NASA Astrophysics Data System (ADS)
Lempert, Walter R.; Adamovich, Igor V.
2014-10-01
The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-01-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling.
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-01-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705
Strongly Non-equilibrium Dynamics of Nanochannel Confined DNA
NASA Astrophysics Data System (ADS)
Reisner, Walter
Nanoconfined DNA exhibits a wide-range of fascinating transient and steady-state non-equilibrium phenomena. Yet, while experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behavior of nanochannel confined DNA, non-equilibrium behavior remains largely unexplored. In particular, while the DNA extension along the nanochannel is the key observable in equilibrium experiments, in the non-equilibrium case it is necessary to measure and model not just the extension but the molecule's full time-dependent one-dimensional concentration profile. Here, we apply controlled compressive forces to a nanochannel confined molecule via a nanodozer assay, whereby an optically trapped bead is slid down the channel at a constant speed. Upon contact with the molecule, a propagating concentration ``shockwave'' develops near the bead and the molecule is dynamically compressed. This experiment, a single-molecule implementation of a macroscopic cylinder-piston apparatus, can be used to observe the molecule response over a range of forcings and benchmark theoretical description of non-equilibrium behavior. We show that the dynamic concentration profiles, including both transient and steady-state response, can be modelled via a partial differential evolution equation combining nonlinear diffusion and convection. Lastly, we present preliminary results for dynamic compression of multiple confined molecules to explore regimes of segregation and mixing for multiple chains in confinement.
The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.
Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan
2015-01-01
The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494
The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium
Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan
2015-01-01
The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494
NASA Technical Reports Server (NTRS)
Yeh, Leehwa
1993-01-01
The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
NASA Astrophysics Data System (ADS)
Lee, Hyun C.
2016-07-01
The phonon dynamics of normal metal in the coherent regime of ultrafast spectroscopy is studied based on the non-equilibrium gauge invariant Green's function method. The non-equilibrium phonon self-energy is computed explicitly as a function of time in a gauge invariant way up to the second order of electric field of applied laser pulse. The extension beyond the coherent regime and the incorporation of correlation effects are discussed.
Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Presilla, Carlo
2016-02-01
Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach, looking at both its theoretical and applicative aspects, in the example case of an open X X Z spin-1 /2 chain, driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths effectively needed to generate steady states which are almost indistinguishable from the target pure states.
Vibrational-coherence measurement of nonequilibrium quantum systems by four-wave mixing
NASA Astrophysics Data System (ADS)
Schubert, Alexander; Falvo, Cyril; Meier, Christoph
2015-11-01
We show theoretically that a quantum system in a nonequilibrium state interacting with a set of laser pulses in a four-wave-mixing setup leads to signal emission in directions opposite to the ones usually considered. When combined with a pump mechanism which sets a time origin for the nonequilibrium state creation, this particular optical response can be utilized to directly follow decoherence processes in real time. By varying the time delays within the probe sequence, signals in these unconventional directions can also be used to detect two-dimensional spectra determined by the dynamics of up to three-quantum coherences, revealing energetical anharmonicities and environmental influences. As a numerical example, these findings are demonstrated by considering a model of vibrational decoherence of carbon monoxide after photolysis from a hemeprotein.
Coherency properties of strong Langmuir turbulence
Rose, H.A.; DuBois, D.F.; Russell, D. )
1989-01-01
Strongly correlated Langmuir wave collapse has been observed in two dimensional simulations of Zakharov's model in a regime characterized by strong ion sound wave damping and an external drive frequency, {omega}{sub 0}, close to but less than the plasma frequency, ({omega}{sub p} {minus} {omega}{sub 0})/{omega}{sub 0} > {epsilon} with {epsilon} {approx equal} 0.005. Caviton-caviton interactions induce temporal correlations between different collapse sites on a time scale the order of a collapse cycle, and on a longer time scale site locations migrate possibly leading to strong spatial correlations. Certain features of ionospheric incoherent scatter radar (ISR) spectra are consistent with such correlations. 6 refs.
NASA Astrophysics Data System (ADS)
Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi
2015-12-01
We develop a time-dependent variational Monte Carlo (t-VMC) method for quantum dynamics of strongly correlated electrons. The t-VMC method has been recently applied to bosonic systems and quantum spin systems. Here we propose a time-dependent trial wave function with many variational parameters, which is suitable for nonequilibrium strongly correlated electron systems. As the trial state, we adopt the generalized pair-product wave function with correlation factors and quantum-number projections. This trial wave function has been proven to accurately describe ground states of strongly correlated electron systems. To show the accuracy and efficiency of our trial wave function in nonequilibrium states as well, we present our benchmark results for relaxation dynamics during and after interaction quench protocols of fermionic Hubbard models. We find that our trial wave function well reproduces the exact results for the time evolution of physical quantities such as energy, momentum distribution, spin structure factor, and superconducting correlations. These results show that the t-VMC with our trial wave function offers an efficient and accurate way to study challenging problems of nonequilibrium dynamics in strongly correlated electron systems.
Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons.
Gubbin, Christopher R; Martini, Francesco; Politi, Alberto; Maier, Stefan A; De Liberato, Simone
2016-06-17
Following the recent observation of localized phonon polaritons in user-defined silicon carbide nanoresonators, here we demonstrate strong and coherent coupling between those localized modes and propagating phonon polaritons bound to the surface of the nanoresonator's substrate. In order to obtain phase matching, the nanoresonators have been fabricated to serve the double function of hosting the localized modes, while also acting as a grating for the propagating ones. The coherent coupling between long lived, optically accessible localized modes, and low-loss propagative ones, opens the way to the design and realization of phonon-polariton based coherent circuits. PMID:27367398
Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons
NASA Astrophysics Data System (ADS)
Gubbin, Christopher R.; Martini, Francesco; Politi, Alberto; Maier, Stefan A.; De Liberato, Simone
2016-06-01
Following the recent observation of localized phonon polaritons in user-defined silicon carbide nanoresonators, here we demonstrate strong and coherent coupling between those localized modes and propagating phonon polaritons bound to the surface of the nanoresonator's substrate. In order to obtain phase matching, the nanoresonators have been fabricated to serve the double function of hosting the localized modes, while also acting as a grating for the propagating ones. The coherent coupling between long lived, optically accessible localized modes, and low-loss propagative ones, opens the way to the design and realization of phonon-polariton based coherent circuits.
Quantum-coherence driven self-organized criticality and non-equilibrium light localization
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Tsakmakidis, Kosmas; Wang, Yuan; Zhang, Xiang
In its 28 years since its introduction in 1987, self-organized criticality (SOC) has had a major impact across a broad range of seemingly dissimilar fields of science. However, until now, it has primarily been applied to classical systems, and it remains a fundamental open question whether the theory also finds a place in complex systems driven by quantum coherence (QC). Here, on the basis of a many-body quantum-field theory and corroborating Maxwell-Bloch-Langevin computations, we report on the first example of fractal SOC driven, in the nano-world, by quantum coherence. We show that a quantum-coherently controlled active nano-plasmonic heterostructure allows, in the regime where the light speed is very close to zero, for the phase-synchronization in space of a continuous ensemble of nano-optical oscillators, giving rise to a fundamentally new kind of non-equilibrium light localization. We observe all hallmarks of SOC in this quantum many-body photonic nano-system of interacting heavy bosons, and we identify two critical points, one signifying the onset of spontaneous spatial self-organization, followed in time by another one that signifies the onset of activity. Our analysis reveals a quantum-coherence driven self-organized double-critical property in photonics and a new type of robust light localization, far out of thermodynamic and optical equilibria, with a broad range of potential applications in nano-optics and condensed-matter photonics.
Ultrafast coupling of coherent phonons with a nonequilibrium electron-hole plasma in GaAs
NASA Astrophysics Data System (ADS)
Basak, Amlan Kumar; Petek, Hrvoje; Ishioka, Kunie; Thatcher, Evan M.; Stanton, Christopher J.
2015-03-01
We present a joint experimental theoretical study of the coupling of coherent phonons in bulk GaAs with a nonequilibrium electron-hole plasma following photoexcitation at the E1 gap by ultrafast laser pulses. In contrast to prior coherent phonon experiments where photoexcitation across the E0 gap generated electrons in the Γ valley, for the E1 gap excitation, the majority of the electrons are generated in the satellite L valleys. This leads to a drastically different situation from the previous studies because the damping of electrons is now faster due to the higher scattering rates in the L valley, and, in addition, the diffusion of carriers has a significant effect on the plasma response due to the shorter optical absorption depth of the pump-probe light. Reflectivity measurements show coherent phonon-plasmon oscillations, whose frequencies lie between the transverse and longitudinal optical phonon frequencies due to the heavy damping and change with time due to the diffusion of the plasma. We analyze the experimental data with a theoretical model that describes the time and density-dependent coupling of the coherent phonon and the electron-hole plasma as the photoexcited carriers diffuse into the sample on a subpicosecond time scale. The calculated phonon-plasmon dynamics qualitatively reproduce the experimentally observed time-dependent frequency.
NASA Astrophysics Data System (ADS)
Chin, A. W.; Prior, J.; Rosenbach, R.; Caycedo-Soler, F.; Huelga, S. F.; Plenio, M. B.
2013-02-01
Recent observations of oscillatory features in the optical response of photosynthetic complexes have revealed evidence for surprisingly long-lasting electronic coherences which can coexist with energy transport. These observations have ignited multidisciplinary interest in the role of quantum effects in biological systems, including the fundamental question of how electronic coherence can survive in biological surroundings. Here we show that the non-trivial spectral structures of protein fluctuations can generate non-equilibrium processes that lead to the spontaneous creation and sustenance of electronic coherence, even at physiological temperatures. Developing new advanced simulation tools to treat these effects, we provide a firm microscopic basis to successfully reproduce the experimentally observed coherence times in the Fenna-Matthews-Olson complex, and illustrate how detailed quantum modelling and simulation can shed further light on a wide range of other non-equilibrium processes which may be important in different photosynthetic systems.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.
Strong Quantum Coherence between Fermi Liquid Mahan Excitons
NASA Astrophysics Data System (ADS)
Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2016-04-01
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.
Nonequilibrium steady state transport of collective-qubit system in strong coupling regime
NASA Astrophysics Data System (ADS)
Wang, Chen; Sun, Ke-Wei
2015-11-01
We investigate the steady state photon transport in a nonequilibrium collective-qubit model. By adopting the noninteracting blip approximation, which is applicable in the strong photon-qubit coupling regime, we describe the essential contribution of indirect qubit-qubit interaction to the population distribution, mediated by the photonic baths. The linear relations of both the optimal flux and noise power with the qubits system size are obtained. Moreover, the inversed power-law style for the finite-size scaling of the optimal photon-qubit coupling strength is exhibited, which is proposed to be universal.
Preparing attosecond coherences by strong-field ionization
NASA Astrophysics Data System (ADS)
Pabst, Stefan; Lein, Manfred; Wörner, Hans Jakob
2016-02-01
Strong-field ionization (SFI) has been shown to prepare wave packets with few-femtosecond periods. Here, we explore whether this technique can be extended to the attosecond time scale. We introduce an intuitive model, which is based on the Fourier transform of the subcycle SFI rate, for predicting the bandwidth of ionic states that can be coherently prepared by SFI. The coherent bandwidth decreases considerably with increasing central wavelength of the ionizing pulse but it is much less sensitive to its intensity. Many-body calculations based on time-dependent configuration-interaction singles support these results. The influence of channel interactions and laser-induced dynamics within the ion is discussed. Our results further predict that multicycle femtosecond pulses can coherently prepare subfemtosecond wave packets with higher selectivity and versatility compared to single-cycle pulses with an additional sensitivity to the mutual parity of the prepared states.
Non-Equilibrium Dynamics of C-QED Arrays in Strong Correlation Regime
NASA Astrophysics Data System (ADS)
Zhang, Xin-Ding; Li, Zhi-Hang; Zhang, Xiao-Ming
2016-07-01
Recently increasing interests are attracted in the physics of controlled arrays of nonlinear cavity resonators because of the rapid experimental progress achieved in cavity and circuit quantum electrodynamics (QED). For a driven-dissipative two-dimentional planar C-QED array, standard Markov master equation is generally used to study the dynamics of this system. However, when in the case that the on-site photon-photon interaction enters strong correlation regime, standard Markov master equation may lead to incorrect results. In this paper we study the non-equilibrium dynamics of a two-dimentional C-QED array, which is homogeneously pumped by an external pulse, at the same time dissipation exits. We study the evolution of the average photon number of a single cavity by deriving a modified master equation to. In comparison with the standard master equation, the numerical result obtained by our newly derived master equation shows significant difference for the non-equilibrium dynamics of the system.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2015-09-01
Consequences of the complete system of transfer equations of the properties (momentum, energy, and mass) of particles and their pairs are considered under local equilibrium conditions with regard to the Bogoliubov hierarchy of relaxation times between the first and second distribution functions (DFs) and distinctions in the characteristic relaxation times of particle momentum, energy, and mass. It is found that even under the local equilibrium condition in the Bogoliubov hierarchy of relaxation times between the first and second DFs, pair correlations are maintained between all dynamic variables (velocity, temperature, and density) whose values are proportional to the gradients of transferable properties. A criterion is introduced requiring there be no local equilibrium condition upon reaching the critical value at which the description of the transfer process becomes incorrect in classical nonequilibrium thermodynamics. External forces are considered in the equations for strongly nonequilibrium processes. Along with allowing for intermolecular potentials, it becomes possible to discuss the concept of passive forces (introduced in thermodynamics by Gibbs) from the standpoint of the kinetic theory. It is shown that use of this concept does not reflect modern representations of real processes.
Strong quantum coherence between Fermi liquid Mahan excitons
Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2016-04-14
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less
Strong Quantum Coherence between Fermi Liquid Mahan Excitons.
Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D
2016-04-15
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. PMID:27127985
Role of trap-induced scales in non-equilibrium dynamics of strongly interacting trapped bosons.
Dutta, Anirban; Sensarma, Rajdeep; Sengupta, K
2016-08-01
We use a time-dependent hopping expansion technique to study the non-equilibrium dynamics of strongly interacting bosons in an optical lattice in the presence of a harmonic trap characterized by a force constant K. We show that after a sudden quench of the hopping amplitude J across the superfluid (SF)-Mott insulator (MI) transition, the SF order parameter [Formula: see text] and the local density fluctuation [Formula: see text] exhibit sudden decoherence beyond a trap-induced time scale [Formula: see text]. We also show that after a slow linear ramp down of J, [Formula: see text] and the boson defect density [Formula: see text] display a novel non-monotonic spatial profile. Both these phenomena can be explained as consequences of trap-induced time and length scales affecting the dynamics and can be tested by concrete experiments. PMID:27270447
Role of trap-induced scales in non-equilibrium dynamics of strongly interacting trapped bosons
NASA Astrophysics Data System (ADS)
Dutta, Anirban; Sensarma, Rajdeep; Sengupta, K.
