Science.gov

Sample records for strong spatial dependency

  1. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows. PMID:24497978

  2. Strongly scale-dependent non-Gaussianity

    SciTech Connect

    Riotto, Antonio; Sloth, Martin S.

    2011-02-15

    We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale dependent. In particular, the non-Gaussianity may have a sharp cutoff and be very suppressed on large cosmological scales, but sizable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.

  3. Spatially dependent electromagnetically induced transparency.

    PubMed

    Radwell, N; Clark, T W; Piccirillo, B; Barnett, S M; Franke-Arnold, S

    2015-03-27

    Recent years have seen vast progress in the generation and detection of structured light, with potential applications in high capacity optical data storage and continuous variable quantum technologies. Here we measure the transmission of structured light through cold rubidium atoms and observe regions of electromagnetically induced transparency (EIT), using the phase profile as control parameter for the atomic opacity. With q plates we generate a probe beam with azimuthally varying phase and polarization structure, and its right and left circular polarization components provide the probe and control of an EIT transition. We observe an azimuthal modulation of the absorption profile that is dictated by the phase and polarization structure of the probe laser. Conventional EIT systems do not exhibit phase sensitivity. We show, however, that a weak transverse magnetic field closes the EIT transitions, thereby generating phase-dependent dark states which in turn lead to phase-dependent transparency, in agreement with our measurements. PMID:25860744

  4. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  5. Spatial dependences among precipitation maxima over Belgium

    NASA Astrophysics Data System (ADS)

    Vannitsem, S.; Naveau, P.

    2007-09-01

    For a wide range of applications in hydrology, the probability distribution of precipitation maxima represents a fundamental quantity to build dykes, propose flood planning policies, or more generally, to mitigate the impact of precipitation extremes. Classical Extreme Value Theory (EVT) has been applied in this context by usually assuming that precipitation maxima can be considered as Independent and Identically Distributed (IID) events, which approximately follow a Generalized Extreme Value distribution (GEV) at each recording site. In practice, weather stations records can not be considered as independent in space. Assessing the spatial dependences among precipitation maxima provided by two Belgium measurement networks is the main goal of this work. The pairwise dependences are estimated by a variogram of order one, also called madogram, that is specially tailored to be in compliance with spatial EVT and to capture EVT bivariate structures. Our analysis of Belgium precipitation maxima indicates that the degree of dependence varies greatly according to three factors: the distance between two stations, the season (summer or winter) and the precipitation accumulation duration (hourly, daily, monthly, etc.). Increasing the duration (from one hour to 20 days) strengthens the spatial dependence. The full independence is reached after about 50 km (100 km) for summer (winter) for a duration of one hour, while for long durations only after a few hundred kilometers. In addition this dependence is always larger in winter than in summer whatever is the duration. An explanation of these properties in terms of the dynamical processes dominating during the two seasons is advanced.

  6. Spatial variation and density-dependent dispersal in competitive coexistence.

    PubMed Central

    Amarasekare, Priyanga

    2004-01-01

    It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322

  7. Parrondo Games with Spatial Dependence, III

    NASA Astrophysics Data System (ADS)

    Ethier, S. N.; Lee, Jiyeon

    2015-10-01

    We study Toral’s Parrondo games with N players and one-dimensional spatial dependence as modified by Xie et al. Specifically, we use computer graphics to sketch the Parrondo and anti-Parrondo regions for 3 ? N ? 9. Our work was motivated by a recent paper of Li et al., who applied a state space reduction method to this model, reducing the number of states from 2N to N + 1. We show that their reduced Markov chains are inconsistent with the model of Xie et al.

  8. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation.

    PubMed

    Jacquemyn, Hans; Brys, Rein; Merckx, Vincent S F T; Waud, Michael; Lievens, Bart; Wiegand, Thorsten

    2014-04-01

    Because orchids are dependent on mycorrhizal fungi for germination and establishment of seedlings, differences in the mycorrhizal communities associating with orchids can be expected to mediate the abundance, spatial distribution and coexistence of terrestrial orchids in natural communities. We assessed the small-scale spatial distribution of seven orchid species co-occurring in 25 × 25 m plots in two Mediterranean grasslands. In order to characterize the mycorrhizal community associating with each orchid species, 454 pyrosequencing was used. The extent of spatial clustering was assessed using techniques of spatial point pattern analysis. The community of mycorrhizal fungi consisted mainly of members of the Tulasnellaceae, Thelephoraceae and Ceratobasidiaceae, although sporadically members of the Sebacinaceae, Russulaceae and Cortinariaceae were observed. Pronounced differences in mycorrhizal communities were observed between species, whereas strong clustering and significant segregation characterized the spatial distribution of orchid species. However, spatial segregation was not significantly related to phylogenetic dissimilarity of fungal communities. Our results indicate that co-occurring orchid species have distinctive mycorrhizal communities and show strong spatial segregation, suggesting that mycorrhizal fungi are important factors driving niche partitioning in terrestrial orchids and may therefore contribute to orchid coexistence. PMID:24325257

  9. Extinction risk depends strongly on factors contributing to stochasticity

    E-print Network

    Bernard, Samuel

    LETTERS Extinction risk depends strongly on factors contributing to stochasticity Brett A. Melbourne1 & Alan Hastings2 Extinction risk in natural populations depends on stochastic fac- tors their combined effects on extinction risk. Here we derive a family of stochastic Ricker models using different

  10. Phase-dependent collisions of (2 1)-dimensional spatial solitons

    E-print Network

    Saffman, Mark

    Phase-dependent collisions of (2 1)-dimensional spatial solitons A. V. Mamaev Institute Coherent collisions of (2 1)-dimensional spatial solitons in photorefractive media are studied. Phase- dependent switching of the spatial location of the output beams is demonstrated. The experimental results

  11. Secondary Turing-type instabilities due to strong spatial resonance

    E-print Network

    Dawes, Jon

    substantially from each other, we show that spatially periodic solutions found near onset may be unstable to two known to permit uniformly travelling wave solutions. We also show that these travelling waves may interaction problems in spatially extended pattern-forming systems in two or three dimensions, involving

  12. Corresponding Delay-Dependent Biases in Spatial Language and Spatial Memory

    PubMed Central

    Lipinski, John; Spencer, John P.; Samuelson, Larissa K.

    2011-01-01

    The present study addresses the relationship between linguistic and non-linguistic spatial representations. In three experiments we probe spatial language and spatial memory at the same time points in the task sequence. Experiments 1 and 2 show analogous delay-dependent biases in spatial language and spatial memory. Experiment 3 extends this correspondence, showing that additional perceptual structure along the vertical axis reduces delay-dependent effects in both tasks. These results indicate that linguistic and non-linguistic spatial systems depend on shared underlying representational processes. In addition, we also address how these delay-dependent biases can arise within a single theoretical framework without positing differing prototypes for linguistic and non-linguistic spatial systems. PMID:19727805

  13. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    SciTech Connect

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-21

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/r{sup D}propor tor{sup -D} where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A 'box-counting' procedure could also be applied giving the 'capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term 'fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis.The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are: - Simple way to quantify scale-invariant distributions of complex objects or phenomena by a small number of parameters. - It is becoming evident that the applicability of fractal distributions to geological problems could have a more fundamental basis. Chaotic behaviour could underlay the geotectonic processes and the applicable statistics could often be fractal.The application of fractal distribution analysis has, however, some specific aspects. It is usually difficult to present an adequate interpretation of the obtained values of fractal coefficients for earthquake epicenter or hypocenter distributions. That is why in this paper we aimed at other goals - to verify how a fractal coefficient depends on different spatial distributions. We simulated earthquake spatial data by generating randomly points first in a 3D space - cube, then in a parallelepiped, diminishing one of its sides. We then continued this procedure in 2D and 1D space. For each simulated data set we calculated the points' fractal coefficient (correlation fractal dimension of epicentres) and then checked for correlation between the coefficients values and the type of spatial distribution.In that way one can obtain a set of standard fractal coefficients' values for varying spatial distributions. These then can be used when real earthquake data is analyzed by comparing the real data coefficients values to the standard fractal coefficients. Such an approach can help in interpreting the fractal analysis results through different types of spatial distributions.

  14. Dynamics of strongly coupled spatially distributed logistic equations with delay

    NASA Astrophysics Data System (ADS)

    Kashchenko, I. S.; Kashchenko, S. A.

    2015-04-01

    The dynamics of a system of two logistic delay equations with spatially distributed coupling is studied. The coupling coefficient is assumed to be sufficiently large. Special nonlinear systems of parabolic equations are constructed such that the behavior of their solutions is determined in the first approximation by the dynamical properties of the original system.

  15. The importance of spatial models for estimating the strength of density dependence.

    PubMed

    Thorson, James T; Skaug, Hans J; Kristensen, Kasper; Shelton, Andrew O; Ward, Eric J; Harms, John H; Benante, James A

    2015-05-01

    Identifying the existence and magnitude of density dependence is one of the oldest concerns in ecology. Ecologists have aimed to estimate density dependence in population and community data by fitting a simple autoregressive (Gompertz) model for density dependence to time series of abundance for an entire population. However, it is increasingly recognized that spatial heterogeneity in population densities has implications for population and community dynamics. We therefore adapt the Gompertz model to approximate, local densities over continuous space instead of population-wide abundance, and allow productivity to vary spatially using Gaussian random fields. We then show that the conventional (nonspatial) Gompertz model can result in biased estimates of density dependence (e.g., identifying oscillatory dynamics when not present) if densities vary spatially. By contrast, the spatial Gompertz model provides accurate and precise estimates of density dependence for a variety of simulation scenarios and data availabilities. These results are corroborated when comparing spatial and nonspatial models for data from 10 years and -100 sampling stations for three long-lived rockfishes (Sebastes spp.) off the California, USA coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so that spatial models can be used to reexamine classic questions regarding the existence and magnitude of density. dependence in wild populations. PMID:26236835

  16. The Spatial Scale of Attention Strongly Modulates Saccade Latencies

    PubMed Central

    Harwood, Mark R.; Madelain, Laurent; Krauzlis, Richard J.; Wallman, Josh

    2009-01-01

    We have previously shown that when a stimulus consisting of two concentric rings moves, saccade latencies are much longer (by 150 ms) when attention is directed to the larger ring than to the smaller ring. Here, we investigated whether this effect can be explained by a deferral of the “cost” of making a saccade while the target remains inside the attentional field, or by purely visual factors (eccentricity or contrast). We found 1) latencies were shorter when attention was directed to small features irrespective of retinal eccentricity; 2) saccade latency distributions were systematically determined by the ratio between the amplitude of the stimulus step and the diameter of the attended ring: stimulus steps that were larger than the attended ring resulted in short latencies, whereas steps smaller than the attended ring resulted in proportionally longer and more variable latencies; 3) this effect was not seen in manual reaction times to the same target movement; and 4) suprathreshold changes in the contrast of targets, mimicking possible attentional effects on perceived contrast and saliency, had little effect on latency. We argue that the spatial scale of attention determines the urgency of saccade motor preparation processes by changing the rate and rate variability of the underlying decision signal, to defer the cost of saccades that result in little visual benefit. PMID:18234988

  17. Spatial-frequency dependent binocular imbalance in amblyopia

    PubMed Central

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p?spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  18. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    SciTech Connect

    Vatsavai, Raju

    2012-01-01

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to the new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.

  19. Spatial-frequency dependent binocular imbalance in amblyopia.

    PubMed

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p?spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  20. Detection of temporal structure depends on spatial structure.

    PubMed

    Lee, S H; Blake, R

    1999-09-01

    Observers can more easily detect correlated patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture (Blake, R., & Yang, Y. (1997). Proceedings of the National Academy of Science, 94, 7115-7119). To learn whether spatial phase is a mediating variable, we measured thresholds for detection of contrast modulation over time among component gratings while manipulating spatial phase among those components. In Experiment 1, observers more easily detected correlated contrast modulation when two component gratings were aligned in peaks-subtract phase. Experiment 2 showed that this phase-dependent detectability of synchronized contrast modulation is mediated by the phase-dependent, non-linear interaction among spatial frequency channels. The rigorous evaluation of several a priori reasonable hypotheses indicates that the phase-dependent detectability is not based on local spatial features such as local luminance, contrast or luminance gradient. Taken together, our results indicate that the spatial phase relationship and the temporal correlation of contrast modulation of two component gratings are both important for triggering facilitatory interaction between neural analyzers tuned to those gratings. PMID:10664802

  1. Level dependence of spatial processing in the primate auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2012-01-01

    Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ?20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from “far” locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex. PMID:22592309

  2. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements included CO2, CO, NOx (NO and NO2), and SO2 concentrations, PM size-distributions, and PM and black carbon mass concentrations. In addition, Teflon-membrane, quartz-fiber, and Teflon-impregnated glass fiber (TIGF) filters followed by XAD-4 cartridges were collected for detailed chemical analysis.

  3. Localized attacks on spatially embedded networks with dependencies

    NASA Astrophysics Data System (ADS)

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M.; Li, Daqing; Havlin, Shlomo

    2015-03-01

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures--even of finite fraction--if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems.

  4. Localized attacks on spatially embedded networks with dependencies.

    PubMed

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M; Li, Daqing; Havlin, Shlomo

    2015-01-01

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures-even of finite fraction-if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems. PMID:25757572

  5. Localized attacks on spatially embedded networks with dependencies

    PubMed Central

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M.; Li, Daqing; Havlin, Shlomo

    2015-01-01

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures—even of finite fraction—if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems. PMID:25757572

  6. Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    SciTech Connect

    Sekino, M; Okamoto, Satoshi; Koshibae, W; Mori, Michiyasu; Maekawa, Sadamichi

    2014-01-01

    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about nonmonotonic temperature dependence of the hermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.

  7. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  8. Reference frames in virtual spatial navigation are viewpoint dependent.

    PubMed

    Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  9. Density-dependent dispersal and spatial population dynamics

    PubMed Central

    Ims, Rolf A; Andreassen, Harry P

    2005-01-01

    The synchronization of the dynamics of spatially subdivided populations is of both fundamental and applied interest in population biology. Based on theoretical studies, dispersal movements have been inferred to be one of the most general causes of population synchrony, yet no empirical study has mapped distance-dependent estimates of movement rates on the actual pattern of synchrony in species that are known to exhibit population synchrony. Northern vole and lemming species are particularly well-known for their spatially synchronized population dynamics. Here, we use results from an experimental study to demonstrate that tundra vole dispersal movements did not act to synchronize population dynamics in fragmented habitats. In contrast to the constant dispersal rate assumed in earlier theoretical studies, the tundra vole, and many other species, exhibit negative density-dependent dispersal. Simulations of a simple mathematical model, parametrized on the basis of our experimental data, verify the empirical results, namely that the observed negative density-dependent dispersal did not have a significant synchronizing effect. PMID:16024345

  10. A strong seasonal dependence in the Martian hydrogen exosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dolon; Clarke, John T.; Bertaux, Jean-Loup; Chaufray, Jean-Yves; Mayyasi, Majd

    2015-10-01

    Hubble Space Telescope and Mars Express observed unexpected rapid changes in the Martian hydrogen exosphere involving a decrease in scattered Lyman ? intensity in fall 2007 (solar longitude, Ls = 331°-345°). These changes detected were speculated to be a combination of seasonal variation and/or dust storms and lower atmospheric dynamics. Here we present Hubble Space Telescope observations of Mars in 2014 over a broad range of heliocentric distances and seasons (Ls = 138°-232°) which indicate a factor of ~3.5 change in Martian Lyman ? brightness associated with a factor of ~5.4 variation of hydrogen escape flux in the absence of global dust storms and significant solar variability. We thus conclude that seasonal effects have a strong influence on the hydrogen exosphere, which in turn has major implications for the processes that control water supply to the Martian upper atmosphere and the history of water escape from Mars.

  11. Pair production from space- and time-dependent strong fields

    NASA Astrophysics Data System (ADS)

    Berényi, Dániel; Varró, Sándor; Lévai, Péter; Skokov, Vladimir V.

    2015-03-01

    The recent development of laser technology and the large number of extreme laser experiments under construction renewed the research related to pair production in strong fields. If the predicted threshold of nonlinear QED is reached, pair production may be observed and the measurements must be compared with appropriate theoretical predictions. However the theoretical side still lacks the understanding of the relevant quantum processes including the effect of laser field parameters on the number and spectrum of created particles. We use the Dirac-Heisenberg-Wigner formalism to investigate the role of the pure electric inhomogeneity on the spectra of created pairs. This simplified model may also be relevant in high energy physics for the description of string fragmentation in the early stages of heavy ion collisions.

  12. SPATIALLY SPECIFIC DEPENDENCE OF SACCADE INHIBITION ON DISTRACTOR REPETITION.

    PubMed

    Shan, Yijing; Edelman, Jay

    2015-09-01

    The sudden appearance of a visual distractor can briefly, but powerfully, inhibits saccades (Reingold and Stampe, 2002). However, this inhibitory influence of distractors may by habituation with repeated distractor presentation at a single retinotopic location, or by a more spatially general dampening of inhibition, occurring when distractors appear at a high frequency at any location in the visual field. Indeed, such a spatially generalized mechanism could be useful during behavior in highly dynamic visual environments. We examined these possibilities by recording the eye movements of 2 subjects in tasks that required the execution of saccades in the face of visual distractors. Eye movements were recorded at 500 Hz (Eyelink II, SR Research). Trials began with central fixation. A 1° square was flashed (250 ms) 10° to the left or right. 700-1000 ms later, fixation point disappearance ("go" signal) cued saccade initiation. Subjects were instructed to make a saccade to the target's remembered location. There were 4 experimental tasks: 1) no distractor; 2) single distractor appearing soon after go signal, opposite the remembered target; 3) 3 distractors at 200 ms intervals at a single location opposite the remembered target; 4) three distractors at 200 ms intervals at three separate locations distant from the remembered target, with the final distractor appearing opposite the remembered target. As in previous experiments (Edelman and Xu, 2009) we found strong inhibition in Task 2. Saccade inhibition was virtually eliminated in Task 3. In Task 4, saccade inhibition was intermediate to that of Tasks 2 and 3. These results suggest that stimulus repetition at a single location strongly ameliorates saccade inhibition, but that a more spatially generalized amelioration mechanism for repeated distractor presentation also exists. Supported by NCRR 2G12RR03060-26A1, NIMHHD 8G12MD007603-27 Meeting abstract presented at VSS 2015. PMID:26326967

  13. PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY

    SciTech Connect

    Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark

    2009-10-20

    We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than 10 times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle-dominated flows. The clumps readily contract gravitationally into interacting planetesimals on the order of 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low-metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.

  14. Strong dependence of ultracold chemical rates on electric dipole moments

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-02-15

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d{sup 4(L+(1/2))} where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d{sup 6}. We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d{sup -4} for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  15. Urban Adolescents' Perceptions of Their Neighborhoods: An Examination of Spatial Dependence

    ERIC Educational Resources Information Center

    Bass, Judith K.; Lambert, Sharon F.

    2004-01-01

    Spatial dependence exists when the variation between observations is dependent on spatial location. In the present study, geostatistical methods were used to examine spatial dependence in adolescents' perceptions of their neighborhoods: whether adolescents living in close proximity perceived their neighborhoods more similarly than adolescents…

  16. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  17. Strong-field spatial intensity-intensity correlations of light scattered from regular structures of atoms

    E-print Network

    M. Macovei; J. Evers; C. H. Keitel

    2007-02-14

    Photon correlations and cross-correlations of light scattered by a regular structure of strongly driven atoms are investigated. At strong driving, the scattered light separates into distinct spectral bands, such that each band can be treated as independent, thus extending the set of observables. We focus on second-order intensity-intensity correlation functions in two- and multi-atom systems. We demonstrate that for a single two-photon detector as, e.g., in lithography, increasing the driving field intensity leads to an increased spatial resolution of the second-order two-atom interference pattern. We show that the cross-correlations between photons emitted in the spectral sidebands violate Cauchy-Schwartz inequalities, and that their emission ordering cannot be predicted. Finally, the results are generalized for multi-particle structures, where we find results different from those in a Dicke-type sample.

  18. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël; Fabrycky, Daniel C.

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  19. Spatial Visualization Abilities of Field Dependent/Independent Preservice Teachers

    ERIC Educational Resources Information Center

    Yazici, Ersen

    2014-01-01

    Introduction: Spatial skills have been a significant area of research in educational psychology for more years and it has two major dimensions as spatial visualization and spatial orientation. Mathematics educators acknowledge the influence of cognitive styles in the learning of mathematics. There are various recognized cognitive styles in the…

  20. Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach

    SciTech Connect

    Caillat, J.; Scrinzi, A.; Koch, O.; Kreuzer, W.

    2005-01-01

    The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the shape of photoelectron peaks and the dependence of ionization on molecule size.

  1. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing

    E-print Network

    Becker, Andreas

    Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing strongly influences the plasma density and the diameter of femtosecond Ti-sapphire laser filaments generated in air. The control of plasma filament parameters is suitable for many applications such as remote

  2. Non-monotonic temperature dependence of thermopower in strongly correlated electron systems

    SciTech Connect

    Matsuo, M; Okamoto, Satoshi; Koshibae, W; Mori, Michiyasu; Maekawa, Sadamichi

    2011-01-01

    We examine the temperature dependence of thermopower in the single-band Hubbard model using dynamical mean-field theory. The strong Coulomb interaction brings about the coherent-to-incoherent crossover as temperature increases. As a result, the thermopower exhibits nonmonotonic temperature dependence and asymptotically approaches values given by the Mott-Heikes formula. In the light of our theoretical result, we discuss the thermopower in some transition metal oxides. The magnetic field dependence of the thermopower is also discussed.

  3. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  4. ORIGINAL PAPER Spatial dependence of phenotype-environment

    E-print Network

    Notre Dame, University of

    variables such as water depth and leaf litter were more important. Spatial analyses revealed that water multiple environmental factors at two spatial scales affected the mor- phology of wood frog (Rana depth and leaf litter, but not predation risk intensity or tadpole density, exhibited heterogeneous

  5. Spatially resolved x-ray studies of liquid crystals with strongly developed bond-orientational order

    NASA Astrophysics Data System (ADS)

    Zaluzhnyy, I. A.; Kurta, R. P.; Sulyanova, E. A.; Gorobtsov, O. Y.; Shabalin, A. G.; Zozulya, A. V.; Menushenkov, A. P.; Sprung, M.; Ostrovskii, B. I.; Vartanyants, I. A.

    2015-04-01

    We present an x-ray study of freely suspended hexatic films of the liquid crystal 3(10)OBC. Our results reveal spatial inhomogeneities of the bond-orientational (BO) order in the vicinity of the hexatic-smectic phase transition and the formation of large-scale hexatic domains at lower temperatures. Deep in the hexatic phase up to 25 successive sixfold BO order parameters have been directly determined by means of angular x-ray cross-correlation analysis (XCCA). Such strongly developed hexatic order allowed us to determine higher order correction terms in the scaling relation predicted by the multicritical scaling theory over a full temperature range of the hexatic phase existence.

  6. Spectral shape dependence in the very strong coupling regime of Eliashberg theory

    SciTech Connect

    Akis, R.; Carbotte, J.P. )

    1989-07-01

    The effect of {alpha}{sup 2}F({omega}) shape dependence on several physical properties of superconductors is studied at various values of the strong coupling index {Tc}/{omega}{sub 1n}. The authors results indicate that the degree of shape dependence of each property is sensitive to the value of {Tc}/{omega}{sub in}. Generally, for the region they examine, 0.25 {le} {Tc}/{omega}{sub 1n} {le} 1.3, the dependence on shape is found to be higher than in the conventional strong coupling regime {Tc}/{omega}{sub 1n} {approx lt} 0.2. However, with the exception of the mass enhancement parameter {lambda}, the amount of shape dependence does not increase steadily with {Tc}/{omega}{sub 1n} and there appears to be regions of maximum shape sensitivity.

  7. Exchange and spin states in quantum dots under strong spatial correlations. Computer simulation by the Feynman path integral method

    SciTech Connect

    Shevkunov, S. V.

    2013-10-15

    The fundamental laws in the behavior of electrons in model quantum dots that are caused by exchange and strong Coulomb correlations are studied. The ab initio path integral method is used to numerically simulate systems of two, three, four, and six interacting identical electrons confined in a three-dimensional spherical potential well with a parabolic confining potential against the background of thermal fluctuations. The temperature dependences of spin and collective spin magnetic susceptibility are calculated for model quantum dots of various spatial sizes. A basically exact procedure is proposed for taking into account the permutation symmetry and the spin state of electrons, which makes it possible to perform numerical calculations using modern computer facilities. The conditions of applicability of a virial energy estimator and its optimum form in exchange systems are determined. A correlation estimator of kinetic energy, which is an alternative to a basic estimator, is suggested. A fundamental relation between the kinetic energy of a quantum particle and the character of its virtual diffusion in imaginary time is demonstrated. The process of natural 'pairing' of electron spins during the compression of a quantum dot and cooling of a system is numerically reproduced in terms of path integrals. The temperature dependences of the spin magnetic susceptibility of electron pairs with a characteristic maximum caused by spin pairing are obtained.

