X-rays and in the presence of strong magnetic fields. The dose measurements were made using radiographic film detectors, sandwiched within a polystyrene target phantom irradiated in the presence of different magnetic field intensities. The fields were oriented transversely to the direction of the incident X-ray beam. Optical densities of the film exposures were converted to equivalent tissue doses for comparison to the predictions of a semi-analytical relative dose model for the process. This model was a combination of the electron Continuous Slowing Down Approximation, modified to account for multiple scattering, and a exponential photon dose model. As a result of this work, it was found that: (1) strong magnetic fields in the range of 1.2 to 5 T can induce changes in the tissue distribution of X-ray produced dose to small volumes in excess of 10%, (2) the region of maximum dose may be displaced significantly from the undeflected target volume, and (3) a reasonable estimate of the magnitude of these changes can be predicted, if the X-ray energy distribution and magnetic flux density are known. Such changes in deposited doses may be clinically significant and should be taken into

  14. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  15. Strong Solar Wind Dynamic Pressure Pulses: Interplanetary Sources and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, Pingbing; Feng, Xueshang; Xie, Yanqiong; Wang, Yi; Xu, Xiaojun

    2015-10-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  16. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    SciTech Connect

    Hattori, Koichi; Itakura, Kazunori

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon into a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.

  17. The onset of ion heating during magnetic reconnection with a strong guide field

    SciTech Connect

    Drake, J. F.; Swisdak, M.

    2014-07-15

    The onset of the acceleration of ions during magnetic reconnection is explored via particle-in-cell simulations in the limit of a strong ambient guide field that self-consistently and simultaneously follow the motions of protons and α particles. Heating parallel to the local magnetic field during reconnection with a guide field is strongly reduced compared with the reconnection of anti-parallel magnetic fields. The dominant heating of thermal ions during guide field reconnection results from pickup behavior of ions during their entry into reconnection exhausts and dominantly produces heating perpendicular rather than parallel to the local magnetic field. Pickup behavior requires that the ion transit time across the exhaust boundary (with a transverse scale of the order of the ion sound Larmor radius) be short compared with the ion cyclotron period. This translates into a threshold in the strength of reconnecting magnetic field that favors the heating of ions with high mass-to-charge. A simulation with a broad initial current layer produces a reconnecting system in which the amplitude of the reconnecting magnetic field just upstream of the dissipation region increases with time as reconnection proceeds. The sharp onset of perpendicular heating when the pickup threshold is crossed is documented. A comparison of the time variation of the parallel and perpendicular ion heating with that predicted based on the strength of the reconnecting field establishes the scaling of ion heating with ambient parameters both below and above the pickup threshold. The relevance to observations of ion heating in the solar corona is discussed.

  18. Magnetic Field Induced Shear Flow in a Strongly Coupled Complex Plasma

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P.; Konopka, U.; Jiang, K.; Morfill, G.

    2011-11-01

    We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of a radio frequency (rf) parallel plate discharge. The modified local sheath electric field is pointing outward/inward close to the inner/outher ring, respectively. The microparticles, confined by the rings and subject to an ion wind that driven by the local sheath electric field and deflected by an externally applied magnetic field, start flowing in azimuthal direction. Depending upon the rf amplitudes on the electrodes, the dust layers show rotation in opposite direction at the edges of the ring-shaped cloud resulting a strong shear in its center. MD simulations shows a good agreement with the experimental results.

  19. Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields.

    PubMed

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J; Tiburzi, Brian C; Beane, Silas R; Chang, Emmanuel

    2016-03-18

    Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m_{π}∼450 and 806 MeV in uniform, time-independent magnetic fields of strength |B|∼10^{19}-10^{20}  G to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems. PMID:27035294

  20. Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.; Chang, Emmanuel; Nplqcd Collaboration

    2016-03-01

    Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of mπ˜450 and 806 MeV in uniform, time-independent magnetic fields of strength |B |˜1019- 1020 G to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.

  1. Unitary limit of two-nucleon interactions in strong magnetic fields

    DOE PAGESBeta

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.; Chang, Emmanuel

    2016-03-14

    In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of mπ ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 1019 – 1020 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, andmore » the unitary behavior at large scattering lengths may have important consequences for these systems.« less

  2. Two regimes in conductivity and the Hall coefficient of underdoped cuprates in strong magnetic fields.

    PubMed

    Gor'kov, L P; Teitel'baum, G B

    2014-01-29

    We address recent experiments shedding light on the energy spectrum of under and optimally doped cuprates at temperatures above the superconducting transition. Angle resolved photoemission reveals coherent excitation only near nodal points on parts of the 'bare' Fermi surface known as the Fermi arcs. The question debated in the literature is whether the small normal pocket, seen via quantum oscillations, exists at higher temperatures or forms below a charge order transition in strong magnetic fields. Assuming the former case as a possibility, expressions are derived for the resistivity and the Hall coefficient (in weak and strong magnetic fields) with both types of carriers participating in the transport. There are two regimes. At higher temperatures (at a fixed field) electrons are dragged by the Fermi arcs' holes. The pocket being small, its contribution to conductivity and the Hall coefficient is negligible. At lower temperatures electrons decouple from holes behaving as a Fermi gas in the magnetic field. As the mobility of holes on the arcs decreases in strong fields with a decrease of temperature, below a crossover point the pocket electrons prevail, changing the sign of the Hall coefficient in the low temperature limit. Such behavior finds its confirmation in recent high-field experiments. PMID:24389670

  3. Thermal convection in a horizontal duct with strong axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zikanov, Oleg

    2015-11-01

    The work is motivated by design of liquid metal blankets of nuclear fusion reactors. The effect of convection on the flow within a toroidally oriented duct is analyzed. Non-uniform strong heating arising from capture of high-speed neutrons is imposed internally, while the walls are assumed to be isothermal. Very strong heating (the Grashof number up to 1011) and strong magnetic field (the Hartmann number up to 104) corresponding to the realistic fusion reactor conditions are considered. Stability of two-dimensional flow states is analyzed using numerical simulations. The unstable modes at high Hartmann and Grashof number are found to have large wavelengths. The integral properties of developed three-dimensional flows are close to those of two-dimensional flows at the typical parameters of a fusion reactor. We also consider the effect of the weak transverse component of the magnetic field on the flow. Financial support was provided by the US NSF (Grant CBET 1232851).

  4. Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field.

    PubMed

    Caputo, M C; Ferraro, M B; Pagola, G I; Lazzeretti, P

    2007-04-21

    The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrodinger perturbation theory. The connection between these two quantities is provided by the Hellmann-Feynman theorem. The magnetically induced hypershielding at the nuclei accounts for distortion of molecular geometry caused by strong magnetic fields and for related changes of magnetic susceptibility. In homonuclear diatomics H(2), N(2), and F(2), a field along the bond direction squeezes the electron cloud toward the center, determining shorter but stronger bond. It is shown that constraints for rotational and translational invariances and hypervirial theorems provide a natural criterion for Hartree-Fock quality of computed nuclear electric hypershielding. PMID:17461610

  5. Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Caputo, M. C.; Ferraro, M. B.; Pagola, G. I.; Lazzeretti, P.

    2007-04-01

    The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrödinger perturbation theory. The connection between these two quantities is provided by the Hellmann-Feynman theorem. The magnetically induced hypershielding at the nuclei accounts for distortion of molecular geometry caused by strong magnetic fields and for related changes of magnetic susceptibility. In homonuclear diatomics H2, N2, and F2, a field along the bond direction squeezes the electron cloud toward the center, determining shorter but stronger bond. It is shown that constraints for rotational and translational invariances and hypervirial theorems provide a natural criterion for Hartree-Fock quality of computed nuclear electric hypershielding.

  6. Generation of strong magnetic field using 60 mm∅ superconducting bulk magnet and its application to magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Yanagi, Y.; Matsuda, T.; Hazama, H.; Yokouchi, K.; Yoshikawa, M.; Itoh, Y.; Oka, T.; Ikuta, H.; Mizutani, U.

    2005-10-01

    To make a practical application of a superconducting bulk magnet (SBM), it is necessary that the SBM generates a strong and stable magnetic field in a working space and the magnet can be handled without any special care that would be needed because of the use of a superconductor. To satisfy these requirements, we have designed a portable and user-friendly magnet system consisting of a small air-cooled type refrigerator and a bulk superconductor. By using the stress-controlling magnetization technique, we could achieve a magnetic flux density of 8.0 T on the bulk surface and 6.5 T over the vacuum chamber surface of the refrigerator, when a 60 mm∅ Gd-Ba-Cu-O bulk superconductor reinforced with a 5 mm thick stainless steel ring was magnetized by field cooling in 8.5 T to 27 K. We have confirmed that the bulk magnet system coupled with a battery is quite portable and can be delivered to any location by using a car with an electric power outlet in the cabin. We have constructed a magnetron sputtering device that employs a bulk magnet system delivered from the place of magnetization by this method. This sputtering device exhibits several unique features such as deposition at a very low Ar gas pressure because the magnetic field is 20 times stronger than that obtained by a conventional device in the working space.

  7. Effects of Strong Static Magnetic Fields on Amphibian Development and Gene Expression

    NASA Astrophysics Data System (ADS)

    Kawakami, Satomi; Kashiwagi, Keiko; Furuno, Nobuaki; Yamashita, Masamichi; Kashiwagi, Akihiko; Tanimoto, Yoshifumi

    2006-07-01

    This investigation attempts to clarify the effects of strong vertical and static magnetic fields (SMFs) of 11-15 T on Xenopus laevis development and on Xotx2 (an important regulator of fore- and midbrain morphogenesis) and Xag1 (essential for cement gland formation) gene expression. Results showed that (1) a strong SMF significantly retarded normal development and induced microcephaly, two heads, abnormal cement glands and multiple malformations, indicating that SMF inhibits normal embryonic development, (2) a strong SMF suppressed Xotx2 and Xag1 expression.

  8. Low energy THz excitations in distorted perovskites under strong magnetic fields and low temperature

    NASA Astrophysics Data System (ADS)

    Massa, N. E.; Holldack, K.; Ta Phuoc, V.; Sopracase, R.; Del Campo, L.; de Sousa Meneses, D.; Echegut, P.; Alonso, J. A.