2016-08-01
We use a time-dependent hopping expansion technique to study the non-equilibrium dynamics of strongly interacting bosons in an optical lattice in the presence of a harmonic trap characterized by a force constant K. We show that after a sudden quench of the hopping amplitude J across the superfluid (SF)-Mott insulator (MI) transition, the SF order parameter |{{Δ }\\mathbf{r}}(t)| and the local density fluctuation δ {{n}\\mathbf{r}}(t) exhibit sudden decoherence beyond a trap-induced time scale {{T}0}∼ {{K}-1/2} . We also show that after a slow linear ramp down of J, |{{Δ }\\mathbf{r}}| and the boson defect density {{P}\\mathbf{r}} display a novel non-monotonic spatial profile. Both these phenomena can be explained as consequences of trap-induced time and length scales affecting the dynamics and can be tested by concrete experiments.
Zhang, Z. D.; Wang, J.
2014-06-28
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Coherent Dynamics Following Strong Field Ionization of Polyatomic Molecules
NASA Astrophysics Data System (ADS)
Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Jackson, James; Levine, Benjamin; Dantus, Marcos
2015-03-01
Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon strong field ionization. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a ``bag of atoms'' during field induced ionization. We consider here to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The delay scans show that among positional isomers the variations in relative energies, amounting to only a few hundred meVs, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). Ab initio calculations were performed to predict dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose that single electron ionization occurs within an optical cycle with the electron carrying away essentially all of the energy, leaving behind little internal energy in the cation. Evidence for this observation comes from coherent vibrational motion governed by the potential energy surface of the ground state of the cation. Subsequent fragmentation of the cation takes place as a result of further photon absorption modulated by one- and two-photon resonances, which provide sufficient energy to overcome the dissociation energy.
Nuclear-Electronic Coherence in Strong-Field Dissociative Ionization
NASA Astrophysics Data System (ADS)
Yu, Youliang; Wang, Yujun; Zeng, Shuo; Esry, B. D.
2015-05-01
In strong-field dissociative ionization of molecules, the ionization step is usually modeled since direct calculation is very challenging. In most of the models used to date, ionization is assumed to occur at several well-defined times accompanied by promotion of a nuclear wave packet to the ionic Born-Oppenheimer potential. Whether these nuclear wave packets should add coherently or incoherently in general is an open question. To answer it, we solve the time-dependent Schrödinger equation for one-dimensional H2+,where ionization is included naturally, and compare the observables, such as the kinetic energy release spectrum, with those from an ionization model. We then examine the validity of such models in strong-field dissociative ionization of H2+with reduced dimensionality. We do not, however, expect this physics to depend sensitively on the dimensionality. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Universality of non-equilibrium fluctuations in strongly correlated quantum liquids
NASA Astrophysics Data System (ADS)
Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaëlle; Weil, Raphaël; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke
2016-03-01
Interacting quantum many-body systems constitute a fascinating research field because they form quantum liquids with remarkable properties and universal behaviour. In fermionic systems, such quantum liquids are realized in helium-3 liquid, heavy fermion systems, neutron stars and cold gases. Their properties in the linear-response regime have been successfully described by the theory of Fermi liquids. The idea is that they behave as an ensemble of non-interacting `quasi-particles’. However, non-equilibrium properties have still to be established and remain a key issue of many-body physics. Here, we show a precise experimental demonstration of Landau Fermi liquid theory extended to the non-equilibrium regime in a zero-dimensional system. Combining transport and ultra-sensitive current noise measurements, we have unambiguously identified the SU(2) (ref. ) and SU(4) (refs ,,,,) symmetries of a quantum liquid in a carbon nanotube tuned in the universal Kondo regime. Whereas the free quasi-particle picture is found valid around equilibrium, an enhancement of the current fluctuations is detected out of equilibrium and perfectly explained by an effective charge induced by the residual interaction between quasi-particles. Moreover, an as-yet-unknown scaling law for the effective charge is discovered, suggesting a new non-equilibrium universality. Our method paves a new way to explore the exotic nature of quantum liquids out of equilibrium through their fluctuations in a wide variety of physical systems.
Strong field coherent control of molecular torsions—Analytical models
Ashwell, Benjamin A.; Ramakrishna, S.; Seideman, Tamar
2015-08-14
We introduce analytical models of torsional alignment by moderately intense laser pulses that are applicable to the limiting cases of the torsional barrier heights. Using these models, we explore in detail the role that the laser intensity and pulse duration play in coherent torsional dynamics, addressing both experimental and theoretical concerns. Our results suggest strategies for minimizing the risk of off-resonant ionization, noting the qualitative differences between the case of torsional alignment subject to a field-free torsional barrier and that of torsional alignment of a barrier-less system (equivalent to a 2D rigid rotor). We also investigate several interesting torsional phenomena, including the onset of impulsive alignment of torsions, field-driven oscillations in quantum number space, and the disappearance of an alignment upper bound observed for a rigid rotor in the impulsive torsional alignment limit.
Plasma lasers (a strong source of coherent radiation in astrophysics)
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1981-01-01
The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.
Strong field coherent control of molecular torsions--Analytical models.
Ashwell, Benjamin A; Ramakrishna, S; Seideman, Tamar
2015-08-14
We introduce analytical models of torsional alignment by moderately intense laser pulses that are applicable to the limiting cases of the torsional barrier heights. Using these models, we explore in detail the role that the laser intensity and pulse duration play in coherent torsional dynamics, addressing both experimental and theoretical concerns. Our results suggest strategies for minimizing the risk of off-resonant ionization, noting the qualitative differences between the case of torsional alignment subject to a field-free torsional barrier and that of torsional alignment of a barrier-less system (equivalent to a 2D rigid rotor). We also investigate several interesting torsional phenomena, including the onset of impulsive alignment of torsions, field-driven oscillations in quantum number space, and the disappearance of an alignment upper bound observed for a rigid rotor in the impulsive torsional alignment limit. PMID:26277138
Coherence and quasistable states in a strong infrared field
NASA Astrophysics Data System (ADS)
Zhong, Changchun; Robicheaux, F.
2016-03-01
We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.
Hopjan, M; Verdozzi, C
2014-01-01
Time-resolved spectroscopy has an emerging role among modern material-characterization techniques. Two powerful theoretical formalisms for systems out of equilibrium (and thus for time-resolved spectroscopy) are Non-Equilibrium Green's Functions (NEGF) and Time-Dependent Density Functional Theory (TDDFT). In this chapter, we offer a perspective (with more emphasis on the NEGF) on their current capability to deal with the case of strongly correlated materials. To this end, the NEGF technique is briefly presented, and its use in time-resolved spectroscopy highlighted. We then show how a linear response description is recovered from NEGF real-time dynamics. This is followed by a review of a recent ab initio NEGF treatment and by a short introduction to TDDFT. With these background notions, we turn to the problem of describing strong correlation effects by NEGF and TDDFT. This is done in terms of model Hamiltonians: using simple lattice systems as benchmarks, we illustrate to what extent NEGF and TDDFT can presently describe complex materials out of equilibrium and with strong electronic correlations. Finally, an outlook is given on future trends in NEGF and TDDFT research of interest to time-resolved spectroscopy. PMID:24797232
Universality of Non-equilibrium Fluctuations in Strongly Correlated Quantum Liquids
NASA Astrophysics Data System (ADS)
Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaelle; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke
In a quantum dot, Kondo effect occurs when the spin of the confined electron is entangled with the electrons of the leads forming locally a strongly correlated Fermi-liquid. Our experiments were performed in such a dot formed in a single carbon nanotube, where Kondo effect with different symmetry groups, namely SU(2) and SU(4), shows up. In the latter case, as spin and orbital degrees of freedom are degenerate, two channels contribute to transport and Kondo resonance emerges for odd and even number of electrons. With our sample it was possible to investigate both symmetries near the unitary limit. In the Kondo regime, strong interaction creates a peculiar two-particle scattering which appears as an effective charge e* for the quasi-particles. We have extracted the signature of this effective charge in the shot noise for both symmetry in good agreement with theory. This result demonstrates that theory of the Kondo effect can be safely extended out of equilibrium even in the unconventional SU(4) symmetry.
Strongly Interacting Fermi Gases: Non-Equilibrium Dynamics and Dimensional Crossover
NASA Astrophysics Data System (ADS)
Sommer, Ariel
2015-05-01
Strongly interacting atomic Fermi gases near Feshbach resonances give access to a rich variety of phenomena in many-fermion physics and superfluidity. This flexible and microscopically well-characterized system provides a pristine platform in which to benchmark many-body theories. I will describe three experiments on gases of fermionic 6Li atoms. In the first experiment, we study spin transport in the return to equilibrium after a spin excitation. From the dynamics near equilibrium, we obtain spin transport coefficients over a range of temperatures and interaction strengths, and observe quantum-limited spin diffusion at unitarity. In separate experiments, we study the effect of dimensionality on the binding of pairs of fermions. We tune the system from three to two dimensions by adjusting the strength of a one-dimensional optical lattice, and measure the binding energy of fermion pairs using radio-frequency spectroscopy. In a third set of experiments, we study nonlinear excitations of a fermionic superfluid. Imprinting a phase jump on the superfluid order parameter causes a long-lived, localized density depletion that oscillates through the cloud. We measure the oscillation period and find that it corresponds to an emergent particle with an effective mass of up to several hundred times the bare mass. This excitation has been identified as a solitonic vortex that results from the decay of a planar soliton. This work was performed at the Massachusetts Institute of Technology under the supervision of Prof. Martin Zwierlein.
Strong thermal nonequilibrium in hypersonic CO and CH4 probed by CRDS.
Louviot, M; Suas-David, N; Boudon, V; Georges, R; Rey, M; Kassi, S
2015-06-01
A new experimental setup coupling a High Enthalpy Source (HES) reaching 2000 K to a cw-cavity ring-down spectrometer has been developed to investigate rotationally cold hot bands of polyatomic molecules in the [1.5, 1.7] μm region. The rotational and vibrational molecular degrees of freedom are strongly decoupled in the hypersonic expansion produced by the HES and probed by cavity ring-down spectroscopy. Carbon monoxide has been used as a first test molecule to validate the experimental approach. Its expansion in argon led to rotational and vibrational temperatures of 6.7 ± 0.8 K and 2006 ± 476 K, respectively. The tetradecad polyad of methane (1.67 μm) was investigated under similar conditions leading to rotational and vibrational temperatures of 13 ± 5 K and 750 ± 100 K, respectively. The rotationally cold structure of the spectra reveals many hot bands involving highly excited vibrational states of methane. PMID:26049494
NASA Astrophysics Data System (ADS)
Heller, Michal P.; Janik, Romuald A.; Spaliński, Michał; Witaszczyk, Przemysław
2014-12-01
Relativistic hydrodynamics simulations of quark-gluon plasma play a pivotal role in our understanding of heavy ion collisions at RHIC and LHC. They are based on a phenomenological description due to Müller, Israel, Stewart (MIS) and others, which incorporates viscous effects and ensures a well-posed initial value problem. Focusing on the case of conformal plasma we propose a generalization which includes, in addition, the dynamics of the least damped far-from-equilibrium degree of freedom found in strongly coupled plasmas through the AdS/CFT correspondence. We formulate new evolution equations for general flows and then test them in the case of N =4 super Yang-Mills plasma by comparing their solutions alongside solutions of MIS theory with numerical computations of isotropization and boost-invariant flow based on holography. In these tests the new equations reproduce the results of MIS theory when initialized close to the hydrodynamic stage of evolution, but give a more accurate description of the dynamics when initial conditions are set in the preequilibrium regime.
Heller, Michal P; Janik, Romuald A; Spaliński, Michał; Witaszczyk, Przemysław
2014-12-31
Relativistic hydrodynamics simulations of quark-gluon plasma play a pivotal role in our understanding of heavy ion collisions at RHIC and LHC. They are based on a phenomenological description due to Müller, Israel, Stewart (MIS) and others, which incorporates viscous effects and ensures a well-posed initial value problem. Focusing on the case of conformal plasma we propose a generalization which includes, in addition, the dynamics of the least damped far-from-equilibrium degree of freedom found in strongly coupled plasmas through the AdS/CFT correspondence. We formulate new evolution equations for general flows and then test them in the case of N=4 super Yang-Mills plasma by comparing their solutions alongside solutions of MIS theory with numerical computations of isotropization and boost-invariant flow based on holography. In these tests the new equations reproduce the results of MIS theory when initialized close to the hydrodynamic stage of evolution, but give a more accurate description of the dynamics when initial conditions are set in the preequilibrium regime. PMID:25615302
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena
2016-01-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-01-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
NASA Astrophysics Data System (ADS)
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Strong monogamy of multiparty quantum entanglement for partially coherently superposed states
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2016-03-01
We provide evidence for the validity of strong monogamy inequality of multiparty quantum entanglement using the square of convex-roof extended negativity (SCREN). We first consider a large class of multiqudit mixed states that are in a partially coherent superposition of a generalized W -class state and the vacuum, and provide some useful properties about this class of states. We show that monogamy inequality of multiqudit entanglement in terms of SCREN holds for this class of states. We further show that SCREN strong monogamy inequality of multiqudit entanglement also holds for this class of states. Thus SCREN is a good alternative for characterizing the monogamous and strongly monogamous properties of multiqudit entanglement.
Probing Phase Coherence Via Density of States for Strongly Correlated Excitons
NASA Astrophysics Data System (ADS)
Apinyan, V.; Kopeć, T. K.
2015-03-01
We present the calculation of the coherent spectral functions and density of states (DOS) for excitonic systems in the frame of the three-dimensional extended Falicov-Kimball model. Using gage-invariant U(1) transformation to the usual fermions, we represent the electron operator as a fermion attached to the U(1) phase-flux tube. The emergent bosonic gage field, related to the phase variables, is crucial for the Bose-Einstein condensation (BEC) of excitons. Employing the path-integral formalism, we manipulate the bosonic and fermionic degrees of freedom to obtain the effective actions related to fermionic and bosonic sectors. Considering the normal and anomalous excitonic Green functions, we calculate the spectral functions, which have the forms of convolutions in the reciprocal space between bosonic and fermionic counterparts. For the fermionic incoherent part of the DOS, we have found the strong evidence of the hybridization gap in DOS spectra. Furthermore, considering Bogoliubov coherence mechanism, we calculate the coherent DOS spectra. For the coherent normal fermionic DOS, there is no hybridization gap found in the system due to strong coherence effects and phase stiffness. The similar behavior is observed also for the condensate part of the anomalous excitonic DOS spectra. We show that for small values of the Coulomb interaction the fermionic DOS exhibits a Bardeen-Cooper-Schrieffer (BCS)-like double-peak structure. In the BEC region of the BCS-BEC crossover, the double-peak structure disappears totally for both: coherent and incoherent DOS spectra. We discuss also the temperature dependence of DOS functions.
Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas
NASA Astrophysics Data System (ADS)
Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning
2016-05-01
The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.
Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter
2000-08-01
A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.
Li, Yuelin; Schaller, Richard D.; Zhu, Mengze; Walko, Donald A.; Kim, Jungho; Ke, Xianglin; Miao, Ludi; Mao, Z. Q.
2016-01-01
In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension of electron-phonon coupling which persists under highly non-equilibrium conditions. PMID:26787094
Li, Yuelin; Schaller, Richard D.; Zhu, Mengze; Walko, Donald A.; Kim, Jungho; Ke, Xianglin; Miao, Ludi; Mao, Z. Q.
2016-01-20
In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Lastly, due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension ofmore » electron-phonon coupling which persists under highly non-equilibrium conditions.« less
Li, Yuelin; Schaller, Richard D; Zhu, Mengze; Walko, Donald A; Kim, Jungho; Ke, Xianglin; Miao, Ludi; Mao, Z Q
2016-01-01
In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon-induced quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4 probed via optical excitation. Combining time-resolved x-ray diffraction and optical spectroscopy techniques, we reconstruct a spatiotemporal map of the diffusion of these quasiparticles. Due to the unique electronic configuration of the quasiparticles, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates to a new dimension of electron-phonon coupling which persists under highly non-equilibrium conditions. PMID:26787094
NASA Astrophysics Data System (ADS)
Michel, P.; Labaune, C.; Bandulet, H. C.; Lewis, K.; Depierreux, S.; Hulin, S.; Bonnaud, G.; Tikhonchuk, V. T.; Weber, S.; Riazuelo, G.; Baldis, H. A.; Michard, A.
2004-04-01
A strong reduction of the spatial coherence of a laser beam after its propagation through a plasma has been measured using a Fresnel biprism interferometer. The laser beam was diffraction limited; the coherence width was reduced from 40mm in vacuum down to a few mm with the plasma. Numerical results based on a paraxial model exhibit a coherence degree close to the experimental one; they also prove the importance of taking into account the nonlocal transport effects in numerical simulations for such plasma conditions.
Strong-field spatiotemporal ultrafast coherent control in three-level atoms
Bruner, Barry D.; Suchowski, Haim; Silberberg, Yaron; Vitanov, Nikolay V.
2010-06-15
Simple analytical approaches for implementing strong field coherent control schemes are often elusive due to the complexity of the interaction between the intense excitation field and the system of interest. Here, we demonstrate control over multiphoton excitation in a three-level resonant system using simple, analytically derived ultrafast pulse shapes. We utilize a two-dimensional spatiotemporal control technique, in which temporal focusing produces a spatially dependent quadratic spectral phase, while a second, arbitrary phase parameter is scanned using a pulse shaper. In the current work, we demonstrate weak-to-strong field excitation of {sup 85}Rb, with a {pi} phase step and the quadratic phase as the chosen control parameters. The intricate dependence of the multilevel dynamics on these parameters is exhibited by mapping the data onto a two-dimensional control landscape. Further insight is gained by simulating the complete landscape using a dressed-state, time-domain model, in which the influence of individual shaping parameters can be extracted using both exact and asymptotic time-domain representations of the dressed-state energies.
Karas, V. I. Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.
2015-09-15
We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.
Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer
NASA Astrophysics Data System (ADS)
Simens, Mark P.; Gungor, Ayse G.; Maciel, Yvan
2016-04-01
Coherent structures in a strongly decelerated large-velocity-defect turbulent boundary layer (TBL) and a zero pressure gradient (ZPG) boundary layer are analysed by direct numerical simulation (DNS). The characteristics of the one-point velocity stastistics are also considered. The adverse pressure gradient (APG) TBL simulation is a new one carried out by the present authors. The APG TBL begins as a zero pressure gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain in the form of a very thin separation bubble. The one-point velocity statistics in the outer region of this large-defect boundary layer are compared to those of two other large-velocity-defect APG TBLs (one in dynamic equilibrium, the other in disequilibrium) and a mixing layer. In the upper half of the large-defect boundary layers, the velocity statistics are similar to those of the mixing layer. The dominant peaks of turbulence production and Reynolds stresses are located in the middle of the boundary layers. Three-dimensional spatial correlations of (u, u) and (u, v) show that coherence is lost in the streamwise and spanwise directions as the velocity defect increases. Near-wall streaks tend to disappear in the large-defect zone of the flow to be replaced by more disorganized u motions. Near-wall sweeps and ejections are also less numerous. In the outer region, the u structures tend to be shorter, less streaky, and more inclined with respect to the wall than in the ZPG TBL. The sweeps and ejections are generally bigger with respect to the boundary layer thickness in the large-defect boundary layer, even if the biggest structures are found in the ZPG TBL. Large sweeps and ejections that reach the wall region (wall-attached) are less streamwise elongated and they occupy less space than in the ZPG boundary layer. The distinction between wall-attached and wall-detached structures is not as pronounced in the large-defect TBL.
NASA Astrophysics Data System (ADS)
Barraud, Sylvain
2009-09-01
Various theoretical formulations are proposed for investigating the carrier transport in nanoscale electronic devices. In this paper, a discrete formulation of the Wigner transport equation (WTE) for the self-consistent simulation of phase-coherent quantum transport in silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) devices is presented. The device is simulated using an effective-mass Hamiltonian within the mode-space approximation. The numerical scheme proposed in this work solves self-consistently three dimensional Poisson's equation, two dimensional Schrödinger's equation in each cross-sectional plane of the nanowire, and the steady-state one dimensional WTE for each conduction mode to handle the quantum transport along the channel. Details on numerical implementation of the Wigner function method are given, and the results are compared with those of the nonequilibrium Green's function (NEGF) method in the ballistic limit. The calculations of current-voltage electrical characteristics of surround-gated silicon nanowires are performed using both NEGF and WTE formulations. The good agreement observed between these approaches means that a direct solution of the WTE is an accurate simulation method for modeling the ballistic quantum transport in silicon nanowire MOSFETs.
Strong suppression of forward or backward Mie scattering by using spatial coherence.
Wang, Yangyundou; Schouten, Hugo F; Visser, Taco D
2016-04-01
We derive analytic expressions relating Mie scattering with partially coherent fields to scattering with fully coherent fields. These equations are then used to demonstrate how the intensity of the forward- or backward-scattered field can be suppressed several orders of magnitude by tuning the spatial coherence properties of the incident field. This method allows the creation of cone-like scattered fields, with the angle of maximum intensity given by a simple formula. PMID:27140758
Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai
2016-01-01
This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388
Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai
2016-01-01
This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions. PMID:23842307
Quantum Coherence of Optomechanical Systems in the Single-photon Strong Coupling Regime
NASA Astrophysics Data System (ADS)
Hu, Dan; Huang, Shang-Yu; Liao, Jie-Qiao; Tian, Lin; Goan, Hsi-Sheng
2015-03-01
Optomechanical systems with ultrastrong coupling could demonstrate nonlinear optical effects such as photon blockade. The system-bath couplings in these systems play an essential role in observing these effects. In this work, we use a dressed-state master equation approach to study the quantum coherence of an optomechanical system. In this approach, the system-bath couplings are decomposed in terms of the eigenbasis of the optomechanical system, where the mechanical state is displaced by finite photon occupation. Compared with the standard master equation often seen in the literature, our master equation includes photon-number-dependent terms that induce dephasing. We calculate cavity dephasing, second-order photon correlation, and two-cavity entanglement using the dressed-state master equation. At high temperature, our master equation predicts faster decay of the quantum coherence than with the standard master equation. The second-order photon correlation derived with our master equation shows less antibunching than that with the standard master equation. This work is supported by awards from DARPA, NSF, JSPS (Japan), MOST (Taiwan) and NTU (Taiwan).
Shinokita, Keisuke; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hey, Rudolf; Flytzanis, Christos
2016-02-19
Sound amplification in an electrically biased superlattice (SL) is studied in optical experiments with 100 fs time resolution. Coherent SL phonons with frequencies of 40, 375, and 410 GHz give rise to oscillatory reflectivity changes. With currents from 0.5 to 1.3 A, the Fourier amplitude of the 410 GHz phonon increases by more than a factor of 2 over a 200 ps period. This amplification is due to stimulated Čerenkov phonon emission by electrons undergoing intraminiband transport. The gain coefficient of 8×10^{3} cm^{-1} is reproduced by theoretical calculations and holds potential for novel sub-THz phonon emitters. PMID:26943546
Study of Coherent Raman Energy Transfer in Molecular Liquids with Strong Field Laser Excitation
NASA Astrophysics Data System (ADS)
Pearson, B. J.; Morris, D. S.; Bucksbaum, P. H.; Weinacht, T. C.
2001-05-01
We investigate coherent population transfer among vibrational states in molecular liquids via stimulated Raman scattering. A learning algorithm and ultrafast optical pulse shaper are able to selectively excite or suppress excitation in adjacent vibrational modes. In particular, results with deuterated methanol (CD3OD) are compared to previous results in methanol (CH3OH) in order to test possible control mechanisms for the observed energy transfer. Analysis includes examination of both the optimal pulse shapes as well as the spectrum of the pulse intensity envelope. Although the interaction is non-impulsive, control is still achieved. Further investigations with other molecular liquids including ethanol should provide additional information. This work is supported by the National Science Foundation, grant 9987916.
Coherent control of wavepacket launch and evolution in molecular cations in strong-field regime
NASA Astrophysics Data System (ADS)
Romanov(1, 3), Dmitri; Moore Tibbetts(2, 3), Katharine; Tarazkar(2, 3), Maryam; Bohinsky(2, 3), Timothy; Matsika(2, 3), Spiridoula; Levis(2, 3), Robert
2016-05-01
The time-resolved dissociative ionization dynamics for a family of acetophenone radical cations has been studied in pump-probe experiments. Modifications of the relative fragment yield have been measured as a function of the pump laser wavelength from 790 nm to 1500 nm. In the case of tunnel ionization (1150 - 1500 nm pump), the time-resolved transients of the parent and fragment ions probed with a weak 790 nm pulse reveal an order-of-magnitude enhancement of the peak-to-peak amplitude oscillations, ~ 100 fs longer coherence time, and an order-of-magnitude increase in the ratio of parent to fragment ions, as compared to the case of multiphoton ionization (790 nm pump). The results are quantitatively explained with a model of wavepacket evolution on the ground (D0) and excited (D1 and D2) ionic potential energy surfaces, with the probe-induced and conical-intersection-related transitions between the surfaces. The theory predicts the periods of fragment-ratio oscillations, thus confirming the ability to prepare and manipulate multiple wavepackets in the vicinity of a conical intersection for polyatomic molecules on the time scale of picoseconds.
Coherent extreme ultraviolet light amplification by strong-field-enhanced forward scattering.
Serrat, Carles
2013-09-27
We theoretically study the response of He atoms exposed simultaneously to an intense IR pulse and a weak extreme ultraviolet (XUV) pulse with photon energies far from the principal atomic He resonances. We find that XUV forward scattering from the nonstationary electronic wave packet promoted by the intense IR driving field is strongly enhanced as compared with the normal weak scattering from bound or free electrons. Based on this effect, we predict that large amplification of XUV radiation can be achieved in the cutoff spectral region of high-harmonic generation in He gas. PMID:24116781
Coherence and quasi-stable states in a strong infrared field
NASA Astrophysics Data System (ADS)
Zhong, Changchun; Robicheaux, Francis
2016-05-01
We study the quasi-stability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV-pulse-train relative to the IR laser. The UV-pulse-train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence which can be explained classically. When the two frequencies are one IR-photon apart, the angular symmetry of the quasi-stable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012193.
Nonequilibrium dynamics of emergent field configurations
NASA Astrophysics Data System (ADS)
Howell, Rafael Cassidy
The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.
Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V.A.; De Pascale, O.
2005-07-15
Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient {gamma}{sub H} of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.
NASA Astrophysics Data System (ADS)
Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V. A.; De Pascale, O.
2005-07-01
Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient γH of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.
Coherent quantum depletion of an interacting atom condensate.
Kira, M
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Coherent quantum depletion of an interacting atom condensate
Kira, M.
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
NASA Astrophysics Data System (ADS)
Korotin, M. A.; Pchelkina, Z. V.; Skorikov, N. A.; Efremov, A. V.; Anisimov, V. I.
2016-07-01
Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.
NASA Astrophysics Data System (ADS)
Glowacki, David R.; Orr-Ewing, Andrew J.; Harvey, Jeremy N.
2015-07-01
We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ˜23 kcal mol-1 localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral
Glowacki, David R.; Orr-Ewing, Andrew J.; Harvey, Jeremy N.
2015-07-28
We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational
NASA Astrophysics Data System (ADS)
Konar, Arkaprabha; Shu, Yinan; Levine, Benjamin; Lozovoy, Vadim; Dantus, Marcos
2015-05-01
Here, we report on quantum coherent control of a large (>20 atoms) polyatomic molecule. In particular, we explore the time resolved dynamics of dicyclopentadiene when excited by a pair of phase-locked intense 800nm femtosecond pulses by monitoring changes in ion yield of the parent and fragments. Long-lived oscillations are observed for ~ 500 fs in the parent ion yield indicating the presence of long lived-electronic states. We take advantage of the long-lived electronic coherence to control the yield of different fragment ions. The presence of Rydberg states is further supported by ab initio calculations at the EOM-CCSD/6-31 +G** level of theory which identified five low-lying electronic states of neutral DCPD in the regions between 6.4 and 7.0 eV in vertical excitation energy. States of both pure Rydberg and mixed π --> π */Rydberg character are observed in this low energy region and are known to originate from ethylene. The multiphoton excitation of two or more Rydberg states, separated by the photon energy is the key to the observed long-lived electronic coherence in DCPD with a quantum beat at the difference frequency. Rydberg states are expected to have very similar potential energy surfaces and the Rydberg electron is relatively uncoupled to the nuclear dynamics, therefore supporting long electronic coherence time.
Egorov, V.S.; Lebedev, V.N.; Mekhov, I.B.; Moroshkin, P.V.; Chekhonin, I.A.; Bagayev, S.N.