  8. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  9. Retrieval Induces Hippocampal-Dependent Reconsolidation of Spatial Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin; Bevilaqua, Lia R. M.

    2006-01-01

    Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the…

  10. The combination of vision and touch depends on spatial proximity

    PubMed Central

    Gepshtein, Sergei; Burge, Johannes; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    The nervous system often combines visual and haptic information about object properties such that the combined estimate is more precise than with vision or haptics alone. We examined how the system determines when to combine the signals. Presumably, signals should not be combined when they come from different objects. The likelihood that signals come from different objects is highly correlated with the spatial separation between the signals, so we asked how the spatial separation between visual and haptic signals affects their combination. To do this, we first created conditions for each observer in which the effect of combination—the increase in discrimination precision with two modalities relative to performance with one modality—should be maximal. Then under these conditions, we presented visual and haptic stimuli separated by different spatial distances and compared human performance with predictions of a model that combined signals optimally. We found that discrimination precision was essentially optimal when the signals came from the same location, and that discrimination precision was poorer when the signals came from different locations. Thus, the mechanism of visual-haptic combination is specialized for signals that coincide in space. PMID:16441199

  11. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.

  12. Spatial, Temporal, and Density-Dependent Components of Habitat Quality for a Desert Owl

    PubMed Central

    Flesch, Aaron D.; Hutto, Richard L.; van Leeuwen, Willem J. D.; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality. PMID:25786257

  13. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    PubMed

    Flesch, Aaron D; Hutto, Richard L; van Leeuwen, Willem J D; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality. PMID:25786257

  14. Temporal and spatial distribution of GPS-TEC anomalies prior to the strong earthquakes

    NASA Astrophysics Data System (ADS)

    Zhu, Fuying; Wu, Yun; Zhou, Yiyan; Gao, Yang

    2013-06-01

    Earthquakes are one of the most destructive and harmful natural disasters, especially in recent years, the 2008/5/12 Wenchuan M7.9 earthquake, the 2011/3/11 Tohoku M9.0 earthquake and the 2012/4/11 Sumatra M8.6 earthquake have caused a significant impact to the human life. In this paper, we make a study of the temporal and spatial distribution of the Global Positioning System Total Electron Content (GPS TEC) anomalies prior to the three strong earthquakes by the method of statistical analysis. Our results show that the pre-earthquake ionospheric anomalies are mainly positive anomalies and take the shape of a double-crest structure with a trough near the epicenter. The ionospheric anomalies do not coincide with the vertical projection of the epicenter of the subsequent earthquake, but mainly localize in the near-epicenter region and corresponding ionospheric anomalies are also simultaneously observed in the magnetic conjugate region prior to the three earthquakes. In addition, the amplitude and scale-size of the ionospheric ?TEC are different with the magnitude of the earthquake, and the horizontal scale-size of the greatest anomalies before the Tohoku M9.0 earthquake is ˜30? in longitude and ˜10? in latitude, with the maximum amplitude of TEC disturbances reaching ˜20 TECu relative to the background. The peak of anomaly enhancement usually occurs in the afternoon to sunset (i.e. between 14:00 and 18:00 local time) which lasts for approximate 2 hours. Possible causes of these anomalies are discussed, and after eliminating the effect of solar activities and magnetic storms it can be concluded that the detected obvious and regular anomalous behavior in TEC within just a few days before the earthquakes is related with the forthcoming earthquakes with high probability.

  15. Acute Effects of Alcohol on Intrusive Memory Development and Viewpoint Dependence in Spatial

    E-print Network

    Burgess, Neil

    Acute Effects of Alcohol on Intrusive Memory Development and Viewpoint Dependence in Spatial Memory the effect of alcohol on intrusive memories and, concurrently, on egocentric and allocentric spatial memory effect of alcohol on intrusive memories and on same/shifted-view recognition support a dual

  16. Spatially dependent heating and ionization: From CME to ICME

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Laming, J.; Rakowski, C. E.

    2010-12-01

    The January 21st 2005 Interplanetary Coronal Mass Ejection (ICME) observed by multiple spacecraft at L1 was also observed further out in the heliosphere at Ulysses (~3.25 AU). Previous multi-spacecraft studies of this ICME found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event presents a unique opportunity to study the spatial variation of the ionic composition contained within a single ICME and relate it to the eruption at the Sun. Using SWICS, we compare and contrast the heavy ion composition across the two different observations cuts through the ICME. We will compare the results from ACE and Ulysses with predictions from ionization models in the corona and with remote observations of phenomena indicative of electron heating in the inner corona.

  17. Spatially dependent cluster dynamics model of He plasma surface interaction in tungsten for fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Faney, T.; Krasheninnikov, S. I.; Wirth, B. D.

    2015-01-01

    In fusion reactors, plasma facing components (PFC) and, in particular, the divertor will be irradiated with high fluxes of low-energy (˜100 eV) helium and hydrogen ions. Tungsten is one of the leading candidate divertor materials for ITER and DEMO fusion reactors. However, the behaviour of tungsten under high dose, coupled helium/hydrogen exposure remains to be fully understood. The PFC response and performance changes are intimately related to microstructural changes, such as the formation of point defect clusters, helium and hydrogen bubbles or dislocation loops. Computational materials' modelling results are described here that investigate the mechanisms controlling microstructural evolution in tungsten. The aim of this study is to understand and predict sub-surface helium bubble growth under high flux helium ion implantation (˜1022 m-2 s-1) at high temperatures (>1000 K). We report results from a spatially dependent cluster dynamics model based on reaction-diffusion rate theory to describe the evolution of the microstructure under these conditions. The key input parameters to the model (diffusion coefficients, migration and binding energies, initial defect production) are determined from a combination of atomistic modelling and available experimental data. The results are in good agreement with results of an analytical model that is presented in a separate paper. In particular, it is found that the sub-surface evolution with respect to bubble size and concentration of the helium bubbles strongly depends on the flux and temperature.

  18. Spatial and Temporal Scale Dependence of Atmospheric Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Klipp, Cheryl

    2011-11-01

    Turbulence affects wind turbine performance, often in ways that are not well understood. A better understanding of the atmospheric turbulence may help in understanding effects on the turbines. Analysis of atmospheric boundary layer turbulence needs to account for different scales of motion since turbulence occurs over a wide range of scales from dissipation scales to very large scale motion on the order of tens of kilometers. Using sonic anemometer data from the 60m tower from the CASES99 field experiment near Leon, KS, the variances and covariances are expressed as sums of the variances and covariances due to motions at a range of temporal scales through the use of a multiresolution decomposition. The temporal scales are converted to spatial scales by multiplying by the mean wind value. Turbulent kinetic energy (TKE) has the most energy in scales of motion about 600m at a location 50m agl. This peak is broad; the width at half max covers a range of turbulence scales from 20m to 2500m (1.5 sec - 3.5 min). Individual variances show peak energies at different scales; the vertical variance having peak energy at smaller scales than the TKE peak scales, and streamwise variances having peak energy at larger scales. Analysis of all three covariances shows that the assumption of 2D flow is not a good approximation for the 50m agl.

  19. Luminosity Dependence and Redshift Evolution of Strong Emission-line Diagnostics in Star-Forming Galaxies

    E-print Network

    Cowie, Lennox L; Songaila, Antoinette

    2015-01-01

    We examine the redshift evolution of standard strong emission-line diagnostics for Hbeta-selected star-forming galaxies using the local SDSS sample and a new z = 0.2 - 2.3 sample obtained from HST WFC3 grism and Keck DEIMOS and MOSFIRE data. We use the SDSS galaxies to show that there is a systematic dependence of the strong emission-line properties on Balmer-line luminosity, which we interpret as showing that both the N/O abundance and the ionization parameter increase with increasing line luminosity. Allowing for the luminosity dependence tightens the diagnostic diagrams and the metallicity calibrations. The combined SDSS and high-redshift samples show that there is no redshift evolution in the line properties once the luminosity correction is applied, i.e., all galaxies with a given L(Hbeta) have similar strong emission-line distributions at all the observed redshifts. We argue that the best metal diagnostic for the high-redshift galaxies may be a luminosity-adjusted version of the [NII]6584/Halpha metalli...

  20. Strong effects of time-dependent ionization in early SN 1987A

    E-print Network

    V. P. Utrobin; N. N. Chugai

    2005-01-04

    We study a time-dependent hydrogen ionization in the atmosphere of SN 1987A during the first month after the explosion. The model includes kinetics of hydrogen ionization and excitation, molecular hydrogen kinetics, and a time-dependent energy balance. The primary strong effect of the time-dependent ionization is the enhanced hydrogen ionization compared to the steady-state model. The time-dependent ionization provides a sufficient population of excited hydrogen levels to account for the observed H-alpha without invoking the external Ni-56. We find that the Ba II 6142 A line in SN 1987A can be reproduced for the LMC barium abundance. This resolves the long-standing problem of the unacceptably high barium overabundance in SN 1987A. The key missing factor that should be blamed for the "barium problem" is the time-dependent ionization. The modelling of the H-alpha profile on day 4.64 indicates the ratio of the kinetic energy to the ejected mass about 0.83 10^{50} erg/Msun.

  1. Strong effects of time-dependent ionization in early SN 1987A

    E-print Network

    Utrobin, V P

    2005-01-01

    We study a time-dependent hydrogen ionization in the atmosphere of SN 1987A during the first month after the explosion. The model includes kinetics of hydrogen ionization and excitation, molecular hydrogen kinetics, and a time-dependent energy balance. The primary strong effect of the time-dependent ionization is the enhanced hydrogen ionization compared to the steady-state model. The time-dependent ionization provides a sufficient population of excited hydrogen levels to account for the observed H-alpha without invoking the external Ni-56. We find that the Ba II 6142 A line in SN 1987A can be reproduced for the LMC barium abundance. This resolves the long-standing problem of the unacceptably high barium overabundance in SN 1987A. The key missing factor that should be blamed for the "barium problem" is the time-dependent ionization. The modelling of the H-alpha profile on day 4.64 indicates the ratio of the kinetic energy to the ejected mass about 0.83 10^{50} erg/Msun.

  2. Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal

    E-print Network

    Demir, Hilmi Volkan

    Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals D. Luo,1 H. T. Dai,2 H. V. Demir,1,3,4 X. W. Sun,1,2* H. Z. Yang angle dependent lasing from a dye- doped two-dimensional photonic crystal (2D PC) holographic polymer

  3. Weak and Strong Cross Section Dependence and Estimation of Large Panels

    E-print Network

    Chudik, Alexander; Pesaran, M. Hashem; Tosetti, E.

    . But as shown by Kapetanios and Marcellino (2008), it is possible to devise factor models that generate eigenvalues that rise at rate Nd, for 0 < d < 1. Remark 9 Our concepts of weak and strong cross section dependence are related to the notion of diversi... as yit = ?0idt + ? 0 ixit + uit; (37) where dt = (d1t; d2t; :::; dnt)0 is a n ? 1 vector of observed common e¤ects, and xit is a k ? 1 vector of observed individual speci?c regressors. The parameter of interest is the mean of individual slope coe¢ cients...

  4. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    SciTech Connect

    Rose, Harvey; Daughton, W; Yin, L

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  5. Time-Dependent Density-Functional Theory for Trapped Strongly-Interacting Fermionic Atoms

    E-print Network

    Yeong E. Kim; Alexander L. Zubarev

    2004-06-24

    The dynamics of strongly interacting trapped dilute Fermi gases (dilute in the sense that the range of interatomic potential is small compared with inter-particle spacing) is investigated in a single-equation approach to the time-dependent density-functional theory. Our results are in good agreement with recent experimental data in the BCS-BEC crossover regime. It is also shown that the calculated corrections to the hydrodynamic approximation may be important even for systems with a rather large number of atoms.

  6. Hydrodynamical Formulation of Time-Dependent Density Functional Theory for Probing Multiphoton Processes in Strong Fields

    NASA Astrophysics Data System (ADS)

    Roy, A. K.; Chu, Xi; Chu, Shih-I.

    2001-05-01

    We extend the hydrodynamical formulation of time-dependent density functional theory (TDDFT) to the study of multiphoton processes of many-electron atomic systems in intense laser fields. The initial state of the quantum system is obtained by the imaginary time propagation method. The generalized pseudospectral time-dependent techniques (X. M. Tong and S.I. Chu, Chem. Phys. 217 (1997) 119.)^, (X. Chu and S. I. Chu, Phys. Rev. A63 (2001) 023411.) are used for accurate and efficient solution of both imaginary time propagation and strong field calculations. The procedure is applied to the study of the nonlinear optical response of rare gas atoms to intense laser fields (A. K. Roy, X. Chu, J. Carrera, and S.I. Chu, to be published).

  7. Surface second harmonic generation from silicon pillar arrays with strong geometrical dependence.

    PubMed

    Choudhury, B Dev; Sahoo, Pankaj K; Sanatinia, R; Andler, Guillermo; Anand, S; Swillo, M

    2015-05-01

    We present experimental demonstration and analysis of enhanced surface second harmonic generation (SHG) from hexagonal arrays of silicon pillars. Three sets of Si pillar samples with truncated cone-shaped pillar arrays having periods of 500, 1000, and 2000 nm, and corresponding average diameters of 200, 585 and 1550 nm, respectively, are fabricated by colloidal lithography and plasma dry etching. We have observed strong dependence of SHG intensity on the pillar geometry. Pillar arrays with a 1000 nm period and a 585 nm average diameter give more than a one order of magnitude higher SHG signal compared to the other two samples. We theoretically verified the dependence of SHG intensity on pillar geometry by finite difference time domain simulations in terms of the surface normal E-field component. The enhanced surface SHG light can be useful for nonlinear silicon photonics, surface/interface characterization, and optical biosensing. PMID:25927787

  8. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  9. Strong Gravitational Lens Modeling with Spatially Variant Point-spread Functions

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Fiege, Jason D.

    2011-12-01

    Astronomical instruments generally possess spatially variant point-spread functions, which determine the amount by which an image pixel is blurred as a function of position. Several techniques have been devised to handle this variability in the context of the standard image deconvolution problem. We have developed an iterative gravitational lens modeling code called Mirage that determines the parameters of pixelated source intensity distributions for a given lens model. We are able to include the effects of spatially variant point-spread functions using the iterative procedures in this lensing code. In this paper, we discuss the methods to include spatially variant blurring effects and test the results of the algorithm in the context of gravitational lens modeling problems.

  10. STRONG GRAVITATIONAL LENS MODELING WITH SPATIALLY VARIANT POINT-SPREAD FUNCTIONS

    SciTech Connect

    Rogers, Adam; Fiege, Jason D.

    2011-12-10

    Astronomical instruments generally possess spatially variant point-spread functions, which determine the amount by which an image pixel is blurred as a function of position. Several techniques have been devised to handle this variability in the context of the standard image deconvolution problem. We have developed an iterative gravitational lens modeling code called Mirage that determines the parameters of pixelated source intensity distributions for a given lens model. We are able to include the effects of spatially variant point-spread functions using the iterative procedures in this lensing code. In this paper, we discuss the methods to include spatially variant blurring effects and test the results of the algorithm in the context of gravitational lens modeling problems.

  11. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria. PMID:17227864

  12. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    SciTech Connect

    Starr, D.O.; Korb, C.L.; Schwemmer, G.K. ); Weng, C.Y. )

    1992-12-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar (DIAL) system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  13. Linear wave equations with time-dependent propagation speed and strong damping

    NASA Astrophysics Data System (ADS)

    Ghisi, Marina; Gobbino, Massimo

    2016-01-01

    We consider a second order linear equation with a time-dependent coefficient c (t) in front of the "elastic" operator. For these equations it is well-known that a higher space-regularity of initial data compensates a lower time-regularity of c (t). In this paper we investigate the influence of a strong dissipation, namely a friction term which depends on a power of the elastic operator. What we discover is a threshold effect. When the exponent of the elastic operator in the friction term is greater than 1/2, the damping prevails and the equation behaves as if the coefficient c (t) were constant. When the exponent is less than 1/2, the time-regularity of c (t) comes into play. If c (t) is regular enough, once again the damping prevails. On the contrary, when c (t) is not regular enough the damping might be ineffective, and there are examples in which the dissipative equation behaves as the non-dissipative one. As expected, the stronger is the damping, the lower is the time-regularity threshold. We also provide counterexamples showing the optimality of our results.

  14. Application of the adiabatic spatially dependent reactor kinetics method to voided pressurized water reactors

    SciTech Connect

    Gundy, L.M.

    1984-01-01

    Computer simulations were conducted for experiments concerning an ex-core axial string of epi-cadmium neutron detectors acting as a coolant density and level gauge. Static transport calculations were performed for experiments conducted with the Pennsylvania State University TRIGA reactor with a downcomer simulator installed. This simulated the response of an ex-core neutron level gauge to varying downcomer voiding along. Static transport calculations were also performed with the TMI accident boiloff scenario, simulating the response of an axial string of three ex-core detectors. Two other TMI simulations, with varying downcomer voiding with the core full and the core empty, were also performed, which were compared to the TRIGA experimental results. Spatially dependent reactor kinetics simulations, using transport theory, were conducted for the LOFT large break tests L2-5, and LPO2-6. In these calculations, the axial neutron detector responses to a known spatially dependent voiding history were simulated. The static transport calculations were performed with the two-dimensional transport code DOT. The spatially dependent reactor kinetics calculations were performed using the adiabatic reactor kinetics method using reactor kinetics code and the transport code DOT. The adiabatic method of spatially dependent reactor kinetics was shown to give reasonably accurate simulations of the LOFT experiments.

  15. Drivers of bacterial -diversity depend on spatial scale Jennifer B. H. Martinya,1

    E-print Network

    Allison, Steven D.

    whether the mechanisms that underlie bacterial -diversity vary over centimeters to continental spatial diversification of ammonia-oxidizing bacteria taxa at the continental scale, de- spite an overall relationship-decay | Nitrosomonadales | ecological drift Biodiversity supports the ecosystem processes upon which so- ciety depends (1

  16. Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks

    E-print Network

    this theory to guide design decisions in routing protocols. I. INTRODUCTION Mobile ad hoc networks (MANETs1 Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks Wei--Realistic mobility models are fundamental to eval- uate the performance of protocols in mobile ad hoc networks

  17. TUG-OF-WAR GAMES AND THE INFINITY LAPLACIAN WITH SPATIAL DEPENDENCE

    E-print Network

    Rossi, Julio D.

    TUG-OF-WAR GAMES AND THE INFINITY LAPLACIAN WITH SPATIAL DEPENDENCE IVANA G´OMEZ AND JULIO D. ROSSI Abstract. In this paper we look for PDEs that arise as limits of values of Tug-of-War games when main goal in this work is to look for PDEs that may arise as continuos values of Tug-of-War games when

  18. TUG-OF-WAR GAMES AND PARABOLIC PROBLEMS WITH SPATIAL AND TIME DEPENDENCE

    E-print Network

    Rossi, Julio D.

    TUG-OF-WAR GAMES AND PARABOLIC PROBLEMS WITH SPATIAL AND TIME DEPENDENCE LEANDRO M. DEL PEZZO AND JULIO D. ROSSI Abstract. In this paper we use probabilistic arguments (Tug-of-War games) to obtain in this article is to look for parabolic PDEs that may arise as continuous values of Tug-of-War games when one

  19. ASSESSING FINGERPRINT INDIVIDUALITY USING EPIC: A CASE STUDY IN THE ANALYSIS OF SPATIALLY DEPENDENT MARKED

    E-print Network

    Dass, Sarat C.

    ASSESSING FINGERPRINT INDIVIDUALITY USING EPIC: A CASE STUDY IN THE ANALYSIS OF SPATIALLY DEPENDENT MARKED PROCESSES By Chae Young Lim and Sarat C. Dass Michigan State University Fingerprint individuality refers to the extent of uniqueness of finger- prints and is governed by the distribution of fingerprint

  20. Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment

    E-print Network

    Troch, Peter

    concerned with pre- dicting the effects of global change on water scarcity, water quality, waterrelatedSpatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis February 2011; published 11 May 2011. [1] The difficulties in predicting whole catchment water balance from

  1. Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention

    PubMed Central

    König, Peter

    2010-01-01

    Visual attention is thought to be driven by the interplay between low-level visual features and task dependent information content of local image regions, as well as by spatial viewing biases. Though dependent on experimental paradigms and model assumptions, this idea has given rise to varying claims that either bottom-up or top-down mechanisms dominate visual attention. To contribute toward a resolution of this discussion, here we quantify the influence of these factors and their relative importance in a set of classification tasks. Our stimuli consist of individual image patches (bubbles). For each bubble we derive three measures: a measure of salience based on low-level stimulus features, a measure of salience based on the task dependent information content derived from our subjects' classification responses and a measure of salience based on spatial viewing biases. Furthermore, we measure the empirical salience of each bubble based on our subjects' measured eye gazes thus characterizing the overt visual attention each bubble receives. A multivariate linear model relates the three salience measures to overt visual attention. It reveals that all three salience measures contribute significantly. The effect of spatial viewing biases is highest and rather constant in different tasks. The contribution of task dependent information is a close runner-up. Specifically, in a standardized task of judging facial expressions it scores highly. The contribution of low-level features is, on average, somewhat lower. However, in a prototypical search task, without an available template, it makes a strong contribution on par with the two other measures. Finally, the contributions of the three factors are only slightly redundant, and the semi-partial correlation coefficients are only slightly lower than the coefficients for full correlations. These data provide evidence that all three measures make significant and independent contributions and that none can be neglected in a model of human overt visual attention. PMID:20502672

  2. The spatial and energy dependence of gold nanoparticle dose enhancement using deterministic computations

    NASA Astrophysics Data System (ADS)

    Cifter, Fulya

    The main objective of this work is to investigate the detailed dose enhancement characteristics of Gold Nanoparticle Aided Radiotherapy using deterministic computations, which offer several advantages over Monte Carlo simulations. In the first chapter, computations were preformed to obtain the parametric representation of gold nanoparticle (GNP) dose enhancement as function of space and incident photon energy, which can be regarded as the Green's function of GNP aided radiotherapy. The Green's function describes the spatial distribution of dose response in water due to a specific photon energy incident on single or clustered GNPs of defined size, located at a given depth in the phantom. In this way, using convolution-superposition, the dose enhancement may be determined for any incident photon spectrum and combinations of GNP sizes and depths. In obtaining the parameterized Green's function, dose enhancement as function of incident energy, GNP size, and GNP depth was calculated at nanometric spatial resolution for a series of monoenergetic beams. In addition, the dose enhancement was also determined for clinical beams in which the incident photon spectra were obtained using Monte Carlo. Based on the systematic computations of DER as function of x-ray energy and GNP size, optimal photon energies and optimal GNP sizes were determined. In the second chapter, dosimetric properties of GNP-laden target volumes (TV) embedded in a water phantom were investigated as a function of GNP concentration, geometry, and volume. In addition, the characteristics of GNP dose enhancement due to clustering versus homogeneous concentrations are studied. These parameters have importance in today's sophisticated beam delivery techniques, when modifying the beam intensity and direction provides a conformal dose delivery during treatment. Coupled electron-photon radiation transport computations were performed in high spatial resolution (1 nm -- 10 mum mesh sizes) using the CEPXS/ONEDANT code package. For macroscopic target volumes (>>200 mum thick) the dose enhancement is strongly influenced by self-shielding. Dose uniformity can be achieved only in small volumes with gold concentrations less than 300 mg/g. Charged particle equilibrium (CPE) exists inside the GNP-TV but not at is edges. The dose enhancement ratio (DER) can become <1 at sufficiently far from the target volume. Substantial differences exist on the proximal versus distal sides of the GNP-TV in terms of DER and the effective range within which DER is greater than unity, which forms a disequilibrium (CPDE) rim about the TV. The size of the CPDE rim can significantly vary depending on gold concentration and geometry, ranging from 30-1400 mum on the proximal and 8-120 mum on the distal sides. Due to CPE inside macroscopic GNP-TV volumes, spatially averaged (over ?200 mum) can be approximated using kerma ratios. However, locally varying DER(x) (nanoscopic) and DER within the CPDE rim can only be accurately determined using detailed coupled electron-photon radiation transport computations. The assumption of uniform homogeneous gold distribution in the TV as a surrogate for the presence of GNP clusters can lead to significant discrepancies from the actual DER, ranging from 100% at low energies to 5% at high energies.

  3. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Baring, Matthew G.; Eiles, Matthew T.; Wadiasingh, Zorawar; Taylor, Caitlin A.; Fitch, Catherine J.

    2014-08-01

    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This profound enhancement underpins the anticipation that resonant Compton scattering is a very efficient process in the environs of highly magnetized neutron stars. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, and in the limit of zero vacuum dispersion, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. Such lifetimes are introduced to truncate the resonant cyclotronic divergences via standard Lorentz profiles. The formalism employs both the traditional Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self-consistently treating spin-dependent effects that are so important in the resonances. It is found that the values of the polarization-dependent differential cross section depend significantly on the choice of ST or JL eigenstates when in the fundamental resonance but not outside of it, a characteristic that is naturally expected. Relatively compact analytic forms for the cross sections are presented that will prove useful for astrophysical modelers.

  4. Frequency Dependence of Signal Power and Spatial Reach of the Local Field Potential

    PubMed Central

    ??ski, Szymon; Lindén, Henrik; Tetzlaff, Tom; Pettersen, Klas H.; Einevoll, Gaute T.