    We report on the magnetic field evolution of distinctive absorption bands in several zero field cooled polycrystalline RMO3 (R = Pr, Nd, Sm, Er, Tm, Lu; M = Cr, Mn, Fe. Ni) at low temperatures. Measurements below 120 cm-1 were done in an 11 T magnet combined with a Bruker IFS125-HR interferometer at the THz beamline of the BESSY II storage ring. At the reordering spin temperature, the spectra of ErCrO3 show an Er-Kramers doublet at ~55 cm-1 following a second order continuous reorientation. It suggests strong anisotropic Er3+-Cr3 + magnetic exchange interactions. The band strength of its triplet excited states decreases upon increasing the magnetic field. Non-Kramers Pr in PrCrO3 implies a magnetic field induced quasi-doublet system. Spin wave modes AF and F are also tentatively assigned. In ErFeO3, the spin reordering of the canted transition metal, and the Er3+ exchange, is monitored emerging above 80 K. Temperature dependent multiplet transitions centered at 50 cm-1 and 110 cm-1 appear as asymmetric field dependent broad lines. The absence of activity at ~4 K in SmCrO3, shared by SmMO3 (M =Fe, Ni), is consequence of near Cr-canted-Rare-Earth-opposite moment compensation juxtaposed to random micrograin orientation. We will also comment on observed only in ErNiO3 field dependent Er transitions and band profiles.

  9. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  10. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    PubMed Central

    2011-01-01

    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of approximately 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field. PMID:21711781

  11. Photons in a cold axion background and strong magnetic fields: Polarimetric consequences

    NASA Astrophysics Data System (ADS)

    Espriu, Domènec; Renau, Albert

    2015-06-01

    In this work, we analyze the propagation of photons in an environment where a strong magnetic field (perpendicular to the photon momenta) coexists with an oscillating cold axion background with the characteristics expected from dark matter in the galactic halo. Qualitatively, the main effect of the combined background is to produce a three-way mixing among the two photon polarizations and the axion. It is interesting to note that in spite of the extremely weak interaction of photons with the cold axion background, its effects compete with those coming from the magnetic field in some regions of the parameter space. We determine (with one plausible simplification) the proper frequencies and eigenvectors as well as the corresponding photon ellipticity and induced rotation of the polarization plane that depend both on the magnetic field and the local density of axions. We also comment on the possibility that some of the predicted effects could be measured in optical table-top experiments.

  12. Measurements of Heme Relaxation and Ligand Recombination in Strong Magnetic Fields

    PubMed Central

    Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M.

    2009-01-01

    Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 Tesla). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O2), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O2 binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the non-radiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the “spin-forbidden” CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor (~109s−1) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding. PMID:19588986

  13. Two-photon annihilation of thermal pairs in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.

    1992-01-01

    The annihilation spectrum of pairs with 1-D thermal distributions in the presence of a strong magnetic field is calculated. Numerical analysis of the spectrum are performed for mildly relativistic temperatures and for different angles of emission with respect to field lines. Teragauss magnetic fields are assumed so that conditions are typical of gamma ray burst and pulsar environments. The spectra at each viewing angle reveal asymmetric line profiles that are signatures of the magnetic broadening and red shifting of the line: these asymmetries are more prominent for small viewing angles. Thermal Doppler broadening tends to dominate in the right wing of the line and obscures the magnetic broadening more at high temperatures and smaller viewing angles. This angular dependence of the line asymmetry may prove a valuable diagnostic tool. For low temperatures and magnetic field strengths, useful analytic expressions are presented for the line width, and also for the annihilation spectrum at zero viewing angle. The results presented find application in gamma ray burst and pulsar models, and may prove very helpful in deducing field strengths and temperatures of the emission regions of these objects from line observations made by Compton GRO and future missions.

  14. Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field.

    NASA Astrophysics Data System (ADS)

    Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.

    Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.

  15. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    SciTech Connect

    Wu, Ping; Sun, Jun; Cao, Yibing

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatially periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.

  16. Fast Vacuum Decay into Quark Pairs in Strong Color Electric and Magnetic Fields

    SciTech Connect

    Hidaka, Y.; Iritani, T.; Suganuma, H.

    2011-10-21

    We study quark-pair creations in strong color electomagnetic fields. We point out that, for massless quarks, the vacuum persistency probability per unit space-time volume is zero, i.e., the quark-pair creation rate w is infinite, in general homogeneous color electromagnetic fields, while it is finite when the color magnetic field is absent. We find that the contribution from the lowest Landau level (LLL) dominates this phenomenon. With an effective theory of the LLL projection, we also discuss dynamics of the vacuum decay, taking into account the back reaction of pair creations.

  17. Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Da Providencia, J.

    2009-08-15

    We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.

  18. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    PubMed

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole. PMID:23945588

  19. Density-functional-theory calculations of matter in strong magnetic fields. I. Atoms and molecules

    SciTech Connect

    Medin, Zach; Lai Dong

    2006-12-15

    We present calculations of the electronic structure of various atoms and molecules in strong magnetic fields ranging from B=10{sup 12} G to 2x10{sup 15} G, appropriate for radio pulsars and magnetars. For these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function which is tested to be reliable in the strong field regime. Numerical results of the ground-state energies are given for H{sub N} (up to N=10), He{sub N} (up to N=8), C{sub N} (up to N=5), and Fe{sub N} (up to N=3), as well as for various ionized atoms. Fitting formulae for the B dependence of the energies are also given. In general, as N increases, the binding energy per atom in a molecule, vertical bar E{sub N}|/N, increases and approaches a constant value. For all the field strengths considered in this paper, hydrogen, helium, and carbon molecules are found to be bound relative to individual atoms (although for B less than a few x10{sup 12} G, carbon molecules are very weakly bound relative to individual atoms). Iron molecules are not bound at B < or approx. 10{sup 13} G, but become energetically more favorable than individual atoms at larger field strengths.

  20. Quark matter subject to strong magnetic fields: phase diagram and applications

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.; Pinto, Marcus B.; Providência, Constança; Costa, Pedro; Ferreira, Márcio; Castro, Luis B.

    2015-07-01

    In the present work we are interested in understanding various properties of quark matter subject to strong magnetic fields described by the Nambu-Jona-Lasinio model with Polyakov loop. We start by analysing the differences arising from two different vector interactions in the Lagrangian densities, at zero temperature, and apply the results to stellar matter. We then investigate the position of the critical end point for different chemical potential and density scenarios.

  1. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  2. Modular design for narrow scintillating cells with MRS photodiodes in strong magnetic field for ILC detector

    NASA Astrophysics Data System (ADS)

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Rykalin, V.; Schellpffer, J.; Zutshi, V.

    2006-08-01

    The experimental results for the narrow scintillating elements with effective area about 20 cm 2 are reported. The elements were formed from the single piece of scintillator and were read out via wavelength shifting (WLS) fibers with the Metal/Resistor/Semiconductor (MRS) photodiodes on both ends of each fiber. The count rates were obtained using radioactive source 90Sr, with threshold at about three photoelectrons in each channel and quad coincidences (double coincidences between sensors on each fiber and double coincidences between two neighboring fibers). The formation of the cells from the piece of scintillator by using grooves is discussed, and their performances were tested using the radioactive source by measuring the photomutiplier current using the same WLS fiber. Because effective cell area can be readily enlarged or reduced, this module may be used as an active element for calorimeter or muon system for the design of the future electron-positron linear collider detector. Experimental verification of the performance of the MRS photodiode in a strong magnetic field of 9 T, and the impact a magnet quench at 9.5 T are reported. The measurement method used is described. The results confirm the expectations that the MRS photodiode is insensitive to a strong magnetic field and therefore applicable to calorimetry in the presence of magnetic field. The overall result is of high importance for large multi-channel systems.

  3. Spin state ordering of strongly correlating LaCoO3 induced at ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Matsuo, Akira; Kindo, Koichi; Sato, Keisuke

    2016-06-01

    Magnetization measurements of LaCoO3 have been carried out up to 133 T, generated with a destructive pulse magnet at a wide temperature range from 2 to 120 K. A novel magnetic transition was found at B >100 T and T >T*=32 ±5 K, which is characterized by its transition field increasing with increasing temperature. At T field phase at 80 K is found to be smaller for about 1.5 J K-1mol-1 than that of the low-field phase. We suggest that the observed two high-field phases may originate in different spatial orders of the spin states and possibly other degrees of freedom such as orbitals. An inherent strong correlation of spin states among cobalt sites should have triggered the emergence of the ordered phases in LaCoO3 at high magnetic fields.

  4. Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields

    SciTech Connect

    Anders, A.; Yushkov, G.; Oks, E.; Nikolaev, A.; Brown, I.

    1998-02-01

    Vacuum arc plasmas with discharge currents of 300 A and duration 250 {mu}s have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. {copyright} {ital 1998 American Institute of Physics.}

  5. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields.

    PubMed

    Dzhumagulova, K N; Masheyeva, R U; Ott, T; Hartmann, P; Ramazanov, T S; Bonitz, M; Donkó, Z

    2016-06-01

    The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles. PMID:27415379

  6. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Masheyeva, R. U.; Ott, T.; Hartmann, P.; Ramazanov, T. S.; Bonitz, M.; Donkó, Z.

    2016-06-01

    The influence of an external homogeneous magnetic field on the quasilocalization of the particles—characterized quantitatively by cage correlation functions—in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B . The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B , while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.

  7. Comptonization in ultra-strong magnetic fields: numerical solution to the radiative transfer problem

    NASA Astrophysics Data System (ADS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-02-01

    Context. We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B ≳ Bc ≈ 4.4 × 1013 G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims: The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods: We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results: We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions: We derived the specific intensity of the ordinary photons, under the

  8. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    NASA Technical Reports Server (NTRS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  9. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  10. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  11. Anomalously strong vertical magnetic fields from distant ELF/VLF sources

    NASA Astrophysics Data System (ADS)

    Silber, Israel; Price, Colin; Galanti, Eli; Shuval, Abraham

    2015-07-01

    There are many sources of very low frequency (VLF—3-30 kHz) and extremely low frequency (ELF—3-3000 Hz) radiation in the Earth-ionosphere waveguide (e.g., lightning and ELF/VLF communication transmitters). At distances of thousands of kilometers from these sources, the vertical component of the ELF/VLF AC magnetic fields is expected to be very weak and several orders of magnitude lower than the horizontal magnetic components. However, measurements in Israel show a relatively strong vertical magnetic component in both the ELF and VLF bands, at the same order of magnitude as the horizontal components. Our measurements suggest that the real Earth-ionosphere waveguide might often be very different from the theoretical waveguide used in model calculations. In addition, our results imply that using only the horizontal components for direction finding or the absolute magnetic field strength may result in errors, since often a significant fraction of the magnetic field energy hides in the vertical component.

  12. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  13. Intra-well relaxation process in magnetic fluids subjected to strong polarising fields

    NASA Astrophysics Data System (ADS)

    Marin, C. N.; Fannin, P. C.; Mălăescu, I.; Barvinschi, P.; Ercuţa, A.