2004-03-01
The nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. Special attention is paid to the case where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser fields can be coherently absorbed and reemitted by the medium. Thus, the field of the medium reaction plays a key role in the interaction processes, which leads to collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in fast excitation interchanges between the field and a medium in the form of optical ringing, which is analogous to polariton beating in solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave packets of different group velocities, is shown to significantly affect the propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either a specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to resonance in the broadband probe spectrum, exceed the absorption-line width, since under the strong-coupling regime, the frequency of optical ringing exceeds the rate of incoherent relaxation. Contrary to stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of collective oscillations and cannot be obtained in the framework of a single-atom model.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2011-01-01
An expression for the mutual coherence function (MCF) of an electromagnetic beam wave propagating through atmospheric turbulence is derived within the confines of the Rytov approximation. It is shown that both the first and second Rytov approximations are required. The Rytov MCF is then compared to that which issues from the parabolic equation method of strong fluctuation theory. The agreement is found to be quite good in the weak fluctuation case. However, an instability is observed for the special case of beam wave intensities. The source of the instabilities is identified to be the characteristic way beam wave amplitudes are treated within the Rytov method.
Caspi, S.; Schlueter, R. |; Tatchyn, R.
1995-05-01
Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1{angstrom}--0.1{angstrom} range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B{sub 0} in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 {angstrom} LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745
NASA Astrophysics Data System (ADS)
Kotegawa, Hisashi; Oshiro, Satoru; Shimizu, Yuki; Tou, Hideki; Kasahara, Yuichi; Kishiume, Tsukasa; Taguchi, Yasujiro; Iwasa, Yoshihiro
2014-07-01
We present NMR measurements of the layered nitride superconductor LixZrNCl. The nuclear spin-lattice relaxation rate 1/T1 shows that the coherence peak is strongly suppressed in LixZrNCl in contrast to conventional BCS superconductors. In the lightly doped region close to the insulating state, the system shows a gaplike behavior, i.e., pseudogap, that is characterized by a reduction in the magnitude of the Knight shift and 1/T1T. A higher superconducting (SC) transition temperature Tc is achieved by coexisting with the pseudogap state. These unusual behaviors, which deviate from the ordinary BCS framework, are the key ingredients to understanding the SC mechanism of LixZrNCl.
NASA Astrophysics Data System (ADS)
Lawrence, C. R.; Church, S.; Gaier, T.; Lai, R.; Ruf, C.; Wollack, E.
2009-03-01
Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.
NASA Astrophysics Data System (ADS)
Long, James P.; Owrutsky, Jeff C.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Compton, Ryan; Spann, Bryan; Simpkins, Blake S.
2015-09-01
Coherent coupling between an optical-transition and confined optical mode, when sufficiently strong, gives rise to new modes separated by the vacuum Rabi splitting. Such systems have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we bring strong polaritonic-coupling in cavities from the visible into the infrared where a new range of static and dynamic vibrational processes await investigation. First, we experimentally and numerically describe coupling between a Fabry-Perot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate. As is requisite for "strong coupling", the measured vacuum Rabi splitting of 132 cm 1 is much larger than the full width of the cavity (34 cm-1) and the inhomogeneously broadened carbonyl-stretch (24 cm-1). Agreement with classical theories providea evidence that the mixed-states are relatively immune to inhomogeneous broadening. Next, we investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of urethane. Rabi splittings increases from 0 to ~104 cm-1 with concentrations from 0-20 vol% and are in excellent agreement to an analytical description using no fitting parameters. Ultra-fast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band as well as modifications of energy relaxation times. Finally, we demonstrate coupling to liquids using the C-O stretching band (~1985 cm-1) of Mo(CO)6 in an aqueous solution. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied statically and dynamically.
Nonequilibrium molecular dynamics
Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
Nonequilibrium noise in electrophoresis: The microion wind
NASA Astrophysics Data System (ADS)
Saha, Suropriya; Ramaswamy, Sriram
2014-03-01
A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as if it is at equilibrium in a confining potential [T. M. Squires, J. Fluid Mech. 443, 403 (2001), 10.1017/S0022112001005432]. We show, however, that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-dependent "effective temperature" obtained from the fluctuation-dissipation ratio.
Suzuki, Nobuaki; Kozuma, Ken; Kyono, Hiroyuki; Nakaya, Hiroaki; Nishide, Seiji; Mitsui, Miho; Nara, Yugo; Kawashima, Hideyuki; Nomura, Takahiro; Yamamoto, Hirosada; Sasajima, Yuko; Kondo, Fukuo; Isshiki, Takaaki
2016-07-01
There are still some patients who require repeat revascularization despite of drug-eluting stent (DES) implantation. The present study aimed to investigate the relationship between optical coherence tomography (OCT) findings and recurring target lesion revascularization (TLR) after percutaneous coronary intervention (PCI) for in-stent restenosis (ISR). We reviewed 50 patients (54 coronary lesions) who underwent PCI for ISR, which included 25 DES-ISR lesions. The PCI strategy depended on the interventionalist's discretion, and DES implantation was performed for 38 (70 %) lesions. Tissue characteristics were assessed qualitatively and quantitatively using the frame showing maximal lumen narrowing (minimal lumen area). In qualitative analysis, OCT detected coexistence of eccentric tissue proliferation and strong signal attenuation (ESA). ESA was observed in six lesions (11 %) in five patients (10 %). Hemodialysis (80 vs. 20 %, p = 0.013) and DES-ISR (100 vs. 40 %, p = 0.0069) were significantly more frequent in ESA patients/lesions than in others. One-year follow-up revealed that re-TLR was more frequently performed for ESA lesions (83 vs. 8 %, p = 0.0002). The findings reveal that ESA detected in OCT images of ISR is related to TLR after PCI for DES-ISR especially in patients undergoing maintenance hemodialysis. PMID:26608163
Nonequilibrium viscosity of glass
NASA Astrophysics Data System (ADS)
Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel
2009-09-01
Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.
Spectral coherence in windturbine wakes
Hojstrup, J.
1996-12-31
This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.
Nonequilibrium thermal entanglement
Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto
2007-03-15
Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.
Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs
NASA Astrophysics Data System (ADS)
Ghorui, S.; Das, A. K.
2012-12-01
Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.
DSMC predictions of non-equilibrium reaction rates.
Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert
2010-04-01
A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.
Nonequilibrium surface tension
NASA Astrophysics Data System (ADS)
Lamorgese, A.; Mauri, R.
2015-12-01
A weakly nonlocal phase-field model is used to define surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. In nonequilibrium conditions, surface tension changes with time: during mixing, it decreases as the inverse square root of time, while during phase separation, when nuclei coagulate, it increases exponentially to its equilibrium value. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis.
Nonequilibrium radiative hypersonic flow simulation
NASA Astrophysics Data System (ADS)
Shang, J. S.; Surzhikov, S. T.
2012-08-01
Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange
Nonequilibrium quantum Landauer principle.
Goold, John; Paternostro, Mauro; Modi, Kavan
2015-02-13
Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a nonphenomenological derivation of the Landauer principle which holds for generic nonequilibrium dynamics. Furthermore, the bound depends on the nonunitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature. PMID:25723198
Nonequilibrium effects in Isoscaling
Dorso, C. O.; Lopez, J. A.
2007-02-12
In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects.
Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
Will, Sebastian; Iyer, Deepak; Rigol, Marcos
2015-01-01
Quantum simulation with ultracold atoms has become a powerful technique to gain insight into interacting many-body systems. In particular, the possibility to study nonequilibrium dynamics offers a unique pathway to understand correlations and excitations in strongly interacting quantum matter. So far, coherent nonequilibrium dynamics has exclusively been observed in ultracold many-body systems of bosonic atoms. Here we report on the observation of coherent quench dynamics of fermionic atoms. A metallic state of ultracold spin-polarized fermions is prepared along with a Bose-Einstein condensate in a shallow three-dimensional optical lattice. After a quench that suppresses tunnelling between lattice sites for both the fermions and the bosons, we observe long-lived coherent oscillations in the fermionic momentum distribution, with a period that is determined solely by the Fermi-Bose interaction energy. Our results show that coherent quench dynamics can serve as a sensitive probe for correlations in delocalized fermionic quantum states and for quantum metrology. PMID:25625799
Kato, Akihito Tanimura, Yoshitaka
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.
Landau superfluids as nonequilibrium stationary states
Wreszinski, Walter F.
2015-01-15
We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system.
Theory of nonequilibrium superconductivity in cuprates
NASA Astrophysics Data System (ADS)
Oka, Takashi; Pietilä, Ville
2013-03-01
Recently, nonequilibrium properties of Hi Tc superconductors are attracting much interest. This is because new experimental methods such as time resolved ARPES has been applied to cuprates and succeeded in observing the dynamics of photo-excited quasiparticles as well as the temporal evolution of the d-wave superconducting order parameter (e.g.,). One can also realize nonequilibrium states in interfaces between cuprates and metal electrodes and control the superconducting order by changing the applied bias. In order to study the dynamics of superconductivity in strongly correlated systems, we developed a novel numerical method by combining the quantum kinetic equation with the fluctuation exchange approximation (FLEX, self-consistent T-matrix approximation). This method enables us to study the interplay between pair mediating fluctuations, e.g., antiferromagnetic and charge fluctuations, and the dynamics of quasiparticles and superconducting order parameter. In the presentation, we explain the physical insights we obtain by applying this method to nonequilibrium dynamics in d-wave superconductors.
Radiative interactions in nonequilibrium flows
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chandrasekhar, R.
1992-01-01
The influence of vibrational and chemical nonequilibrium upon infrared radiative energy transfer in nonisothermal gases is investigated. Essential information is provided on rate equations, relaxation times, transfer equations, band absorption, and radiative flux equations. The methodology developed is applied to three specific cases. These are, absorbing-emitting species between isothermal parallel plates, radiating gases in the earth's atmosphere, and supersonic flow of premixed hydrogen and air in an expanding nozzle. The results obtained for different cases reveal that the extent of radiative interactions is reduced significantly under nonequilibrium conditions. The method developed can be easily extended to investigate radiative interactions in complex nonequilibrium flows.
Non-equilibrium DMFT - Polaritonics
NASA Astrophysics Data System (ADS)
Lubatsch, Andreas; Frank, Regine
Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.
Nonequilibrium ionization phenomena behind shock waves
Panesi, Marco; Magin, Thierry; Huo, Winifred
2011-05-20
An accurate investigation of the behavior of electronically excited states of atoms and molecules in the post shock relaxation zone of a trajectory point of the FIRE II flight experiment is carried out by means of a one-dimensional flow solver coupled to a collisional-radiative model. In the rapidly ionizing regime behind a strong shock wave, the high lying bound electronic states of atoms are depleted. This leads the electronic energy level populations of atoms to depart from Boltzmann distributions which strongly affects the non-equilibrium ionization process as well as the radiative signature. The importance of correct modeling of the interaction of radiation and matter is discussed showing a strong influence on the physico-chemical properties of the gas. The paper clearly puts forward the shortcomings of the simplified approach often used in literature which strongly relies on the escape factors to characterize the optical thickness of the gas.
Nonequilibrium Tuning of the Thermal Casimir Effect
NASA Astrophysics Data System (ADS)
Dean, David S.; Lu, Bing-Sui; Maggs, A. C.; Podgornik, Rudolf
2016-06-01
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory. PMID:27367374
Nonequilibrium thermodynamics of nucleation.
Schweizer, M; Sagis, L M C
2014-12-14
We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects. PMID:25494727
Nonequilibrium thermodynamics of nucleation
Schweizer, M.; Sagis, L. M. C.
2014-12-14
We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.
The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
NASA Astrophysics Data System (ADS)
Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra
2012-11-01
The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.
The nonequilibrium glassy dynamics of self-propelled particles.
Flenner, Elijah; Szamel, Grzegorz; Berthier, Ludovic
2016-09-14
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, which is obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the general features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers. PMID:27499055
Nonequilibrium thermodynamics of an interface
NASA Astrophysics Data System (ADS)
Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry
2016-05-01
Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.
Nonequilibrium thermodynamics of an interface.
Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry
2016-05-01
Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics. PMID:27300960
Partially coherent ultrafast spectrography
NASA Astrophysics Data System (ADS)
Bourassin-Bouchet, C.; Couprie, M.-E.
2015-03-01
Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.
Partially coherent ultrafast spectrography
Bourassin-Bouchet, C.; Couprie, M.-E.
2015-01-01
Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080
Nonequilibrium detonation of composite explosives
Nichols III, A.L.
1997-07-01
The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.
Open problems in non-equilibrium physics
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
Non-equilibrium many body dynamics
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Effective equilibrium theory of nonequilibrium quantum transport
NASA Astrophysics Data System (ADS)
Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn
2011-12-01
The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field.
Computer simulation of nonequilibrium processes
Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.
1987-01-01
Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion.
Nonequilibrium diagnostics of plasma thrusters
Eddy, T.L.; Grandy, J.D.
1990-01-01
This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.
Nonequilibrium fluctuations as a distinctive feature of weak localization
Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.
2015-01-01
Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Probing local equilibrium in nonequilibrium fluids.
del Pozo, J J; Garrido, P L; Hurtado, P I
2015-08-01
We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much stronger than previously anticipated, even in the presence of important finite-size effects, revealing a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid's equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which strongly point to the nonlocality of the nonequilibrium potential governing the fluid's macroscopic behavior out of equilibrium. PMID:26382354
Nonequilibrium spin crossover in copper phthalocyanine
NASA Astrophysics Data System (ADS)
Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena
2016-03-01
We demonstrate the nonequilibrium tip induced control of the spin state of copper phthalocyanine on an insulator coated substrate. We find that, under the condition of energetic proximity of many-body neutral excited states to the anionic ground state, the system can undergo a population inversion towards these excited states. The resulting state of the system is accompanied by a change in the total spin quantum number. Experimental signatures of the crossover are the appearance of additional nodal planes in the topographical scanning tunneling microscopy images as well as a strong suppression of the current near the center of the molecule. The robustness of the effect against moderate charge conserving relaxation processes has also been tested.
NASA Astrophysics Data System (ADS)
Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui
2016-01-01
The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.
Nonequilibrium thermodynamics of an interface
NASA Astrophysics Data System (ADS)
Savin, Thierry; Schweizer, Marco; Öttinger, Hans Christian
Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the ``dividing surface,'' as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a ``thermometer,'' and can be significantly different from the temperatures of the adjacent phases.
Computer simulation of nonequilibrium processes
Wallace, D.C.
1985-07-01
The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed.
Strong quantum memory at resonant Fermi edges revealed by shot noise.
Ubbelohde, N; Roszak, K; Hohls, F; Maire, N; Haug, R J; Novotný, T
2012-01-01
Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges. PMID:22530093
Complex Dynamics in Nonequilibrium Economics and Chemistry
NASA Astrophysics Data System (ADS)
Wen, Kehong
Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator
Phonon coherence in isotopic silicon superlattices
Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.