    2013-01-01

    Despite its century-old use, the interpretation of local field potentials (LFPs), the low-frequency part of electrical signals recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents following synaptic input, and obvious questions regarding the ‘locality’ of the LFP are: What is the size of the signal-generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal? Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For uncorrelated input only the first factor is relevant, and here a modest reduction (<50%) in the spatial reach is observed for higher frequencies (>100 Hz) compared to the near-DC () value of about . Much larger frequency-dependent effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-frequency () LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency LFP components have larger spatial reach and extend further outside the active population than high-frequency components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of neurons in the population. Our numerical findings are backed up by an intuitive simplified model for the generation of population LFP. PMID:23874180

  5. Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in

    E-print Network

    Michalek, Jeremy J.

    ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

  6. Strong position-dependent effects of sequence mismatches on signal ratios measured using long oligonucleotide microarrays

    PubMed Central

    Rennie, Catriona; Noyes, Harry A; Kemp, Stephen J; Hulme, Helen; Brass, Andy; Hoyle, David C

    2008-01-01

    Background Microarrays are an important and widely used tool. Applications include capturing genomic DNA for high-throughput sequencing in addition to the traditional monitoring of gene expression and identifying DNA copy number variations. Sequence mismatches between probe and target strands are known to affect the stability of the probe-target duplex, and hence the strength of the observed signals from microarrays. Results We describe a large-scale investigation of microarray hybridisations to murine probes with known sequence mismatches, demonstrating that the effect of mismatches is strongly position-dependent and for small numbers of sequence mismatches is correlated with the maximum length of perfectly matched probe-target duplex. Length of perfect match explained 43% of the variance in log2 signal ratios between probes with one and two mismatches. The correlation with maximum length of perfect match does not conform to expectations based on considering the effect of mismatches purely in terms of reducing the binding energy. However, it can be explained qualitatively by considering the entropic contribution to duplex stability from configurations of differing perfect match length. Conclusion The results of this study have implications in terms of array design and analysis. They highlight the significant effect that short sequence mismatches can have upon microarray hybridisation intensities even for long oligonucleotide probes. All microarray data presented in this study are available from the GEO database [1], under accession number [GEO: GSE9669] PMID:18598341

  7. Host selection by an insect herbivore with spatially variable density dependence.

    PubMed

    Wetzel, William C; Strong, Donald R

    2015-11-01

    Many species of phytophagous insects do not oviposit preferentially on plants that yield high offspring performance. One proposed explanation is that negatively density-dependent offspring performance would select for females that disperse eggs among plants to minimize competition. Recent work showing larval density dependence often varies substantially among plants suggests that ovipositing females should not only respond to the density of competitors but also to traits predictive of the strength of density dependence mediated by plants. In this study, we used field and greenhouse experiments to examine oviposition behavior in an insect herbivore that experiences density-dependent larval performance and variability in the strength of that density dependence among host-plant individuals. We found females moved readily among plants in the field and had strong preferences for plants that mediate weak offspring density dependence. Females, however, did not avoid plants with high densities of competitors, despite the fact that offspring performance declines steeply with density on most plants in natural populations. This means females minimize the effects of density dependence on their offspring by choosing plants that mediate only weak larval density dependence, not by choosing plants with low densities of competitors. Our results suggest that explaining the lack of positive preference-performance correlations in many systems may not be as simple as invoking density dependence. Resource selection behavior may depend not just on the presence or absence of density-dependent offspring performance but also on variation in the strength of offspring density dependence among sites within populations. PMID:26120095

  8. DASPK: A new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature-and pressure-dependent rheology

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Yuen, D. A.; Petzold, L. R.

    A new technique is presented for the efficient time-integration of the equations that describe the slow deformation in the Earth's mantle. This method is based on the adaptive, high order implicit solver for differential-algebraic equations (DASPK) and is independent of the choice of spatial discretization technique. Using a standard finite element package for the spatial discretization, it is shown that the solution of the 2-D convection-diffusion equation for temperature can be performed at much lower computational cost, but at the same or higher accuracy, compared to a traditional implicit second-order method. The solution to the full set of 2-D mantle convection equations is 3 to 4 times more efficient. Both in 2-D and 3-D, the memory and CPU-usage of this implementation depends linearly on the number of grid points and has good properties with respect to vectorization and parallelization. As an application of this technique, convection in the Earth's mantle with strongly temperature and pressure dependent rheology is studied in axisymmetric geometry. Models are developed that are consistent with current estimates of surface heat flow and radial viscosity distribution. General characteristics are: a dynamic upper mantle overlying a near-stationary lower mantle; strong plumes rising from the core-mantle boundary, even at high rates of internal heating; and an effective Rayleigh number of nearly two orders of magnitudes lower than commonly used values in the range of 107 to 108.

  9. Selective temporal resections and spatial memory impairment: cue dependent lateralization effects.

    PubMed

    Barkas, Lisa J; Henderson, Jenni L; Hamilton, Derek A; Redhead, Edward S; Gray, William P

    2010-04-01

    Patients who had undergone a unilateral trans-sylvian selective amygdalohippocampectomy as treatment for chronic intractable epilepsy were tested in a virtual Morris Water Maze (MWM) task where they were required to locate a hidden platform as a measure of spatial learning. These individuals' performance on spatial tasks was compared to age-matched healthy controls and drug-matched healthy controls. Training occurred in two different maze environments, one with conventional cues such as windows and doors, and another with abstract cues, such as colours and patterns. Participants searched for a hidden platform in the virtual pool, guided by either the conventional or abstract cues. There was a significant impairment in the surgery group compared to the control groups in all environments, however in the abstract environment only the patients with right-sided lesions were significantly worse than the controls. There was no difference between the groups on a control egocentric navigation task. These results suggest that people who have had right-sided surgery are impaired in spatial tasks, and that the level of impairment on the spatial task may be dependent on the characteristics of the cues such as how easily the cues are verbalised. These results support the notion of the functional lateralization of specific elements of spatial memory and functional lateralization, and may shed light on previous inconsistencies in this area of research. PMID:20064564

  10. Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig

    2004-12-01

    Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.

  11. A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Ge, Kunpeng; Pan, Yongxin; Williams, Wyn; Liu, Qingsong; Qin, Huafeng

    2013-10-01

    Single-domain magnetite particles produced by magnetotactic bacteria (magnetosomes) and aligned in chains are of great interest in the biosciences and geosciences. Here, we investigated angular variation of magnetic properties of aligned Magnetospirillum magneticum AMB-1 cells, each of which contains one single fragmental chain of magnetosomes. With measurements at increasing angles from the chain direction, we observed that (i) the hysteresis loop gradually changes from nearly rectangular to a ramp-like shape (e.g., Bc and remanence decrease), (ii) the acquisition and demagnetization curves of IRM shift toward higher fields (e.g., Bcr increases), and (iii) the FORC diagram shifts toward higher coercivity fields (e.g., Bc,FORC increases). For low-temperature results, compared to unoriented samples, the samples containing aligned chains have a much lower remanence loss of field-cooled (?FC) and zero-field-cooled (?ZFC) remanence upon warming through the Verwey transition, higher ?-ratio (? = ?FC/?ZFC) for the measurement parallel to the chain direction, and lower ?-ratio, larger ?FC and ?ZFC values for the perpendicular measurement. Micromagnetic simulations confirm the experimental observations and reveal that the magnetization reversal of magnetosome chain appears to be noncoherent at low angles and coherent at high angles. The simulations also demonstrate that the angular dependence of magnetic properties is related to the dispersion degree of individual chains, indicating that effects of anisotropy need to be accounted for when using rock magnetism to identify magnetosomes or magnetofossils once they have been preserved in aligned chains. Additionally, this study experimentally demonstrates an empirical correspondence of the parameter Bc,FORC to Bcr rather than Bc, at least for magnetite chains with strong shape anisotropy. This suggests FORC analysis is a good discriminant of magnetofossils in sediments and rocks.

  12. Spatial dependence of gain nonlinearities in InGaAs semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Gomez-Iglesias, Alvaro; Fenn, Julia G.; Mazilu, Michael; Miller, Alan

    2005-09-01

    Counter-propagating sub-picosecond pulses are used to monitor gain saturation along the waveguide of an InGaAs superlattice semiconductor optical amplifier at 1550nm wavelength. The functional form of the spatial dependence of gain saturation is found to depend on pulse energy. These observations are interpreted by combining the optical nonlinearities associated with interband carrier dynamics and carrier heating together and their respective time constants. We show that the results are consistent with the predictions of a propagation model. Implications for all-optical switching, particularly in the limit of full saturation across the whole amplifier, are discussed.

  13. Strong spatial genetic structure in five tropical Piper species: should the Baker–Fedorov hypothesis be revived for tropical shrubs?

    PubMed Central

    Lasso, E; Dalling, J W; Bermingham, E

    2011-01-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker–Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200–750 m) populations showed significant genetic differentiation (Fst 0.11–0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03–0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus. PMID:22393518

  14. Prokaryotes in Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks

    PubMed Central

    Uksa, Marie; Schloter, Michael; Endesfelder, David; Kublik, Susanne; Engel, Marion; Kautz, Timo; Köpke, Ulrich; Fischer, Doreen

    2015-01-01

    Microbial communities in soil provide a wide range of ecosystem services. On the small scale, nutrient rich hotspots in soil developed from the activities of animals or plants are important drivers for the composition of microbial communities and their functional patterns. However, in subsoil, the spatial heterogeneity of microbes with differing lifestyles has been rarely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in top- and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophic and copiotrophic microbes was assessed. Four bacterial clusters were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, representing mostly copiotrophic bacteria, were affiliated mainly to the rhizosphere and drilosphere—both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, bacterial phyla which harbor many oligotrophic bacteria, were the most abundant groups in bulk subsoil. The bacterial core microbiome in this soil was estimated to cover 7.6% of the bacterial sequencing reads including both oligotrophic and copiotrophic bacteria. In contrast the archaeal core microbiome includes 56% of the overall archaeal diversity. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea build a stable backbone of the soil prokaryotes due to their low variability in the different soil compartments. PMID:26635741

  15. Strong spatial segregation between wildcats and domestic cats may explain low hybridization rates on the Iberian Peninsula.

    PubMed

    Gil-Sánchez, J M; Jaramillo, J; Barea-Azcón, J M

    2015-12-01

    The European wildcat (Felis silvestris silvestris) is an endangered felid impacted by genetic introgression with the domestic cat (Felis silvestris catus). The problem of hybridization has had different effects in different areas. In non-Mediterranean regions pure forms of wildcats became almost extinct, while in Mediterranean regions genetic introgression is a rare phenomenon. The study of the potential factors that prevent the gene flow in areas of lower hybridization may be key to wildcat conservation. We studied the population size and spatial segregation of wildcats and domestic cats in a typical Mediterranean area of ancient sympatry, where no evidence of hybridization had been detected by genetic studies. Camera trapping of wild-living cats and walking surveys of stray cats in villages were used for capture-recapture estimations of abundance and spatial segregation. Results showed (i) a low density of wildcats and no apparent presence of putative hybrids; (ii) a very low abundance of feral cats in spite of the widespread and large population sources of domestic cats inhabiting villages; (iii) strong spatial segregation between wildcats and domestic/feral cats; and (iv) no relationship between the size of the potential population sources and the abundance of feral cats. Hence, domestic cats were limited in their ability to become integrated into the local habitat of wildcats. Ecological barriers (habitat preferences, food limitations, intra-specific and intra-guild competition, predation) may explain the severe divergences of hybridization impact observed at a biogeographic level. This has a direct effect on key conservation strategies for wildcats (i.e., control of domestic cats). PMID:26358989

  16. Visualisation of structural inhomogeneities in strongly scattering media using the method of spatially-resolved reflectometry: Monte Carlo simulation

    SciTech Connect

    Bykov, A V; Priezzhev, A V; Myllylae, Risto A

    2011-06-30

    Two-dimensional spatial intensity distributions of diffuse scattering of near-infrared laser radiation from a strongly scattering medium, whose optical properties are close to those of skin, are obtained using Monte Carlo simulation. The medium contains a cylindrical inhomogeneity with the optical properties, close to those of blood. It is shown that stronger absorption and scattering of light by blood compared to the surrounding medium leads to the fact that the intensity of radiation diffusely reflected from the surface of the medium under study and registered at its surface has a local minimum directly above the cylindrical inhomogeneity. This specific feature makes the method of spatially-resolved reflectometry potentially applicable for imaging blood vessels and determining their sizes. It is also shown that blurring of the vessel image increases almost linearly with increasing vessel embedment depth. This relation may be used to determine the depth of embedment provided that the optical properties of the scattering media are known. The optimal position of the sources and detectors of radiation, providing the best imaging of the vessel under study, is determined. (biophotonics)

  17. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    PubMed

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory. PMID:23917430

  18. Time-dependent analysis of 8 days of CN spatial profiles in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Combi, Michael; Huang, Bormin; Cochran, Anita; Fink, Uwe; Schulz, Rita

    1994-01-01

    CN profiles in comet P/Halley were constructed from observations taken at three observatories during an 8 day period in April 1986. These data provide a time series of CN spatial profiles spanning just over one 7.37 day period from 1986 April 7 to April 15 and sample distances from the nucleus from just over 10(exp 3) km to 10(exp 6) km. The effect of the 7.37 day periodic variation on the CN distribution in P/Halley has been examined by using the time-dependent model applied earlier to a subset of the data. Because of the large spatial scale of the data on April 7, 8, and 9 (approx. 10(exp 6) km), and the corresponding transport time in the coma, information present in the spatial profiles regarding the gas production rate actually covers nearly two full periods. These spatially extended profiles clearly show the wavy structures outside 10(exp 5) km. Such structures were predicted in a previous analysis (Combi & Fink 1993) that was based solely on the photometric light curve and on profiles which only extended to distances less than 10(exp 5) km. We are now able to reproduce the highly variable Halley correction for the variation in gas production rate.

  19. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status.

    PubMed

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike (Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status ('competition hypothesis'), physiological tolerance to environmental conditions ('physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources ('trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species. PMID:23812603

  20. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status

    NASA Astrophysics Data System (ADS)

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike ( Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status (`competition hypothesis'), physiological tolerance to environmental conditions (`physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources (`trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species.

  1. Carrier type dependence on spatial asymmetry of unipolar resistive switching of metal oxides

    NASA Astrophysics Data System (ADS)

    Nagashima, Kazuki; Yanagida, Takeshi; Kanai, Masaki; Celano, Umberto; Rahong, Sakon; Meng, Gang; Zhuge, Fuwei; He, Yong; Ho Park, Bae; Kawai, Tomoji

    2013-10-01

    We report a carrier type dependence on the spatial asymmetry of unipolar resistive switching for various metal oxides, including NiOx, CoOx, TiO2-x, YSZ, and SnO2-x. n-type oxides show a unipolar resistive switching at the anode side whereas p-type oxides switch at the cathode side. During the forming process, the electrical conduction path of p-type oxides extends from the anode to cathode while that of n-type oxides forms from the cathode to anode. The carrier type of switching oxide layer critically determines the spatial inhomogeneity of unipolar resistive switching during the forming process possibly triggered via the oxygen ion drift.

  2. Folding Study of Venus Reveals a Strong Ion Dependence of Its Yellow Fluorescence under Mildly Acidic Conditions*S

    E-print Network

    Jackson, Sophie

    Folding Study of Venus Reveals a Strong Ion Dependence of Its Yellow Fluorescence under Mildly- cencethatisrelativelyinsensitivetochangesinpHandionconcen- trations. Here, we present a detailed study of the stability and fold- ing of Venus. By following hydrogen-deuterium exchange of 15 N-labeled Venus using NMR spectroscopy over 13 months, residue

  3. Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water

    E-print Network

    Chen, Sow-Hsin

    Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point the crystallization and study the pressure effect on the dynamical behavior in deeply supercooled state using neutron that the transition temperature decreases steadily with an increasing pressure, until it intersects the homogenous

  4. Dependency of parameter values of a crop model on the spatial scale of simulation

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Tanaka, Yukiko; Sakurai, Gen; Ishigooka, Yasushi; Yokozawa, Masayuki

    2014-09-01

    Reliable regional-scale representation of crop growth and yields has been increasingly important in earth system modeling for the simulation of atmosphere-vegetation-soil interactions in managed ecosystems. While the parameter values in many crop models are location specific or cultivar specific, the validity of such values for regional simulation is in question. We present the scale dependency of likely parameter values that are related to the responses of growth rate and yield to temperature, using the paddy rice model applied to Japan as an example. For all regions, values of the two parameters that determine the degree of yield response to low temperature (the base temperature for calculating cooling degree days and the curvature factor of spikelet sterility caused by low temperature) appeared to change relative to the grid interval. Two additional parameters (the air temperature at which the developmental rate is half of the maximum rate at the optimum temperature and the value of developmental index at which point the crop becomes sensitive to the photoperiod) showed scale dependency in a limited region, whereas the remaining three parameters that determine the phenological characteristics of a rice cultivar and the technological level show no clear scale dependency. These results indicate the importance of using appropriate parameter values for the spatial scale at which a crop model operates. We recommend avoiding the use of location-specific or cultivar-specific parameter values for regional crop simulation, unless a rationale is presented suggesting these values are insensitive to spatial scale.

  5. Paramagnetic Meissner effect and strong time dependence at high fields in melt-textured high- T C superconductors

    NASA Astrophysics Data System (ADS)

    de Paiva Gouvêa, Cristol; Dias, Fábio Teixeira; das Neves Vieira, Valdemar; da Silva, Douglas Langie; Schaf, Jacob; Wolff-Fabris, Frederik; Rovira, Joan Josep Roa

    2013-05-01

    In this work we report on systematic field-cooled magnetization experiments in melt-textured YBa2Cu3O7- ? samples containing Y211 precipitates. Magnetic fields up to 14 T were applied either parallel or perpendicular to the ab planes and a strong paramagnetic response related to the superconducting state was observed. This effect is known as paramagnetic Meissner effect (PME). The magnitude of the PME increases when the field is augmented. This effect shows a strong paramagnetic relaxation, such that the paramagnetic moment increases as a function of the time. The pinning by the Y211 particles plays a crucial role in the explanation of this effect and our results suggest that the pinning capacity can produce a strong flux compression into the sample, originating the PME and the strong time dependence.

  6. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    SciTech Connect

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  7. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  8. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  9. Strong renormalization scheme dependence in {tau}-lepton decay: Fact or fiction?

    SciTech Connect

    Chyla, J.

    1995-05-01

    The question of the renormalization scheme dependence of the {tau} semileptonic decay rate is examined in response to a recent criticism. Particular attention is payed to a distinction between a consistent quantitative description of this dependence and the actual selection of a subset of ``acceptable`` renormalization schemes. It is pointed out that this criticism is valid only within a particular definition of the ``strength`` of the renormalization scheme dependence and should not discourage further attempts to use the semileptonic {tau} decay rate for quantitative tests of perturbative QCD.

  10. Relative spatial frequency tuning and its contrast dependency in human perception.

    PubMed

    Naito, Tomoyuki; Suematsu, Naofumi; Matsumoto, Eriko; Sato, Hiromichi

    2014-01-01

    Several physiological studies in cats and monkeys have reported that the spatial frequency (SF) tuning of visual neurons varies depending on the luminance contrast and size of stimulus. However, comparatively little is known about the effect of changing the stimulus contrast and size on SF tuning in human perception. In the present study, we investigated the effects of stimulus size and luminance contrast on human SF tuning using the subspace-reverse-correlation method. Measuring SF tunings at six different stimulus sizes and three different luminance contrast conditions (90%, 10%, and 1%), we found that human perception exhibits significant stimulus-size-dependent SF tunings. At 90% and 10% contrast, participants exhibited relative SF tuning (cycles/image) rather than absolute SF tuning (cycles/°) at response peak latency. On the other hand, at 1% contrast, the magnitude of the size-dependent-peak SF shift was too small for strictly relative SF tuning. These results show that human SF tuning is not fixed, but varies depending on the stimulus size and contrast. This dependency may contribute to size-invariant object recognition within an appropriate contrast rage. PMID:25413628

  11. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    PubMed Central

    Yi, M.; Liu, Z-K; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z.Q.; Chu, C.W.; Fisher, I.R.; Si, Q.; Shen, Z.-X.; Lu, D.H.

    2015-01-01

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. PMID:26204461

  12. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Yi, M.; Liu, Z.-K.; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z. Q.; Chu, C. W.; Fisher, I. R.; Si, Q.; Shen, Z.-X.; Lu, D. H.

    2015-07-01

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

  13. Strongly bias-dependent tunnel magnetoresistance in manganite spin filter tunnel junctions.

    PubMed

    Prasad, Bhagwati; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2015-05-20

    A highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer. Thinner barrier devices exhibit conventional SFTJ behaviors; however, for larger barrier thicknesses, the TMR-bias dependence is more complex and reverses sign at higher bias. PMID:25845706

  14. Spatial Patterns of Seed Dispersal by White-Faced Capuchins in Costa Rica: Evaluating Distant-Dependent Seed Mortality

    E-print Network

    Fedigan, Linda M.

    Spatial Patterns of Seed Dispersal by White-Faced Capuchins in Costa Rica: Evaluating Distant-Dependent Seed Mortality Kim Valenta and Linda M. Fedigan1 Department of Anthropology, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T2N-1N4, Canada ABSTRACT Spatial patterns of seed dispersal

  15. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America

    PubMed Central

    Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun

    2009-01-01

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692

  16. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    SciTech Connect

    Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.; Von Steiger, Rudolf

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  17. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    PubMed

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-01

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (?S/m)(2). PMID:26275499

  18. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Osei, Frank B.; Duker, Alfred A.; Augustijn, Ellen-Wien; Stein, Alfred

    2010-10-01

    Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs ( R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs ( R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.

  19. Size-dependent interbranch peculiarities of X-ray extinction in strongly bent crystals.

    PubMed

    Shevchenko, Michael

    2007-05-01

    X-ray diffraction from homogeneously bent crystals is studied within the interbranch resonance concept for large gradient. It is shown that strong deformations lead to an interbranch phase modulation of the transmitted and diffracted waves. It is predicted that prominent extinction effects occur due to the interbranch phase changes. These features are very sensitive to the crystal thickness, so that changes of the order of the interbranch extinction length can affect considerably the rocking-curve structure. Numerical calculations of the diffracted intensity are carried out to illustrate this. PMID:17435292

  20. Spatial Organization of the Cell Cytoplasm by Position-Dependent Phase Separation

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Brangwynne, Clifford P.; Gharakhani, Jöbin; Hyman, Anthony A.; Jülicher, Frank

    2013-08-01

    During asymmetric cell division, cytoplasmic components are segregated to opposite sides of the cell. We discuss how the observed segregation can be achieved by a position-dependent phase separation mechanism controlled by a protein concentration gradient. We show that effects of even a weak gradient can be amplified by the phase transition to achieve strong segregation. We compare our theory to the segregation of germ granules observed during the divisions in the C. elegans embryo. Our study demonstrates how liquid-liquid phase separation can play a key role in the organization of the cytoplasm.

  1. Spatial organization of the cell cytoplasm by position-dependent phase separation.

    PubMed

    Lee, Chiu Fan; Brangwynne, Clifford P; Gharakhani, Jöbin; Hyman, Anthony A; Jülicher, Frank

    2013-08-23

    During asymmetric cell division, cytoplasmic components are segregated to opposite sides of the cell. We discuss how the observed segregation can be achieved by a position-dependent phase separation mechanism controlled by a protein concentration gradient. We show that effects of even a weak gradient can be amplified by the phase transition to achieve strong segregation. We compare our theory to the segregation of germ granules observed during the divisions in the C. elegans embryo. Our study demonstrates how liquid-liquid phase separation can play a key role in the organization of the cytoplasm. PMID:24010479

  2. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (?25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780

  3. Spatially Extended 21 cm Signal from Strongly Clustered Uv and X-Ray Sources in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Xu, Hao; Norman, Michael L.; Alvarez, Marcelo A.; Wise, John H.

    2015-03-01

    We present our prediction for the local 21 cm differential brightness temperature (?Tb) from a set of strongly clustered sources of Population III (Pop III) and II (Pop II) objects in the early universe, by a numerical simulation of their formation and radiative feedback. These objects are located inside a highly biased environment, which is a rare, high-density peak (“Rarepeak”) extending to ?7 comoving Mpc. We study the impact of ultraviolet and X-ray photons on the intergalactic medium (IGM) and the resulting ?Tb, when Pop III stars are assumed to emit X-ray photons by forming X-ray binaries very efficiently. We parameterize the rest-frame spectral energy distribution of X-ray photons, which regulates X-ray photon-trapping, IGM-heating, secondary Ly? pumping and the resulting morphology of ?Tb. A combination of emission (?Tb > 0) and absorption (?Tb < 0) regions appears in varying amplitudes and angular scales. The boost of the signal by the high-density environment (? ? 0.64) and on a relatively large scale combines to make Rarepeak a discernible, spatially extended (? ? 10?) object for 21 cm observation at 13 ? z ? 17, which is found to be detectable as a single object by SKA with integration time of ?1000 hr. Power spectrum analysis by some of the SKA precursors (Low Frequency Array, Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization) of such rare peaks is found to be difficult due to the rarity of these peaks, and the contribution only by these rare peaks to the total power spectrum remains subdominant compared to that by all astrophysical sources.