    2012-02-01

    We report on the frequency and field dependent complex magnetic susceptibility measurements of a kerosene-based magnetic fluid with iron oxide nanoparticles, stabilized with oleic acid, in the frequency range 0.1-6 GHz and over the polarising field range of 0-168.4 kA/m. By increasing polarising field, H, a subsidiary loss-peak clearly occurs in the vicinity of the ferromagnetic resonance peak, from which it remains distinct even in strong polarising fields of 168.4 kA/m. This is in contrast to other reported cases in which the intra-well relaxation process is manifested only as a shoulder of the resonance peak, which vanishes in polarising fields larger than that of 100 kA/m. The results of the XRD analysis connected to the anisotropy field results confirm that the investigated sample contains particles of magnetite and of the tetragonal phase of maghemite. Taking into account the characteristics of our sample, the theoretical analysis revealed that the intra-well relaxation process of the small particles of the tetragonal phase of maghemite may be responsible for the subsidiary loss peak of the investigated magnetic fluid.

  14. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1991-01-01

    The influence of a high magnetic field (B is greater than 10 exp 12 G) on the degenerate matter equation of state appropriate to a neutron star is studied. The regime dominated by relativistic electrons up to the neutron drip density is highlighted. The equilibrium matter composition and equation of state, allowing for inverse beta-decay. Two different equilibrium models are determined: an ideal neutron-proton-electron (npe) gas and the more realistic model of Baym, Pethick, and Sutherland (1971) consisting of a Coulomb lattice of heavy nuclei embedded in an electron gas. For a sufficiently high field strength, the magnetic field has an appreciable effect, changing the adiabatic index of the matter and the nuclear transition densities. The influence of a strong field on some simple nonequilibrium processes, including beta-decay and inverse beta-decay (electron capture) is also considered. The effects produced by the magnetic field are mainly due to the changes in the transverse electron quantum orbits and the allowed electron phase space induced by the field.

  15. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. PMID:25883352

  16. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  17. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields.

    PubMed

    Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A

    2011-05-01

    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK. PMID:21639513

  18. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields

    SciTech Connect

    Samkharadze, N.; Kumar, A.; Csathy, G. A.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.

    2011-05-15

    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.

  19. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  20. Strong ionospheric field-aligned currents for radial interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Lühr, Hermann; Shue, Jih-Hong; Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J.

    2014-05-01

    The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10-20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region.

  1. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    SciTech Connect

    Albertazzi, B.; Beard, J.; Billette, J.; Portugall, O.; Ciardi, A.; Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J.; Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S.; and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  2. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields.

    PubMed

    Albertazzi, B; Béard, J; Ciardi, A; Vinci, T; Albrecht, J; Billette, J; Burris-Mog, T; Chen, S N; Da Silva, D; Dittrich, S; Herrmannsdörfer, T; Hirardin, B; Kroll, F; Nakatsutsumi, M; Nitsche, S; Riconda, C; Romagnagni, L; Schlenvoigt, H-P; Simond, S; Veuillot, E; Cowan, T E; Portugall, O; Pépin, H; Fuchs, J

    2013-04-01

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given. PMID:23635194

  3. Mean field analysis of the high temperature magnetic properties of terbium iron garnet in strong DC fields

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine; Wang, Wei

    2015-11-01

    This paper is devoted to the description of the magnetic phase diagrams (MPD) together with a special interest to the determination of more precise values of some reliable parameters at the compensation point, Tcomp=243.5±0.5 K of the terbium iron garnet, Tb3Fe5O12 or TbIG. Using isothermal magnetizations performed on single crystal in strong DC magnetic fields up to 200 kOe applied along the <111>, <110> and <100> directions within the temperature range 128-295 K, field-induced phase transitions between collinear and canted phases are observed in the vicinity of Tcomp at critical fields, Hc2. In comparison with the measurement at zero external magnetic field, the specific heat, Cp(T) at 80 kOe along <111> shows an excess around Tcomp characterized by an anomaly which has a width in the boundaries of the canted phase and a maximum at 252 K, the more accurate value of the critical temperature, TC* of the MPD in the (Hc2-T) plane. Better determinations of the molecular field coefficients which represent the magnetic interactions on the Tb sublattice are obtained by an improved molecular field model based on the saturation effects of the Tb sublattice and the differential susceptibility contribution due to the Fe sublattices to the total magnetic susceptibility of TbIG. The results are discussed in terms of the previous theoretical studies of the MPD predicted for weakly anisotropic ferrimagnets.

  4. Synchro-curvature radiation of charged particles in the strong curved magnetic fields

    SciTech Connect

    Kelner, S. R.; Prosekin, A. Yu.; Aharonian, F. A. E-mail: Anton.Prosekin@mpi-hd.mpg.de

    2015-01-01

    It is generally believed that the radiation of relativistic particles in a curved magnetic field proceeds in either the synchrotron or the curvature radiation modes. In this paper we show that in strong curved magnetic fields a significant fraction of the energy of relativistic electrons can be radiated away in the intermediate, the so-called synchro-curvature regime. Because of the persistent change of the trajectory curvature, the radiation varies with the frequency of particle gyration. While this effect can be ignored in the synchrotron and curvature regimes, the variability plays a key role in the formation of the synchro-curvature radiation. Using the Hamiltonian formalism, we find that the particle trajectory has the form of a helix wound around the drift trajectory. This allows us to calculate analytically the intensity and energy distribution of prompt radiation in the general case of magnetic bremsstrahlung in the curved magnetic field. We show that the transition to the limit of the synchrotron and curvature radiation regimes is determined by the relation between the drift velocity and the component of the particle velocity perpendicular to the drift trajectory. The detailed numerical calculations, which take into account the energy losses of particles, confirm the principal conclusions based on the simplified analytical treatment of the problem, and allow us to analyze quantitatively the transition between different radiation regimes for a broad range of initial pitch angles. These calculations demonstrate that even very small pitch angles may lead to significant deviations from the spectrum of the standard curvature radiation when it is formally assumed that a charged particle moves strictly along the magnetic line. We argue that in the case of realization of specific configurations of the electric and magnetic fields, the gamma-ray emission of the pulsar magnetospheres can be dominated by the component radiated in the synchro-curvature regime.

  5. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    SciTech Connect

    Shaginyan, V. R.

    2011-08-15

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  6. The mass limit of white dwarfs with strong magnetic fields in general relativity

    NASA Astrophysics Data System (ADS)

    Wen, De-Hua; Liu, He-Lei; Zhang, Xiang-Dong

    2014-08-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with BD = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.

  7. Nuclear-spin-induced cotton-mouton effect in a strong external magnetic field.

    PubMed

    Fu, Li-Juan; Vaara, Juha

    2014-08-01

    Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1)  M(-1)  cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup. PMID:24862946

  8. Bending of electromagnetic wave in an ultra-strong magnetic field

    SciTech Connect

    Kim, Jin Young

    2012-10-01

    We consider the bending of light by nonlinear electrodynamics when the magnetic field B exceeds the critical value B{sub c} = m{sup 2}c{sup 2}/e h-bar = 4.4 × 10{sup 9}T. Using the index of refraction derived from the analytic series representation in one-loop effective action of QED, we found the trajectory and the bending angle of light in geometric optics. The angle bent by ultra-strong magnetic field of magnetar was estimated and compared with the gravitational bending. The result may be useful in studying the lensing, birefringence, and other nonlinear quantum electrodynamic effects above B{sub c}.

  9. Turbulent convection in a horizontal duct with strong axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zikanov, Oleg

    2014-11-01

    Convection in a horizontal duct with one heated wall is studied computationally. The work is motivated by the concept of a blanket for fusion reactors, according to which liquid metal slowly flows in toroidal ducts aligned with the main component of the magnetic field. We first assume that the magnetic field is sufficiently strong for the flow to be purely two-dimensional and analyze chaotic flow regimes at very high Grashof numbers. Furthermore, three-dimensional perturbations are considered and the relation between the length of the duct and the critical Hartmann number, below which the flow becomes three-dimensional, is determined. Financial support was provided by the US NSF (Grant CBET 1232851).

  10. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    SciTech Connect

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-11-01

    field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. Conclusions: The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes.

  11. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-01-01

    field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. Conclusions: The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes. PMID:25370658

  12. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Guidry, Mike

    2016-03-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments.

  13. Internal structure modification and decay of hadrons in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-11-01

    We discuss the influence of external magnetic field on strong decays of K∗(892), ϕ(1020) and ρ0(770) mesons. Due to increasing energy of n=0 Landau level of charged decay products, particular decay channels may become suppressed and isospin rules for strong decays can be violated. In the case of ρ0 meson, enhanced production of photons and dileptons (with modified invariant mass) may occur. Similar considerations are applied to decays of Ξ∗(1530) baryon. We also suggest that static electromagnetic field of sufficient strength can modify the internal structure (wavefunction) of ηc, J/Ψ and Υ(ns) mesons, and specific decay channels (e.g. CP — violating η → π+π-) can become enhanced.

  14. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    PubMed Central

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  15. COOLING RATES FOR RELATIVISTIC ELECTRONS UNDERGOING COMPTON SCATTERING IN STRONG MAGNETIC FIELDS

    SciTech Connect

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L. E-mail: zw1@rice.edu

    2011-05-20

    For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is in part due to the proximity of a hot soft photon bath from the stellar surface to putative radiation dissipation regions in the inner magnetosphere. Moreover, because the scattering process becomes resonant at the cyclotron frequency, the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. This paper presents computations of the electron cooling rates for this process, which are needed for resonant Compton models of non-thermal radiation from such highly magnetized pulsars. The computed rates extend previous calculations of magnetic Thomson cooling to the domain of relativistic quantum effects, sampled near and above the quantum critical magnetic field of 44.13 TG. This is the first exposition of fully relativistic, quantum magnetic Compton cooling rates for electrons, and it employs both the traditional Johnson and Lippmann cross section and a newer Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic fields. Such ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance and has not been addressed before in the context of cooling by Compton scattering. The QED effects are observed to profoundly lower the rates below extrapolations of the familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina reductions become important.

  16. Properties of a two-dimensional semimetal in a strong magnetic field

    SciTech Connect

    Batyev, E. G.