2014-09-29
Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.
Nonequilibrium chemistry boundary layer integral matrix procedure
NASA Technical Reports Server (NTRS)
Tong, H.; Buckingham, A. C.; Morse, H. L.
1973-01-01
The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.
Thermodynamic aspects of nonequilibrium current fluctuations
NASA Astrophysics Data System (ADS)
Jou, D.; Llebot, J. E.; Casas-Vázquez, J.
1982-06-01
Starting from a macroscopic nonequilibrium entropy, we obtain an expression for the nonequilibrium fluctuations of the electric current in a metallic resistor. Our method goes further than previous theories of irreversible thermodynamics and, as well as microscopic entropies, it leads to results of the same order of magnitude but not completely coincident with the full nonequilibrium corrections obtained from kinetic methods by Tremblay et al.
The Free Action of Nonequilibrium Dynamics
NASA Astrophysics Data System (ADS)
Li, Qianxiao; E, Weinan
2015-10-01
In general nonequilibrium steady states, directly replacing the canonical ensemble by the nonequilibrium invariant distribution yields a free energy function that is insufficient in characterizing the dynamical landscape. We address the problem by defining the free action, which is like a free energy on path space. Through a representative example, we demonstrate the conceptual and practical usefulness of the free action for quantifying the dynamics of nonequilibrium steady states, including those exhibiting phase transitions.
Coherence dynamics in photosynthesis: protein protection of excitonic coherence.
Lee, Hohjai; Cheng, Yuan-Chung; Fleming, Graham R
2007-06-01
The role of quantum coherence in promoting the efficiency of the initial stages of photosynthesis is an open and intriguing question. We performed a two-color photon echo experiment on a bacterial reaction center that enabled direct visualization of the coherence dynamics in the reaction center. The data revealed long-lasting coherence between two electronic states that are formed by mixing of the bacteriopheophytin and accessory bacteriochlorophyll excited states. This coherence can only be explained by strong correlation between the protein-induced fluctuations in the transition energy of neighboring chromophores. Our results suggest that correlated protein environments preserve electronic coherence in photosynthetic complexes and allow the excitation to move coherently in space, enabling highly efficient energy harvesting and trapping in photosynthesis. PMID:17556580
Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence
NASA Astrophysics Data System (ADS)
Lee, Hohjai; Cheng, Yuan-Chung; Fleming, Graham R.
2007-06-01
The role of quantum coherence in promoting the efficiency of the initial stages of photosynthesis is an open and intriguing question. We performed a two-color photon echo experiment on a bacterial reaction center that enabled direct visualization of the coherence dynamics in the reaction center. The data revealed long-lasting coherence between two electronic states that are formed by mixing of the bacteriopheophytin and accessory bacteriochlorophyll excited states. This coherence can only be explained by strong correlation between the protein-induced fluctuations in the transition energy of neighboring chromophores. Our results suggest that correlated protein environments preserve electronic coherence in photosynthetic complexes and allow the excitation to move coherently in space, enabling highly efficient energy harvesting and trapping in photosynthesis.
Nonequilibrium volumetric response of shocked polymers
Clements, B E
2009-01-01
Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.
Nikodem, Astrid; Levine, R D; Remacle, F
2016-05-19
The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion. PMID:26928262
Nozzle flow with vibrational nonequilibrium
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Landry, J. G.
1995-01-01
This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model
Nonequilibrium transport in superconducting filaments
NASA Technical Reports Server (NTRS)
Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.
1995-01-01
The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.
Bunched Beam Stochastic Cooling and Coherent Lines
Blaskiewicz, M.; Brennan, J. M.
2006-03-20
Strong coherent signals complicate bunched beam stochastic cooling, and development of the longitudinal stochastic cooling system for RHIC required dealing with coherence in heavy ion beams. Studies with proton beams revealed additional forms of coherence. This paper presents data and analysis for both sorts of beams.
Nonequilibrium thermodynamics of dilute polymer solutions in flow
Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M.
2014-11-07
Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.
Simulations of a molecular plasma in collisional-radiative nonequilibrium
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc; Moreau, Stephane
1993-01-01
A code for the simulation of nonequilibrium plasmas is being developed, with the capability to couple the plasma fluid-dynamics for a single fluid with a collisional-radiative model, where electronic states are treated as separate species. The model allows for non-Boltzmann distribution of the electronic states. Deviations from the Boltzmann distributions are expected to occur in the rapidly ionizing regime behind a strong shock or in the recombining regime during a fast expansion. This additional step in modeling complexity is expected to yield more accurate predictions of the nonequilibrium state and the radiation spectrum and intensity. An attempt at extending the code to molecular plasma flows is presented. The numerical techniques used, the thermochemical model, and the results of some numerical tests are described.
Entropy-production-driven oscillators in simple nonequilibrium networks
NASA Astrophysics Data System (ADS)
Weber, Jeffrey K.; Pande, Vijay S.
2015-03-01
The development of tractable nonequilibrium simulation methods represents a bottleneck for efforts to describe the functional dynamics that occur within living cells. We here employ a nonequilibrium approach called the λ ensemble to characterize the dissipative dynamics of a simple Markovian network driven by an external potential. In the highly dissipative regime brought about by the λ bias, we observe a dynamical structure characteristic of cellular architectures: The entropy production drives a damped oscillator over state populations in the network. We illustrate the properties of such oscillations in weakly and strongly driven regimes, and we discuss how control structures associated with the "dynamical phase transition" in the system can be related to switches and oscillators in cellular dynamics.
Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures
NASA Technical Reports Server (NTRS)
Scott, R. K.
1972-01-01
A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.
Non-equilibrium phase transitions
Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.
INTRODUCTION: Nonequilibrium Processes in Plasmas
NASA Astrophysics Data System (ADS)
Petrović, Zoran; Marić, Dragana; Malović, Gordana
2009-07-01
This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early
Thermodynamics of Stability of Nonequilibrium Steady States.
ERIC Educational Resources Information Center
Rastogi, R. P.; Shabd, Ram
1983-01-01
Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)
INTRODUCTION: Nonequilibrium Processes in Plasmas
NASA Astrophysics Data System (ADS)
Petrović, Zoran; Marić, Dragana; Malović, Gordana
2009-07-01
This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early
Photosynthetic light harvesting: excitons and coherence
Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.
2014-01-01
Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671
Nonequilibrium structure in sequential assembly
NASA Astrophysics Data System (ADS)
Popov, Alexander V.; Craven, Galen T.; Hernandez, Rigoberto
2015-11-01
The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network. The resulting theory accounts for the evolution and final-state configurations through a system of equations governing structural generation. We find that particle geometries differ significantly from those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the corresponding equilibrium case.
Local non-equilibrium thermodynamics
Jinwoo, Lee; Tanaka, Hajime
2015-01-01
Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077
Local non-equilibrium thermodynamics.
Jinwoo, Lee; Tanaka, Hajime
2015-01-01
Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077
Nonequilibrium fluctuations in a resistor
NASA Astrophysics Data System (ADS)
Garnier, N.; Ciliberto, S.
2005-06-01
In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.
Nonequilibrium migration in human history.
Wakeley, J
1999-01-01
A nonequilibrium migration model is proposed and applied to genetic data from humans. The model assumes symmetric migration among all possible pairs of demes and that the number of demes is large. With these assumptions it is straightforward to allow for changes in demography, and here a single abrupt change is considered. Under the model this change is identical to a change in the ancestral effective population size and might be caused by changes in deme size, in the number of demes, or in the migration rate. Expressions for the expected numbers of sites segregating at particular frequencies in a multideme sample are derived. A maximum-likelihood analysis of independent polymorphic restriction sites in humans reveals a decrease in effective size. This is consistent with a change in the rates of migration among human subpopulations from ancient low levels to present high ones. PMID:10581291
Nonequilibrium many-body steady states via Keldysh formalism
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2016-01-01
Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.
Experimental studies in non-equilibrium physics
NASA Astrophysics Data System (ADS)
Cressman, John Robert, Jr.
This work is a collection of three experiments aimed at studying different facets of non-equilibrium dynamics. Chapter I concerns strongly compressible turbulence, which turns out to be very different from incompressible turbulence. The focus is on the dispersion of contaminants in such a flow. This type of turbulence can be studied, at very low mach number, by measuring the velocity fields of particles that float on a turbulently stirred body of water. It turns out that in the absence of incompressibility, the turbulence causes particles to cluster rather than to disperse. The implications of the observations are far reaching and include the transport of pollutants on the oceans surface, phytoplankton growth, as well as industrial applications. Chapter II deals with the effects of polymer additives on drag reduction and turbulent suppression, a well-known phenomenon that is not yet understood. In an attempt to simplify the problem, the effects of a polymer additive were investigated in a vortex street formed in a flowing soap film. Measurements suggest that an increase in elongational viscosity is responsible for a substantial reduction in periodic velocity fluctuations. This study also helps to illuminate the mechanism responsible for vortex separation in the wake of a bluff body. Chapter III describes an experiment designed to test a theoretical approach aimed at generalizing the classical fluctuation dissipation theorem (FDT). This theorem applies to systems driven only slightly away from thermal equilibrium, whereas ours, a liquid crystal under-going electroconvection, is so strongly driven, that the FDT does not apply. Both theory and experiment focus on the flux in global power fluctuations. Physical limitations did not permit a direct test of the theory, however it was possible to establish several interesting characteristics of the system: the source of the fluctuations is the transient defect structures that are generated when the system is driven hard
Structure of Non-Equilibrium Adsorbed Polymer Layers
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Ben; Vavylonis, Dimitrios
2004-03-01
Equilibrium polymer adsorption has been widely studied theoretically. Many experiments however implicate strong non-equilibrium effects for monomer sticking energies somewhat larger than kT, the most common case. The structure and slow dynamics in these layers is not understood. We analyze theoretically non-equilibrium layers from dilute solutions in the limit of irreversible monomer adsorption. We find the density profile ˜ z-4/3 and loop distribution ˜ s-11/5 of the resulting layer are no different to equilibrium. However, single chain statistics are radically different: the layer consists of a flat inner portion of fully collapsed chains plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ˜ f-4/5, consistent with experiment [H. M. Schneider et al, Langmuir 12, 994 (1996)], and the lateral size R of adsorbed chains is of order the bulk coil size, R ˜ N^3/5. For equilibrium layers, by contrast, P has a unique peak at a value of f of order unity, while R ˜ N^1/2 is significantly less. The relaxation of a non-equilibrium layer towards equilibrium thus entails chain shrinkage and tighter binding. We speculate that the observed decrease of bulk-layer chain exchange rates with increasing aging reflects these internal layer dynamics.
Novel mapping in non-equilibrium stochastic processes
NASA Astrophysics Data System (ADS)
Heseltine, James; Kim, Eun-jin
2016-04-01
We investigate the time-evolution of a non-equilibrium system in view of the change in information and provide a novel mapping relation which quantifies the change in information far from equilibrium and the proximity of a non-equilibrium state to the attractor. Specifically, we utilize a nonlinear stochastic model where the stochastic noise plays the role of incoherent regulation of the dynamical variable x and analytically compute the rate of change in information (information velocity) from the time-dependent probability distribution function. From this, we quantify the total change in information in terms of information length { L } and the associated action { J }, where { L } represents the distance that the system travels in the fluctuation-based, statistical metric space parameterized by time. As the initial probability density function’s mean position (μ) is decreased from the final equilibrium value {μ }* (the carrying capacity), { L } and { J } increase monotonically with interesting power-law mapping relations. In comparison, as μ is increased from {μ }*,{ L } and { J } increase slowly until they level off to a constant value. This manifests the proximity of the state to the attractor caused by a strong correlation for large μ through large fluctuations. Our proposed mapping relation provides a new way of understanding the progression of the complexity in non-equilibrium system in view of information change and the structure of underlying attractor.
Spence, W.L.
1987-11-01
The radiation coherently emitted by a high energy bunched beam suffering an arbitrarily large disruption in a collision with an idealized undisrupted beam is calculated. The near-luminal velocity of the beam - such that the emitted radiation moves very slowly with respect to the bunch - implies that only a small part of the bunch radiates coherently and necessitates a careful treatment of the disrupted beam phase space during emission. The angular distribution and spectral density are presented. It is found that most of the radiation is at wave lengths greater than or equal to the bunch length and that the total energy lost by the beam due to coherent effects should be negligible in high energy-high luminosity linear colliders. 4 refs.
Non-equilibrium Transport of Light
NASA Astrophysics Data System (ADS)
Wang, Chiao-Hsuan; Taylor, Jacob
Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.
On Nonequilibrium Radiation in Hydrogen Shock Layers
NASA Technical Reports Server (NTRS)
Park, Chul
2005-01-01
The influence of thermochemical nonequilibrium in the shock layer over a vehicle entering the atmosphere of an outer planet is examined qualitatively. The state of understanding of the heating environment for the Galileo Probe vehicle is first reviewed. Next, the possible reasons for the high recession in the frustum region and the low recession in the stagnation region are examined. The state of understanding of the nonequilibrium in the hydrogen flow is then examined. For the entry flight in Neptune, the possible influence of nonequilibrium is predicted.
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Low-temperature thermodynamics with quantum coherence
Narasimhachar, Varun; Gour, Gilad
2015-01-01
Thermal operations are an operational model of non-equilibrium quantum thermodynamics. In the absence of coherence between energy levels, exact state transition conditions under thermal operations are known in terms of a mathematical relation called thermo-majorization. But incorporating coherence has turned out to be challenging, even under the relatively tractable model wherein all Gibbs state-preserving quantum channels are included. Here we find a mathematical generalization of thermal operations at low temperatures, ‘cooling maps', for which we derive the necessary and sufficient state transition condition. Cooling maps that saturate recently discovered bounds on coherence transfer are realizable as thermal operations, motivating us to conjecture that all cooling maps are thermal operations. Cooling maps, though a less-conservative generalization to thermal operations, are more tractable than Gibbs-preserving operations, suggesting that cooling map-like models at general temperatures could be of use in gaining insight about thermal operations. PMID:26138621
Measurement of spin coherence using Raman scattering
NASA Astrophysics Data System (ADS)
Sun, Z.; Delteil, A.; Faelt, S.; Imamoǧlu, A.