  4. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    NASA Astrophysics Data System (ADS)

    Göttsche, Malte; Kirchner, Gerald

    2015-10-01

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  5. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  6. Implementation of Hydrodynamical Formulation of Time-Dependent Density Functional Theory for Probing Multiphoton Processes in Strong Fields

    NASA Astrophysics Data System (ADS)

    Roy, A. K.; Chu, Xi; Carrera, Juan; Chu, Shih-I.

    2001-05-01

    We extend the hydrodynamical formulation of time-dependent density We extend the hydrodynamical formulation of time-dependent density functional theory (TDDFT) to the study of multiphoton processes of many-electron atomic systems in intense laser fields. The initial state of the quantum system is obtained by the imaginary time propagation method. The generalized pseudospectral time-dependent techniques [1,2] are used for accurate and efficient solution of both imaginary time propagation and strong field calculations. The procedure is applied to the study of the nonlinear optical response of rare gas atoms to intense laser fields [3]. [1] X. M. Tong and S.I. Chu, Chem. Phys. 217 (1997) 119. [2] X. Chu and S. I. Chu, Phys. Rev. A63 (2001) 023411. [3] A. K. Roy, X. Chu, J. Carrera, and S.I. Chu, to be published.

  7. Spatial dependent van der Waals energy between graphene and boron-nitride

    NASA Astrophysics Data System (ADS)

    Neek-Amal, Mehdi; Peeters, Francois; Condensed Matter Group, University of Antwerp Collaboration

    2014-03-01

    The small mismatch between the honeycomb lattices of graphene (GE) and boron nitrate (h-BN) leads to long wavelength Moiré patterns. In order to describe such patterns it will require large size unit cells that are unattainable with ab-initio calculations. Earlier density functional theory calculations imposed lattice matching between graphene and h-BN which induces strain and opens a gap of 4 meV. In previous works the Moiré pattern in GE/h-BN was connected to the van der Waals interaction, but a clear theoretical microscopic analysis is still missing. We used atomistic simulations with very large unit cells to investigate quantitative aspects of the connection between the vdW interaction and the Moiré patterns. The value and symmetry of the spatial dependent vdW energy is obtained which agrees with the recently reported Moiré patterns. Acknowledgement: This work was supported by FWO-Vl, EU-Marie Curie and the Methusalem foundation.

  8. A comparison of the spatial dependence of body mass index among adults and children in a Swiss general population

    PubMed Central

    Guessous, I; Joost, S; Jeannot, E; Theler, J-M; Mahler, P; Gaspoz, J-M; Cantoreggi, Nicola; Chételat, Joël; Simos, Jean

    2014-01-01

    Background: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. Methods: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35–74 years) and children (6–7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high–high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. Results: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. Conclusions: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions. PMID:24614662

  9. Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons.

    PubMed

    Natterer, Fabian D; Zhao, Yue; Wyrick, Jonathan; Chan, Yang-Hao; Ruan, Wen-Ying; Chou, Mei-Yin; Watanabe, Kenji; Taniguchi, Takashi; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-06-19

    The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features. We thereby map the total graphene phonon density of states, in good agreement with density functional calculations. Unexpectedly, an abrupt change in the phonon intensity is observed when the graphene charge carrier type is switched through a variation of the back-gate electrode potential. This sudden variation in phonon intensity is asymmetric in the carrier type, depending on the sign of the tunneling bias. PMID:26196985

  10. Seismo-acoustic propagation in environments that depend strongly on both range and depth

    NASA Astrophysics Data System (ADS)

    Outing, Donald A.; Siegmann, William L.; Dorman, LeRoy M.; Collins, Michael D.

    2002-11-01

    The parabolic equation method provides an excellent combination of accuracy and efficiency for range-dependent ocean acoustics and seismology problems. This approach is highly developed for problems in which the ocean bottom can be modeled as a fluid. For the elastic case, there remain some accuracy limitations for problems involving sloping interfaces. Progress on this problem has been made by combining a new formulation of the elastic parabolic equation that handles layering more effectively [W. Jerzak, ''Parabolic Equations for Layered Elastic Media,'' doctoral dissertation, Rensselaer Polytechnic Institute, Troy, NY (2001)] and a mapping approach that handles sloping interfaces accurately [J. Acoust. Soc. Am. 107, 1937-1942 (2000)]. This approach makes it possible to handle problems involving complex layering and steep slopes, but the rate of change of the slope must be small. The method and its application to data will be described. Our immediate goal is to model propagation of seismic surface waves propagating across a transition between dry and marshy terrain. We have suitable data applicable to vehicle-tracking problems from Marine Corps Base Camp, Pendleton, CA. [Work supported by ONR.

  11. Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica.

    PubMed

    Valdivia, Nelson; Díaz, María J; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván

    2014-01-01

    Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114

  12. Up, Down, and All Around: Scale-Dependent Spatial Variation in Rocky-Shore Communities of Fildes Peninsula, King George Island, Antarctica

    PubMed Central

    Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván

    2014-01-01

    Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114

  13. The abundance of satellites depends strongly on the morphology of the host galaxy

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo; Trujillo, Ignacio; Mármol-Queraltó, Esther

    2015-12-01

    Using the spectroscopic catalogue of the Sloan Digital Sky Survey Data Release 10, we have explored the abundance of satellites around a sample of 254 massive (1011 < M? < 2 × 1011 M?) local (z < 0.025) galaxies. We have divided our sample into four morphological groups (E, S0, Sa, Sb/c). We find that the number of satellites with M? ? 109 M? and R < 300 kpc depends drastically on the morphology of the central galaxy. The average number of satellites per galaxy host (NSat/NHost) down to a mass ratio of 1:100 is 4.5 ± 0.3 for E hosts, 2.6 ± 0.2 for S0, 1.5 ± 0.1 for Sa and 1.2 ± 0.2 for Sb/c. The amount of stellar mass enclosed by the satellites around massive E-type galaxies is a factor of 2, 4 and 5 larger than the mass in the satellites of S0, Sa and Sb/c types, respectively. If these satellites would eventually infall into the host galaxies, for all the morphological types, the merger channel will be largely dominated by satellites with a mass ratio satellite-host ? > 0.1. The fact that massive elliptical galaxies have a significant larger number of satellites than massive spirals could point out that elliptical galaxies inhabit heavier dark matter haloes than equally massive galaxies with later morphological types. If this hypothesis is correct, the dark matter haloes of late-type spiral galaxies are a factor of ˜2-3 more efficient on producing galaxies with the same stellar mass than those dark matter haloes of early-type galaxies.

  14. Tissue-Dependent and Spatially-Variant Positron Range Correction in 3D PET.

    PubMed

    Cal-Gonzalez, Jacobo; Perez-Liva, Mailyn; Herraiz, Joaquin L; Vaquero, Juan J; Desco, Manuel; Udias, Jose M

    2015-11-01

    Positron range (PR) is a significant factor that limits PET image resolution, especially with some radionuclides currently used in clinical and preclinical studies such as (82)Rb, (124)I and (68)Ga. The use of an accurate model of the PR in the image reconstruction may minimize its impact on the image quality. Nevertheless, PR distributions are difficult to model, as they may be different at each voxel and direction, depending on the materials that the positron flies through. Several approximated methods have been proposed, considering only one or several propagating media without taking into account boundaries effects. In some regions, like lungs or trachea, these methods may not be accurate enough and yield artifacts. In this work, we present an efficient method to accurately incorporate spatially-variant PR corrections. The method is based on pre-computing voxel-dependent PR kernels using a CT or a manually segmented image, and a model of the dependence of the PR on each material derived from Monte Carlo simulations. The images are convoluted with these kernels in the forward-projection step of the iterative reconstruction algorithm. This implementation of the algorithm adds a modest overhead to the overall reconstruction time and it obtains artifact-free PR-corrected images, even when the activity is concentrated at tissue boundaries with extreme changes of density. We verified the method with the preclinical Argus PET/CT scanner, but it can be also applied to other scanners and improve the image quality in clinical PET studies using isotopes with large PR. PMID:26011878

  15. Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaki; Schubert, Gerald; Zebib, Abdelfattah

    1991-12-01

    A numerical simulation of three-dimensional thermal-convection structure in a fluid with strongly temperature-dependent viscosity filling a bottom-heated rectangular box is presented. It is shown that the convective flow patterns obtained in the numerical simulation are consistent with predictions of Busse and Frick (1985). The planform of the convection obtained for a fluid in a bottom-heated box of aspect ratio a(x) = 3 and a(y) = 1.5 at R sub t = 10 exp 5 was the same as the one obtained by Travis et al. (1990).

  16. Strong localization induced anomalous temperature dependence exciton emission above 300?K from SnO{sub 2} quantum dots

    SciTech Connect

    Pan, S. S. E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.; Xu, S. C.; Luo, Y. Y.; Li, G. H. E-mail: ghli@issp.ac.cn

    2015-05-07

    SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300?K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defects and local potential fluctuation in SnO{sub 2} QDs.

  17. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    SciTech Connect

    Hayrapetyan, A.G.; Grigoryan, K.K.; Petrosyan, R.G.; Fritzsche, S.; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period ? is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods ? between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

  18. Strong-field absorption and emission of radiation in two-electron systems calculated with time-dependent natural orbitals

    E-print Network

    Brics, M; Bauer, D

    2015-01-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper, the method is tested against high-order harmonic generation (HHG) and Fano profiles in absorption spectra with the help of a numerically exactly solvable one-dimensional model He atom, starting from the spin-singlet ground state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing states, and HHG is a strong-field phenomenon well beyond linear response. TDRNOT with just one natural orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent density functional theory (TDDFT) in exact exchange-only approximation. It is not unexpected that TDDFT fails in reproducing Fano profiles ...

  19. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.

    PubMed

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures. PMID:24309909

  20. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550?fs when the frequency is increased from 3,100 to 3,700?cm?1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  1. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120?m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  2. Late-time Hohlraum Simulations: Spatial Dependence of X-Rays from NIF Targets

    NASA Astrophysics Data System (ADS)

    Eder, David; Koniges, Alice; Marinak, Marty

    2001-10-01

    The simulation of the late-time (t > 50 ns) behavior of hohlraums requires a proper treatment of the hohlraum expansion. While the outer walls of the hohlraum are expanding, the laser entrance hole (LEH) can be filled to an extent such that x-rays can no longer easily escape. Closure of the LEH to incoming laser light has been studied by a number of authors, but closure of the LEH to escaping x-rays has received little attention. We present 1 and 2D LASNEX results as well as 2 and 3D HYDRA results for NIF hohlraums. The spatial dependence of the x-rays from NIF targets is important because the x-ray fluence is sufficient to ablate and shock spall diagnostic components. The resulting debris and shrapnel can have a large impact on the lifetimes of the NIF debris shields.1 1) D. C. Eder, M. T. Tobin, O. S. Jones, D. G. Braun, M. J. Shaw, R. E. Tokheim, T. Cooper, and B. Lew, "Methodology for Shrapnel and Debris Impact and an Assessment for an Experiment Planned for NIF", UCRL-ID-140691, NIF 0058102 (2001). * This work was performed under the auspices of the U.S. Department of Energy by UC under Contract No. W-7405-Eng-48.

  3. The phenology of space: Spatial aspects of bison density dependence in Yellowstone National Park

    USGS Publications Warehouse

    Taper, M.L.; Meagher, M.; Jerde, C.L.

    2000-01-01

    The Yellowstone bison represent the only bison population in the United States that survived in the wild the near-extermination of the late 1800's. This paper capitalizes on a unique opportunity provided by the record of the bison population of Yellowstone National Park (YNP). This population has been intensely monitored for almost four decades. The analysis of long-term spatio-temporal data from 1970-1997 supports the following conclusions. 1) Even though the Yellowstone bison herd exhibits an extended period of what appears to be linear growth, this pattern can be explained with classical density dependent dynamics if one realizes that perhaps the primary response of the herd to increased density is range expansion. 2) Several spatial aspects of social behavior in the YNP bison may be behavioral adaptations by the bison to environmental changes. These behavioral strategies may buffer, temporarily at least, bison population dynamics from the immediate repercussions of possible environmental stress and habitat deterioration. 3) Bison ecological carrying capacity for YNP is on the order of 2800 to 3200 animals. 4) There do appear to be indications of changes in the bison dynamics that are associated with increasing use of sections of the interior road system in winter. 5) The possibility of habitat degradation is indicated.

  4. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus

    PubMed Central

    Burns, Jean H.; Anacker, Brian L.; Strauss, Sharon Y.; Burke, David J.

    2015-01-01

    Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that ‘everything is not everywhere’, and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition. PMID:25818073

  5. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    PubMed

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be more resilient to climate change than large ones. PMID:25044507

  6. Radwell, N., Clark, T. W., Piccirillo, B., Barnett, S. M., and Franke-Arnold, S. (2015) Spatially dependent electromagnetically induced

    E-print Network

    2015-01-01

    ) Spatially dependent electromagnetically induced transparency. Physical Review Letters, 114(12), 123603 of structured light through cold rubidium atoms and observe regions of electromagnetically induced transparency (EIT), using the phase profile as control parameter for the atomic opacity. With q-plates we generate

  7. Strong-field absorption and emission of radiation in two-electron systems calculated with time-dependent natural orbitals

    E-print Network

    M. Brics; J. Rapp; D. Bauer

    2015-10-06

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper, the method is tested against high-order harmonic generation (HHG) and Fano profiles in absorption spectra with the help of a numerically exactly solvable one-dimensional model He atom, starting from the spin-singlet ground state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing states, and HHG is a strong-field phenomenon well beyond linear response. TDRNOT with just one natural orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent density functional theory (TDDFT) in exact exchange-only approximation. It is not unexpected that TDDFT fails in reproducing Fano profiles due to the lack of doubly excited, autoionizing states. HHG spectra, on the other hand, are widely believed to be well-captured by TDDFT. However, HHG spectra of helium may display a second plateau that originates from simultaneous HHG in He$^+$ and neutral He. It is found that already TDRNOT with two natural orbitals per spin is sufficient to capture this effect as well as the Fano profiles on a qualitative level. With more natural orbitals (6--8 per spin) quantitative agreement can be reached. Errors due to the truncation to a finite number of orbitals are identified.

  8. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  9. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO3-based ceramics

    NASA Astrophysics Data System (ADS)

    Huan, Yu; Wang, Xiaohui; Li, Longtu; Koruza, Jurij

    2015-11-01

    The nonlinear dielectric response in (Na0.52K0.4425Li0.0375)(Nb0.92-xTaxSb0.08)O3 ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  10. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  11. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  12. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    EPA Science Inventory

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  13. Order-dependent mappings: Strong-coupling behavior from weak-coupling expansions in non-Hermitian theories

    SciTech Connect

    Zinn-Justin, Jean; Jentschura, Ulrich D.

    2010-07-15

    A long time ago, it has been conjectured that a Hamiltonian with a potential of the form x{sup 2}+ivx{sup 3}, v real, has a real spectrum. This conjecture has been generalized to a class of the so-called PT symmetric Hamiltonians and some proofs have been given. Here, we show by numerical investigation that the divergent perturbation series can be summed efficiently by an order-dependent mapping (ODM) in the whole complex plane of the coupling parameter v{sup 2}, and that some information about the location of level-crossing singularities can be obtained in this way. Furthermore, we discuss to which accuracy the strong-coupling limit can be obtained from the initially weak-coupling perturbative expansion, by the ODM summation method. The basic idea of the ODM summation method is the notion of order-dependent 'local' disk of convergence and analytic continuation by an ODM of the domain of analyticity augmented by the local disk of convergence onto a circle. In the limit of vanishing local radius of convergence, which is the limit of high transformation order, convergence is demonstrated both by numerical evidence as well as by analytic estimates.

  14. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy

    SciTech Connect

    Beeker, Willem P.; Lee, Chris J.; Boller, Klaus-Jochen; Gross, Petra; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer L.

    2010-01-15

    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground-state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction limit, can be obtained.

  15. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    PubMed

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. PMID:25141823

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    E-print Network

    Martin, Gregory T

    Background: Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. ...

  17. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  18. Site-dependent spectra from the 1999 Turkey earthquakes considering different sets of strong-motion data

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Ende, C.; Habenberger, J.; Lang, D. H.

    2003-04-01

    In the last decade extensive strong-motion measurements were carried out by the reconnaissance team of the German TaskForce for Earthquakes. Aftershocks were recorded by a mesh of temporarily installed strong-motion recorders during the field surveys to Turkey in 1998 (Adana/Ceyhan), 1999 (Izmit/Kocaeli and Duezce/Bolu) and 2002 (Sultandagi/Afyon). Particularly the two missions in 1999 provided a unique and comprehensive database of recorded aftershocks at sites where building damage occurred. In addition, post-earthquake investigations were initiated around the provinces Adana and Kocaeli in October 2000 to gain more insight into the effect of local site conditions. Therefore, microtremors were recorded at sites of the previously installed strong-motion accelerographs and locations of evident concentration or remarkable scatter of building damage. By applying H/V-spectral ratio method on microtremor data, a classification of the recording sites (into soft soil, stiff soil, rock-type conditions) was performed. For the derivation of attenuation laws different databases were applied. In addition to the aftershock records of the strong-motion stations of German TaskForce for Earthquakes (Schwarz et al., 2002), a small dataset of main- and aftershocks from the 1999 Turkey earthquakes provided by the Kandilli Observatory (KOERI, 2002) and the General Directorate of Disaster Affairs (AFET) could be implied. The magnitude-distance composition of both datasets are quite different in terms of the covered magnitude and distance range. While the dataset of the German TaskForce mainly consists of small magnitude aftershocks (at the present state of elaboration: Ml <= 4.9) being recorded in epicentral distances Re < 70 km, the KOERI dataset is featured by larger magnitudes (Ml = 4.8-7.2) and by a distance range of about 10--250 km. The aftershock database of German TaskForce consists of 538 triaxial acceleration records (rock 53, stiff 52, soft 433), while that of KOERI comprises 145 triaxial acceleration records (rock 6, stiff 36, soft 103). On this basis, three sets of strong motion records were investigated by an one-step as well as a two-step regression analysis (similar to the approach by Ambraseys et al., 1996). Furthermore, parametric studies with respect to the lower bounds of magnitude and source depth were performed. Results indicate that the composition of the dataset and in particular the decision on the lower bound magnitude significantly determine the qualitative spectrum shape. In comparison to the spectra determined by Ambraseys et al. (1996) attenuation functions, the recorded data lead to significant lower accelerations for the borizontal as well as for the vertical components. Furthermore, no significant differences between data from soft and stiff soil recording sites can be observed, supporting the authors opinion that the severity of ground motion during earthquakes is less responsible for the high extent of building damage than the vulnerability of the building stock (which seem to be quite different for one particular building type in dependence on the date of construction). Therefore more attention should be attributed to the investigation of the building inventory.

  19. Discovery of a Strongly Lensed Massive Quiescent Galaxy at z = 2.636: Spatially Resolved Spectroscopy and Indications of Rotation

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Belli, Sirio; Ellis, Richard S.

    2015-11-01

    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z = 2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of {log}{M}*={11.49}-0.16+0.10 and a half-light radius of {R}e,{maj}=1.8+/- 0.4 {{kpc}}. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z\\gt 2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6{R}e-1.6{R}e, which are consistent with an age of 760 Myr. Gas emission in [N ii] broadly traces the spatial distribution of the stars and is coupled with weak H? emission (log [N ii]/{{H}}? =0.6+/- 0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is {? }e,{stars}=271+/- 41 km s{}-1. We detect rotation in the stellar absorption lines for the first time beyond z? 1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of {log}{M}{{dyn}}=11.24+/- 0.14 and V/? =0.70+/- 0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12 ± 0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.

  20. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions

    PubMed Central

    Ogbechi, Joy; Ruf, Marie-Thérèse; Hall, Belinda S.; Bodman-Smith, Katherine; Vogel, Moritz; Wu, Hua-Lin; Stainer, Alexander; Esmon, Charles T.; Ahnström, Josefin; Pluschke, Gerd; Simmonds, Rachel E.

    2015-01-01

    A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions. PMID:26181660

  1. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819

  2. Spatially dependent parameter estimation and nonlinear data assimilation by autosynchronization of a system of partial differential equations.

    PubMed

    Kramer, Sean; Bollt, Erik M

    2013-09-01

    Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial differential equation (PDE) model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modeling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing are discussed. PMID:24089937

  3. Spatially Dependent Parameter Estimation and Nonlinear Data Assimilation by Autosynchronization of a System of Partial Differential Equations

    E-print Network

    Sean Kramer; Eric Bollt

    2012-07-19

    Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a PDE model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modelling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing is discussed.

  4. Temperature Dependence of Structural Relaxation: From ``Super-fragile'' Polymers to ``Super-strong'' Behavior of Water

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei

    2014-03-01

    The microscopic mechanism of the steep temperature dependence of structural relaxation upon approaching Tg still remains a puzzle in the field of dynamics of polymers and soft materials in general. The steepness of the temperature behavior and its deviation from classical Arrhenius law is usually characterized by the fragility index m. This contribution presents an overview of several models proposed to connect molecular parameters to the fragility. We emphasize the Generalized Entropy Theory and its prediction on the role of chain packing in fragility of polymers. Based on this theory and many experimental studies we unravel the role of chain structure, intermolecular interactions and molecular weight in polymer fragility, providing a qualitative explanations of why many polymers exhibit extremely fragile behavior. Next we show that similar qualitative ideas about frustration in packing might be applicable to other glass forming systems. In the last part we discuss the recent discovery of ``super-strong'' behavior of deeply supercooled water and the role of quantum effects in this anomalously low fragility.

  5. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    PubMed

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus. PMID:16771991

  6. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    PubMed Central

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS 81.05.ue; 78.67.Sc; 88.80.fh PMID:25258609

  7. Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era

    NASA Astrophysics Data System (ADS)

    Smerdon, Jason E.; Coats, Sloan; Ault, Toby R.

    2015-06-01

    The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields.

  8. Strong motion characteristics of the M w 6.6 Lushan earthquake, Sichuan, China — an insight into the spatial difference of a typical thrust fault earthquake

    NASA Astrophysics Data System (ADS)

    Hu, Jinjun; Zhang, Wenbo; Xie, Lili; Zhang, Qi; Jiang, Zhijun

    2015-06-01

    Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.

  9. Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M. K.; Glassmeier, K.-H.

    2014-02-01

    The recently established presence of a convective electric field in Saturn’s inner and middle magnetosphere, with an average pointing approximately towards midnight and an intensity less than 1 mV/m, is one of the most puzzling findings by the Cassini spacecraft. In order to better characterize the properties of this electric field, we augmented the original analysis method used to identify it (Andriopoulou et al., 2012) and applied it to an extended energetic electron microsignature dataset, constructed from observations at the vicinity of four saturnian moons. We study the average characteristics of the convective pattern and additionally its temporal and spatial variations. In our updated dataset we include data from the recent Cassini orbits and also microsignatures from the two moons, Rhea and Enceladus, allowing us to further extend this analysis to cover a greater time period as well as larger radial distances within the saturnian magnetosphere. When data from the larger radial range and more recent orbits are included, we find that the originally inferred electric field pattern persists, and in fact penetrates at least as far in as the orbit of Enceladus, a region of particular interest due to the plasma loading that takes place there. We perform our electric field calculations by setting the orientation of the electric field as a free, time-dependent parameter, removing the pointing constraints from previous works. Analytical but also numerical techniques have been employed, that help us overcome possible errors that could have been introduced from simplified assumptions used previously. We find that the average electric field pointing is not directed exactly at midnight, as we initially assumed, but is found to be stably displaced by approximately 12-32° from midnight, towards dawn. The fact, however, that the field’s pointing is much more variable in short time scales, in addition to our observations that it penetrates inside the orbit of Enceladus (?4 Rs), may suggest that the convective pattern is dominating all the way down to the main rings (2.2 Rs), when data from the Saturn Orbit Insertion are factored in. We also report changes of the electric field strength and pointing over the course of time, possibly related to seasonal effects, with the largest changes occurring during a period that envelopes the saturnian equinox. Finally, the average electric field strength seems to be sensitive to radial distance, exhibiting a drop as we move further out in the magnetosphere, confirming earlier results. This drop-off, however, appears to be more intense in the earlier years of the mission. Between 2010 and 2012 the electric field is quasi-uniform, at least between the L-shells of Tethys and Dione. These new findings provide constraints in the possible electric field sources that might be causing such a convection pattern that has not been observed before in other planetary magnetospheres. The very well defined values of the field’s average properties may suggest a periodic variation of the convective pattern, which can average out very effectively the much larger changes in both pointing and intensity over short time scales, although this period cannot be defined. The slight evidence of changes in the properties across the equinox (seasonal control), may also hint that the source of the electric field resides in the planet’s atmosphere/ionosphere system.