    2010-01-15

    A system of two-dimensional electrons and holes ha s been investigated in a strong magnetic field, when it is sufficient to take into account only the ground Landau level. It has been shown that the interaction of electrons and holes can lead to an ordered state. In this problem, the exchange interaction in electron and hole subsystems is significant. The following two cases have been considered: (a) there are one electron and one hole valleys, and at some magnetic field strength, there exists an ordered state, as in an excitonic insulator; and (b) there exist one electron and two equivalent hole valleys (as in the experiment performed by Kvon et al. [1]), and the hole system has an ordered state of the Stoner ferromagnetic type in a specific range of magnetic field strengths. The spectra of elementary excitations of the Bose and Fermi types have been obtained. The Fermi excitations have a gap in the energy spectrum, whereas the Bose excitations in the ordered states begin with zero (to these excitations there corresponds an electric dipole moment). The self-consistent field approximation has been used, which is exact when the numbers of electrons and holes are equal to each other.

  17. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  18. Investigation on macrosegregation and dendrite morphology during directional solidification of Al-Cu hypereutectic alloys under a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xi; Du, DaFan; Fautrelle, Yves; Ren, ZhongMing; Moreau, Rene

    2015-08-01

    The effect of a strong magnetic field (up to 12 T) on the macrosegregation and dendrite morphology during directional solidification of the Al-22at.%Cu alloy has been investigated. Experimental results show that the application of the magnetic field caused the freckle macrosegregation and the fracture of the Al2Cu dendrites during directional solidification. With the increase of the magnetic field, the size of the freckle and dendrite decreases. Moreover, the electron back-scatter diffraction (EBSD) was applied to study the effect of the magnetic field on the morphology and orientation of the Al2Cu dendrite. The EBSD results revealed that although the dendrites were destroyed under the magnetic field, the magnetic field did not yet change the orientation of the Al2Cu crystal. The formation of the freckles and the fracture of the dendrites under the magnetic field may be attributed to the TE magnetic effects.

  19. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  20. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  1. Revisiting heavy ion collisions under the influence of strong magnetic fields

    SciTech Connect

    Paoli, M. G. de; Menezes, D. P.

    2013-05-06

    The quark-gluon plasma (QGP) phase refers to matter where quarks and gluons are believed to be deconfined and it probably takes place at temperatures of the order of 150 to 170 MeV. In large colliders around the world (RHIC/BNL, ALICE/CERN, GSI, etc), physicists are trying to convert hadronic matter at these order of temperatures into QGP by looking at non-central heavy ion collisions. Possible experiments towards this search are Au-Au collisions at RHIC/BNL and Pb-Pb collisions at SPS/CERN, where the hadron abundances and particle ratios are used in order to determine the temperature and baryonic chemical potential of the possibly present hadronic matter-QGP phase transition. The magnetic fields involved in heavy-ion collisions, although time dependent and short-lived, can reach intensities higher than the ones considered in magnetars, around 1.7 Multiplication-Sign 10{sup 19} to 10{sup 20} Gauss. In fact, the densities related to the chemical potentials obtained within the relativistic models framework developed in previous works are very low (of the order of 10{sup -3} fm{sup -3}). At these densities the nuclear interactions are indeed very small and this fact made us consider the possibility of free Fermi and Boson gases under the unfluence of strong magnetic fields. We investigate the effects of magnetic fields of the order of 10{sup 18}, 10{sup 19} and 10{sup 20} G through a {chi}{sup 2} fit to some data sets of the STAR experiment. Our results shown that a field of the order of 10{sup 19} G can produce a much better fit to the experimental data than the calculations without magnetic fields.

  2. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1–43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31–68), from where we deduce the periodicity property of minimizers.

  3. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-01

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  4. Cancellation properties in Hall magnetohydrodynamics with a strong guide magnetic field.

    PubMed

    Martin, L N; De Vita, G; Sorriso-Valvo, L; Dmitruk, P; Nigro, G; Primavera, L; Carbone, V

    2013-12-01

    We present a signed measure analysis of compressible Hall magnetohydrodynamic turbulence with an external guide field. Signed measure analysis allows us to characterize the scaling behavior of the sign-oscillating flow structures and their geometrical properties (fractal dimensions of structures). A reduced numerical model, valid when a strong guide magnetic field is present, is used here. In order to discuss the effect of the Hall term, different values for the ion skin depth are considered in the simulations. Results show that as the Hall term is increased, the fractal dimension of the current and vorticity sheets decreases. This observation, together with previous analysis of the same fields, provides a comprehensive description of the effect of the Hall force on the formation of structures. Two main processes are identified, namely, the widening and unraveling of the sheets. PMID:24483577

  5. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Baring, Matthew G.; Eiles, Matthew T.; Wadiasingh, Zorawar; Taylor, Caitlin A.; Fitch, Catherine J.

    2014-08-01

    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This profound enhancement underpins the anticipation that resonant Compton scattering is a very efficient process in the environs of highly magnetized neutron stars. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, and in the limit of zero vacuum dispersion, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. Such lifetimes are introduced to truncate the resonant cyclotronic divergences via standard Lorentz profiles. The formalism employs both the traditional Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self

  6. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    PubMed

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-01-01

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state. PMID:26426063

  7. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    PubMed Central

    Tang, Jennifer; Alsop, Richard J.; Schmalzl, Karin; Epand, Richard M.; Rheinstädter, Maikel C.

    2015-01-01

    It was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state. PMID:26426063

  8. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    SciTech Connect

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-02-15

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  9. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  10. Cooling of neutron stars and emissivity of neutrinos by the direct Urca process under influence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Coelho, E. L.; Chiapparini, M.; Negreiros, R. P.

    2016-04-01

    Neutron stars are born with high temperatures and during a few seconds suffer rapid cooling by emission of neutrinos. The direct Urca process is the main mechanism to explain this loss of energy. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons magnetic field. As output of the numerical calculations, we obtain the relative population for a parametrized magnetic field. We calculate the cooling of neutron stars with different mass and magnetic fields due to direct Urca process.

  11. MAGNETIC FIELD-DECAY-INDUCED ELECTRON CAPTURES: A STRONG HEAT SOURCE IN MAGNETAR CRUSTS

    SciTech Connect

    Cooper, Randall L.; Kaplan, David L. E-mail: dkaplan@kitp.ucsb.edu

    2010-01-10

    We propose a new heating mechanism in magnetar crusts. Magnetars' crustal magnetic fields are much stronger than their surface fields; therefore, magnetic pressure partially supports the crust against gravity. The crust loses magnetic pressure support as the field decays and must compensate by increasing the electron degeneracy pressure; the accompanying increase in the electron Fermi energy induces nonequilibrium, exothermic electron captures. The total heat released via field-decay electron captures is comparable to the total magnetic energy in the crust. Thus, field-decay electron captures are an important, if not the primary, mechanism powering magnetars' soft X-ray emission.

  12. Neutrino emissivity from e sup minus e+ annihilation in a strong magnetic field: Hot, nondegenerate plasma

    SciTech Connect

    Kaminker, A.D.; Gnedin, O.Y.; Yakovlev, D.G. ); Amsterdamski, P.; Haensel, P. )

    1992-11-15

    The neutrino emissivity from {ital e}{sup {minus}}{ital e+} pair annihilation is calculated for a hot, nondegenerate plasma, {ital T}{much gt}{ital T}{sub {ital F}} ({ital T}{sub {ital F}} is the electron degeneracy temperature), in a magnetic field {bold B} of arbitrary strength. The results are fitted by an analytic expression. A not-very-strong magnetic field, {ital b}={ital B}/{ital B}{sub {ital c}}{much lt}1 ({ital B}{sub {ital c}}=4.41{times}10{sup 13} G), enhances the emissivity of a nonrelativistic plasma, {ital t}={ital T}/{ital T}{sub {ital c}}{approx lt}{ital b} ({ital T}{sub {ital c}}=6{times}10{sup 9} K), and does not affect the emissivity at higher {ital T}. Stronger fields, {ital b}{much gt}1, influence the pair annihilation if {ital t}{approx lt} {radical}{ital b} . At {ital t}{approx gt}{ital b}{sup 1/4} they suppress the process, and at {ital t}{much lt}{ital b}{sup 1/4} they enhance it. As a rule the pair annihilation dominates over other neutrino production mechanisms in a hot plasma of neutron-star envelopes.

  13. Calculation of energies of three-electron systems in a strong magnetic field using Explicitly Correlated Gaussian Basis

    NASA Astrophysics Data System (ADS)

    Salas, Jorge; Varga, Kalman

    2015-03-01

    Strong magnetic fields can significantly alter the properties of atoms and allow the formation of stable negative ions such as He-. We have calculated the energies of systems comprised of three electrons in the presence of strong magnetic fields by using the Stochastic Variational Method with deformed Explicitly Correlated Gaussian basis. This approach yields accurate values for three-electron systems and predicts that the He- ion in a strong magnetic field has stable states, within the non-relativistic framework, in the infinite nuclear mass approximation. The energy spectrum and the properties of three-electron systems as a function of the strength of the magnetic field show the effect of the rivalry between the Coulomb interaction and the magnetic confinement.

  14. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    DOE PAGESBeta

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  15. Phase diagram of the itinerant helical magnet MnSi at high pressures and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Stishov, Sergei

    We performed a series of resistivity, heat capacity and ultrasound speed measurements of a MnSi single crystal at high pressures and strong magnetic fields [1-3]. Two notable features of the phase transition in MnSi that disappear on pressure increasin are a sharp peak marking the first order phase transition and a shallow maximum, situated slightly above the critical temperature and pointing to the domain of prominent helical fluctuations. The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields to 7 Tesla. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasi-discontinuity in the c11 elastic constant, which almost vanishes at the skyrmion - paramagnetic transition at high magnetic fields. The powerful fluctuations at the minima of c11 make the mentioned crossing point of the minima and the phase transition lines similar to a critical end point, where a second order phase transition meets a first order one.

  16. Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

    NASA Astrophysics Data System (ADS)

    Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu

    2016-07-01

    Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).

  17. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  18. Mobility inhibition of 1-phenylethanol chiral molecules in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Kozlova, Svetlana G.; Kompankov, Nikolay B.; Ryzhikov, Maxim R.; Slepkov, Vladimir A.

    2015-12-01

    Experimental evidences are first obtained to demonstrate the effect of external magnetic field on the mobility of 1-phenylethanol molecules characterized by conjugated ring bonds. Enantiomers of these molecules are shown to have different mobilities in chiral polarized mediums composed of these enantiomers taken in various proportions. The difference diminishes when the external magnetic field increases.