2016-06-01
Ramsey interferometry provides a natural way to determine the coherence time of most qubit systems. Recent experiments on quantum dots, however, demonstrated that dynamical nuclear spin polarization can strongly influence the measurement process, making it difficult to extract the T2* coherence time using standard optical Ramsey pulses. Here, we demonstrate an alternative method for spin coherence measurement that is based on first-order coherence of photons generated in spin-flip Raman scattering. We show that if a quantum emitter is driven by a weak monochromatic laser, Raman coherence is determined exclusively by spin coherence, allowing for a direct determination of spin T2* time. When combined with coherence measurements on Rayleigh scattered photons, our technique enables us to identify coherent and incoherent contributions to resonance fluorescence, and to minimize the latter. We verify the validity of our technique by comparing our results to those determined from Ramsey interferometry for electron and heavy-hole spins.
The coupling of radiative transfer to quasi 1-D flows with thermochemical nonequilibrium
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Park, Chul
1991-01-01
Quasi-one-dimensional nonequilibrium nozzle flows with coupled radiative transfer are considered. The strongly coupled formulation of radiation and flowfield leads to a governing set of integro-differential equations. A fully implicit numerical method using the full matrix inversion or block iteration methods is presented to solve these equations. The nonequilibrium gas model consists of two chemical species, molecular and atomic nitrogen. The thermodynamic state of the gas is described by two temperatures, translational-rotational and vibrational, and the thermal radiation is assumed to be governed by the vibrational temperature. In radiative transfer, gases are assumed to be absorbing and emitting, and a detailed spectral dependency of the absorption coefficient is prescribed for a non-gray gas. The numerical solutions of strongly radiating nonequilibrium flows are presented for both gray and non-gray gases.
Nonequilibrium quantum dissipation in spin-fermion systems
NASA Astrophysics Data System (ADS)
Segal, Dvira; Reichman, David R.; Millis, Andrew J.
2007-11-01
Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.
Nonequilibrium molecular dynamics: The first 25 years
Hoover, W.G. |
1992-08-01
Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.
Non-equilibrium Aspects of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Andrei, Natan
The study of non-equilibrium dynamics of interacting many body systems is currently one of the main challenges of modern condensed matter physics, driven by the spectacular progress in the ability to create experimental systems - trapped cold atomic gases are a prime example - that can be isolated from their environment and be highly controlled. Many old and new questions can be addressed: thermalization of isolated systems, nonequilibrium steady states, the interplay between non equilibrium currents and strong correlations, quantum phase transitions in time, universality among others. In this talk I will describe nonequilibrium quench dynamics in integrable quantum systems. I'll discuss the time evolution of the Lieb-Liniger system, a gas of interacting bosons moving on the continuous infinite line and interacting via a short range potential. Considering a finite number of bosons on the line we find that for any value of repulsive coupling the system asymptotes towards a strongly repulsive gas for any initial state, while for an attractive coupling, the system forms a maximal bound state that dominates at longer times. In the thermodynamic limit -with the number of bosons and the system size sent to infinity at a constant density and the long time limit taken subsequently- I'll show that the density and density-density correlation functions for strong but finite positive coupling are described by GGE for translationally invariant initial states with short range correlations. As examples I'll discuss quenches from a Mott insulator initial state or a Newton's Cradle. Then I will show that if the initial state is strongly non translational invariant, e.g. a domain wall configuration, the system does not equilibrate but evolves into a nonequilibrium steady state (NESS). A related NESS arises when the quench consists of coupling a quantum dot to two leads held at different chemical potential, leading in the long time limit to a steady state current. Time permitting I
Mathematical modeling of non-equilibrium sorption
NASA Astrophysics Data System (ADS)
Kaliev, Ibragim A.; Mukhambetzhanov, Saltanbek T.; Sabitova, Gulnara S.; Sakhit, Anghyz E.
2016-08-01
We consider the system of equations modeling the process of non-equilibrium sorption. Difference approximation of differential problem by the implicit scheme is formulated. The solution of the difference problem is constructed using the sweep method. Based on the numerical results we can conclude the following: when the relaxation time decreases to 0, then the solution of non-equilibrium problem tends with increasing time to solution of the equilibrium problem.
Nonequilibrium Casimir-Polder plasmonic interactions
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco
2016-04-01
We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.
Coherence, Pseudo-Coherence, and Non-Coherence.
ERIC Educational Resources Information Center
Enkvist, Nils Erik
Analysis of the factors that make a text coherent or non-coherent suggests that total coherence requires cohesion not only on the textual surface but on the semantic level as well. Syntactic evidence of non-coherence includes lack of formal agreement blocking a potential cross-reference, anaphoric and cataphoric references that do not follow their…
Theory for non-equilibrium statistical mechanics.
Attard, Phil
2006-08-21
This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388
First principles nonequilibrium plasma mixing
NASA Astrophysics Data System (ADS)
Ticknor, C.; Herring, S. D.; Lambert, F.; Collins, L. A.; Kress, J. D.
2014-01-01
We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.
Suppressing decoherence of superconducting qubits by trapping non-equilibrium quasiparticles
NASA Astrophysics Data System (ADS)
Gao, Yvonne; Wang, Chen; Pop, I. M.; Vool, U.; Axline, C.; Brecht, T.; Heeres, R. W.; Frunzio, L.; Devoret, M. H.; Catelani, G.; Glazman, L. I.; Schoelkopf, R. J.
2015-03-01
We report a counter-intuitive observation that vortices can improve the coherence of superconducting qubits by suppressing non-equilibrium quasiparticles. This effect is systematically studied by measuring the magnetic-field dependence of qubit coherence times and quasiparticle lifetimes in transmons with different geometries in a 3D cQED architecture. Varying quasiparticle dynamics by vortices allows separation of dissipation mechanisms and measurement of the stray generation rate of quasiparticles in our devices. More details are described in Ref. Our results indicate that quasiparticles contribute significantly to qubit decoherence. Hence suppression of quasiparticle density in the device is essential for further improvement of coherence times of superconducting qubits and we will present recent results aimed at alleviating decoherence due to quasiparticles.
Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
Bazant, Martin Z
2013-05-21
the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells. PMID:23520980
Heo, N.H.
1996-07-01
In an Fe-8Mn-7Ni ternary alloy, age-hardened by coherently formed face-centered tetragonal MnNi intermetallic compounds within the matrix, a modeling based on a regular solution model is performed to formulate the nonequilibrium grain boundary segregation behaviors of the alloying elements, followed by a ductile-brittle-ductile transition in the alloy. An equation is derived representing the segregation kinetics. It is confirmed from the calculations that the segregation behaviors of the elements are directly controlled by the precipitation reaction in the matrix. The nonequilibrium segregation behaviors are characterized by time-temperature diagrams, which show maximum segregation levels of the elements in an intermediate aging time and temperature range. The calculated results explain theoretically and semiquantitatively the relationship between the nonequilibrium segregation of the elements and the ductile-brittle-ductile transition.
Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.; Marro, J.; Garrido, P. L.
2008-10-01
We study both analytically and numerically demagnetization via nucleation of the metastable phase in a two-dimensional nonequilibrium Ising ferromagnet at temperature T. Canonical equilibrium is dynamically impeded by a weak random perturbation which models homogeneous disorder of undetermined source. We present a simple theoretical description, in good agreement with Monte Carlo simulations, assuming that the decay of the nonequilibrium metastable state is due, as in equilibrium, to the competition between the surface and the bulk. This suggests one to accept a nonequilibrium free-energy at a mesoscopic/cluster level, and it ensues a nonequilibrium surface tension with some peculiar low- T behavior. We illustrate the occurrence of intriguing nonequilibrium phenomena, including: (i) cooperative phenomena at low T which stabilize the metastable state as temperature increases; (ii) reentrance of the limit of metastability under strong nonequilibrium conditions; and (iii) noise-enhanced propagation of domain walls. We also studied metastability in the case of open boundaries as it may correspond to a magnetic nanoparticle. We then observe the most irregular relaxation triggered by the additional surface randomness. In particular, at low T, the relaxation becomes discontinuous as occurring by way of scale-free avalanches, so that it resembles the type of relaxation reported for many complex systems. We show that this results from the superposition of many demagnetization events, each with a well-defined scale which is determined by the curvature of the domain wall at which it originates. This is an example of (apparent) scale invariance in a nonequilibrium setting which is not to be associated with any familiar kind of criticality.
Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model
Kollath, Corinna; Laeuchli, Andreas M.; Altman, Ehud
2007-05-04
We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.
Thermal Fluctuations in Nonequilibrium Systems
NASA Astrophysics Data System (ADS)
Garcia, Alex Luis
A general Monte Carlo algorithm was developed for thermal systems whose transport and chemistry can be described by a Master Equation. Nicolis and Malek Mansour examined a model in which the transition rate could be derived exactly, namely a system coupled to two reservoirs by Knudsen flow. Their Fokker-Planck equation formulation of the thermal fluctuations is confirmed by the numerical simulation. In general it is very difficult to formulate the transition rate for thermal processes. Nicolis and Malek Mansour devised a parameterized transition rate using equilibrium and deterministic properties. They predicted the existence of long-range nonequilibrium temperature fluctuation correlations for a system subjected to a linear temperature gradient. Their construction, however, is not amenable to Monte Carlo simulation due to the nonkinetic nature of the resulting stochastic process. It is shown that a direct comparison can be made between their generic thermal system and the multicell Knudsen system. Quantitative confirmation of linear temperature correlations is obtained. A vectorized version of the Monte Carlo simulation which runs on an array processor is presented. The appearance of anomalous correlations when a system is not initialized at the steady state is discussed. It is found that even a deterministic system will display a fictitious long range correlation of fluctuations due to the slow decay of the lowest order mode even when the system is initially relatively close to steady state. Some guidelines for guarding against this type of data contamination are discussed. The analytic methods and numerical codes obtained in the above studies are used in the study of the stochastic temporal evolution of a complex thermal ignition system. A simple qualitative argument used for one-variable systems is found to yield important quantitative information concerning the variance of the explosion time. The results are confirmed by Monte Carlo numerical simulations.
Electron and phonon drag in thermoelectric transport through coherent molecular conductors
NASA Astrophysics Data System (ADS)
Lü, Jing-Tao; Wang, Jian-Sheng; Hedegârd, Per; Brandbyge, Mads
2016-05-01
We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Green's function method. We focus on the mutual drag between electron and phonon transport as a result of `momentum' transfer, which happens only when there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced nonconservative and effective magnetic forces on phonons.
Non-Equilibrium Superconducting Studies in Microbridges.
NASA Astrophysics Data System (ADS)
Escudero Derat, Roberto
1984-06-01
A new technique to fabricate superconducting tin microbridges with lengths as short as 0.05 microns has been developed. In the short limit (when the length of the microbridge is shorter than the zero temperature coherence length) the value of dV(,c)/dT of these microbridges showed a behavior in agreement with Aslamazov-Larkin theory. V(,c) is the characteristic voltage and is defined as the product of the normal junction resistance and the critical current. The dynamically enhanced critical current of these microbridges was studied. Microbridges whose length was longer than the coherence length showed a dynamically enhanced critical current in accordance with the Schmid, Schon and Tinkham theory. Those microbridges whose length was shorter than the coherence length did not exhibit a dynamically enhanced critical current. A possible reason for its absence is that the superconducting order parameter is depressed in the banks of the microbridge. The enhancement of the energy gap in tin was measured by observing the subharmonic gap structure in tin microbridges. The data was compared to the predictions of the Eliashberg theory. Two strongly coupled microbridges were fabricated using a new technique and some new phenomena were found. An electronic analog simulation of the two strongly coupled microbridges showed results that were confirmed by experimental data. The superconducting effective recombination time was measured for tin close to the critical temperature. Current was injected via a tunnel junction into a microbridge. With the smallest injection current, the effective recombination time was 9.7 x 10('-10) sec. As the injection current was increased the effective recombination time was found to increase. Simple heating effects were taken into account. Chaotic and intermittent effects in a single tin microbridge, shunted by a capacitance, were observed. The effective noise temperature was found to be of the order of 10('6)K for the intermittent behavior. In the
Karsch, F.; Vogelsang, V.
2009-09-29
We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.
Detailed numerical modeling of chemical and thermal nonequilibrium in hypersonic flows
Riedel, U.; Maas, U.; Warnatz, J. )
1993-03-01
Interest in hypersonic flows has created a large demand for physicochemical models for air flow computations around reentry bodies. Detailed physicochemical models for air in chemical and thermal nonequilibrium are needed for a realistic prediction of hypersonic flowfields. In this paper we develop a model, based on elementary physicochemical processes, for a detailed description of chemical nonequilibrium together with the excitation of internal DOFs. This model is implemented in a 2D Navier-Stokes code in order to show the strong influence of thermal nonequilibrium on the flowfields. The algorithm presented here is based on a fully conservative discretization of the inviscid fluxes in the conservation equations and uses the chain rule conservation law form for the viscous fluxes. The large system of ordinary differential and algebraic equations resulting from the spatial discretization is solved by a time-accurate semiimplicit extrapolation method. 34 refs.
de Oliveira, M M; da Luz, M G E; Fiore, C E
2015-12-01
Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions-to single and infinitely many absorbing states-are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems. PMID:26764651
Equilibrium sampling by reweighting nonequilibrium simulation trajectories
NASA Astrophysics Data System (ADS)
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems. PMID:27078486
Nonequilibrium equalities in absolutely irreversible processes
NASA Astrophysics Data System (ADS)
Murashita, Yuto; Funo, Ken; Ueda, Masahito
2015-03-01
Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as
Effects of Nonequilibrium at Edge of Boundary Layer on Convective Heat Transfer to a Blunt Body
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Edwards, Thomas A. (Technical Monitor)
1996-01-01
This investigation is a continuation of a previous study on nonequilibrium convective heat transfer to a blunt body. In the previous study, for relatively high Reynolds number flows, it was found that: nonequilibrium convective heat transfer to a blunt body is not strongly dependent on freestream parameters, provided that the thermochemical equilibrium is reached at the edge of boundary layer; and successful testing of convective heat transfer in an arc-jet environment is possible by duplicating the surface pressure and total enthalpy. The nonequilibrium convective heat transfer computations are validated against the results of Fay and Riddell/Goulard theory. Present work investigates low Reynolds number conditions which are typical in an actual arc-jet flow environment. One expects that there will be departures from the Fay and Riddell/Goulard result since certain assumptions of the classical theory are not satisfied. These departures are of interest because the Fay and Riddell/Goulard formulas are extensively used in arc-jet testing (e.g., to determine the enthalpy of the flow and the catalytic efficiency of heat shield materials). For practical sizes of test materials, density of the test flow (and Reynolds number) in an arc-jet is such that thermochemical equilibrium may not be reached at the edge of boundary layer. For blunt body flows of nitrogen and air, computations will be presented to show the effects of thermochemical nonequilibrium at the boundary layer edge on nonequilibrium heat transfer.
Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats
2016-02-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.