  10. Medical Physics, Volume 21, No. 3 1994 , Pages 417427 A spatial-frequency dependent quantum accounting

    E-print Network

    Cunningham, Ian

    with the fewest quanta is called the ``quantum sink,'' limiting the pixel signal-to-noise ratio to less than by the product of all preceding gains, and can be displayed graphically for convenient interpretation. The stage the square root of the number of quanta per pixel. This conventional zero-spatial-frequency ``quantum

  11. Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness

    USGS Publications Warehouse

    Chalfoun, A.D.; Martin, T.E.

    2007-01-01

    1. Identifying the habitat features that influence habitat selection and enhance fitness is critical for effective management. Ecological theory predicts that habitat choices should be adaptive, such that fitness is enhanced in preferred habitats. However, studies often report mismatches between habitat preferences and fitness consequences across a wide variety of taxa based on a single spatial scale and/or a single fitness component. 2. We examined whether habitat preferences of a declining shrub steppe songbird, the Brewer's sparrow Spizella breweri, were adaptive when multiple reproductive fitness components and spatial scales (landscape, territory and nest patch) were considered. 3. We found that birds settled earlier and in higher densities, together suggesting preference, in landscapes with greater shrub cover and height. Yet nest success was not higher in these landscapes; nest success was primarily determined by nest predation rates. Thus landscape preferences did not match nest predation risk. Instead, nestling mass and the number of nesting attempts per pair increased in preferred landscapes, raising the possibility that landscapes were chosen on the basis of food availability rather than safe nest sites. 4. At smaller spatial scales (territory and nest patch), birds preferred different habitat features (i.e. density of potential nest shrubs) that reduced nest predation risk and allowed greater season-long reproductive success. 5. Synthesis and applications. Habitat preferences reflect the integration of multiple environmental factors across multiple spatial scales, and individuals may have more than one option for optimizing fitness via habitat selection strategies. Assessments of habitat quality for management prescriptions should ideally include analysis of diverse fitness consequences across multiple ecologically relevant spatial scales. ?? 2007 The Authors.

  12. Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation.

    PubMed

    Klur, Sandra; Muller, Christophe; Pereira de Vasconcelos, Anne; Ballard, Theresa; Lopez, Joëlle; Galani, Rodrigue; Certa, Ulrich; Cassel, Jean-Christophe

    2009-09-01

    The hippocampus is involved in spatial memory processes, as established in a variety of species such as birds and mammals including humans. In humans, some hippocampal-dependent memory functions may be lateralized, the right hippocampus being predominantly involved in spatial navigation. In rodents, the question of possible lateralization remains open. Therefore, we first microdissected the CA1 subregion of the left and right dorsal hippocampi for analysis of mRNA expression using microarrays in rats having learnt a reference memory task in the Morris water-maze. Relative to untrained controls, 623 genes were differentially expressed in the right hippocampus, against only 74 in the left hippocampus, in the rats that had learnt the hidden platform location. Thus, in the right hippocampus, 299 genes were induced, 324 were repressed, and about half of them participate in signaling and transport, metabolism, and nervous system functions. In addition, most differentially expressed genes associated with spatial learning have been previously related to synaptic plasticity and memory. We then subjected rats to unilateral (left or right) or bilateral reversible functional inactivations in the dorsal hippocampus; lidocaine was infused either before each acquisition session or before retrieval of a reference spatial memory in the Morris water maze. We found that after drug-free acquisition, right or bilateral lidocaine inactivation (vs. left, or bilateral phosphate buffered saline (PBS) infusions) of the dorsal hippocampus just before a delayed (24 h) probe trial impaired performance. Conversely, left or bilateral hippocampus inactivation (vs. right, or bilateral PBS infusions) before each acquisition session weakened performance during a delayed, drug-free probe trial. Our data confirm a functional association between transcriptional activity within the dorsal hippocampus and spatial memory in the rat. Further, they suggest that there could be a leftward bias of hippocampal functions in engram formation or information transfer, and a rightward bias in spatial memory storage/retrieval processes. PMID:19235229

  13. Spatial Analysis to Quantify Numerical Model Bias and Dependence: How Many Climate Models Are There?

    E-print Network

    Jun, Mikyoung

    the Earth's atmosphere, ocean, and land processes are the primary tool to study how climate may change over smoother; Numerical model evaluation. 1. INTRODUCTION Recent changes in the Earth's climate are not strongly related. KEY WORDS: Cross-covariance model; Intergovernmental Panel on Climate Change; Kernel

  14. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2010-10-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme are discussed. This study reveals the possibilities and restrictions of the use of TMPA estimates in the Central Andes and should assist other researchers in the choice of the best resolution-accuracy relationship according to requirements of their applications.

  15. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, Ch.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2011-08-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, for instance, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme are discussed. This study reveals the possibilities and restrictions of the use of TMPA estimates in the Central Andes and should assist other researchers in the choice of the best resolution-accuracy relationship according to requirements of their applications.

  16. Model-Dependent Spatial Skill in Pseudoproxy Experiments Testing Climate Field Reconstruction Methods for the Common Era

    NASA Astrophysics Data System (ADS)

    Smerdon, Jason; Coats, Sloan; Ault, Toby

    2015-04-01

    The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five Last Millennium (LM) and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the pseudoproxy frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across all of the employed methods and spatially dependent reconstruction errors in the derived CFRs. Spectral biases in the reconstructed fields demonstrate that reconstruction methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are spectral biases inherent in the underlying proxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving a larger mean difference between the MCA and LIA in the region. All of the characteristics of reconstruction performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields.

  17. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    SciTech Connect

    Yu, Lifeng Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  18. Determination of the spatial TDR-sensor characteristics in strong dispersive subsoil using 3D-FEM frequency domain simulations in combination with microwave dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Trinks, Eberhard; Kupfer, Klaus

    2007-04-01

    The spatial sensor characteristics of a 6 cm TDR flat band cable sensor section was simulated with finite element modelling (high frequency structure simulator—HFSS) under certain conditions: (i) in direct contact with the surrounding material (air, water of different salinities, different synthetic and natural soils (sand-silt-clay mixtures)), (ii) with consideration of a defined gap of different size filled with air or water and (iii) the cable sensor pressed at a borehole-wall. The complex dielectric permittivity ?sstarf(?, ?i) or complex electrical conductivity ?sstarf(?, ?i) = i??sstarf(?, ?i) of the investigated saturated and unsaturated soils was examined in the frequency range 50 MHz-20 GHz at room temperature and atmospheric pressure with a HP8720D-network analyser. Three soil-specific relaxation processes are assumed to act in the investigated frequency-temperature-pressure range: one primary ?-process (main water relaxation) and two secondary (?', ?)-processes due to clay-water-ion interactions (bound water relaxation and the Maxwell-Wagner effect). The dielectric relaxation behaviour of every process is described with the use of a simple fractional relaxation model. 3D finite element simulation is performed with a ?/3 based adaptive mesh refinement at a solution frequency of 1 MHz, 10 MHz, 0.1 GHz, 1 GHz and 12.5 GHz. The electromagnetic field distribution, S-parameter and step responses were examined. The simulation adequately reproduces the spatial and temporal electrical and magnetic field distribution. High-lossy soils cause, as a function of increasing gravimetric water content and bulk density, an increase in TDR signal rise time as well as a strong absorption of multiple reflections. An air or water gap works as a quasi-waveguide, i.e. the influence of the surrounding medium is strongly reduced. Appropriate TDR-travel-time distortions can be quantified.

  19. Age-dependent effects of neonatal methamphetamine exposure on spatial learning

    PubMed Central

    Vorhees, Charles V.; Skelton, Matthew R.; Williams, Michael T.

    2009-01-01

    Neonatal rats exposed to (+)-methamphetamine (MA) display spatial learning and reference memory deficits in the Morris water maze. In separate experiments the emergence and permanence of these effects were determined. Twenty litters were used in each experiment, and two male/female pairs/litter received saline or MA (5 mg/kg four times a day) on postnatal days (P) 11–20. In experiment 1, one MA and one saline pair from each litter began testing on either P30 or P40, whereas in experiment 2, testing began on P180 or P360. Animals received trials in a straight swimming channel and then in the Morris maze (acquisition, reversal, and reduced platform phases). In both experiments, MA-treated groups showed impaired learning in the platform trials and impaired reference memory in the probe trials, which were largely independent of age. The P30 and P40 MA impairments were seen on acquisition and reduced platform trials but not on reversal. In the probe trials, MA effects were seen during all phases. The P180 and P360 MA-induced deficits were seen in all phases of the platform trials. In probe trials, deficits were only seen during the reversal and reduced platform phases. The results demonstrate that neonatal MA treatment induces spatial learning and reference memory deficits that emerge early and persist until at least 1 year of age, suggesting permanence. PMID:17762523

  20. Spatial frequency hemispheric specialization for filtered faces depends on temporal constraints.

    PubMed

    de Moraes Júnior, Rui; Vasques, Rafael; Cravo, André; Faubert, Jocelyn; Fukusima, Sérgio

    2015-09-01

    This study aimed to investigate how the brain hemispheres use spatial frequencies (SF) information at early stages of visual processing for facial recognition. Thirty participants performed a matching task in which a target face was presented centered on the screen and followed by a probe face in each trial. The probe face was presented lateralized under 3 SF conditions (high, low and broad spatial frequencies) and 2 exposure time conditions (70 and 150 ms). The participants had to judge whether both faces in each trial were from the same person. The results of d' suggest that the right hemisphere is specialized for low SF processing in high temporal constraint, but the left hemisphere is not for high SF. However, high-pass faces were better processed by the left hemisphere. The response time in short time conditions showed that facial recognition is better in the right hemisphere. High-pass faces are slowly processed by the left hemisphere, but with longer exposure time it becomes equivalent to the recognition of low-pass and broadband faces. We conclude that there is a right hemisphere dominance for low SF in brief exposures, but as time progresses high SF are better processed and asymmetry effects are attenuated. PMID:26326370

  1. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  2. Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–2000

    PubMed Central

    CURTIS WHITE, KATHERINE J.

    2008-01-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  3. A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes.

    PubMed

    Chen, Hongtao; Xu, Zhe; Mei, Constance; Yu, Danyang; Small, Stephen

    2012-04-27

    The homeodomain (HD) protein Bicoid (Bcd) is thought to function as a gradient morphogen that positions boundaries of target genes via threshold-dependent activation mechanisms. Here, we analyze 66 Bcd-dependent regulatory elements and show that their boundaries are positioned primarily by repressive gradients that antagonize Bcd-mediated activation. A major repressor is the pair-rule protein Runt (Run), which is expressed in an opposing gradient and is necessary and sufficient for limiting Bcd-dependent activation. Evidence is presented that Run functions with the maternal repressor Capicua and the gap protein Kruppel as the principal components of a repression system that correctly orders boundaries throughout the anterior half of the embryo. These results put conceptual limits on the Bcd morphogen hypothesis and demonstrate how the Bcd gradient functions within the gene network that patterns the embryo. PMID:22541432

  4. Inactivation of the nucleus reuniens/rhomboid causes a delay-dependent impairment of spatial working memory.

    PubMed

    Layfield, Dylan M; Patel, Monica; Hallock, Henry; Griffin, Amy L

    2015-11-01

    Inactivation of the rodent medial prefrontal cortex (mPFC) and hippocampus or disconnection of the hippocampus from the mPFC produces deficits in spatial working memory tasks. Previous studies have shown that delay length determines the extent to which mPFC and hippocampus functionally interact, with both structures being necessary for tasks with longer delays and either structure being sufficient for tasks with shorter delays. In addition, inactivation of the nucleus reuniens (Re)/rhomboid nucleus (Rh) of the thalamus, which has bidirectional connections with the mPFC and hippocampus, also produces deficits in these tasks. However, it is unknown how delay duration relates to the function of Re/Rh. If Re/Rh are critical in modulating mPFC-hippocampus interactions, inactivation of the RE/Rh should produce a delay-dependent impairment in spatial working memory performance. To investigate this question, groups of rats were trained on one of three different spatial working memory tasks: continuous alternation (CA), delayed alternation with a five-second delay (DA5), or with a thirty-second delay (DA30). The Re/Rh were inactivated with muscimol infusions prior to testing. The results demonstrate that inactivation of RE/Rh produces a deficit only on the two DA tasks, supporting the notion that the Re/Rh is a critical orchestrator of mPFC-HC interactions. PMID:26391450

  5. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  6. Task-dependent calibration of auditory spatial perception through environmental visual observation

    PubMed Central

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio task and whether this influence is task-specific or environment-specific or both. To test these issues we investigate possible improvements of acoustic precision with sighted blindfolded participants in two audio tasks [minimum audible angle (MAA) and space bisection] and two acoustically different environments (normal room and anechoic room). With respect to a baseline of auditory precision, we found an improvement of precision in the space bisection task but not in the MAA after the observation of a normal room. No improvement was found when performing the same task in an anechoic chamber. In addition, no difference was found between a condition of short environment observation and a condition of full vision during the whole experimental session. Our results suggest that even short-term environmental observation can calibrate auditory spatial performance. They also suggest that echoes can be the cue that underpins visual calibration. Echoes may mediate the transfer of information from the visual to the auditory system. PMID:26082692

  7. How within field abundance and spatial distribution patterns of earthworms and macropores depend on soil tillage

    NASA Astrophysics Data System (ADS)

    van Schaik, Loes; Palm, Juliane; Schröder, Boris

    2014-05-01

    Earthworms play a key role in soil systems. They are ecosystem engineers affecting soil structure as well as the transport and availability of water and solutes through their burrowing behaviour. There are three different ecological earthworm types with different burrowing behaviour that can result in varying local infiltration patterns: from rapid deep vertical infiltration to a stronger diffuse distribution of water and solutes in the upper soil layers. The small scale variation in earthworm abundance is often very high and within fields earthworm population processes might result in an aggregated pattern. The question arises how the local distribution of earthworms affects spatial distributions of macroporosity and how both are influenced by soil tillage. Therefore we performed a total number of 430 earthworm samplings on four differently tilled agricultural fields in the Weiherbach catchment (South East Germany). Additionally, at a limited amount of 32 locations on two of the fields we performed sprinkling experiments with brilliant blue and excavated the soil to count macropores at different soil depths (10 cm, 30 cm and 50 cm) to compare macropore distributions to the earthworm distributions.

  8. Near or far? It depends on my impression: Moral information and spatial behavior in virtual interactions.

    PubMed

    Iachini, Tina; Pagliaro, Stefano; Ruggiero, Gennaro

    2015-10-01

    Near body distance is a key component of action and social interaction. Recent research has shown that peripersonal space (reachability-distance for acting with objects) and interpersonal space (comfort-distance for interacting with people) share common mechanisms and reflect the social valence of stimuli. The social psychological literature has demonstrated that information about morality is crucial because it affects impression formation and the intention to approach-avoid others. Here we explore whether peripersonal/interpersonal spaces are modulated by moral information. Thirty-six participants interacted with male/female virtual confederates described by moral/immoral/neutral sentences. The modulation of body space was measured by reachability-distance and comfort-distance while participants stood still or walked toward virtual confederates. Results showed that distance expanded with immorally described confederates and contracted with morally described confederates. This pattern was present in both spaces, although it was stronger in comfort-distance. Consistent with an embodied cognition approach, the findings suggest that high-level socio-cognitive processes are linked to sensorimotor-spatial processes. PMID:26386781

  9. Simulations of the Spatial Dependence of Populations in High Field Optical Pumping

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Happer, Will

    2010-03-01

    Optical pumping of alkali atoms forms the basis for many modern experiments including atomic clocks, magnetometers, and hyperpolarization of noble gases and solids. The alkali atoms in these experiments interact with other alkali atoms, the optical pumping laser, buffer gas or noble gas targets, and the glass cell walls or a coating. Recent experimental results at high magnetic fields have shown that ground-state sublevel populations in a cesium vapor exhibit spatial diffusion, each with a different effective diffusion length. At high magnetic fields, each ground-state sublevel can be individually probed with a weak D1 (S1/2->P1/2) laser while a stronger D2 (S1/2->P3/2) laser depopulates a single sublevel. The probe beam is physically translated to measure the populations at different positions in the vapor cell. To try and understand some unexpected features observed in the sublevel populations undergoing optical pumping, we present a numerical model of the density matrix of alkali atoms as a function of position within the vapor cell. Steady-state sublevel populations are shown for atoms undergoing optical pumping, alkali-alkali collisions, alkali-buffer gas collisions, and depolarization at the cell walls, and these results are compared to experimental observations.

  10. Does a hospital's quality depend on the quality of other hospitals? A spatial econometrics approach

    PubMed Central

    Gravelle, Hugh; Santos, Rita; Siciliani, Luigi

    2014-01-01

    We examine whether a hospital's quality is affected by the quality provided by other hospitals in the same market. We first sketch a theoretical model with regulated prices and derive conditions on demand and cost functions which determine whether a hospital will increase its quality if its rivals increase their quality. We then apply spatial econometric methods to a sample of English hospitals in 2009–10 and a set of 16 quality measures including mortality rates, readmission, revision and redo rates, and three patient reported indicators, to examine the relationship between the quality of hospitals. We find that a hospital's quality is positively associated with the quality of its rivals for seven out of the sixteen quality measures. There are no statistically significant negative associations. In those cases where there is a significant positive association, an increase in rivals' quality by 10% increases a hospital's quality by 1.7% to 2.9%. The finding suggests that for some quality measures a policy which improves the quality in one hospital will have positive spillover effects on the quality in other hospitals. PMID:25843994

  11. Task-dependent calibration of auditory spatial perception through environmental visual observation.

    PubMed

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio task and whether this influence is task-specific or environment-specific or both. To test these issues we investigate possible improvements of acoustic precision with sighted blindfolded participants in two audio tasks [minimum audible angle (MAA) and space bisection] and two acoustically different environments (normal room and anechoic room). With respect to a baseline of auditory precision, we found an improvement of precision in the space bisection task but not in the MAA after the observation of a normal room. No improvement was found when performing the same task in an anechoic chamber. In addition, no difference was found between a condition of short environment observation and a condition of full vision during the whole experimental session. Our results suggest that even short-term environmental observation can calibrate auditory spatial performance. They also suggest that echoes can be the cue that underpins visual calibration. Echoes may mediate the transfer of information from the visual to the auditory system. PMID:26082692

  12. Strong decoherence

    E-print Network

    Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B

    1997-01-01

    We introduce a condition for the strong decoherence of a set of alternative histories of a closed quantum-mechanical system such as the universe. The condition applies, for a pure initial state, to sets of homogeneous histories that are chains of projections, generally branch-dependent. Strong decoherence implies the consistency of probability sum rules but not every set of consistent or even medium decoherent histories is strongly decoherent. Two conditions characterize a strongly decoherent set of histories: (1) At any time the operators that effectively commute with generalized records of history up to that moment provide the pool from which --- with suitable adjustment for elapsed time --- the chains of projections extending history to the future may be drawn. (2) Under the adjustment process, generalized record operators acting on the initial state of the universe are approximately unchanged. This expresses the permanence of generalized records. The strong decoherence conditions (1) and (2) guarantee wha...

  13. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

    NASA Astrophysics Data System (ADS)

    Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan

    2006-02-01

    Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or more productive heterogeneous catalysts.

  14. Effects of surround articulation on lightness depend on the spatial arrangement of the articulated region

    NASA Astrophysics Data System (ADS)

    Zemach, Iris K.; Rudd, Michael E.

    2007-07-01

    We investigated the effect of surround articulation on the perceived lightness of a target disk. Surround articulation was manipulated by varying either the number of wedges in a surround consisting of wedges of alternating luminance or the number of checks in a surround consisting of a radial checkerboard pattern. In most conditions, increased articulation caused incremental targets to appear lighter and decremental targets to appear darker. But increasing the surround articulation in a way that did not increase the number of target-coaligned edges in the display did not affect the target lightness. We propose that the effects of surround articulation depend on the relationship between the orientations and contrast polarities of the target edges and those of edges present within the surround.

  15. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications.

    PubMed

    Keating, Peter; King, Andrew J

    2013-01-01

    Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this. PMID:24409125

  16. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications

    PubMed Central

    Keating, Peter; King, Andrew J.

    2013-01-01

    Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this. PMID:24409125

  17. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    NASA Astrophysics Data System (ADS)

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B.; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi; Kalinin, Sergei V.

    2014-10-01

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. These studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

  18. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    PubMed Central

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B.; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi; Kalinin, Sergei V.

    2014-01-01

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. These studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses. PMID:25335689

  19. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    E-print Network

    Iyengar, Srinivasan S.

    Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental infrared the isotopically labeled systems arises from an analysis of the simulated cluster spectroscopy and leads

  20. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    E-print Network

    Iyengar, Srinivasan S.

    Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short, Bloomington, IN 47405 Abstract We investigate and analyze the vibrational properties, including H/D isotope between simulated cluster spectroscopy of the isotopically labeled systems were analyzed from a system

  1. Bit error rate analysis of free-space optical system with spatial diversity over strong atmospheric turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Krishnan, Prabu; Sriram Kumar, D.

    2014-12-01

    Free-space optical communication (FSO) is emerging as a captivating alternative to work out the hindrances in the connectivity problems. It can be used for transmitting signals over common lands and properties that the sender or receiver may not own. The performance of an FSO system depends on the random environmental conditions. The bit error rate (BER) performance of differential phase shift keying FSO system is investigated. A distributed strong atmospheric turbulence channel with pointing error is considered for the BER analysis. Here, the system models are developed for single-input, single-output-FSO (SISO-FSO) and single-input, multiple-output-FSO (SIMO-FSO) systems. The closed-form mathematical expressions are derived for the average BER with various combining schemes in terms of the Meijer's G function.

  2. Spatial Dependence and Mitigation of Radiation Damage by a Line Focus Mini Beam

    SciTech Connect

    Finfrock, Y.Z.; Evans-Lutterodt, K.; Stern, E.A.; Yacoby, Y.; Alkire, R.W.; Stein, A.; Isakovic, A.F.; Kas, J. J.; Joachimiak, A.

    2010-09-14

    Recently, strategies to reduce primary radiation damage have been proposed which depend on focusing X-rays to dimensions smaller than the penetration depth of excited photoelectrons. For a line focus as used here the penetration depth is the maximum distance from the irradiated region along the X-ray polarization direction that the photoelectrons penetrate. Reported here are measurements of the penetration depth and distribution of photoelectron damage excited by 18.6 keV photons in a lysozyme crystal. The experimental results showed that the penetration depth of {approx}17.35 keV photoelectrons is 1.5 {+-} 0.2 {micro}m, which is well below previous theoretical estimates of 2.8 {micro}m. Such a small penetration depth raises challenging technical issues in mitigating damage by line-focus mini-beams. The optimum requirements to reduce damage in large crystals by a factor of 2.0-2.5 are Gaussian line-focus mini-beams with a root-mean-square width of 0.2 {micro}m and a distance between lines of 2.0 {micro}m. The use of higher energy X-rays (>26 keV) would help to alleviate some of these requirements by more than doubling the penetration depth. It was found that the X-ray dose has a significant contribution from the crystal's solvent, which initially contained 9.0%(w/v) NaCl. The 15.8 keV photoelectrons of the Cl atoms and their accompanying 2.8 keV local dose from the decay of the resulting excited atoms more than doubles the dose deposited in the X-ray-irradiated region because of the much greater cross-section and higher energy of the excited atom, degrading the mitigation of radiation damage from 2.5 to 2.0. Eliminating heavier atoms from the solvent and data collection far from heavy-atom absorption edges will significantly improve the mitigation of damage by line-focus mini-beams.

  3. Theoretical approach to the study of vibrational effects on strong field ionization of molecules with alignment-dependent tunneling ionization rates

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Xia; Yan, Bing; Yang, Yu-Jun; Luo, Si-Zuo; Zhu, Rui-Han; Yang, Xue; Ding, Da-Jun

    2015-09-01

    The tunneling ionization rates of vibrationally excited N2 molecules at the ground electronic state are calculated using molecular orbital Ammosov-Delone-Krainov theory considering R-dependence. The results show that molecular alignment significantly affects the ionization rate, as the rate is mainly determined by the electron density distribution of the highest occupied molecular orbital. The present work indicates that the ratios of alignment-dependent rates of different vibrational levels to that of the vibrational ground level increase for the aligned N2 at the angle ? = 0°, and suggests that the alignment-dependent tunneling ionization rates can be used as a diagnostics for the influence of vibrational excitation on the strong field ionization of molecules. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11034003 and 11127403).

  4. Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.

  5. Large and strong scale dependent bispectrum in single field inflation from a sharp feature in the mass

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Romano, Antonio Enea; Sasaki, Misao

    2011-12-01

    We study an inflationary model driven by a single minimally coupled standard kinetic term scalar field with a step in its mass modeled by an Heaviside step function. We present an analytical approximation for the mode function of the curvature perturbation, obtain the power spectrum analytically and compare it with the numerical result. We show that, after the scale set by the step, the spectrum contains damped oscillations that are well described by our analytical approximation. We also compute the dominant contribution to the bispectrum in the equilateral and the squeezed limits and find new shapes. In the equilateral and squeezed limits the bispectrum oscillates and it has a linear growth envelope towards smaller scales. The bispectrum size can be large depending on the model parameters.