  19. Strong Little Magnets

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  20. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  1. Interaction-driven capacitance in graphene electron-hole double layer in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-12-01

    Fabrication of devices made by isolated graphene layers has opened up possibility of examining highly correlated states of electron systems in parts of their phase diagram that is impossible to access in their counterpart devices such as semiconductor heterostructures. An example of such states are graphene double monolayer electron-hole systems under strong magnetic fields where the separation between layers can be adjusted to be as small as one magnetic length with interlayer tunneling still suppressed. In those separations, it is known that correlations between electrons and holes are of crucial importance and must be included in determination of observable quantities. Here we report the results of our full numerical Hartree-Fock study of coherent and crystalline ground states of the interacting balanced electron-hole graphene systems in small and intermediate separations with each layer occupying up to four lowest lying Landau levels. We show that in the Hartree-Fock approximation the electrons and holes pair to form a homogeneous Bose-condensed (excitonic) state, while crystalline states of such exciton systems remain incoherent at intermediate layer separations. Our results of calculation of capacitance of such states as a function of interlayer separation and filling factor provides quantitative and qualitative signatures that can be examined in real experiments. We show that the capacitance of some crystallized states as well as uniform coherent states are significantly enhanced compared to geometrical values solely due to Coulomb interactions and quantum corrections.

  2. Effect of a magnetic field on intersubband polaritons in a quantum well: strong to weak coupling conversion.

    PubMed

    Pervishko, A A; Kibis, O V; Shelykh, I A

    2016-08-01

    We investigate theoretically the effect of a magnetic field on intersubband polaritons in an asymmetric quantum well placed inside an optical resonator. It is demonstrated that the field-induced diamagnetic shift of electron subbands in the well increases the broadening of optical lines corresponding to intersubband electron transitions. As a consequence, the magnetic field can switch the polariton system from the regime of strong light-matter coupling to the regime of a weak one. This effect paves a way for the effective control of polaritonic devices with a magnetic field. PMID:27472627

  3. Effect of a magnetic field on intersubband polaritons in a quantum well: strong to weak coupling conversion

    NASA Astrophysics Data System (ADS)

    Pervishko, A. A.; Kibis, O. V.; Shelykh, I. A.

    2016-08-01

    We investigate theoretically the effect of a magnetic field on intersubband polaritons in an asymmetric quantum well placed inside an optical resonator. It is demonstrated that the field-induced diamagnetic shift of electron subbands in the well increases the broadening of optical lines corresponding to intersubband electron transitions. As a consequence, the magnetic field can switch the polariton system from the regime of strong light-matter coupling to the regime of weak one. This effect paves a way to the effective control of polaritonic devices with a magnetic field.

  4. Origin of strong magnetic fields in Milky Way-like galactic haloes

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    An analytical model predicting the growth rates, the absolute growth times and the saturation values of the magnetic field strength within galactic haloes is presented. The analytical results are compared to cosmological MHD simulations of Milky Way-like galactic halo formation performed with the N-body / SPMHD code GADGET. The halo has a mass of approximately 3*10^{12} solar masses and a virial radius of approximately 270 kpc. The simulations in a LCDM cosmology also include radiative cooling, star formation, supernova feedback and the description of non-ideal MHD. A primordial magnetic seed field ranging from 10^{-10} to 10^{-34} G in strength agglomerates together with the gas within filaments and protohaloes.There, it is amplified within a couple of hundred million years up to equipartition with the corresponding turbulent energy. The magnetic field strength increases by turbulent small-scale dynamo action. The turbulence is generated by the gravitational collapse and by supernova feedback. Subsequently, a series of halo mergers leads to shock waves and amplification processes magnetizing the surrounding gas within a few billion years. At first, the magnetic energy grows on small scales and then self-organizes to larger scales.Magnetic field strengths of microG are reached in the center of the halo and drop to nG in the IGM. Analyzing the saturation levels and growth rates, the model is able to describe the process of magnetic amplification notably well and confirms the results of the simulations. Additionally, we investigate magnetic seed fields created self-consistently by supernova explosions naturally occuring during the star formation in galaxies. Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr.In our model for the evolution of galactic magnetic fields, the seed magnetic field determined self-consistently by the star formation process

  5. Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture.

    PubMed

    Norimura, T; Imada, H; Kunugita, N; Yoshida, N; Nikaido, M

    1993-06-01

    Experiments were undertaken in order to verify whether or not a strong magnetic field would have any biological effects on the cell growth, viability and radiation response of mammalian cells. Magnetic field exposures were conducted using a superconducting magnet with freshly-isolated human peripheral blood T-lymphocytes maintained at their normal growing temperature of 37 degrees C. The static magnetic fields with intensities up to 6.3-tesla (T) exerted little influence on the cell growth and viability of actively-growing T-lymphocytes under normal cell-culture conditions. On the other hand, the T cells exposed to the magnetic fields (4 T-6.3 T) during PHA stimulation were inhibited in their cell growth when compared to controls. The effects of the magnetic fields with intensities up to 2 T on cell growth properties, however, were minimal in this system. Also, the radiosensitivity of T-lymphocytes previously exposed to the strong magnetic fields was more sensitive than that of control cells. These results suggest that exposure to a static magnetic field of 4 T or stronger might lead to physiological and growth abnormalities at the cellular level. PMID:8316709

  6. Disaggregation of stacked red blood cells under strong pulse magnetic field

    NASA Astrophysics Data System (ADS)

    Hwang, Do-Guwn; Park, Hyeji; Kim, Woori; Lee, Jinyoung; Lee, Hyun Sook

    2015-05-01

    We have investigated the dependence of magnetic field intensity and stimulation time on stacking formation of red blood cells (RBCs) to study blood circulation in human body. The pulse magnetic field with the maximum intensity of 0.27-0.07 T, pulse transition time of 0.102 ms, and pulse intervals of 1 s was applied to the distal end of palm for 5-20 min. The aggregation of RBCs was measured using microscopy. After the magnetic stimulation for 10 min, the fully stacked RBCs were almost separated from each other and moved much faster than those in unstimulated state. The disaggregation was maintained at a decreasing intensity of 0.19 T, and a few cells were stacked at the weak intensity of 0.07 T. In this work, we investigated the degree of RBCs aggregation and activity time by varying the intensity and time of magnetic stimulation to get the optimum condition of pulse magnetic field stimulus.

  7. Influence of a strong longitudinal magnetic field on laser wakefield acceleration

    SciTech Connect

    Rassou, S.; Bourdier, A.; Drouin, M.

    2015-07-15

    Optimization of the beam quality and electronic trapped charge in the cavity are key issues of laser wake field acceleration. The effect of an initially applied uniform magnetic field, parallel to the direction of propagation of the pump pulse, on the laser wakefield is explored. First, an analytic model for the laser wakefield is built up in the case when such an external magnetic field is applied. Then, simulations are performed with a 3D quasi-cylindrical particle in cell code in the blowout (or bubble) regime. Transverse currents are generated at the rear of the bubble which amplify the longitudinal magnetic field. For several plasma and laser parameters, the wake shape is altered and trapping can be reduced or cancelled by the magnetic field. When considering optical injection, and when two counterpropagating waves interact with a rather high plasma density, trapping is not affected by the magnetic field. In this range of plasma and laser parameters, it is shown that the longitudinal magnetic field can reduce or even prevent self-injection and enhance beam quality.

  8. Regional Mapping of the Lunar Crustal Magnetic Field: Correlation of Strong Anomalies with Curvilinear Albedo Markings

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Yingst, A.; Zakharian, A.; Lin, R. P.; Mitchell, D. L.; Halekas, J.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.

  9. Experimental realization of strong effective magnetic fields in an optical lattice.

    PubMed

    Aidelsburger, M; Atala, M; Nascimbène, S; Trotzky, S; Chen, Y-A; Bloch, I

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed. PMID:22243087

  10. Origin of strong magnetic fields in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-08-01

    Magnetic fields are observed on all scales in the Universe (see e.g. Kronberg 1994), but little is known about the origin and evolution of those fields with cosmic time. Seed fields of arbitrary source must be amplified to present-day values and distributed among cosmic structures. Therefore, the emergence of cosmic magnetic fields and corresponding dynamo processes (see e.g. Zel'dovich et al. 1983; Kulsrud et al. 1997) can only be jointly understood with the very basic processes of structure and galaxy formation (see e.g. Mo et al. 2010).

  11. Draping of strongly flow-aligned interplanetary magnetic field about the magnetopause

    NASA Astrophysics Data System (ADS)

    Petrinec, S. M.

    2016-07-01

    Many dynamic processes of the magnetosphere are directly driven by the solar wind and the occurrence of magnetic merging at the magnetopause. The location of magnetopause magnetic merging, or reconnection, is now fairly well understood when the interplanetary magnetic field (IMF) contains large By and Bz components in relation to the Bx component (in Geocentric Solar Magnetospheric (GSM) coordinates). However, when the IMF contains a large X-component (i.e., is closely flow-aligned), it is not yet well understood how the shocked IMF drapes about the magnetopause, and how this affects the occurrence and location of magnetic merging. In this initial study, we examine from observations how a nearly flow-aligned IMF drapes about the magnetopause. The results of this study are expected to be useful for comparisons with both analytic and global numerical models of the magnetosheath magnetic field.

  12. Estimation of the effects of strong static magnetic fields on plants.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.

    In our recent studies we extensively used ponderomotive magnetic forces in high gradient magnetic fields (HGMF) for displacing organelles inside plant gravity receptor cells. Such displacement is a convenient tool both for investigating plant gravity perception mechanism and for physical characterization of the cell interior, and can have future practical applications in providing a directional stimulus for plants in microgravity. This method takes advantage of the magnetic heterogeneity of the receptor cells, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (? æ < 0). Such particles are repelled from the zones of stronger field in a non-uniform field. To exert a force on amyloplasts, which is comparable to the gravity force, the dynamic factor of the field grad(H2 /2) needs to be 109 - 1 01 0 Oe 2 /cm, and the field intensity in the experimental magnetic systems typically varies from 0 to 2.5-104 Oe, while the size of the area of non-uniformity is 10-2 to 1 cm. Possible effects of such static magnetic fields on plants other than magnetophoresis of amyloplasts were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5-104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are

  13. Efficient dynamic nuclear polarization of phosphorus in silicon in strong magnetic fields and at low temperatures

    NASA Astrophysics Data System (ADS)

    Järvinen, J.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Zvezdov, D.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.