NASA Astrophysics Data System (ADS)
Shen, Tongye; Wolynes, Peter G.
2005-10-01
The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the many-body master equation for a set of motorized particles accounts for their thermally induced Brownian motion as well as for the motorized kicking of the structural elements. These approximations yield stability limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the effects of nonequilibrium behavior and adhesion (effective cross-linking) on the mechanical stability of localized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modulate the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.
Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian
Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.
Strongly interacting ultracold polar molecules
NASA Astrophysics Data System (ADS)
Gadway, Bryce; Yan, Bo
2016-08-01
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole–dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.
Improved molecular collision models for nonequilibrium rarefied gases
NASA Astrophysics Data System (ADS)
Parsons, Neal
The Direct Simulation Monte Carlo (DSMC) method typically used to model thermochemical nonequilibrium rarefied gases requires accurate total collision cross sections, reaction probabilities, and molecular internal energy exchange models. However, the baseline total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, reaction probabilities are defined such that experimentally determined equilibrium reaction rates are replicated, and internal energy relaxation models are phenomenological in nature. Therefore, these models have questionable validity in modeling strongly nonequilibrium gases with temperatures greater than those possible in experimental test facilities. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method can be used to accurately compute total collision cross sections, reaction probabilities, and internal energy exchange models based on first principles for hypervelocity collision conditions. In this thesis, MD/QCT-based models were used to improve simulations of two unique nonequilibrium rarefied gas systems: the Ionian atmosphere and hypersonic shocks in Earth's atmosphere. The Jovian plasma torus flows over Io at ≈ 57 km/s, inducing high-speed collisions between atmospheric SO2 and the hypervelocity plasma's O atoms and ions. The DSMC method is well-suited to model the rarefied atmosphere, so MD/QCT studies are therefore conducted to improve DSMC collision models of the critical SO2-O collision pair. The MD/QCT trajectory simulations employed a new potential energy surface that was developed using a ReaxFF fit to a set of ab initio calculations. Compared to the MD/QCT results, the baseline DSMC models are found to significantly under-predict total cross sections, use reaction probabilities that are unrealistically high, and give unphysical internal energies above the dissociation energy for non-reacting inelastic collisions and under-predicts post
Study of non-equilibrium transport phenomena
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.
1987-01-01
Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.
Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir
2012-01-01
In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.
Nonequilibrium spin injection in monolayer black phosphorus.
Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong
2016-01-21
Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium. PMID:26675820
Nonequilibrium spin injection in monolayer black phosphorus
NASA Astrophysics Data System (ADS)
Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong
Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium.
Thermal response of nonequilibrium RC circuits.
Baiesi, Marco; Ciliberto, Sergio; Falasco, Gianmaria; Yolcu, Cem
2016-08-01
We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady-state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady-state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also nondissipative aspects are relevant in the nonequilibrium fluctuation-response relations. PMID:27627283
Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.
Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang
2013-04-01
The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders. PMID:23552945
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
Fluctuation theorem for partially masked nonequilibrium dynamics.
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593
Fluctuation theorem for partially masked nonequilibrium dynamics
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.
Thermodynamic model of nonequilibrium phase transitions.
Martyushev, L M; Konovalov, M S
2011-07-01
Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119
Nonequilibrium temperature response for stochastic overdamped systems
NASA Astrophysics Data System (ADS)
Falasco, G.; Baiesi, M.
2016-04-01
The thermal response of nonequilibrium systems requires the knowledge of concepts that go beyond entropy production. This is showed for systems obeying overdamped Langevin dynamics, either in steady states or going through a relaxation process. Namely, we derive the linear response to perturbations of the noise intensity, mapping it onto the quadratic response to a constant small force. The latter, displaying divergent terms, is explicitly regularised with a novel path-integral method. The nonequilibrium equivalents of heat capacity and thermal expansion coefficient are two applications of this approach, as we show with numerical examples.
Intrinsic randomness as a measure of quantum coherence
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Zhou, Hongyi; Cao, Zhu; Ma, Xiongfeng
2015-08-01
Based on the theory of quantum mechanics, intrinsic randomness in measurement distinguishes quantum effects from classical ones. From the perspective of states, this quantum feature can be summarized as coherence or superposition in a specific (classical) computational basis. Recently, by regarding coherence as a physical resource, Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401] presented a comprehensive framework for coherence measures. Here, we propose a quantum coherence measure essentially using the intrinsic randomness of measurement. The proposed coherence measure provides an answer to the open question in completing the resource theory of coherence. Meanwhile, we show that the coherence distillation process can be treated as quantum extraction, which can be regarded as an equivalent process of classical random number extraction. From this viewpoint, the proposed coherence measure also clarifies the operational aspect of quantum coherence. Finally, our results indicate a strong similarity between two types of quantumness—coherence and entanglement.
ULTRAS-INFM-CNR Dipartimento di Fisica, Politecnico di Milano, Italy; Department of Physics - Cavalleri Group, Clarendon Laboratory, University of Oxford, U.K.; Correlated Electron Research Center, Tsukuba, Japan; Schoenlein, Robert William; Polli, D.; Rini, M.; Wall, S.; Schoenlein, R.W.; Tomioka, Y.; Tokura, Y.; Cerullo, G.; Cavalleri, A.
2007-06-01
Photo-excitation can drive strongly correlated electron insulators into competing conducting phases1,2, resulting in giant and ultrafast changes of their electronic and magnetic properties. The underlying non-equilibrium dynamics involve many degrees of freedom at once, whereby sufficiently short optical pulses can trigger the corresponding collective modes of the solid along temporally coherent pathways. The characteristic frequencies of these modes range between the few GHz of acoustic vibrations3 to the tens or even hundreds of THz for purely electronic excitations. Virtually all experiments so far have used 100 fs or longer pulses, detecting only comparatively slow lattice dynamics4,5. Here, we use sub-10-fs optical pulses to study the photo-induced insulator-metal transition in the magneto-resistive manganite Pr0.7Ca0.3MnO3. At room temperature, we find that the time-dependent pathway towards the metallic phase is accompanied by coherent 31 THz oscillations of the optical reflectivity, significantly faster than all lattice vibrations. These high-frequency oscillations are suggestive of coherent orbital waves6,7, crystal-field excitations triggered here by impulsive stimulated Raman scattering. Orbital waves are likely to be initially localized to the small polarons of this room-temperature manganite, coupling to other degrees of freedom at longer times, as photo-domains coalesce into a metallic phase.
Coherent coupling in ferroelectric superlattices
Li, S.; Eastman, J.A.; Vetrone, J.; Newnham, R.E.; Cross, L.E.
1996-07-01
The phase transition and dielectric behavior of ferroelectric multilayers have been discussed. The coherent interaction between ultra-thin layers can be significantly strong, resulting in a broad diffuse phase transition. The thicknesses of layers and their spatial distributions hold the keys of enhancing dielectric properties in a broad temperature range.
Quantum dynamics in strong fluctuating fields
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Hänggi, Peter
A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete
Shape characteristics of equilibrium and non-equilibrium fractal clusters
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.; Douglas, Jack F.
2013-07-01
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
Non-equilibrium Thermodynamics of Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sengupta, Aditi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.
2016-04-01
Here, the fundamental problem of Rayleigh-Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier-Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (Δ T = 70 K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.
On the Dynamics of Computing a Chemically Relaxed Nonequilibrium Flow
NASA Technical Reports Server (NTRS)
Sweby, P. K.; Lafon, A.; Yee, H. C.; Rai, Man Mohan (Technical Monitor)
1994-01-01
In order to gain insights into the strong dependence of numerical solutions on initial data for finite time steps, a set of nonlinear test problems rich enough to capture the behavior of difference schemes were recently identified and the numerical basins of attraction for these problems were computed using commonly used time discretizations in CFD. Our study revealed a wealth of surprisingly nonlinear behavior of numerical schemes that were not observed before, in particular for the implicit time discretizations that are commonly used in CFD. The goal of this work is to apply these tools to study a practical model from non-equilibrium flowfield relaxation. This type of problem arises in chemically nonequilibrium hypersonic flows such as in a shock tube experiment or an expanding nozzle. Here we consider a reacting mixture of (N2, N) for an inviscid one-dimensional steady model. Preliminary numerical results indicate that, aside from the possibility of spurious numerical solutions being introduced by the time discretizations, limitations on the model for physical or accurate solutions may also play a part in the dynamics observed.
Revealing Hidden Coherence in Partially Coherent Light
NASA Astrophysics Data System (ADS)
Svozilík, Jiří; Vallés, Adam; Peřina, Jan; Torres, Juan P.
2015-11-01
Coherence and correlations represent two related properties of a compound system. The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system does not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence, transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.
Kempa, K.; Bakshi, P.; Gornik, E.
1996-09-01
We show theoretically that strong plasma mode generation is possible in a nonequilibrium steady-state quasi-one-dimensional bounded solid-state plasma, in which a nonequilibrium distribution is maintained by appropriate injection/extraction of carriers. We calculate the density response of realistic model systems using the random-phase approximation, determine the normal modes of the bounded carrier plasma, and show that strong plasma instabilities can be generated under suitable conditions. Such stimulated plasma oscillations could lead to sources of terahertz electromagnetic radiation. {copyright} {ital 1996 The American Physical Society.}
Neural Correlates of Bridging Inferences and Coherence Processing
ERIC Educational Resources Information Center
Kim, Sung-il; Yoon, Misun; Kim, Wonsik; Lee, Sunyoung; Kang, Eunjoo
2012-01-01
We explored the neural correlates of bridging inferences and coherence processing during story comprehension using Positron Emission Tomography (PET). Ten healthy right-handed volunteers were visually presented three types of stories (Strong Coherence, Weak Coherence, and Control) consisted of three sentences. The causal connectedness among…
NASA Astrophysics Data System (ADS)
Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.
We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting
Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator
NASA Astrophysics Data System (ADS)
Yoshimura, Bryce T.; Freericks, J. K.
2016-05-01
Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.
A study of non-equilibrium phonons in GaAs/AlAs quantum wells
Su, Zhenpeng
1996-11-01
In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.
Phases, collective modes, and nonequilibrium dynamics of dissipative Rydberg atoms
NASA Astrophysics Data System (ADS)
Ray, S.; Sinha, S.; Sengupta, K.
2016-03-01
We use a density matrix formalism to study the equilibrium phases and nonequilibrium dynamics of a system of dissipative Rydberg atoms in an optical lattice within mean-field theory. We provide equations for the fixed points of the density matrix evolution for atoms with infinite on-site repulsion and analyze these equations to obtain their Mott-insulator-superfluid (MI-SF) phase boundary. A stability analysis around these fixed points provides us with the excitation spectrum of the atoms both in the MI and SF phases. We study the nature of the MI-SF critical point in the presence of finite dissipation of Rydberg excitations, discuss the fate of the superfluid order parameter of the atoms in the presence of such dissipation in the weak-coupling limit using a coherent state representation of the density matrix, and extend our analysis to Rydberg atoms with finite on-site interaction via numerical solution of the density matrix equations. Finally, we vary the boson (atom) hopping parameter J and the dissipation parameter Γ according to a linear ramp protocol. We study the evolution of entropy of the system following such a ramp and show that the deviation of the entropy from its steady-state value for the latter protocol exhibits power-law behavior as a function of the ramp time. We discuss experiments that can test our theory.
Non-equilibrium electrodynamics in the large N expansion
Mottola, E.
1994-02-01
An effective action technique for the time evolution of a closed system consisting of a mean field interacting with charged fluctuations is presented, and applied specifically to Quantum Electrodynamics. The effective action of QED is first developed in a systematic expansion in 1/N where N is the number of distinct fermion species. Then by making use of the Schwinger-Keldysh closed time path (CTP) formulation of field theory, causality of the resulting equations of motion is ensured. In QED this technique may be used to study the quantum non-equilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e{sup +}e{sup {minus}} plasma. Numerical results for these processes in lowest order are presented. The renormalization procedure, connection to quantum transport theory and extension to QCD and other applications of the method are also discussed.
NASA Astrophysics Data System (ADS)
Xu, Li; Zhang, Feng; Wang, Erkang; Wang, Jin
2013-02-01
In this review, we summarize our recent efforts in exploring the non-equilibrium potential and flux landscape for dynamical systems and networks. The driving force of non-equilibrium dynamics can be decomposed into the gradient of the non-equilibrium potential and the divergent free probability flux divided by the steady-state probability distribution. The potential landscape is linked to the probability distribution of the steady state. We found that the intrinsic potential landscape in the zero noise limit is a Lyapunov function. We have defined and quantified the entropy, energy and free energy of the non-equilibrium systems. These can be used for formulating the first law of non-equilibrium thermodynamics. The free energy of the non-equilibrium system is also a Lyapunov function. Therefore, we can use both the intrinsic potential landscape and the free energy to quantify the robustness and global stability of the system. The Lyapunov property provides the formulation for the second law of non-equilibrium thermodynamics. The non-zero probability flux breaks the detailed balance. The two driving forces from the gradient of intrinsic potential landscape and the probability flux are perpendicular to each other under the zero noise limit. We investigate the dynamics of a new biological example of signal-induced Ca2+ oscillation. We explored the underlying potential landscape which shows a Mexican hat shape attracting the system down to the oscillation ring and the flux which provides the driving force on the ring for coherent and stable oscillation. We explored how the landscape and flux topography change with respect to the system parameters and the relationship to the period of oscillations and how the non-equilibrium free energy changes with respect to different dynamic phases and phase transitions when the system parameters vary. These explain how the system becomes robust and stable under different conditions and can help guide the experiment.
Nonequilibrium hadronization and constituent quark number scaling
Zschocke, Sven; Horvat, Szabolcs; Mishustin, Igor N.; Csernai, Laszlo P.
2011-04-15
The constituent quark number scaling of elliptic flow is studied in a nonequilibrium hadronization and freeze-out model with rapid dynamical transition from ideal, deconfined, and chirally symmetric quark-gluon plasma, to final noninteracting hadrons. In this transition a bag model of constituent quarks is considered, where the quarks gain constituent quark mass while the background bag field breaks up and vanishes. The constituent quarks then recombine into simplified hadron states, while chemical, thermal, and flow equilibrium break down one after the other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling, with assumptions on the details of the nonequilibrium processes.