  6. SPATIALLY RESOLVED GALAXY STAR FORMATION AND ITS ENVIRONMENTAL DEPENDENCE. II. EFFECT OF THE MORPHOLOGY-DENSITY RELATION

    SciTech Connect

    Welikala, Niraj; Connolly, Andrew J.; Hopkins, Andrew M.; Scranton, Ryan E-mail: ajc@astro.washington.edu

    2009-08-20

    In this second of a series of papers on spatially resolved star formation, we investigate the impact of the density-morphology relation of galaxies on the spatial variation of star formation (SF) and its dependence on environment. We find that while a density-morphology relation is present for the sample, it cannot solely explain the observed suppression of SF in galaxies in high-density environments. We also find that early-type and late-type galaxies exhibit distinct radial star formation rate (SFR) distributions, with early types having an SFR distribution that extends further relative to the galaxy scale length, compared to late types at all densities. We find that a suppression of SF in the highest density environments is found in the highest star-forming galaxies for both galaxy types. This suppression occurs in the innermost regions in late types (r {<=} 0.125 Petrosian radii), and further out in radius in early types (0.125 Petrosian radii < r {<=} 0.25 Petrosian radii). When the full sample is considered no clear suppression of SF is detected, indicating that the environmental trends are driven only by the highest SF galaxies. We demonstrate that the density-morphology relation alone cannot account for the suppression of SF in the highest density environments. This points to an environmentally governed evolutionary mechanism that affects the SF in the innermost regions in both early- and late-type galaxies. We suggest that this is a natural consequence of the 'downsizing' of SF in galaxies.

  7. Nonlinear frequency-dependent effects in the dc magnetization of uniaxial magnetic nanoparticles in superimposed strong alternating current and direct current fields

    NASA Astrophysics Data System (ADS)

    Wei, Nijun; Byrne, Declan; Coffey, William T.; Kalmykov, Yuri P.; Titov, Serguey V.

    2014-11-01

    The dc component of the magnetization of noninteracting fine magnetic particles possessing simple uniaxial anisotropy and subjected to strong ac and dc bias magnetic fields is calculated via the magnetic Langevin equation. In the presence of an ac driving field, the dc component of the magnetization of uniaxial particles alters drastically leading to new nonlinear effects; in particular, it becomes frequency-dependent. In axial symmetry, where the strong ac field is parallel to the easy axis of a particle, two distinct dispersion regions in the dc magnetization at low and mid-frequencies emerge, corresponding to longitudinal overbarrier and intrawell relaxation modes. Such frequency-dependent behavior allows one to estimate the magnetization reversal time via the half-width of the low-frequency dispersion band. Otherwise, by applying the strong ac field at an angle to the easy axis of a particle so breaking the axial symmetry, a third high-frequency nonlinear resonant dispersion in the dc component of the magnetization appears accompanied by parametric resonance behavior due to excitation of transverse modes with frequencies close to the precession frequency.

  8. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  9. Quantitative determination of valproic acid in postmortem blood samples--evidence of strong matrix dependency and instability.

    PubMed

    Kiencke, Verena; Andresen-Streichert, Hilke; Müller, Alexander; Iwersen-Bergmann, Stefanie

    2013-11-01

    Most of the daily work of forensic toxicologists deals with fatal cases resulting from overdoses of licit and illicit drugs. However, another reason for fatalities in patients suffering from epilepsy can be undetectable or subtherapeutic levels of antiepileptic drugs. Some studies have shown a correlation between "sudden unexpected death in epilepsy" (SUDEP) and the ineffective treatment of epilepsy. Low levels of antiepileptic drugs may be a risk factor for SUDEP. The death of a psychiatric patient also suffering from epilepsy inspired the investigation. Subsequent to the death of the patient, the doctor was accused of providing inadequate therapy for epilepsy. The patient was to be treated with valproic acid. We developed and validated a simple method of determining valproic acid levels by gas chromatography-mass spectrometry for serum, but a transfer of the method from serum to postmortem whole blood failed. The method had to be modified and revalidated for postmortem whole blood specimens. A stability study of valproic acid in postmortem blood was conducted, showing a decline of valproic acid levels by 85 % after storage at room temperature for 28 days. During the storage time, the blood samples showed changes in consistency. Depending on the stage of decomposition, it is necessary to perform a determination by standard addition with an equilibration time of 4 h before extraction to achieve reliable results. For a proper interpretation of quantitative results, it is necessary to keep the postmortem decline of valproic acid concentrations in mind. PMID:23536197

  10. Comparison of the strong-field ionization of N{sub 2} and F{sub 2}: A time-dependent density-functional-theory study

    SciTech Connect

    Chu Xi; McIntyre, Melissa

    2011-01-15

    We compare strong-field ionization probabilities of N{sub 2} and F{sub 2} molecules using time-dependent density functional theory calculations. Accurate nuclear potentials and ground vibrational wave functions are incorporated into our study. For both molecules, the effect of molecular vibration is small, while that of the molecular orientation is significant. When compared to the ionization probability of a molecule at the equilibrium geometry, we estimate the effect of the ground state vibration to be within 3% for N{sub 2} and within 6% for F{sub 2} in the intensity range from 1 to 5x10{sup 14} W/cm{sup 2}. The molecular-orientation-dependent ionization probabilities for both molecules at various intensities are presented. They are strongly dependent on the laser intensity, and the anisotropy diminishes when the laser intensity is high. For laser intensities of 1.6 and 2.2x10{sup 14} W/cm{sup 2} we find ionization probability ratios of 5.9 and 4.3, respectively, for the parallel versus perpendicular orientation of N{sub 2}. This is reasonably consistent with experimental measurements. For randomly oriented molecules, the ratio of the probabilities for N{sub 2} and F{sub 2} increases from about 1 at 10{sup 14} W/cm{sup 2} to 2 at 4x10{sup 14} W/cm{sup 2}, which agrees well with experimental results.

  11. Determination of Earths transient and equilibrium climate sensitivities from observations over the twentieth century: Strong dependence on assumed forcing

    SciTech Connect

    Schwartz S. E.

    2012-05-04

    Relations among observed changes in global mean surface temperature, ocean heat content, ocean heating rate, and calculated radiative forcing, all as a function of time over the twentieth century, that are based on a two-compartment energy balance model, are used to determine key properties of Earth's climate system. The increase in heat content of the world ocean, obtained as the average of several recent compilations, is found to be linearly related to the increase in global temperature over the period 1965-2009; the slope, augmented to account for additional heat sinks, which is an effective heat capacity of the climate system, is 21.8 {+-} 2.1 W year m{sup -2} K{sup -1} (one sigma), equivalent to the heat capacity of 170 m of seawater (for the entire planet) or 240 m for the world ocean. The rate of planetary heat uptake, determined from the time derivative of ocean heat content, is found to be proportional to the increase in global temperature relative to the beginning of the twentieth century with proportionality coefficient 1.05 {+-} 0.06 W m{sup -2} K{sup -1}. Transient and equilibrium climate sensitivities were evaluated for six published data sets of forcing mainly by incremental greenhouse gases and aerosols over the twentieth century as calculated by radiation transfer models; these forcings ranged from 1.1 to 2.1 W m{sup -2}, spanning much of the range encompassed by the 2007 assessment of the Intergovernmental Panel on Climate Change (IPCC). For five of the six forcing data sets, a rather robust linear proportionality obtains between the observed increase in global temperature and the forcing, allowing transient sensitivity to be determined as the slope. Equilibrium sensitivities determined by two methods that account for the rate of planetary heat uptake range from 0.31 {+-} 0.02 to 1.32 {+-} 0.31 K (W m{sup -2}){sup -1} (CO{sub 2} doubling temperature 1.16 {+-} 0.09-4.9 {+-} 1.2 K), more than spanning the IPCC estimated 'likely' uncertainty range, and strongly anticorrelated with the forcing used to determine the sensitivities. Transient sensitivities, relevant to climate change on the multidecadal time scale, are considerably lower, 0.23 {+-} 0.01 to 0.51 {+-} 0.04 K (W m{sup -2}){sup -1}. The time constant characterizing the response of the upper ocean compartment of the climate system to perturbations is estimated as about 5 years, in broad agreement with other recent estimates, and much shorter than the time constant for thermal equilibration of the deep ocean, about 500 years.

  12. Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization

    NASA Astrophysics Data System (ADS)

    Goll, Daniel S.; Brovkin, Victor; Liski, Jari; Raddatz, Thomas; Thum, Tea; Todd-Brown, Kathe E. O.

    2015-09-01

    The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover, affects the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max Planck Institute ESM, we found that the historical (1750-2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. The uncertainty in the decadal LULCC fluxes of the recent past due to the parametrization of decomposition and direct emissions was 0.6 Pg C yr-1, which is 3 times larger than the uncertainty previously attributed to model and method in general. Preindustrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr-1). Regional differences between reconstructed and dynamically computed land covers, in particular, at low latitudes, led to differences in historical LULCC emissions of 84-114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation, or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. In general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.

  13. Quantum confinement in nonadditive space with a spatially dependent effective mass for Si and Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Filho, R. N. Costa

    2014-09-01

    We calculate the effect of a spatially dependent effective mass (SPDEM) [adapted from Costa Filho et al. (2011)] on an electron and a hole confined in a quantum well (QW). In the work of Costa Filho et al., the translation operator is modified to include an inverse character length scale, ?, which defines the SPDEM. The introduction of ? means that translations are no longer additive. In nonadditive space, we choose a ‘skewed' Gaussian confinement potential defined by the replacement x??-1ln(1+?x) in the usual Gaussian potential. Within the parabolic approximation ? is inversely related to the QW thickness and we obtain analytic solutions to our confinement Hamiltonian. Our calculation yields a reduced dispersion relation for the gap energy (EG) as a function of QW thickness, D: EG~D-1, compared to the effective mass approximation: EG~D-2. Additionally, nonadditive space contracts the position space metric thus increasing the occupied momentum space and reducing the effective mass, in agreement with the relation: mo*-1??2E/?k2. The change in the effective mass is shown to be a function of the confinement potential via a point canonical transformation. Our calculation agrees with experimental measurements of EG for Si and Ge QWs.

  14. An independent dose calculation algorithm for MLC-based radiotherapy including the spatial dependence of MLC transmission

    NASA Astrophysics Data System (ADS)

    Lorenz, Friedlieb; Nalichowski, Adrian; Rosca, Florin; Killoran, Joseph; Wenz, Frederik; Zygmanski, Piotr

    2008-02-01

    An analytical dose calculation algorithm was developed and commissioned to calculate dose delivered with both static and dynamic multileaf collimator (MLC) in a homogenous phantom. The algorithm is general; however, it was designed specifically to accurately model dose for large and complex IMRT fields. For such fields the delivered dose may have a considerable contribution from MLC transmission, which is dependent upon spatial considerations. Specifically, the algorithm models different MLC effects, such as interleaf transmission, the tongue-and-groove effect, rounded leaf ends, MLC scatter, beam hardening and divergence of the beam, which results in a gradual MLC transmission fall-off with increasing off-axis distance. The calculated dose distributions were compared to measured dose using different methods (film, ionization chamber array, single ionization chamber), and the differences among the treatment planning system, the measurements and the developed algorithm were analysed for static MLC and dynamic IMRT fields. It was found that the calculated dose from the developed algorithm agrees very well with the measurements (mostly within 1.5%) and that a constant value for MLC transmission is insufficient to accurately predict dose for large targets and complex IMRT plans with many monitor units.

  15. Time-dependent density-functional study of the ionization and fragmentation of C2H2 and H2 by strong circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Russakoff, Arthur; Varga, Kálmán

    2015-11-01

    The ionization and fragmentation dynamics of acetylene and the hydrogen molecule driven by strong short circularly polarized laser pulses are investigated within the framework of the time-dependent density-functional theory coupled with the Ehrenfest dynamics. The effects of alignment are considered and the dynamics is compared to that driven by linearly polarized pulses. It is found that the coupled ion-electron dynamics of both molecules driven by circularly polarized pulses follows the enhanced ionization mechanism, as was found in previous theoretical studies with linearly polarized pulses. A moderate localization asymmetry in the ionization dynamics of the hydrogen molecule was also found, in qualitative agreement with previous experimental investigations.

  16. Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H2(+).

    PubMed

    Xu, Han; He, Feng; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-01-01

    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2(+) and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2(+). However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2(+) ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay-dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump. PMID:26314372

  17. Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H2+

    PubMed Central

    Xu, Han; He, Feng; Kielpinski, D.; Sang, R.T.; Litvinyuk, I.V.

    2015-01-01

    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the “critical distance”. This phenomenon was first demonstrated theoretically in H2+ and became known as “charge-resonance enhanced ionization” (CREI, in reference to a proposed physical mechanism) or simply “enhanced ionization”(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2+. However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2+ ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay-dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump. PMID:26314372

  18. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power

    NASA Astrophysics Data System (ADS)

    Tan, R. P.; Carrey, J.; Respaud, M.

    2014-12-01

    Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3 times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally, implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It is concluded that feedback on two specific points from biology experiments is required for further advancement of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous tool to optimize magnetic NPs heating power and interpret experimental results.

  19. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Dosso, Stan E.

    2015-04-01

    On geological timescales there is a temperature dependent feedback that means that increased degassing of CO2 into the atmosphere leads to increased CO2 drawdown into rocks stabilizing Earth's climate. It is widely considered that this thermostat largely comes from continental chemical weathering. An alternative, or additional, feedback comes from dissolution of seafloor basalt in low-temperature (tens of °C), off-axis, hydrothermal systems. Carbonate minerals precipitated in these systems provide strong evidence that increased bottom water temperature (traced by their O-isotopic compositions) leads to increased basalt dissolution (traced by their Sr-isotopic compositions). Inversion of a simple probabilistic model of fluid-rock interaction allows us to determine the apparent activation energy of rock dissolution in these systems. The high value we find (92 ± 7 kJmol-1) indicates a strong temperature dependence of rock dissolution. Because deep-ocean temperature is sensitive to global climate, and the fluid temperature in the upper oceanic crust is strongly influenced by bottom water temperature, increased global temperature must lead to increased basalt dissolution. In turn, through the generation of alkalinity by rock dissolution, this leads to a negative feedback on planetary warming; i.e. off-axis, hydrothermal systems play an important role in the planetary thermostat. Changes in the extent of rock dissolution, due to changes in bottom water temperature, also lead to changes in the flux of unradiogenic Sr into the ocean. The decreased flux of unradiogenic Sr into the ocean due to the cooling of ocean bottom water over the last 35 Myr is sufficient to explain most of the increase in seawater 87Sr/86Sr over this time.

  20. SU-E-T-354: Peak Temperature Ratio of TLD Glow Curves to Investigate the Spatial Dependence of LET in a Clinical Proton Beam

    SciTech Connect

    Reft, C; Pankuch, M; Ramirez, H

    2014-06-01

    Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiation than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.31×0.31×0.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/? via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.

  1. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    SciTech Connect

    Polat, Ozgur; Sinclair IV, John W; Zuev, Yuri L; Thompson, James R; Christen, David K; Cook, Sylvester W; Kumar, Dhananjay; Chen, Y; Selvamanickam, V.

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  2. Wavelength-dependent study of trapping molecules in an excited electronic state of I{sub 2}{sup 2+} with strong laser fields

    SciTech Connect

    Fang, L.; Gibson, G. N.

    2010-03-15

    Using the B {sup 3{Pi}}{sub u}{sup +} state of neutral I{sub 2} as an intermediate state, we populate an excited electronic state, designated as (2,0), of I{sub 2}{sup 2+} in its bound region of internuclear separation with short laser pulses. Trapping of the molecules in the (2,0) state is deduced from the disappearance of the (2,0) dissociation signal when populated at large internuclear separation, and wavelength-dependent results rule out electron localization as an alternative explanation for this disappearance. The wavelength dependence also firmly establishes the B state as the intermediate state. Moreover, simulation results are consistent with the experiments, which confirm the previously measured (2,0) potential curve. The (2,0) state correlates to the I{sup 2+}+I{sup 0+} dissociation limit and has played an important role in strong field physics. It is also the lowest lying truly bound (not metastable) state of the dication. In addition, the potential curve of the I{sub 2}{sup 3+} ground-state manifold is measured. Finally, calculations show a general picture of the wavelength dependence for trapping molecules in potential wells using intermediate states.

  3. Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ)

    2006-06-01

    Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (1) Failure of all SLs before failure of any WL, (2) Failure of any SL before failure of any WL, (3) Failure of all SLs before failure of all WLs, and (4) Failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis.

  4. Strong excitation intensity dependence of the photoluminescence line shape in GaAs{sub 1-x}Bi{sub x} single quantum well samples

    SciTech Connect

    Mazur, Yu. I.; Dorogan, V. G.; Ware, M. E.; Salamo, G. J.; Schmidbauer, M.; Tarasov, G. G.; Johnson, S. R.; Lu, X.; Yu, S.-Q.; Tiedje, T.

    2013-04-14

    A set of high quality single quantum well samples of GaAs{sub 1-x}Bi{sub x} with bismuth concentrations not exceeding 6% and well widths ranging from 7.5 to 13 nm grown by molecular beam epitaxy on a GaAs substrate at low temperature is studied by means of photoluminescence (PL). It is shown that the PL line shape changes when the exciton reduced mass behavior changes from an anomalous increase (x < 5%) to a conventional decrease (x > 5%). Strongly non-monotonous PL bandwidth dependence on the excitation intensity is revealed and interpreted in terms of optically unresolved contributions from the saturable emission of bound free excitons.

  5. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9?T over 2–20?K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  6. Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields

    SciTech Connect

    Shvetsov-Shilovski, N.I. Räsänen, E.

    2014-12-15

    One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the one-dimensional Schrödinger equation in momentum space for a particle in the commonly used soft-core Coulomb potential. By using this scheme we develop two numerical approaches to the time-dependent Schrödinger equation in momentum space. The first approach employs the expansion of the momentum-space wave function over the eigenstates of the field-free Hamiltonian, and it is shown to be more efficient for laser parameters usual in strong field physics. The second approach employs the Crank–Nicolson scheme or the method of lines for time-propagation. The both methods are readily applicable for large-scale numerical simulations in one-dimensional model systems.

  7. DEFINITION OF MULTIVARIATE GEOCHEMICAL ASSOCIATIONS WITH POLYMETALLIC MINERAL OCCURRENCES USING A SPATIALLY DEPENDENT CLUSTERING TECHNIQUE AND RASTERIZED STREAM SEDIMENT DATA - AN ALASKAN EXAMPLE.

    USGS Publications Warehouse

    Jenson, Susan K.; Trautwein, C.M.

    1984-01-01

    The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.

  8. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    SciTech Connect

    Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the acquisition.

  9. Spatial Pattern Analysis of Heavy Metals in Beijing Agricultural Soils Based on Spatial Autocorrelation Statistics

    PubMed Central

    Huo, Xiao-Ni; Zhang, Wei-Wei; Sun, Dan-Feng; Li, Hong; Zhou, Lian-Di; Li, Bao-Guo

    2011-01-01

    This study explored the spatial pattern of heavy metals in Beijing agricultural soils using Moran’s I statistic of spatial autocorrelation. The global Moran’s I result showed that the spatial dependence of Cr, Ni, Zn, and Hg changed with different spatial weight matrixes, and they had significant and positive global spatial correlations based on distance weight. The spatial dependence of the four metals was scale-dependent on distance, but these scale effects existed within a threshold distance of 13 km, 32 km, 50 km, and 29 km, respectively for Cr, Ni, Zn, and Hg. The maximal spatial positive correlation range was 57 km, 70 km, 57 km, and 55 km for Cr, Ni, Zn, and Hg, respectively and these were not affected by sampling density. Local spatial autocorrelation analysis detected the locations of spatial clusters and spatial outliers and revealed that the pollution of these four metals occurred in significant High-high spatial clusters, Low-high, or even High-low spatial outliers. Thus, three major areas were identified and should be receiving more attention: the first was the northeast region of Beijing, where Cr, Zn, Ni, and Hg had significant increases. The second was the southeast region of Beijing where wastewater irrigation had strongly changed the content of metals, particularly of Cr and Zn, in soils. The third area was the urban fringe around city, where Hg showed a significant increase. PMID:21776217

  10. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea.

    PubMed

    Lam, Chun-Sing; Tipoe, George Lim; So, Kwok-Fai; Fung, Man-Lung

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague-Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1 mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NF?B) canonical pathway was activated with a translocation of NF?B members (p65, p50) and increased expression levels of NF?B-dependent inflammatory cytokines and mediator (TNF?, IL-1?, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and negatively modulating the apoptotic signaling cascades activated by oxidative stress and inflammation. PMID:25714473

  11. Neuroprotective Mechanism of Lycium barbarum Polysaccharides against Hippocampal-Dependent Spatial Memory Deficits in a Rat Model of Obstructive Sleep Apnea

    PubMed Central

    Lam, Chun-Sing; Tipoe, George Lim; So, Kwok-Fai; Fung, Man-Lung

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague–Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NF?B) canonical pathway was activated with a translocation of NF?B members (p65, p50) and increased expression levels of NF?B-dependent inflammatory cytokines and mediator (TNF?, IL-1?, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and negatively modulating the apoptotic signaling cascades activated by oxidative stress and inflammation. PMID:25714473

  12. Induced modulation instability of partially spatially incoherent light with varying perturbation periods

    E-print Network

    Chen, Zhigang

    Induced modulation instability of partially spatially incoherent light with varying perturbation spatially incoherent optical beam induces modulation instability that depends strongly on the perturbation periods as well as on the strength of the nonlinearity and the degree of spatial coherence. At a fixed

  13. Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate

    SciTech Connect

    Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying

    2013-11-15

    The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.

  14. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  15. A Comparison of Deterministic and Stochastic Approaches for Allocating Spatially Dependent Tasks in Micro-Aerial Vehicle Collectives

    E-print Network

    Napp, Nils

    ] (Fig. 1). At the forefront of multi-robot systems is an effort to construct insect-scale flapping- struction [33], flight dynamics and control [30], and sensor design [15] are quickly driving insect-scale of insect-inspired micro-aerial vehicles (MAVs) must produce a specified spatial distribution of pollination

  16. Dose reduction in CT with correlated-polarity noise reduction: context-dependent spatial resolution and noise properties demonstrating two-fold dose reduction with minimal artifacts

    NASA Astrophysics Data System (ADS)

    Dobbins, James T.; Wells, Jered R.; Segars, W. Paul

    2014-03-01

    Correlated-polarity noise reduction (CPNR) is a novel noise reduction technique that uses a statistical approach to reducing noise while maintaining excellent spatial resolution and a traditional noise appearance. It was demonstrated in application to CT imaging for the first time at SPIE 2013 and showed qualitatively excellent image quality at half of normal CT dose. In this current work, we measure quantitatively the spatial resolution and noise properties of CPNR in CT imaging. To measure the spatial resolution, we developed a metrology approach that is suitable for nonlinear algorithms such as CPNR. We introduce the formalism of Signal Modification Factor, SMF(u,v), which is the ratio in frequency space of the CPNR-processed image divided by the noise-free image, averaged over an ensemble of ROIs in a given anatomical context. SMF is a nonlinear analog to the MTF. We used XCAT computer-generated anthropomorphic phantom images followed by projection space processing with CPNR. The SMF revealed virtually no effect from CPNR on spatial resolution of the images (<7% degradation at all frequencies). Corresponding contextdependent NPS measurements generated with CPNR at half-dose were about equal to the NPS of full-dose images without CPNR. This result demonstrates for the first time the quantitative determination of a two-fold reduction in dose with CPNR with less than 7% reduction in spatial resolution. We conclude that CPNR shows strong promise as a method for reduction of noise (and hence, dose) in CT. CPNR may also be used in combination with iterative reconstruction techniques for yet further dose reduction, pending further investigation.

  17. Discovery of a Strongly-Lensed Massive Quiescent Galaxy at z=2.636: Spatially-Resolved Spectroscopy and Indications of Rotation

    E-print Network

    Newman, Andrew B; Ellis, Richard S

    2015-01-01

    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z=2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of log M_*=11.49+0.10-0.16 and a half-light radius of R_e,maj =1.8+-0.4 kpc. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z>2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6 R_e - 1.6 R_e, which are consistent with an age of 760 Myr. Gas emission in [NII] broadly traces the spatial distribution of the stars and is coupled with weak Halpha emission (log [NII]/Halpha = 0.6+-0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is sigma_e = 271+-41 km/s. We detect rotation in the stellar absorption lines for the first time beyond z~1. Using a two-integral Jeans model that accou...

  18. Effect of delayed link failure on probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, J. D.; Oberkampf, William Louis; Helton, Jon Craig

    2007-05-01

    Weak link (WL)/strong link (SL) systems constitute important parts of the overall operational design of high consequence systems, with the SL system designed to permit operation of the system only under intended conditions and the WL system designed to prevent the unintended operation of the system under accident conditions. Degradation of the system under accident conditions into a state in which the WLs have not deactivated the system and the SLs have failed in the sense that they are in a configuration that could permit operation of the system is referred to as loss of assured safety. The probability of such degradation conditional on a specific set of accident conditions is referred to as probability of loss of assured safety (PLOAS). Previous work has developed computational procedures for the calculation of PLOAS under fire conditions for a system involving multiple WLs and SLs and with the assumption that a link fails instantly when it reaches its failure temperature. Extensions of these procedures are obtained for systems in which there is a temperature-dependent delay between the time at which a link reaches its failure temperature and the time at which that link actually fails.