    2014-12-01

    Efficient manipulation of nuclear spins is important for utilizing them as qubits for quantum computing. In this work we report record high polarizations of 31P and 29Si nuclear spins in P-doped silicon in a strong magnetic field (4.6 T) and at temperatures below 1 K. We reached 31P nuclear polarization values exceeding 98 % after 20 min of pumping the high-field electron spin resonance (ESR) line with a very small microwave power of 0.4 μ W . We evaluate that the ratio of the hyperfine-state populations increases by three orders of magnitude after 2 hours of pumping, and an extremely pure nuclear spin state can be created, with less than 0.01 ppb impurities. A negative dynamic nuclear polarization has been observed by pumping the low-field ESR line of 31P followed by the flip-flip cross relaxation, the transition which is fully forbidden for isolated donors. We estimate that while pumping the ESR transitions of 31P also the nuclei of 29Si get polarized, and polarization exceeding 60 % has been obtained. We performed measurements of relaxation rates of flip-flop and flip-flip transitions which turned out to be nearly temperature independent. Temperature dependence of the 31P nuclear relaxation was studied down to 0.75 K, below which the relaxation time became too long to be measured. We found that the polarization evolution under pumping and during relaxation deviates substantially from a simple exponential function of time. We suggest that the nonexponential polarization dynamics of 31P donors is mediated by the orientation of 29Si nuclei, which affect the transition probabilities of the forbidden cross-relaxation processes.

  14. Influence of calculation error of total field anomaly in strongly magnetic environments

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin

    2016-04-01

    An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can

  15. Ionization of the hydrogen atom in strong magnetic fields. Beyond the adiabatic approximation.

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Pavlov, G. G.; Ventura, J.

    1997-01-01

    High magnetic fields in neutron stars, B~10^11^-10^13^G, substantially modify the properties of atoms and their interaction with radiation. In particular, the photoionization cross section becomes anisotropic and polarization dependent, being strongly reduced when the radiation is polarized perpendicular to the field. In a number of previous works based on the adiabatic approximation the conclusion was drawn that this transverse cross section vanishes for frequencies ω smaller than the electron cyclotron frequency ω_c_=eB/(m_e_c). In other works (which employed a different form of the interaction operator) appreciable finite values were obtained, ~σ_0gamma^-1^ near the photoionization threshold, where σ_0_ is the cross section without magnetic field, and γ=B/(2.35x10^9^G). Since it is the transverse cross section which determines the properties of radiation emitted from neutron star atmospheres, an adequate interpretation of the neutron star thermal-like radiation requires a resolution of this controversy. In the present work we calculate the atomic wave functions for both discrete and continuum states by solving the coupled channel equations allowing the admixture between different Landau levels, which provides much higher accuracy than the adiabatic approximation. This enables us to resolve the above contradiction in favour of the finite transverse cross sections at ω<ω_c_. Moreover, for any form of the interaction operator the non-adiabatic corrections appear to be substantial for frequencies ω> 0.3ω_c_. The non-adiabatic treatment of the continuum includes coupling between closed and open channels, which leads to the autoionization of quasi-bound energy levels associated with the electron cyclotron (Landau) excitations and gives rise to Beutler-Fano resonances of the photoionization cross section. We calculate the autoionization widths of these quasi-bound levels and compare them with the radiative widths. The correlation of the open channels is

  16. Internal composition of proto-neutron stars under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Dexheimer, V.; Schramm, S.

    2016-08-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars. A hadronic chiral SU(3) model is applied to cold neutron stars and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  17. The 1-loop self-energy of an electron in a strong external magnetic field revisited

    NASA Astrophysics Data System (ADS)

    Machet, B.

    2016-05-01

    I calculate the 1-loop self-energy of the lowest Landau level of an electron of mass m in a strong, constant and uniform external magnetic field B, beyond its always used truncation at (ln L)2, L = |e|B m2. This is achieved by evaluating the integral deduced in 1953 by Demeur and incompletely calculated in 1969 by Jancovici, which I recover from Schwinger’s techniques of calculation. It yields δm ≃ αm 4π ln L ‑ γE ‑3 22 ‑9 4 + π β‑1 + π2 6 + πΓ[1‑β] Lβ‑1 + 1 L π 2‑β ‑ 5 + 𝒪 1 L≥2 with β ≃ 1.175 for 75 ≤ L ≤ 10, 000. The (ln L)2 truncation exceeds the precise estimate by 45% at L = 100 and by more at lower values of L, due to neglecting, among others, the single logarithmic contribution. This is doubly unjustified because it is large and because it is needed to fulfill appropriate renormalization conditions. Technically challenging improvements look therefore necessary, for example, when resumming higher loops and incorporating the effects of large B on the photonic vacuum polarization, like investigated in recent years.

  18. Anomalous D'yakonov-Perel' spin relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yu, T.; Wu, M. W.

    2013-06-01

    We report an anomalous scaling of the D’yakonov-Perel’ spin relaxation with the momentum relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration. We focus on the case in which the external magnetic field is perpendicular to the spin-orbit-coupling-induced effective magnetic field and its magnitude is much larger than the latter one. It is found that the longitudinal spin relaxation time is proportional to the momentum relaxation time even in the strong-scattering limit, indicating that the D’yakonov-Perel’ spin relaxation demonstrates Elliott-Yafet-like behavior. Moreover, the transverse spin relaxation time is proportional (inversely proportional) to the momentum relaxation time in the strong- (weak-) scattering limit, both in the opposite trends against the well-established conventional D’yakonov-Perel’ spin relaxation behaviors. We further demonstrate that all the above anomalous scaling relations come from the unique form of the effective inhomogeneous broadening.

  19. Multi-wavelength Study of a Delta-spot. I. A Region of Very Strong, Horizontal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jaeggli, S. A.

    2016-02-01

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne-Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500-3800 G in close proximity to blueshifts as strong as 3.8 km s-1. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.

  20. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    SciTech Connect

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  1. Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko

    2016-07-01

    This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained (~120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid-liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., <1 vol% porosity) and fine grain size (~1 μm) Fe-free and Fe-bearing olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.

  2. Coupled-cluster theory for atoms and molecules in strong magnetic fields

    SciTech Connect

    Stopkowicz, Stella Lange, Kai K.; Tellgren, Erik I.; Helgaker, Trygve; Gauss, Jürgen

    2015-08-21

    An implementation of coupled-cluster (CC) theory to treat atoms and molecules in finite magnetic fields is presented. The main challenges for the implementation stem from the magnetic-field dependence in the Hamiltonian, or, more precisely, the appearance of the angular momentum operator, due to which the wave function becomes complex and which introduces a gauge-origin dependence. For this reason, an implementation of a complex CC code is required together with the use of gauge-including atomic orbitals to ensure gauge-origin independence. Results of coupled-cluster singles–doubles–perturbative-triples (CCSD(T)) calculations are presented for atoms and molecules with a focus on the dependence of correlation and binding energies on the magnetic field.

  3. Coupled-cluster theory for atoms and molecules in strong magnetic fields.

    PubMed

    Stopkowicz, Stella; Gauss, Jürgen; Lange, Kai K; Tellgren, Erik I; Helgaker, Trygve

    2015-08-21

    An implementation of coupled-cluster (CC) theory to treat atoms and molecules in finite magnetic fields is presented. The main challenges for the implementation stem from the magnetic-field dependence in the Hamiltonian, or, more precisely, the appearance of the angular momentum operator, due to which the wave function becomes complex and which introduces a gauge-origin dependence. For this reason, an implementation of a complex CC code is required together with the use of gauge-including atomic orbitals to ensure gauge-origin independence. Results of coupled-cluster singles-doubles-perturbative-triples (CCSD(T)) calculations are presented for atoms and molecules with a focus on the dependence of correlation and binding energies on the magnetic field. PMID:26298118

  4. Nucleon-nucleon scattering in a strong external magnetic field and the neutrino emissivity

    SciTech Connect

    Bavarsad, E.; Mohammadi, R.; Haghighat, M.

    2010-11-15

    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose, we consider the one-pion-exchange approximation to find the nucleon-nucleon (NN) cross section in a background field as large as 10{sup 15}-10{sup 18} G. We show that the NN cross section in neutron stars with temperatures in the range 0.1-5 MeV can be changed up to the 1 order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission, the neutrino emissivity can be written in terms of the NN-scattering amplitude; therefore, the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.

  5. Energy loss of a nonaccelerating quark moving through a strongly coupled N =4 super Yang-Mills vacuum or plasma in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Mamo, Kiminad A.

    2016-08-01

    Using AdS /CFT correspondence, we find that a massless quark moving at the speed of light v =1 , in arbitrary direction, through a strongly coupled N =4 super Yang-Mills (SYM) vacuum at T =0 , in the presence of strong magnetic field B , loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/} 6 π B . We also show that a heavy quark of mass M ≠0 moving at near the speed of light v2=v*2=1 -4/π2T2 B ≃1 , in arbitrary direction, through a strongly coupled N =4 SYM plasma at finite temperature T ≠0 , in the presence of strong magnetic field B ≫T2, loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/}6 π B v*2≃-√{λ/}6 π B . Moreover, we argue that, in the strong magnetic field B ≫T2 (IR) regime, N =4 SYM and adjoint QCD theories (when the adjoint QCD theory has four flavors of Weyl fermions and is at its conformal IR fixed point λ =λ*) have the same microscopic degrees of freedom (i.e., gluons and lowest Landau levels of Weyl fermions) even though they have quite different microscopic degrees of freedom in the UV when we consider higher Landau levels. Therefore, in the strong magnetic field B ≫T2 (IR) regime, the thermodynamic and hydrodynamic properties of N =4 SYM and adjoint QCD plasmas, as well as the rates of energy loss of a quark moving through the plasmas, should be the same.

  6. Origin of strong magnetic fields in Milky Way-like galactic haloes

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Lesch, H.; Dolag, K.; Kotarba, H.; Geng, A.; Stasyszyn, F. A.

    2012-05-01

    An analytical model predicting the growth rates, the absolute growth times and the saturation values of the magnetic field strength within galactic haloes is presented. The analytical results are compared to cosmological magnetohydrodynamics (MHD) simulations of Milky Way-like galactic halo formation performed with the N-body/SPMHD code GADGET. The halo has a mass of ≈3 × 1012 M⊙ and a virial radius of ≈270 kpc. The simulations in a Λ cold dark matter (ΛCDM) cosmology also include radiative cooling, star formation, supernova feedback and the description of non-ideal MHD. A primordial magnetic seed field ranging from 10-10 to 10-34 G in strength agglomerates together with the gas within filaments and protohaloes. There, it is amplified within a couple of hundred million years up to equipartition with the corresponding turbulent energy. The magnetic field strength increases by turbulent small-scale dynamo action. The turbulence is generated by the gravitational collapse and by supernova feedback. Subsequently, a series of halo mergers leads to shock waves and amplification processes magnetizing the surrounding gas within a few billion years. At first, the magnetic energy grows on small scales and then self-organizes to larger scales. Magnetic field strengths of ≈10-6 G are reached in the centre of the halo and drop to ≈10-9 G in the intergalactic medium. Analysing the saturation levels and growth rates, the model is able to describe the process of magnetic amplification notably well and confirms the results of the simulations.