Non-equilibrium self-assembly of metals on diblock copolymer templates
NASA Astrophysics Data System (ADS)
Lopes, Ward Antone
Typically, the most perfectly ordered, self-assembled structures correspond to equilibrium states of the system. Here, I show that a high degree of order can arise out of strongly non-equilibrium conditions. I report on a systematic study of non-equilibrium aspects of the decoration of diblock copolymer ultrathin films by evaporated metals. I observe two distinct behaviors for selectively decorating the diblock copolymer: either the metal decorates the diblock copolymer template with nanoparticles or the metal decorates the template with nanowires. Remarkably, these nanowires remain stable under non-equilibrium conditions. I focus on results obtained with evaporated gold and silver on asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA). Gold and a number of other metals (indium, tin, lead, bismuth, aluminum) decorate the diblock copolymer with chains of nanoparticles and don't form wires. Silver forms chains of nanoparticles at low coverage (<30 A), but at high coverage (>100 A), silver forms nanowires. One can understand the formation of the chains of nanoparticles by understanding the equilibrium state of the system (metal + polymer). The silver nanowires, however, are highly non-equilibrium structures. To understand their formation, I modeled the self-assembly of the nanowires with a Monte Carlo simulation. This Monte Carlo simulation qualitatively agrees with the formation of the silver nanowires and their relaxation to equilibrium upon moderate heating.
NASA Astrophysics Data System (ADS)
Bijie, Yang; Ning, Zhou; Quanhua, Sun
2016-01-01
The capacitively coupled plasma in the gaseous electronics conference reference reactor is numerically investigated for argon flow using a non-equilibrium plasma fluid model. The finite rate chemistry is adopted for the chemical non-equilibrium among species including neutral metastable, whereas a two-temperature model is employed to resolve the thermal non-equilibrium between electrons and heavy species. The predicted plasma density agrees very well with experimental data for the validation case. A strong thermal non-equilibrium is observed between heavy particles and electrons due to its low collision frequency, where the heavy species remains near ambient temperature for low pressure and low voltage conditions (0.1 Torr, 100 V). The effects of the operating parameters on the ion flux are also investigated, including the electrode voltage, chamber pressure, and gas flow rate. It is found that the ion flux can be increased by either elevating the electrode voltage or lowering the gas pressure. Project supported by the National Natural Science Foundation of China (Nos. 11372325, 11475239).
Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils
NASA Astrophysics Data System (ADS)
Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea
2014-08-01
The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.
NASA Astrophysics Data System (ADS)
Greenshields, Christopher J.; Reese, Jason M.
2012-07-01
This paper investigates the use of Navier-Stokes-Fourier equations with non-equilibrium boundary conditions (BCs) for simulation of rarefied hypersonic flows. It revisits a largely forgotten derivation of velocity slip and temperature jump by Patterson, based on Grad's moment method. Mach 10 flow around a cylinder and Mach 12.7 flow over a flat plate are simulated using both computational fluid dynamics using the temperature jump BCs of Patterson and Smoluchowski and the direct simulation Monte-Carlo (DSMC) method. These flows exhibit such strongly non-equilibrium behaviour that, following Patterson's analysis, they are strictly beyond the range of applicability of the BCs. Nevertheless, the results using Patterson's temperature jump BC compare quite well with the DSMC and are consistently better than those using the standard Smoluchowski temperature jump BC. One explanation for this better performance is that an assumption made by Patterson, based on the flow being only slightly non-equilibrium, introduces an additional constraint to the resulting BC model in the case of highly non-equilibrium flows.
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion. PMID:26565365
Nonequilibrium diagrammatic technique for nanoscale devices
NASA Astrophysics Data System (ADS)
Zebrev, G. I.
2006-05-01
A general approach based on gauge invariance requirements has been developed for automatic construction of quantum kinetic equation in electron systems, far for equilibrium. Proposed theoretical scheme has high generality and automatism and capable to treat nonequilibrium effects of electron transport, quantum interference and energy dissipation. Dissipative and quantum-interference effects can be consequentially incorporated in the computational scheme through solution of dynamic Dyson equation for self-energies in the framework of conventional diagrammatic technique.
Efficiency bounds for nonequilibrium heat engines
Mehta, Pankaj; Polkovnikov, Anatoli
2013-05-15
We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.
Nonequilibrium self-energy functional theory
NASA Astrophysics Data System (ADS)
Hofmann, Felix; Eckstein, Martin; Arrigoni, Enrico; Potthoff, Michael
2013-10-01
The self-energy functional theory (SFT) is generalized to describe the real-time dynamics of correlated lattice-fermion models far from thermal equilibrium. This is achieved by starting from a reformulation of the original equilibrium theory in terms of double-time Green's functions on the Keldysh-Matsubara contour. With the help of a generalized Luttinger-Ward functional, we construct a functional Ω̂[Σ] which is stationary at the physical (nonequilibrium) self-energy Σ and which yields the grand potential of the initial thermal state Ω at the physical point. Nonperturbative approximations can be defined by specifying a reference system that serves to generate trial self-energies. These self-energies are varied by varying the reference system's one-particle parameters on the Keldysh-Matsubara contour. In the case of thermal equilibrium, this approach reduces to the conventional SFT. Contrary to the equilibrium theory, however, “unphysical” variations, i.e., variations that are different on the upper and the lower branches of the Keldysh contour, must be considered to fix the time dependence of the optimal physical parameters via the variational principle. Functional derivatives in the nonequilibrium SFT Euler equation are carried out analytically to derive conditional equations for the variational parameters that are accessible to a numerical evaluation via a time-propagation scheme. Approximations constructed by means of the nonequilibrium SFT are shown to be inherently causal, internally consistent, and to respect macroscopic conservation laws resulting from gauge symmetries of the Hamiltonian. This comprises the nonequilibrium dynamical mean-field theory but also dynamical-impurity and variational-cluster approximations that are specified by reference systems with a finite number of degrees of freedom. In this way, nonperturbative and consistent approximations can be set up, the numerical evaluation of which is accessible to an exact
NASA Astrophysics Data System (ADS)
Zhai, Cuili; Zhang, Ting
2016-09-01
In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.
Nonequilibrium functional bosonization of quantum wire networks
Ngo Dinh, Stephane; Bagrets, Dmitry A.; Mirlin, Alexander D.
2012-11-15
We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Anomalies of a nonequilibrium spinor polariton condensate in a magnetic field.
Fischer, J; Brodbeck, S; Chernenko, A V; Lederer, I; Rahimi-Iman, A; Amthor, M; Kulakovskii, V D; Worschech, L; Kamp, M; Durnev, M; Schneider, C; Kavokin, A V; Höfling, S
2014-03-01
We observe a strong variation of the Zeeman splitting of exciton polaritons in microcavities when switching between the linear regime, the polariton lasing, and photon lasing regimes. In the polariton lasing regime the sign of Zeeman splitting changes compared to the linear regime, while in the photon lasing regime the splitting vanishes. We additionally observe an increase of the diamagnetic shift in the polariton lasing regime. These effects are explained in terms of the nonequilibrium "spin Meissner effect." PMID:24655252
A coupled implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho
1993-01-01
The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.
PREFACE: Progress in Nonequilibrium Green's Functions IV
NASA Astrophysics Data System (ADS)
Bonitz, Michael; Balzer, Karsten
2010-04-01
This is the fourth volume1 of articles on the theory of Nonequilibrium Green's functions (NEGF) and their modern application in various fields such as plasma physics, semiconductor physics, molecular electronics and high energy physics. It contains 23 articles written by experts in many-body theory and quantum transport who summarize recent progress in their respective area of research. The articles are based on talks given at the interdisciplinary conference Progress in Nonequilibrium Green's functions IV which was held 17-21 August 2009 at the University of Glasgow, Scotland. This conference continues the tradition of the previous meetings which started in 1999 and which aimed at an informal exchange across field boundaries. The previous meetings and the earlier proceedings proved to be very stimulating not only for young researchers but also for experienced scientists, and we are convinced that this fourth volume will be as successful as the previous ones. As before, this volume includes only extended review-type papers which are written in a way that they are understandable to a broad interdisciplinary audience. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administrated by the Editors assuring highest scientific standards. In the review process some papers were substantially revised and improved and some were rejected. This conference would not have been possible without the remarkable work of the local organizing team around John Barker and Scott Roy and the generous financial support from the University of Glasgow and the Deutsche Forschungsgemeinschaft via SFB-Transregio 24. Michael Bonitz and Karsten Balzer Kiel, February 2010 1 The first two volumes are Progress in Nonequilibrium Green's functions, M Bonitz (ed) and Progress in Nonequilibrium Green's functions II, M Bonitz and D Semkat (eds), which were published by World Scientific (Singapore), in 2000 and 2003, respectively (ISBN
Numerical simulation of non-equilibrium transient flow during inhalation
NASA Astrophysics Data System (ADS)
Marxen, Olaf; Magin, Thierry
2012-11-01
The flow in human upper airways may be laminar, transitional, or turbulent. Breadth-by-breadth and patient-specific variability is expected to have a significant influence on laminar-turbulent transition. The flow path of therapeutic drug aerosols may be strongly affected by the transition-induced unsteady structures. The unsteady Navier-Stokes equations are solved numerically to simulate the flow through a channel-flow geometry representative of an airway segment. In order to trigger transition, small-amplitude disturbances are forced via wall blowing/suction. We perform multiple simulations with varying phase of the forced disturbances. Ensemble averaging then allows to compute mean and RMS values. A time-dependent channel center-line velocity serves to model the change in flow velocity during inhalation. The uncertainty associated with variability during breathing is quantified using non-intrusive stochastic collocation. Simulation results reveal that we have intervals in time and space with quasi-steady equilibrium and with strong non-equilibrium flow. The uncertainty associated with the breathing pattern may strongly affect the occurrence of laminar-turbulent transition, leading to large uncertainties when RMS values are peaking.
Nonequilibrium Bose-Einstein condensation of hot magnons
Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto
2010-10-01
We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.
Nonequilibrium Phase Chemistry in High Temperature Structure Alloys
NASA Technical Reports Server (NTRS)
Wang, R.
1991-01-01
Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.
Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.
2009-08-01
The first measurements of the coherence factors (R{sub K{pi}}{sub {pi}{sup 0}} and R{sub K3{pi}}) and the average strong-phase differences ({delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}} and {delta}{sub D}{sup K3{pi}}) for D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} are presented. These parameters can be used to improve the determination of the unitarity triangle angle {gamma} in B{sup -}{yields}DK{sup -} decays, where D is a D{sup 0} or D{sup 0} meson decaying to the same final state. The measurements are made using quantum-correlated, fully reconstructed D{sup 0}D{sup 0} pairs produced in e{sup +}e{sup -} collisions at the {psi}(3770) resonance. The measured values are: R{sub K{pi}}{sub {pi}{sup 0}}=0.84{+-}0.07, {delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}}=(227{sub -17}{sup +14}) deg., R{sub K3{pi}}=0.33{sub -0.23}{sup +0.20}, and {delta}{sub D}{sup K3{pi}}=(114{sub -23}{sup +26}) deg. These results indicate significant coherence in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0}, whereas lower coherence is observed in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}. The analysis also results in a small improvement in the knowledge of other D-meson parameters, in particular, the strong-phase difference for D{sup 0}{yields}K{sup -}{pi}{sup +}, {delta}{sub D}{sup K{pi}}, and the mixing parameter y.
Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes
Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F.; McGrath, Kathryn M.
2012-02-06
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.
Non-equilibrium diffusion combustion of a fuel droplet
NASA Astrophysics Data System (ADS)
Tyurenkova, Veronika V.
2012-06-01
A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.
NASA Astrophysics Data System (ADS)
Gerving, C. S.; Hoang, T. M.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2012-11-01
A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we measure the non-equilibrium dynamics of a spin-1 Bose-Einstein condensate initialized as a minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space. Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.
Extracting coherent modes from partially coherent wavefields
Flewett, Samuel; Quiney, Harry M.; Tran, Chanh Q.; Nugent, Keith A.
2009-09-08
A method for numerically recovering the coherent modes and their occupancies from a known mutual optical intensity function is described. As an example, the technique is applied to previously published experimental data from an x-ray undulator source. The data are found to be described by three coherent modes, and the functional forms and relative occupancies of these modes are recovered.
Recent advances of strong-strong beam-beam simulation
Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito
2004-09-15
In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.
Partially coherent contrast-transfer-function approximation.
Nesterets, Yakov I; Gureyev, Timur E
2016-04-01
The contrast-transfer-function (CTF) approximation, widely used in various phase-contrast imaging techniques, is revisited. CTF validity conditions are extended to a wide class of strongly absorbing and refracting objects, as well as to nonuniform partially coherent incident illumination. Partially coherent free-space propagators, describing amplitude and phase in-line contrast, are introduced and their properties are investigated. The present results are relevant to the design of imaging experiments with partially coherent sources, as well as to the analysis and interpretation of the corresponding images. PMID:27140752
Collisional-Radiative Nonequilibrium and Precursor Effects in a Nitrogen Shock Wave
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Improvements to a plasma code with a Collisional-Radiative (CR) non-equilibrium model are made, allowing for a more accurate description of the physical processes. The code allows for non-Boltzmann distributions of the electronic excited states by convecting separately each excited state, as a pseudo-specie. Each molecular state has also its own vibrational temperature, while a global rotational temperature is assumed. The free electron temperature is different from those of the excited states, and the electron heat conduction is also included. The CR model also uses a unique coupling between chemistry and vibrational energy (C-V coupling), which is fully coherent, and has the property of establishing thermal equilibrium as well as chemical equilibrium, on its own. We have also included a coupling between electronic excitations and vibrational energy (X-V coupling), which can have a strong influence on the vibrational temperature of some states. The recent improvements include the multi- temperature dependence of the chemical rates for associative ionization, as well as the estimation of the internal energies transferred during this process. Additionally, the distribution of energy into different translational modes (electron and heavy particles) is now correctly modeled. This provides a very rapid heating mechanism for the free electrons, since it is found that the electrons are generated with an average thermal energy of the same order as the heavy particle translational energy. This effect was observed by Gorelov et al in a recent paper, and lead to pronounced peaks in electron temperature immediately behind the shock. We will attempt ro reproduce this phenomenon. The last modification concerns the inclusion of the radiative terms into the calculations, thus enabling us to observe the effect of radiative losses and radiation transport. Preliminary tests have shown that the radiative losses are not negligible, i.e. the shock velocity drops when the radiative
Mean Field Theory for Nonequilibrium Network Reconstruction
NASA Astrophysics Data System (ADS)
Roudi, Yasser; Hertz, John
2011-01-01
There has been recent progress on inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for nonequilibrium systems. Here we introduce an approach to this problem, considering, as an example, the question of recovering the interactions in an asymmetrically coupled, synchronously updated Sherrington-Kirkpatrick model. We derive an exact iterative inversion algorithm and develop efficient approximations based on dynamical mean-field and Thouless-Anderson-Palmer equations that express the interactions in terms of equal-time and one-time-step-delayed correlation functions.
Nonequilibrium Interlayer Transport in Pulsed Laser Deposition
Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H
2006-01-01
We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.