  19. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    NASA Astrophysics Data System (ADS)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  20. Diagnostic differentiation of mild cognitive impairment due to Alzheimer's disease using a hippocampus-dependent test of spatial memory.

    PubMed

    Moodley, Kuven; Minati, Ludovico; Contarino, Valeria; Prioni, Sara; Wood, Ruth; Cooper, Rebecca; D'Incerti, Ludovico; Tagliavini, Fabrizio; Chan, Dennis

    2015-08-01

    The hippocampus is one of the earliest brain regions affected in Alzheimer's disease (AD) and tests of hippocampal function have the potential to detect AD in its earliest stages. Given that the hippocampus is critically involved in allocentric spatial memory, this study applied a short test of spatial memory, the 4 Mountains Test (4MT), to determine whether test performance can differentiate mild cognitive impairment (MCI) patients with and without CSF biomarker evidence of underlying AD and whether the test can distinguish patients with MCI and mild AD dementia when applied in different cultural settings. Healthy controls (HC), patients with MCI, and mild AD dementia were recruited from study sites in UK and Italy. Study numbers were: HC (UK 20, Italy 10), MCI (UK 21, Italy 14), and AD (UK 11, Italy 9). Nineteen UK MCI patients were grouped into CSF biomarker-positive (MCI+, n = 10) and biomarker-negative (MCI-, n = 9) subgroups. Behavioral data were correlated with hippocampal volume and cortical thickness of the precuneus and posterior cingulate gyrus. Spatial memory was impaired in both UK and Italy MCI and AD patients. Test performance additionally differentiated between MCI+ and MCI- subgroups (P = 0.001). A 4MT score of ?8/15 was associated with 100% sensitivity and 90% specificity for detection of early AD (MCI+ and mild AD dementia) in the UK population, and with 100% sensitivity and 50% specificity for detection of MCI and AD in the Italy sample. 4MT performance correlated with hippocampal volume in the UK population and cortical thickness of the precuneus in both study populations. In conclusion, performance on a hippocampus-sensitive test of spatial memory differentiates MCI due to AD with high diagnostic sensitivity and specificity. The observation that similar diagnostic sensitivity was obtained in two separate study populations, allied to the scalability and usability of the test in community memory clinics, supports future application of the 4MT in the diagnosis of pre-dementia due to AD. PMID:25605659

  1. The effects of spatial structure, frequency dependence and resistance evolution on the dynamics of toxin-mediated microbial invasions.

    PubMed

    Libberton, Ben; Horsburgh, Malcolm J; Brockhurst, Michael A

    2015-08-01

    Recent evidence suggests that interference competition between bacteria shapes the distribution of the opportunistic pathogen Staphylococcus aureus in the lower nasal airway of humans, either by preventing colonization or by driving displacement. This competition within the nasal microbial community would add to known host factors that affect colonization. We tested the role of toxin-mediated interference competition in both structured and unstructured environments, by culturing S. aureus with toxin-producing or nonproducing Staphylococcus epidermidis nasal isolates. Toxin-producing S. epidermidis invaded S. aureus populations more successfully than nonproducers, and invasion was promoted by spatial structure. Complete displacement of S. aureus was prevented by the evolution of toxin resistance. Conversely, toxin-producing S. epidermidis restricted S. aureus invasion. Invasion of toxin-producing S. epidermidis populations by S. aureus resulted from the evolution of toxin resistance, which was favoured by high initial frequency and low spatial structure. Enhanced toxin production also evolved in some invading populations of S. epidermidis. Toxin production therefore promoted invasion by, and constrained invasion into, populations of producers. Spatial structure enhanced both of these invasion effects. Our findings suggest that manipulation of the nasal microbial community could be used to limit colonization by S. aureus, which might limit transmission and infection rates. PMID:26240609

  2. The effects of spatial structure, frequency dependence and resistance evolution on the dynamics of toxin-mediated microbial invasions

    PubMed Central

    Libberton, Ben; Horsburgh, Malcolm J; Brockhurst, Michael A

    2015-01-01

    Recent evidence suggests that interference competition between bacteria shapes the distribution of the opportunistic pathogen Staphylococcus aureus in the lower nasal airway of humans, either by preventing colonization or by driving displacement. This competition within the nasal microbial community would add to known host factors that affect colonization. We tested the role of toxin-mediated interference competition in both structured and unstructured environments, by culturing S. aureus with toxin-producing or nonproducing Staphylococcus epidermidis nasal isolates. Toxin-producing S. epidermidis invaded S. aureus populations more successfully than nonproducers, and invasion was promoted by spatial structure. Complete displacement of S. aureus was prevented by the evolution of toxin resistance. Conversely, toxin-producing S. epidermidis restricted S. aureus invasion. Invasion of toxin-producing S. epidermidis populations by S. aureus resulted from the evolution of toxin resistance, which was favoured by high initial frequency and low spatial structure. Enhanced toxin production also evolved in some invading populations of S. epidermidis. Toxin production therefore promoted invasion by, and constrained invasion into, populations of producers. Spatial structure enhanced both of these invasion effects. Our findings suggest that manipulation of the nasal microbial community could be used to limit colonization by S. aureus, which might limit transmission and infection rates. PMID:26240609

  3. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.

    PubMed

    Harborth, Peter; Fuss, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-01

    Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20-200gCO2eq.m(-2)h(-1) magnitude (up to 428mgNm(-2)h(-1)) were observed within 20m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30-40m from the working face, where they reached about 10gCO2eq.m(-2)h(-1). The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000ppmv in material below the emission hotspot. At a depth of 50cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills. PMID:23453435

  4. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect

    Harborth, Peter; Fuß, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  5. Time-dependent Effects of Transcription- and Translation-halting Drugs on the Spatial Distributions of the E. coli Chromosome and Ribosomes

    PubMed Central

    Bakshi, Somenath; Choi, Heejun; Mondal, Jagannath; Weisshaar, James C.

    2014-01-01

    Summary Previously observed effects of rifampicin and chloramphenicol indicate that transcription and translation activity strongly affect the coarse spatial organization of the bacterial cytoplasm. Single-cell, time-resolved, quantitative imaging of chromosome and ribosome spatial distributions and ribosome diffusion in live E. coli provides insight into the underlying mechanisms. Monte Carlo simulations of model DNA-ribosome mixtures support a novel nucleoid-ribosome mixing hypothesis. In normal conditions, 70S-polysomes and the chromosomal DNA segregate, while 30S and 50S ribosomal subunits are able to penetrate the nucleoids. Growth conditions and drug treatments determine the partitioning of ribosomes into 70S-polysomes vs free 30S and 50S subunits. Entropic and excluded volume effects then dictate the resulting chromosome and ribosome spatial distributions. Direct observation of radial contraction of the nucleoids 0-5 min after treatment with either transcription- or translation-halting drugs supports the hypothesis that simultaneous transcription, translation, and insertion of proteins into the membrane (“transertion”) exerts an expanding force on the chromosomal DNA. Breaking of the DNA-RNA polymerase-mRNA-ribosome-membrane chain in either of two ways causes similar nucleoid contraction on a similar timescale. We suggest that chromosomal expansion due to transertion enables co-transcriptional translation throughout the nucleoids. PMID:25250841

  6. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  7. Strongly-driven laser plasma coupling

    SciTech Connect

    Suter, L; Afeyan, B; Campbell, E M; Decker, C D; Kruer, W L; Moody, J; Orzechowski, T; Powers, L; Wilks, S C

    1998-06-25

    An improved understanding of strongly-driven laser plasma coupling is important for optimal use of the National Ignition Facility (NIF) for both inertial fusion and for a variety of advanced applications. Such applications range from high energy x- ray sources and high temperature hohlraums to fast ignition and laser radiography. We discuss a novel model for the scaling of strongly-driven stimulated Brillouin and Raman scattering. This model postulates an intensity dependent correlation length associated with spatial incoherence due to filamentation and stimulated forward scattering. We first motivate the model and then relate it to a variety of experiments. Particular attention is paid to high temperature hohlraum experiments, which exhibited low to modest stimulated Brillouin scattering even though this instability was strongly driven. We also briefly discuss the strongly nonlinear interaction physics for efficient generation of high energy electrons either _ by irradiating a large plasma with near quarter-critical density or by irradiating overdense targets with ultra intense laser

  8. Quantitative PCR Reveals Strong Spatial and Temporal Variation of the Wasting Disease Pathogen, Labyrinthula zosterae in Northern European Eelgrass (Zostera marina) Beds

    PubMed Central

    Bockelmann, Anna-Christina; Tams, Verena; Ploog, Jana; Schubert, Philipp R.; Reusch, Thorsten B. H.

    2013-01-01

    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ?90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg?1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg?1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg?1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae. PMID:23658711

  9. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for polychaetes, suggest that canyons play important roles in maintaining high levels of regional biodiversity in the extremely oligotrophic system of the North Pacific Subtropical Gyre. This information is of key importance to the process of MPA design, suggesting that canyon habitats be explicitly included in marine spatial planning. The low-islands of Nihoa and Maro Reef in the NWHI showed a lack of sustained input of terrestrial and macrolagae detritus, likely having an influence on the observed low macrofaunal abundances (see further discussion of ‘canyon effects’ in Section 4.3), and showing the fundamental role of coastal landscape characteristics in determining the amount and nature of allochthonous organic matter entering the system. Total and highly-mobile invertebrate megafauna abundances were two to three times higher in the submarine canyons and slopes of the MHI contrasted with the NWHI (Vetter et al., 2010), also demonstrating the role of this larger contribution of terrestrial and coastal organic enrichment in the MHI contrasted with the NWHI.

  10. Conflict of spatial development and water supply under climate change in case of water dependent ecosystem of Ljubljana Moor

    NASA Astrophysics Data System (ADS)

    Bra?i? Železnik, Branka; Souvent, Petra; ?en?ur Curk, Barbara

    2013-04-01

    Water resources are vulnerable to climate change and to many other socio-economic drivers of change. A key aspect of vulnerability is that it is spatially variable, reflecting variations of physical and socio-economic conditions. Given the real representation of vulnerability and a set of climate change adaptation options there is need to develop a common transnational strategy for vulnerability reduction. The latter is the goal of SEE CC-WARE project. Among others, ecosystem services, land use change, improving water use efficiency and economic incentives for water management have large potentials to decrease water resources vulnerability. Especially, forests, wetlands and grasslands are important ecosystems, which together with their management emerged as an important means for a sustainable future drinking water supply. The Ljubljana Moor is one of the biggest and most important complexes of wet meadows in Slovenia, which have, due to land use high biodiversity. The Ljubljana Moor extends from the southern part of Ljubljana, the capital of Slovenia, where in the last two centuries extensive irrigation and river regulation projects were implemented to develop agricultural land. Biodiversity of the area is high due to large zones of wet meadows, some flood forest patches, bog areas, and open water courses habitats. The Ljubljana Moor is therefore protected as Natura 2000 site. The Ljubljana Moor is changing very fast and impacts are especially intense in the present years, mostly due to spreading of urbanization and monocultures. In this area the water well field Brest has been designed as important future drinking water source for Ljubljana, pumping mainly water from confined aquifer. The pressure from urbanisation and agriculture and high subsidence that are noticed in the central and eastern part of the aquifer, those two phenomena pose high risk to stable drinking water supply and wetland habitats that are protected as NATURA 2000. Water protection areas with limitation of land use were delineated for protection of drinking water from Brest pumping station. A part of Ljubljana Moor area is also protected as Landscape Park. These legal acts are in conflict with existing agricultural practices, spatial development plans and further urbanisation processes (including new and larger roads, flood areas disconnections and destruction). No attention has been given yet to integrated water management and there is no consideration of long term hydrological and hydrogeological processes.

  11. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  12. Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter

    PubMed Central

    Birey, Fikri

    2015-01-01

    Neuron–glial antigen 2-positive (NG2+) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2+ glial cell ablation model in mice, we examined the repopulation dynamics of NG2+ glial cells in the mature and aged mice gray matter. We found that some resident NG2+ glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2+ glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2+ glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2+ glial cell homeostasis that is distinct from its role in myelination. PMID:25926469

  13. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3?m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  14. A Novel Analytical Solution for Coupled Multi-Species Contaminant Transport in Finite Spatial Domain Subject to Arbitrary Time-Dependent Inlet Boundary Condition

    NASA Astrophysics Data System (ADS)

    Chen, J.-S.; Liu, C.-W.; Lai, K.-H.

    2012-04-01

    Several analytical solutions for single-species reactive solute transport problems have been reported in literature for predicting the transport of various contaminants. Analytical solutions for coupled multi-species reactive solute transport problem are much more difficult and relatively rare in subsurface hydrology. Problem of coupled multi-species reactive transport plays an important role in understanding the transport and fate of a variety of decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Analytical solutions are efficient tools for testing and validating more comprehensively numerical models, performing sensitivity analyses to investigate how various transport processes affect contaminant transport, or serving as screening models. Decomposition strategy such as linear transform format or matrix diagnalization method which decomposes the set of coupled advective-dispersive transport equations into a system of independent differential equations have been widely used to derive the analytical solution for coupled multi-species solute transport problem. These decomposition approaches are mostly performed on the partial differential equations or ordinary differential equations. Generally, the processes of applying decomposition technique on differential equations are much more difficult, thus these solution methods are mostly limited to derive the analytical solution for either a semi-infinite spatial domain or steady-state boundary condition. In this study we present a novel analytical solution to multi-species advective-dispersive transport equations sequentially coupled by first-order decay reactions in a finite spatial domain subject to arbitrary time-dependent inlet boundary condition. The novel solution is derived by consecutive applications of Laplace transform and the generalized integral transform to remove the temporal and spatial derivatives in a set of coupled advection-dispersion equations, thus converting the coupled partial differential equation system into a set of algebraic equations. Subsequently, simple mathematical manipulation is applied to solve the set of algebraic equations in transform domain and the analytical solution in the transformed domain for each species is independently obtained. Finally, the solutions for all species in transformed domain are transformed back into the original domain by successively executing Laplace and the generalized integral transform inversions. The developed analytical solutions for a finite spatial domain are compared with the analytical solution for a semi-finite spatial domain to investigate the impact of the exit boundary on coupled multi-species transport. The proposed solution method in this study has the greater flexibility in dealing with analytical model for more complicated problems, thus will be especially useful for expanding the number and type of analytical models for sequentially coupled multi-species reactive transport problem.

  15. The evolution of earthquake-nucleating slip instabilities under spatially variable steady-state rate dependence of friction

    NASA Astrophysics Data System (ADS)

    Ray, S.; Viesca, R. C.

    2014-12-01

    Following laboratory rock friction experiments, fault strength under sub-seismic slip speeds is thought to depend on a slip rate- and state-dependent friction. Laboratory-measured temperature dependence of the frictional properties and their implied variation with depth form the basis for current models of the seismic cycle. However, scant attention has been paid to the role such heterogeneity has on determining the location and manner in which an earthquake nucleating slip instability develops. Recent work demonstrates that a slip instability on a fault with rate-and-state friction (in which state evolution follows the aging law) occurs as the attraction of a dynamical system towards a fixed point (Viesca, this meeting). Based on this development, we find that the location of that fixed point may be determined if a heterogeneous distribution of the relative rate-weakening parameter a/b is known. (Rate-weakening occurs for 01). That this arises can be deduced considering that (i) the problem that determines the fixed points is equivalent to finding the equilibrium solution for a linearly slip-weakening crack, and (ii) heterogeneities in the parameter a/b have analogy in the equivalent problem to heterogeneities in the background stress. Physically, instability develops where rate-weakening is strongest. We examined the influence such a heterogeneity has on the fixed point attractor (and hence on the instability development) by considering the scenario of a rate-weakening patch embedded within a rate-strengthening region with in-plane or anti-plane slip conditions. Specifically, we solve for fixed points under a rate-weakening heterogeneity within |x|1) outside. Additionally, a linear stability analysis reveals the effect of heterogeneity on the stability of the fixed points of the dynamical system. The heterogeneity parameters (a/b)m and H enter as bifurcation parameters indicating a transition in the classification of the fixed point from asymptotically stable to unstable at critical values of (a/b)m and H. The results are further verified by full numerical simulation of the system of slip acceleration and state evolution under this heterogeneity.

  16. Harvesting excitons through plasmonic strong coupling

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ballestero, Carlos; Feist, Johannes; Moreno, Esteban; Garcia-Vidal, Francisco J.

    2015-09-01

    Exciton harvesting is demonstrated in an ensemble of quantum emitters coupled to localized surface plasmons. When the interaction between emitters and the dipole mode of a metallic nanosphere reaches the strong-coupling regime, the exciton conductance is greatly increased. The spatial map of the conductance matches the plasmon field intensity profile, which indicates that transport properties can be tuned by adequately tailoring the field of the plasmonic resonance. Under strong coupling, we find that pure dephasing can have detrimental or beneficial effects on the conductance, depending on the effective number of participating emitters. Finally, we show that the exciton transport in the strong-coupling regime occurs on an ultrafast time scale given by the inverse Rabi splitting (˜10 fs), which is orders of magnitude faster than transport through direct hopping between the emitters.

  17. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface.

    PubMed

    Lee, Shao-Chen; Lin, Chien-Chu; Wang, Chia-Hui; Wu, Po-Long; Huang, Hsuan-Wei; Chang, Chung-I; Wu, Wen-guey

    2014-07-18

    Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides. PMID:24898246

  18. Endocytotic Routes of Cobra Cardiotoxins Depend on Spatial Distribution of Positively Charged and Hydrophobic Domains to Target Distinct Types of Sulfated Glycoconjugates on Cell Surface*

    PubMed Central

    Lee, Shao-Chen; Lin, Chien-Chu; Wang, Chia-Hui; Wu, Po-Long; Huang, Hsuan-Wei; Chang, Chung-I; Wu, Wen-guey

    2014-01-01

    Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides. PMID:24898246

  19. Analysis of the temporal and spatial dependence of the eddy current fields in a 40-cm bore magnet.

    PubMed

    Robertson, S; Hughes, D G; Liu, Q; Allen, P S

    1992-05-01

    Eddy current fields, generated in an animal-size superconducting NMR magnet by a nominally rectangular pulsed transverse gradient applied in the vertical direction, have been studied by measuring the offset frequency of the proton NMR signal obtained from a small spherical sample. Measurements were made, after various time delays, at nine different locations in the sample space. Analysis of the data shows that the time-dependent fields at all nine locations are quite well accounted for by the superposition of only four independent exponentially decaying components that have time constants in the range from 9 to 400 ms. Two of these were found to be caused by eddy currents generated in the magnet structure. They generate primarily linear gradients, though one of them also produces a B0 shift, indicating a significant asymmetry about the isocenter of the conducting structure in which the eddy current flows. The other two exponentially decaying components, which had very different time constants from the eddy currents and also initial amplitudes of the opposite sign, were generated by the preemphasis unit. This calls into question the procedure used to adjust the preemphasis unit and an alternative method is proposed. PMID:1593948

  20. Spatial distribution of infectious stages of the nematode Syngamus trachea within pheasant (Phasianus colchicus) release pens on estates in the South West of England: Potential density dependence?

    PubMed

    Gethings, O J; Sage, R B; Leather, S R

    2015-09-15

    The spatial distribution of the infectious stages of parasites with a direct life cycle is one of the most important factors influencing infectious disease dynamics, and acquisition rates will generally increase as the contact time between parasite and host increases. For animal species that are constrained by feeding opportunities, one might expect disease patterns to be highly skewed within confined systems. The aim of the present study was to identify to what extent, if any, eggs of avian parasites are aggregated within the release pen, and to evaluate what effect, if any, this aggregation had on the distribution of the adult stages within the host species. The abundance of Syngamus trachea eggs were highly aggregated within pens, with high levels of contamination driven by a combination of feeder placement, soil moisture and host-mediated heterogeneities in immuno-competence. The log mean and log variance of egg abundance was highly linear (R(2)=0.97-0.99), with an estimated slope (b) of between 1.79 and 1.97 for individual sites, and 2.11 when sites were combined, which indicated aggregation relative to an estimated Poisson slope of unity. Although the placement of feeders and environmental moisture could be contributing to parasite aggregation, density-dependent processes appear to be ensuring the population does not become too over or under-dispersed, in order to maintain the transmission-virulence equilibrium. To the best of our knowledge, this is the first paper to explicitly demonstrate the high spatial aggregation of eggs around feeding sites and the first to suggest possible density-dependent regulatory mechanisms stabilising disease dynamics between S. trachea and ring necked Pheasants (Phasianus colchicus). PMID:26220022

  1. Strong gravitational waves in semiclosed electromagnetic universes. Complete system of Newman-Penrose equations and radial dependence of the field variables

    SciTech Connect

    Khlebnikov, V.I.

    1988-06-01

    We consider the process of integration of a complete system of Newman-Penrose equations for electrovacuum spaces of the general theory of relativity with nonzero cosmological constant. The restrictions used for the field variables correspond to strong gravitational waves in semiclosed Universes of Bertotti-Robinson type.

  2. Using contextual analysis to investigate the nature of spatial memory.

    PubMed

    Siedlecki, Karen L; Salthouse, Timothy A

    2014-06-01

    The present study investigated the properties of episodic spatial memory by conducting contextual analysis on spatial memory tasks in a large sample of individuals (N = 778) between the ages of 18 and 92. The results suggest that episodic spatial memory as measured by a dot location task is not uniquely influenced by memory but is strongly influenced by fluid ability (Gf). The spatial memory–Gf relationship is evident and robust even when spatial memory is operationalized with a very simple single-dot location task, suggesting that allocation of attention across space may play a role in the relationship. Results also indicate that the spatial memory–Gf relations are not dependent on complexity of processing, because Gf has a similar magnitude of relations with a more complex version of the dot location task. Collectively, the results suggest that spatial memory likely represents some aspect of fluid intelligence and is not uniquely related to measures of verbal memory. PMID:24234277

  3. Interaction-Dependent Photon-Assisted Tunneling in Optical Lattices: A Quantum Simulator of Strongly-Correlated Electrons and Dynamical Gauge Fields

    E-print Network

    A. Bermudez; D. Porras

    2015-10-26

    We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a $t$-$J$ model with independently controllable tunneling $t$, super-exchange interaction $J$, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region $t\\gg J$ allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field.

  4. Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical Gauge fields

    NASA Astrophysics Data System (ADS)

    Bermudez, Alejandro; Porras, Diego

    2015-10-01

    We introduce a scheme that combines photon-assisted tunneling (PAT) by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t\\gg J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the PAT scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field.

  5. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    NASA Astrophysics Data System (ADS)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  6. Silencing Nicotiana attenuata Calcium-Dependent Protein Kinases, CDPK4 and CDPK5, Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations1[W

    PubMed Central

    Yang, Da-Hai; Hettenhausen, Christian; Baldwin, Ian T.; Wu, Jianqiang

    2012-01-01

    The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which plants regulate JA biosynthesis remains unclear. Calcium-dependent protein kinases (CDPKs) are plant-specific proteins that sense changes in [Ca2+] to activate downstream responses. We created transgenic Nicotiana attenuata plants, in which two CDPKs, NaCDPK4 and NaCDPK5, were simultaneously silenced (IRcdpk4/5 plants). IRcdpk4/5 plants were stunted and aborted most of their flower primordia. Importantly, after wounding or simulated herbivory, IRcdpk4/5 plants accumulated exceptionally high JA levels. When NaCDPK4 and NaCDPK5 were silenced individually, neither stunted growth nor high JA levels were observed, suggesting that NaCDPK4 and NaCDPK5 have redundant roles. Attack from Manduca sexta larvae on IRcdpk4/5 plants induced high levels of defense metabolites that slowed M. sexta growth. We found that NaCDPK4 and NaCDPK5 affect plant resistance against insects in a JA- and JA-signaling-dependent manner. Furthermore, IRcdpk4/5 plants showed overactivation of salicylic-acid-induced protein kinase, a mitogen-activated protein kinase involved in various stress responses, and genetic analysis indicated that the increased salicylic-acid-induced protein kinase activity in IRcdpk4/5 plants was a consequence of the exceptionally high JA levels and was dependent on CORONATINE INSENSITIVE1. This work reveals the critical roles of CDPKs in modulating JA homeostasis and highlights the complex duet between JA and mitogen-activated protein kinase signaling. PMID:22715110

  7. Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrodinger equation with generalized q-deformed Morse potential

    E-print Network

    Sameer Ikhdair

    2009-04-28

    The analytic solutions of the spatially-dependent mass Schrodinger equation of diatomic molecules with the centrifugal term l(l+1)/r2 for the generalized q-deformed Morse potential are obtained approximately by means of a parametric generalization of the Nikiforov-Uvarov (NU) method combined with the Pekeris approximation scheme. The energy eigenvalues and the corresponding normalized radial wave functions are calculated in closed form with a physically motivated choice of a reciprocal Morse-like mass function, m(r)=m0/(1-deltae^{-a(r-r_{e})})2, 0

  8. Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread Activations in Large Single-Subject Functional MRI Datasets at 7T.