  7. Generation of strong quasistatic magnetic fields in interactions of ultraintense and short laser pulses with overdense plasma targets

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Zhou Cangtao; Yu Wei

    2007-09-15

    An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B{sub z}. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields {approx}100 MG and greater due to the transverse linear mode conversion process.

  8. Hall viscosity and momentum transport in lattice and continuum models of the integer quantum Hall effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tuegel, Thomas I.; Hughes, Taylor L.

    2015-10-01

    The Hall viscosity describes a nondissipative response to strain in systems with broken time-reversal symmetry. We develop a method for computing the Hall viscosity of lattice systems in strong magnetic fields based on momentum transport, which we compare to the method of momentum polarization used by Tu et al. [Phys. Rev. B 88, 195412 (2013), 10.1103/PhysRevB.88.195412] and Zaletel et al. [Phys. Rev. Lett. 110, 236801 (2013), 10.1103/PhysRevLett.110.236801] for noninteracting systems. We compare the Hall viscosity of square-lattice tight-binding models in magnetic field to the continuum integer quantum Hall effect (IQHE) showing agreement when the magnetic length is much larger than the lattice constant, but deviation as the magnetic field strength increases. We also relate the Hall viscosity of relativistic electrons in magnetic field (the Dirac IQHE) to the conventional IQHE. The Hall viscosity of the lattice Dirac model in magnetic field agrees with the continuum Dirac Hall viscosity when the magnetic length is much larger than the lattice constant. We also show that the Hall viscosity of the lattice model deviates further from the continuum model if the C4 symmetry of the square lattice is broken to C2, but the deviation is again minimized as the magnetic length increases.

  9. Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Wargo, M. J.; Motakef, S.; Carlson, D. J.; Nakos, J. S.

    1987-01-01

    Ga-doped germanium was grown in a vertical Bridgman-Stockbarger system with melt stabilization by axial magnetic fields of 30 kG. It was found that radial segregation of gallium is negligible and that the initial transient of axial macro-segregation is in apparent compliance with the theory of diffusion controlled plane front solidification.

  10. Landau levels of cold dense quark matter in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Wen, Xin-Jian; Liang, Jun-Jun

    2016-07-01

    The occupied Landau levels of strange quark matter are investigated in the framework of the SU(3) NJL model with a conventional coupling and a magnetic-field dependent coupling respectively. At lower density, the Landau levels are mainly dominated by u and d quarks. Threshold values of the chemical potential for the s quark onset are shown in the μ -B plane. The magnetic-field-dependent running coupling can broaden the region of three-flavor matter by decreasing the dynamical masses of s quarks. Before the onset of s quarks, the Landau level number of light quarks is directly dependent on the magnetic field strength B by a simple inverse proportional relation ki ,max≈Bi0/B with Bd0=5 ×1 019 G , which is approximately 2 times Bu0 of u quarks at a common chemical potential. When the magnetic field increases up to Bd0, almost all three flavors are lying in the lowest Landau level.

  11. Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow

    DOE PAGESBeta

    Fukushima, Kenji; Hattori, Koichi; Yee, Ho -Ung; Yin, Yi

    2016-04-20

    In this paper, we compute the momentum diffusion coefficients of heavy quarks, κ∥ and κ⊥, in a strong magnetic field B along the directions parallel and perpendicular to B, respectively, at the leading order in QCD coupling constant αs. We consider a regime relevant for the relativistic heavy ion collisions, αseB << T2 << eB, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κLO⊥ ∝ α2sTeB in the leading order that arises from screened Coulomb scatterings with (1+1)-dimensional LLL quarks, while κ∥ gets nomore » contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κLO∥ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass mq. The former leads to κLO,gluon∥ ∝ α2sT3 and the latter to κLO,massive∥ ∝ αs(αseB)1/2m2q. Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ⊥ >> κ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.« less

  12. Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Hattori, Koichi; Yee, Ho-Ung; Yin, Yi

    2016-04-01

    We compute the momentum diffusion coefficients of heavy quarks, κ∥ and κ⊥ , in a strong magnetic field B along the directions parallel and perpendicular to B , respectively, at the leading order in QCD coupling constant αs . We consider a regime relevant for the relativistic heavy ion collisions, αse B ≪T2≪e B , so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κ⊥LO∝αs2T e B in the leading order that arises from screened Coulomb scatterings with (1 +1 )-dimensional LLL quarks, while κ∥ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κ∥LO come from the two separate effects: (1) the screened Coulomb scatterings with thermal gluons, and (2) a finite light-quark mass mq . The former leads to κ∥LO ,gluon∝αs2T3 and the latter to κ∥LO ,massive∝αs(αse B )1 /2mq2 . Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ⊥≫κ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.

  13. Statistical Plasma Physics in a Strong Magnetic Field: Paradigms and Problems

    SciTech Connect

    J.A. Krommes

    2004-03-19

    An overview is given of certain aspects of fundamental statistical theories as applied to strongly magnetized plasmas. Emphasis is given to the gyrokinetic formalism, the historical development of realizable Markovian closures, and recent results in the statistical theory of turbulent generation of long-wavelength flows that generalize and provide further physical insight to classic calculations of eddy viscosity. A Hamiltonian formulation of turbulent flow generation is described and argued to be very useful.

  14. A strong, highly-tilted interstellar magnetic field near the Solar System.

    PubMed

    Opher, M; Bibi, F Alouani; Toth, G; Richardson, J D; Izmodenov, V V; Gombosi, T I

    2009-12-24

    Magnetic fields play an important (sometimes dominant) role in the evolution of gas clouds in the Galaxy, but the strength and orientation of the field in the interstellar medium near the heliosphere has been poorly constrained. Previous estimates of the field strength range from 1.8-2.5 microG and the field was thought to be parallel to the Galactic plane or inclined by 38-60 degrees (ref. 2) or 60-90 degrees (ref. 3) to this plane. These estimates relied either on indirect observational inferences or modelling in which the interstellar neutral hydrogen was not taken into account. Here we report measurements of the deflection of the solar wind plasma flows in the heliosheath to determine the magnetic field strength and orientation in the interstellar medium. We find that the field strength in the local interstellar medium is 3.7-5.5 microG. The field is tilted approximately 20-30 degrees from the interstellar medium flow direction (resulting from the peculiar motion of the Sun in the Galaxy) and is at an angle of about 30 degrees from the Galactic plane. We conclude that the interstellar medium field is turbulent or has a distortion in the solar vicinity. PMID:20033043

  15. THE DISCOVERY OF A STRONG MAGNETIC FIELD AND COROTATING MAGNETOSPHERE IN THE HELIUM-WEAK STAR HD 176582

    SciTech Connect

    Bohlender, David A.; Monin, Dmitry

    2011-05-15

    We report the detection of a strong, reversing magnetic field and variable H{alpha} emission in the bright helium-weak star HD 176582 (HR 7185). Spectrum, magnetic, and photometric variability of the star are all consistent with a precisely determined period of 1.5819840 {+-} 0.0000030 days which we assume to be the rotation period of the star. From the magnetic field curve, and assuming a simple dipolar field geometry, we derive a polar field strength of approximately 7 kG and a lower limit of 52 deg. for the inclination of the rotation axis. However, based on the behavior of the H{alpha} emission, we adopt a large inclination angle of 85 deg. and this leads to a large magnetic obliquity of 77{sup 0}. The H{alpha} emission arises from two distinct regions located at the intersections of the magnetic and rotation equators and which corotate with the star at a distance of about 3.5 R{sub *} above its surface. We estimate that the emitting regions have radial and meridional sizes on the order of 2 R{sub *} and azimuthal extents (perpendicular to the magnetic equator) of less than approximately 0.6 R{sub *}. HD 176582 therefore appears to show many of the cool magnetospheric phenomena as that displayed by other magnetic helium-weak and helium-strong stars such as the prototypical helium-strong star {sigma} Ori E. The observations are consistent with current models of magnetically confined winds and rigidly rotating magnetospheres for magnetic Bp stars.

  16. Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields

    NASA Astrophysics Data System (ADS)

    Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey

    2016-06-01

    We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.

  17. Laboratory Experiment of Magnetic Reconnection between Merging Flux Tubes with Strong Guide FIeld

    NASA Astrophysics Data System (ADS)

    Inomoto, M.; Kamio, S.; Kuwahata, A.; Ono, Y.

    2013-12-01

    Magnetic reconnection governs variety of energy release events in the universe, such as solar flares, geomagnetic substorms, and sawtooth crash in laboratory nuclear fusion experiments. Differently from the classical steady reconnection models, non-steady behavior of magnetic reconnection is often observed. In solar flares, intermittent enhancement of HXR emission is observed synchronously with multiple ejection of plammoids [1]. In laboratory reconnection experiments, the existence of the guide field, that is perpendicular to the reconnection field, makes significant changes on reconnection process. Generally the guide field will slow down the reconnection rate due to the increased magnetic pressure inside the current sheet. It also brings about asymmetric structure of the separatrices or effective particle acceleration in collisionless conditions. We have conducted laboratory experiments to study the behavior of the guide-field magnetic reconnection using plasma merging technique (push reconnection). Under substantial guide field even larger than the reconnection field, the reconnection generally exhibits non-steady feature which involves intermittent detachment of X-point and reconnection current center[2]. Transient enhancement of reconnection rate is observed simultaneously with the X-point motion[3]. We found two distinct phenomena associated with the guide-field non-steady reconnection. The one is the temporal and localized He II emission from X-point region, suggesting the production of energetic electrons which could excite the He ions in the vicinity of the X-point. The other is the excitation of large-amplitude electromagnetic waves which have similar properties with kinetic Alfven waves, whose amplitude show positive correlation with the enhancement of the reconnection electric field[4]. Electron beam instability caused by the energetic electrons accelerated to more than twice of the electron thermal velocity could be a potential driver of the

  18. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  19. Steady flows of a laterally heated ferrofluid layer: Influence of inclined strong magnetic field and gravity level

    NASA Astrophysics Data System (ADS)

    Hennenberg, M.; Weyssow, B.; Slavtchev, S.; Desaive, Th.; Scheid, B.

    2006-09-01

    A horizontal ferrofluid layer is submitted to a lateral heating and to a strong oblique magnetic field. The problem, combining the momentum and heat balance equations with the Maxwell equations, introduces two Rayleigh numbers, Ra the gravitational one and Ram the magnetic one, to represent the buoyancy and the Kelvin forces, which induce motion, versus the momentum viscous diffusion and heat diffusion. Whatever the inclination of the magnetic field, the steady solution of the problem is presented as a power series of a small parameter ɛH measuring the ratio of variation of the magnetization across the layer divided by the magnitude of the external imposed field. For cases of physical relevance, comparisons between analytical and numerical studies have lead to a major statement: in the strong field region (ɛH≪1) the zero order solution is the product of the Birikh solution that corresponds to the usual Newtonian fluid submitted to a lateral gradient, multiplied by a modulating factor accounting for inclination and both Rayleigh numbers. Physically, this simplified solution is valid for microgravity conditions where the magnetic field competes enough with microgravity effects to invert the laminar flow and thus suppress the motion for two specific values of the inclination angle.

  20. Particles with Low Binding Energy in a Strong Stationary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Kravtsova, G. A.; Rodionov, V. N.

    2009-01-01

    The equations for the bound one-active electron states based on analytic solutions of the Schrödinger and Pauli equations for the uniform magnetic field and a single attractive δ(r)-potential are discussed. We show that binding energy equations for spin-1/2 particles can be obtained without using the language of boundary conditions in the δ-potential model. We use the obtained equations to calculate the energy level displacements analytically and to demonstrate nonlinear dependence on the field intensity.

  1. Magnetic-field dependence of strongly anisotropic spin reorientation transition in NdFeO3: a terahertz study

    NASA Astrophysics Data System (ADS)

    Jiang, Junjie; Song, Gaibei; Wang, Dongyang; Jin, Zuanming; Tian, Zhen; Lin, Xian; Han, Jiaguang; Ma, Guohong; Cao, Shixun; Cheng, Zhenxiang

    2016-03-01

    One of the biggest challenges in spintronics is finding how to switch the magnetization of a material. One way of the spin switching is the spin reorientation transition (SRT), a switching of macroscopic magnetization rotated by 90°. The macroscopic magnetization in a NdFeO3 single crystal rotates from Γ4 to Γ2 via Γ24 as the temperature is decreased from 170 to 100 K, while it can be switched back to Γ4 again by increasing the temperature. However, the precise roles of the magnetic-field induced SRT are still unclear. By using terahertz time-domain spectroscopy (THz-TDS), here, we show that the magnetic-field induced SRT between Γ4 and Γ2 is strongly anisotropic, depending on the direction of the applied magnetic field. Our experimental results are well interpreted by the anisotropy of rare-earth Nd3+ ion. Furthermore, we find that the critical magnetic-field required for SRT can be modified by changing the temperature. Our study suggests that the anisotropic SRT in NdFeO3 single crystal provides a platform to facilitate the potential applications in robust spin memory devices.

  2. Characterizing the response of Juno's JADE-E energy analyzers in the presence of Jupiter's strong magnetic field

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Allegrini, F.; Crary, F. J.; Louarn, P.; McComas, D. J.; Pollock, C. J.; Valek, P. W.; Weidner, S.

    2011-12-01

    NASA's Juno mission, which is scheduled to launch this August, will be the first spacecraft to achieve polar orbit around Jupiter. The Jovian Auroral Distributions Experiment (JADE), onboard Juno, measures the full pitch angle distribution of electrons (JADE-E) and the 3D velocity-space distribution of ions and ion composition (JADE-I). JADE-E consists of three identical energy analyzers covering the range from ~0.1-100 keV. Below ~5keV and in the relatively strong Jovian magnetic field (up to ~8 G along the orbit) the gyro-radius of electrons is comparable to the radius of curvature of the analyzers. Therefore, the response at low energies will be strongly affected by the magnetic field. To better understand, predict, and correct for the response of JADE-E in the presence of Jupiter's strong magnetic field we are characterizing its response in the laboratory. A set of Helmholtz coils capable of producing a magnetic field up to about 9 G with three axis control was built around the vacuum test chamber. We also compare the laboratory measurements with electro-optics simulations. We will present both simulations and measurement results taken with the engineering model of JADE-E and discuss expected performance of the flight instruments when they arrive at Jupiter.

  3. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field.

    PubMed

    Shumilin, A V

    2016-10-01

    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices. PMID:27484892

  4. Ionization equilibrium of hydrogen in strong magnetic field with allowance for pressure effects

    SciTech Connect

    Bulik, P.; Pavlov, G. ); Potekhin, A.

    1992-01-01

    The ionization equilibrium in highly magnetized (B = 10[sup 10] to 10[sup 12]G) hydrogen is investigated at temperatures from 5 eV to 50 keV and densities in the range 10[sup [minus]3] to 10[sup 3] g/cm[sup 3]. We have used the occupation probability formalism in order to take into account the pressure and density effects. The occupation probabilities used are slightly modified as compared to those derived by Hummer and Mihalas. We find that pressure ionization degree varies with the form of microfield distribution function. The non-ionized fraction is increased by the magnetic field in most of the parameter space. It is large enough so that the bound-free absorption must be taken into account in realistic models of neutron star atmospheres.

  5. The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD 184927

    NASA Astrophysics Data System (ADS)

    Yakunin, I.; Wade, G.; Bohlender, D.; Kochukhov, O.; Marcolino, W.; Shultz, M.; Monin, D.; Grunhut, J.; Sitnova, T.; Tsymbal, V.; MiMeS Collaboration

    2015-02-01

    A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars Large Program with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the International Ultraviolet Explorer (IUE) archive to infer the stellar physical parameters. Using magnetic field measurements, we derive an improved rotational period of 9.531 02 ± 0.0007 d. We infer the longitudinal magnetic field from lines of H, He, and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly non-uniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalysed IUE high-resolution spectra, confirming strong modulation of wind-sensitive C IV and S IV resonance lines. However, we are unable to detect any modulation of the Hα profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere (η _*˜ 2.4^{+22}_{-1.1}× 104), albeit one that is undetectable at optical wavelengths. The magnetic braking time-scale of HD 184927 is computed to be τJ = 0.96 or 5.8 Myr. These values are consistent with the slow rotation and estimated age of the star.

  6. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    SciTech Connect

    Tskhakaya, D. D.; Kos, L.

    2014-10-15

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths λ{sub D} (electron Debye length), ρ{sub i} (ion gyro-radius), and ℓ (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering λ{sub D}≪ρ{sub i}≪ℓ, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ε{sub Dm}(λ{sub D}/ρ{sub i})→0 and ε{sub mc}(ρ{sub i}/ℓ)→0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the ε{sub Dm}→0 and ε{sub mc}→0 approximations. The MPS entrance and the related kinetic form of the Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities.

  7. TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. II. STRONG ACCRETION DRIVEN BY A VERTICAL MAGNETIC FIELD

    SciTech Connect

    Simon, Jacob B.; Armitage, Philip J.; Beckwith, Kris; Bai, Xue-Ning; Stone, James M.

    2013-09-20

    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30 AU and 100 AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-ultraviolet-ionized surface layer and low-ionization disk interior. These simulations serve as a follow-up to Simon et al., in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For a net vertical field strength (quantified by β{sub 0}, the ratio of gas to magnetic pressure at the disk mid-plane) of β{sub 0} = 10{sup 4} and β{sub 0} = 10{sup 5}, we find accretion rates M-dot ∼10{sup -8}-10{sup –7} M{sub ☉} yr{sup –1}. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength of ∼60-200 μG and 10-30 μG at 30 AU and 100 AU, respectively, in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large-scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low-ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there.

  8. Synthesis of the a-Axis Textured Forsterite Aggregate Using Slip Casting in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Suzuki, T. S.; Sakka, Y.; Hiraga, T.

    2014-12-01

    Since crystallographic preferred orientation (CPO) is commonly observed in nature, it is important to understand how physical properties of rocks change with the development of CPO. For this purpose, we fabricated highly dense and fine grained mineral aggregates with controlling crystal orientation. Fine forsterite powders were prepared from high purity and fine grained reagents (<100 nm). Such powders were milled by zirconia beads under wet condition with changing milling duration and beads diameter to minimize particle size. To control the surface potential of the particles, we applied various types of polymer modification. The green compact prepared by a slip casting in a high magnetic field (12T) was sintered under vacuum condition. The resultant materials were analyzed by X-ray powder diffraction (XRD), secondary electron microscopy (SEM) and Electron Backscatter Diffraction (EBSD). The specimen prepared without an exposure to a strong magnetic field exhibited a randomly orientated forsterite grains whereas the specimen exposed to the magnetic field exhibited strong a-axis alignmentparallel to the magnetic direction with random distributions of b and c-axes on the plane perpendicular to the magnetic direction.

  9. The LACARA Vacuum Laser Accelerator Experiment: Beam Positioning and Alignment in a Strong Magnetic Field

    SciTech Connect

    Shchelkunov, Sergey V.; Marshall, T. C.; Hirshfield, J. L.; Wang, Changbiao; LaPointe, M. A.

    2006-11-27

    LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field ({approx}5.2 T, length {approx}1 m), it will be accelerated from 50 to {approx}75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6{mu}m laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 {mu}m waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow ({approx}1%) energy-spread.

  10. Strong magnetic field fluctuations within filamentary auroral density cavities interpreted as VLF saucer sources

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, R. F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pinçon, J.-L.

    2012-02-01

    The Geoelectrodynamics and Electro-Optical Detection of Electron and Suprathermal Ion Currents (GEODESIC) sounding rocket encountered more than 100 filamentary density cavities associated with enhanced plasma waves at ELF (<3 kHz) and VLF (3-10 kHz) frequencies and at altitudes of 800-990 km during an auroral substorm. These cavities were similar in size (˜20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs) observed by previous sounding rockets and satellites; however, in contrast, many of the GEODESIC cavities exhibited up to tenfold enhancements in magnetic wave power throughout the VLF band. GEODESIC also observed enhancements of ELF and VLF electric fields both parallel and perpendicular to the geomagnetic field B0 within cavities, though the VLF E field increases were often not as large proportionally as seen in the magnetic fields. This behavior is opposite to that predicted by previously published theories of LHCs based on passive scattering of externally incident auroral hiss. We argue that the GEODESIC cavities are active wave generation sites capable of radiating VLF waves into the surrounding plasma and producing VLF saucers, with energy supplied by cold, upward flowing electron beams composing the auroral return current. This interpretation is supported by the observation that the most intense waves, both inside and outside cavities, occurred in regions where energetic electron precipitation was largely inhibited or absent altogether. We suggest that the wave-enhanced cavities encountered by GEODESIC were qualitatively different from those observed by earlier spacecraft because of the fortuitous timing of the GEODESIC launch, which placed the payload at apogee within a substorm-related return current during its most intense phase, lasting only a few minutes.