    PubMed

    Gonzalez-Castillo, Javier; Hoy, Colin W; Handwerker, Daniel A; Roopchansingh, Vinai; Inati, Souheil J; Saad, Ziad S; Cox, Robert W; Bandettini, Peter A

    2015-12-01

    It was recently shown that when large amounts of task-based blood oxygen level-dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types-namely positively sustained (pSUS), negatively sustained (nSUS), and transient-was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes. PMID:25405938

  9. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    PubMed

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-09-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. PMID:26208642

  10. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner

    PubMed Central

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K.; Zuther, Ellen

    2015-01-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. PMID:26208642

  11. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  12. Remaking Memories: Reconsolidation Updates Positively Motivated Spatial Memory in Rats

    ERIC Educational Resources Information Center

    Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc

    2012-01-01

    There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a…

  13. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  14. Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background

    PubMed Central

    Shin, Dai-Lun; Hatesuer, Bastian; Bergmann, Silke; Nedelko, Tatiana

    2015-01-01

    ABSTRACT Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans. IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1 gene from the A2G mouse strain are highly resistant. Here, we show that, very unexpectedly, congenic D2-Mx1r/r mice carrying the wild-type Mx1 gene from the A2G strain are not fully protected against lethal influenza virus infections. These observations demonstrate that the genetic background is very important for the protective function of the Mx1 resistance gene. Our results are also highly relevant for understanding genetic susceptibility to influenza virus infections in humans. PMID:26202236

  15. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.

  16. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  17. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Gerten, Dieter; Krause, Michael; Lucht, Wolfgang; Cramer, Wolfgang

    2013-03-01

    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries’ capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.

  18. CISN ShakeAlert: Accounting for site amplification effects and quantifying time and spatial dependence of uncertainty estimates in the Virtual Seismologist earthquake early warning algorithm

    NASA Astrophysics Data System (ADS)

    Caprio, M.; Cua, G. B.; Wiemer, S.; Fischer, M.; Heaton, T. H.; CISN EEW Team

    2011-12-01

    The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system being tested in real-time in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network (SCSN) since July 2008, and at the Northern California Seismic Network (NCSN) since February 2009. With the aim of improving the convergence of real-time VS magnitude estimates to network magnitudes, we evaluate various empirical and Vs30-based approaches to accounting for site amplification. Empirical station corrections for SCSN stations are derived from M>3.0 events from 2005 through 2009. We evaluate the performance of the various approaches using an independent 2010 dataset. In addition, we analyze real-time VS performance from 2008 to the present to quantify the time and spatial dependence of VS uncertainty estimates. We also summarize real-time VS performance for significant 2011 events in California. Improved magnitude and uncertainty estimates potentially increase the utility of EEW information for end-users, particularly those intending to automate damage-mitigating actions based on real-time information.

  19. Diurnal pattern of stomatal conductance in the large-leaved temperate liana Aristolochia macrophylla depends on spatial position within the leaf lamina

    PubMed Central

    Miranda, Tatiana; Ebner, Martin; Traiser, Christopher; Roth-Nebelsick, Anita

    2013-01-01

    Background and Aims The large distance between peripheral leaf regions and the petiole in large leaves is expected to cause stronger negative water potentials at the leaf apex and marginal zones compared with more central or basal leaf regions. Leaf zone-specific differences in water supply and/or gas exchange may therefore be anticipated. In this study, an investigation was made to see whether zonal differences in gas exchange regulation can be detected in large leaves. Methods The diurnal course of stomatal conductance, gs, was monitored at defined lamina zones during two consecutive vegetation periods in the liana Aristolochia macrophylla that has large leaves. Local climate and stem water potential were also monitored to include parameters involved in stomatal response. Additionally, leaf zonal vein densities were measured to assess possible trends in local hydraulic supply. Key Results It was found that the diurnal pattern of gs depends on the position within a leaf in A. macrophylla. The highest values during the early morning were shown by the apical region, with subsequent decline later in the morning and a further gradual decline towards the evening. The diurnal pattern of gs at the marginal regions was similar to that of the leaf tip but showed a time lag of about 1 h. At the leaf base, the diurnal pattern of gs was similar to that of the margins but with lower maximum gs. At the the leaf centre regions, gs tended to show quite constant moderate values during most of the day. Densities of minor veins were lower at the margin and tip compared with the centre and base. Conclusions Gas exchange regulation appears to be zone specific in A. macrophylla leaves. It is suggested that the spatial–diurnal pattern of gs expressed by A. macrophylla leaves represents a strategy to prevent leaf zonal water stress and subsequent vein embolism. PMID:23606681

  20. Anomalous decay of photon echo in a quantum dot ensemble in the strong excitation regime

    SciTech Connect

    Suemori, Ryosuke; Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-12-04

    We investigated the coherent dynamics of exciton ground-state transitions in an 150-layer-stacked strain-compensated InAs quantum dot ensemble using photon echo (PE) technique in the strong excitation regime. The time delay dependence of PE signal intensity shows a drastic change depending on the excitation intensity and the aperture position placed in front of a detector. Our results suggest that the excitation-intensity-dependent spatial distribution of PE signal intensity plays an important role in observing PE signal decay in the strong excitation regime.

  1. Modelling the spread of Wolbachia in spatially heterogeneous environments

    PubMed Central

    Hancock, Penelope A.; Godfray, H. Charles J.

    2012-01-01

    The endosymbiont Wolbachia infects a large number of insect species and is capable of rapid spread when introduced into a novel host population. The bacteria spread by manipulating their hosts' reproduction, and their dynamics are influenced by the demographic structure of the host population and patterns of contact between individuals. Reaction–diffusion models of the spatial spread of Wolbachia provide a simple analytical description of their spatial dynamics but do not account for significant details of host population dynamics. We develop a metapopulation model describing the spatial dynamics of Wolbachia in an age-structured host insect population regulated by juvenile density-dependent competition. The model produces similar dynamics to the reaction–diffusion model in the limiting case where the host's habitat quality is spatially homogeneous and Wolbachia has a small effect on host fitness. When habitat quality varies spatially, Wolbachia spread is usually much slower, and the conditions necessary for local invasion are strongly affected by immigration of insects from surrounding regions. Spread is most difficult when variation in habitat quality is spatially correlated. The results show that spatial variation in the density-dependent competition experienced by juvenile host insects can strongly affect the spread of Wolbachia infections, which is important to the use of Wolbachia to control insect vectors of human disease and other pests. PMID:22675165

  2. Robustness of Spatial Micronetworks

    E-print Network

    McAndrew, Thomas C; Bagrow, James P

    2015-01-01

    Power lines, roadways, pipelines and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that, when failures depend on spatial distances, networks are more fragile than expected. Accounting...

  3. Spatially and Temporally Varying Associations between Temporary Outmigration and Natural Resource Availability in Resource-Dependent Rural Communities in South Africa: A Modeling Framework

    PubMed Central

    Leyk, Stefan; Maclaurin, Galen J.; Hunter, Lori M.; Nawrotzki, Raphael; Twine, Wayne; Collinson, Mark; Erasmus, Barend

    2012-01-01

    Migration-environment models tend to be aspatial within chosen study regions, although associations between temporary outmigration and environmental explanatory variables likely vary across the study space. This research extends current approaches by developing migration models considering spatial non-stationarity and temporal variation – through examination of the migration-environment association at nested geographic scales (i.e. whole-population, village, and subvillage) within a specific study site. Demographic survey data from rural South Africa, combined with indicators of natural resource availability from satellite imagery, are employed in a nested modeling approach that brings out distinct patterns of spatial variation in model associations derived at finer geographic scales. Given recent heightened public and policy concern with the human migratory implications of climate change, we argue that consideration of spatial variability adds important nuance to scientific understanding of the migration-environment association. PMID:23008525

  4. Plasmon-induced spatial electron transfer between single Au nanorods and ALD-coated TiO2: dependence on TiO2 thickness.

    PubMed

    Zheng, Zhaoke; Tachikawa, Takashi; Majima, Tetsuro

    2015-10-01

    We employed single-particle photoluminescence (PL) measurements to investigate the interfacial electron transfer between single Au nanorods (NRs) and TiO2 coated by ALD. Analyzing the energy relaxation path of plasmon-generated hot electrons as well as the PL intensities allowed for the detection and study of the interfacial electron transfer process spatially. PMID:26269424

  5. Spatially embedded growing small-world networks

    PubMed Central

    Zitin, Ari; Gorowara, Alexander; Squires, Shane; Herrera, Mark; Antonsen, Thomas M.; Girvan, Michelle; Ott, Edward

    2014-01-01

    Networks in nature are often formed within a spatial domain in a dynamical manner, gaining links and nodes as they develop over time. Motivated by the growth and development of neuronal networks, we propose a class of spatially-based growing network models and investigate the resulting statistical network properties as a function of the dimension and topology of the space in which the networks are embedded. In particular, we consider two models in which nodes are placed one by one in random locations in space, with each such placement followed by configuration relaxation toward uniform node density, and connection of the new node with spatially nearby nodes. We find that such growth processes naturally result in networks with small-world features, including a short characteristic path length and nonzero clustering. We find no qualitative differences in these properties for two different topologies, and we suggest that results for these properties may not depend strongly on the topology of the embedding space. The results do depend strongly on dimension, and higher-dimensional spaces result in shorter path lengths but less clustering. PMID:25395180

  6. Strongly Driven Crystallization Processes in a Metallic Glass

    SciTech Connect

    LaGrange, T; Grummon, D S; Reed, B W; Browning, N D; King, W E; Campbell, G H

    2009-02-09

    The crystallization of amorphous NiTi thin films was studied in situ using pulsed laser heating in a dynamic transmission electron microscope. A single pulse can crystallize small areas of the film within 2 {micro}s. The crystallized volume fraction and morphology depend strongly on the laser energy, the laser spatial profile, and the heat transport in the film. As compared to slower furnace and continuous wave laser annealing, pulsed laser heating produces a dramatically different microstructure. Higher than expected crystallization rates were observed under pulsed irradiation that do not correlate with kinetic data obtained from the slow-heating crystallization experiments.

  7. Spatial-visual skills and engineering design

    E-print Network

    Tseng, Tiffany

    2009-01-01

    The purpose of this study was to determine whether students with strong spatial-visual skills tend to design more complex mechanisms for the undergraduate course Design and Manufacturing I. The Purdue Spatial Visualization ...

  8. ORIGINAL PAPER Spatial patterns and environmental correlates

    E-print Network

    Slik, Ferry

    suffers from low sampling efforts. Here we try to determine the spatial diversity patterns of liverworts richness. Liverwort richness increased significantly with decreasing latitude, while moss richness showed richness showed strong spatial structuring, indicating dispersal limitation. Environmentally, liverwort

  9. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  10. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  11. Magnetic-resonance determination of the spatial dependence of the droplet size distribution in the cream layer of oil-in-water emulsions: Evidence for the effects of depletion flocculation

    NASA Astrophysics Data System (ADS)

    McDonald, P. J.; Ciampi, E.; Keddie, J. L.; Heidenreich, M.; Kimmich, R.

    1999-01-01

    It is shown that a combination of pulsed-field-gradient spin-echo (PGSE) nuclear-magnetic-resonance (NMR) restricted diffusion analysis and NMR imaging may be used to measure the spatial dependence of the droplet size distribution in the cream layer of turbid oil-in-water emulsions. 1H-13C cyclic J cross-polarization PGSE is introduced as a technique for this purpose in cases where selective observation of the oil component (or other carbohydrate constituent) is required. With this method, 13C nuclei are chemical shift selectively excited by cross-polarization from coupled 1H partners. An optimum detection sensitivity is ensured by transferring the polarization back to the coupled protons with which the combined imaging and diffusion experiment is then carried out. The spatial dependence of the oil droplet size distribution was measured for a series of emulsions containing various fractions of gum xanthan thickener dissolved in the water. The experimental results are compared with a recent model of the creaming process due to Pinfield, Dickinson, and Povey [J. Colloid Interface Sci. 166, 363 (1994)]. When no gum xanthan is present, the experimental results are in good agreement with the model. However, the model fails to describe the droplet distribution for emulsions with a gum xanthan concentration of the order of 0.1 wt %. The discrepancy is discussed in terms of depletion flocculation and depletion stabilization.

  12. 2.45?GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    PubMed

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45?GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146?W/Kg) for 2?h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45?GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15?dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss. PMID:26396154

  13. Impaired spatial learning related with decreased expression of calcium/calmodulin-dependent protein kinase IIalpha and cAMP-response element binding protein in the pentylenetetrazol-kindled rats.

    PubMed

    Wang, Pei; Wang, Wei-Ping; Sun-Zhang; Wang, Hai-Xiang; Yan-Lou; Fan, Yue-Hui

    2008-10-31

    Although its effect on cognitive functions has been one of the hot topics in the present neuroscience research, the mechanism of epilepsy related cognitive impairment is not clearly revealed. Intracellular Ca(2+) plays an important role in regulating many cellular functions including learning and memory, this experiment was therefore conducted, in which, we observed the behaviors of chronic epileptic rats kindled by pentylenetetrazol (PTZ) through Morris water maze (MWM), examined the concentration of intracellular free calcium ([Ca(2+)](i)) with flow cytometry, and tested the expression of calcium/calmodulin-dependent protein kinase IIalpha (CaMKII(alpha)) and cAMP-response element binding protein (CREB) in hippocampus of those rats using western blot and reverse transcription-polymerase chain reaction (RT-PCR). The results demonstrate impaired ability of spatial learning and memory, increased concentration of [Ca(2+)](i), decreased expression levels of total CaMKII(alpha), phosphorylated CaMKII(alpha) (P-CaMKII(alpha)) and phosphorylated CREB (P-CREB) and decreased levels of CaMKII(alpha) mRNA and CREB mRNA of the epileptic rats compared with the normal control rats. Moreover, Nimodipine, an inhibitor of voltage-dependent L-type Ca(2+) channels (VDCCs), reduced the Racine's stage, improved the ability of spatial learning and memory, reversed the effect of Ca(2+) influx and expression levels of CaMKII(alpha) and CREB of the epileptic rats. We concluded that Ca(2+) influx, CaMKII(alpha) and CREB expression levels in hippocampus of chronic epileptic rats may be related with their impaired spatial learning and memory. PMID:18710651

  14. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    SciTech Connect

    Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-12-15

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  15. Double Dissociations in Visual and Spatial Short-Term Memory

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Zhao, Zengmei

    2004-01-01

    A visual short-term memory task was more strongly disrupted by visual than spatial interference, and a spatial memory task was simultaneously more strongly disrupted by spatial than visual interference. This double dissociation supports a fractionation of visuospatial short-term memory into separate visual and spatial components. In 6 experiments,…

  16. Topographic Controls on Spatial Patterns of Soil Texture and Moisture in a Semi-arid Montane Catchment with Aspect-Dependent Vegetation

    NASA Astrophysics Data System (ADS)

    Lehman, B. M.; Niemann, J. D.

    2008-12-01

    Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.

  17. Temperature and Spatial Dependence of the Superconducting and Pseudogap of NdFeAsO0.86F0.14.

    NASA Astrophysics Data System (ADS)

    He, X. B.; Pan, M. H.; Li, G. R.; Wendelken, J. F.; Jin, R. Y.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.; Plummer, E. W.

    2009-03-01

    Scanning tunneling microscopy/spectroscopy are used to investigate the superconducting gap and pseudogap of Fe based high-Tc superconducting material NdFeAsO0.86F0.14 at various temperatures from 17 K to 150 K. The superconducting gap (SG) in the tunneling spectra follows the BCS prediction and closes at Tc of the bulk material. Surprisingly, a pseudogap (PG) opens abruptly just above Tc and closes at 120 K, strongly suggesting that the SG and PG states have competing order parameters in contrast to the cuprates. The PG state may be related to spin fluctuations in the doped materials. Research was supported in part at ORNL by Laboratory Directed Research and Development funds and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US DOE.

  18. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza.

    PubMed

    Garcia, Kevin; Haider, Muhammad Zulqurnain; Delteil, Amandine; Corratgé-Faillie, Claire; Conéjero, Geneviève; Tatry, Marie-Violaine; Becquer, Adeline; Amenc, Laurie; Sentenac, Hervé; Plassard, Claude; Zimmermann, Sabine

    2013-01-01

    Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown. PMID:23850603

  19. Higgs-induced spectroscopic shifts near strong gravity sources

    SciTech Connect

    Onofrio, Roberto

    2010-09-15

    We explore the consequences of the mass generation due to the Higgs field in strong gravity astrophysical environments. The vacuum expectation value of the Higgs field is predicted to depend on the curvature of spacetime, potentially giving rise to peculiar spectroscopic shifts, named hereafter 'Higgs shifts'. Higgs shifts could be searched through dedicated multiwavelength and multispecies surveys with high spatial and spectral resolution near strong gravity sources such as Sagittarius A* or broad searches for signals due to primordial black holes. The possible absence of Higgs shifts in these surveys should provide limits to the coupling between the Higgs particle and the curvature of spacetime, a topic of interest for a recently proposed Higgs-driven inflationary model. We discuss some conceptual issues regarding the coexistence between the Higgs mechanism and gravity, especially for their different handling of fundamental and composite particles.

  20. Strong and superplastic nanoglass

    NASA Astrophysics Data System (ADS)

    Sha, Z. D.; Branicio, P. S.; Pei, Q. X.; Liu, Z. S.; Lee, H. P.; Tay, T. E.; Wang, T. J.

    2015-10-01

    The strength-ductility tradeoff has been a common long-standing dilemma in materials science. For example, superplasticity with a tradeoff in strength has been reported for Cu50Zr50 nanoglass (NG) with grain sizes below 5 nm. Here we report an improvement in strength without sacrificing superplasticity in Cu50Zr50 NG by using a bimodal grain size distribution. Our results reveal that large grains impart high strength, which is in striking contrast to the physical origin of the improvement in strength reported in the traditional nanostructured metals/alloys. Furthermore, the mechanical properties of NG with a bimodal nanostructure depend critically upon the fraction of large grains. By increasing the fraction of the large grains, a transition from superplastic flow to failure by shear banding is clearly observed. We expect that these results will be useful in the development of a novel strong and superplastic NG.

  1. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (?root), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and ?root were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing ?root in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased ?root than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  2. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (?root), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and ?root were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing ?root in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased ?root than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  3. Self-interaction-free time-dependent density-functional theory for molecular processes in strong fields:? High-order harmonic generation of H2 in intense laser fields

    E-print Network

    Chu, Shih-I; Chu, Xi

    2001-01-17

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for nonperturbative treatment of multiphoton processes of many-electron molecular systems in intense laser fields. The time-dependent exchange-correlation (xc...

  4. Magnetic structures of R 5Ni2In4 and R 11Ni4In9 (R??=??Tb and Ho): strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices.

    PubMed

    Ritter, C; Provino, A; Manfrinetti, P; Pecharsky, V K; Gschneidner, K A; Dhar, S K

    2015-12-01

    The magnetic properties and magnetic structures of the R 5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R??=??Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings. A transition at T C??=??125?K in Tb5Ni2In4 [? 1??=??(0, 0, 0)] leads to a ferro/ferrimagnetic order where the magnetic ordering in one of the three R-sublattices leads to the ordering of another one; the third sublattice stays non-magnetic. New magnetic Bragg peaks appearing below T N??=??20?K can be indexed with the incommensurate magnetic propagation vector ? 2??=??(0, 0.636, ½); at T N??=??20?K a cycloidal spin order, which acts mostly upon the third R-sublattice, occurs. Ho5Ni2In4 establishes first antiferromagnetism [???=??(0, 0, 0)] at T N??=??31?K on two R-sublattices; then the system becomes ferro/ferrimagnetic at T C??=??25?K with the third sublattice ordering as well. Tb11Ni4In9 has three magnetic transitions at T C??=??135?K, T N1??=??35?K and at T N2??=??20?K; they are respectively coupled to the appearance of different propagation vectors [? 1??=??(0, 0, 0), ? 2??=??(0, 0, ½), ? 3??=??(0, 1, ½)], which themselves are operating differently on the five different R-sublattices. Two sublattices remain mostly ferromagnetic down to lowest temperature while the three others are predominantly coupled antiferromagnetically. In Ho11Ni4In9 a purely antiferromagnetic order, described by four different magnetic propagation vectors [? 1??=??(0, 0.62, 0), ? 2??=??(0, 1, 0), ? 3??=??(0, 0, ½), ? 4??=??(0, 1, ½)], succeedingly includes all five different sublattices on cooling through transitions at T N1??=??22?K, T N2??=??12?K, T N3??=??8?K and T N4??=??7?K. The strength of the magnetic interactions of the different sublattices can be linked to structural details for both R 5Ni2In4 and R 11Ni4In9 compounds. PMID:26548457

  5. Magnetic structures of R 5Ni2In4 and R 11Ni4In9 (R??=??Tb and Ho): strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Dhar, S. K.

    2015-12-01

    The magnetic properties and magnetic structures of the R 5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R??=??Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings. A transition at T C??=??125?K in Tb5Ni2In4 [? 1??=??(0, 0, 0)] leads to a ferro/ferrimagnetic order where the magnetic ordering in one of the three R-sublattices leads to the ordering of another one; the third sublattice stays non-magnetic. New magnetic Bragg peaks appearing below T N??=??20?K can be indexed with the incommensurate magnetic propagation vector ? 2??=??(0, 0.636, ½) at T N??=??20?K a cycloidal spin order, which acts mostly upon the third R-sublattice, occurs. Ho5Ni2In4 establishes first antiferromagnetism [???=??(0, 0, 0)] at T N??=??31?K on two R-sublattices; then the system becomes ferro/ferrimagnetic at T C??=??25?K with the third sublattice ordering as well. Tb11Ni4In9 has three magnetic transitions at T C??=??135?K, T N1??=??35?K and at T N2??=??20?K they are respectively coupled to the appearance of different propagation vectors [? 1??=??(0, 0, 0), ? 2??=??(0, 0, ½), ? 3??=??(0, 1, ½)], which themselves are operating differently on the five different R-sublattices. Two sublattices remain mostly ferromagnetic down to lowest temperature while the three others are predominantly coupled antiferromagnetically. In Ho11Ni4In9 a purely antiferromagnetic order, described by four different magnetic propagation vectors [? 1??=??(0, 0.62, 0), ? 2??=??(0, 1, 0), ? 3??=??(0, 0, ½), ? 4??=??(0, 1, ½)], succeedingly includes all five different sublattices on cooling through transitions at T N1??=??22?K, T N2??=??12?K, T N3??=??8?K and T N4??=??7?K. The strength of the magnetic interactions of the different sublattices can be linked to structural details for both R 5Ni2In4 and R 11Ni4In9 compounds.

  6. Bioelasticity imaging:II. Spatial resolution

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Zhu, Yanning; Hall, Timothy J.; Insana, Michael F.

    2000-04-01

    The large elasticity contrast possible with strain imaging promises new diagnostic information to augment x-ray, MRI, and ultrasound for the detection of tumors in soft tissue. In the past, we described the design of an elastographic system using the Fourier crosstalk concept introduced by Barrett and Gifford. The diagonal of the crosstalk matrix is related to the pre-sampled modulation transfer function (MTF) of the strain image. Another approach to measuring the spatial resolution of an elasticity image employs a linear frequency- modulated (chirp) strain pattern imposed upon a simulated ultrasonic echo field to study the strain modulation over a range of spatial frequencies in the image. In experiments, high contrast inclusions positioned at varying separations were imaged to apply the Rayleigh criterion for resolution measurement. We measured MTF curves that fell to 0.2 at a spatial frequency of 0.5 mm-1 to 1 mm-1 under realistic conditions. The spatial resolution for ultrasonic strain imaging strongly depends on the transducer properties and deformation patterns applied to the object. Experiments with tissue-like phantoms mimicking the properties of early breast cancer show that 2 mm spheres three times stiffer than the background can be readily resolved. Thus, the potential for using elasticity imaging to detect early breast cancers is excellent.

  7. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    SciTech Connect

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop; Lister, Ryan; Rowley, M. J.; Gregory, Brian D.; Ecker, Joseph R.; Tang, Haixu; Pikaard, Craig S.

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.

  8. Strong Recombination, Weak Selection, and Mutation Alden H. Wright

    E-print Network

    Wright, Alden H.

    Strong Recombination, Weak Selection, and Mutation Alden H. Wright Computer Science University settings involve strong recombination, weak selection, and require mutation. This "bistability" phenomenon selection pressure is weak, recombination is strong, and mutation is within a range that depends

  9. Strong Recombination, Weak Selection, and Mutation Alden H. Wright

    E-print Network

    Wright, Alden H.

    Strong Recombination, Weak Selection, and Mutation Alden H. Wright Computer Science University settings involve strong recombination, weak selection, and require mutation. This ``bistability selection pressure is weak, recombination is strong, and mutation is within a range that depends

  10. Spatial Displays and Spatial Instruments

    SciTech Connect

    Ellis, S.R.; Kaiser, M.K.; Grunwald, A.J.

    1989-07-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  11. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (editor); Kaiser, Mary K. (editor); Grunwald, Arthur J. (editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  12. Luke Spadavecchia Thinking Spatially

    E-print Network

    Luke Spadavecchia 1 Thinking Spatially When people ask me what I do, I generally tell them I. Try telling people that you are interested in statistics, and they switch off pretty quickly. I choose to ignore the coordinates of our data? The reasons for this lie in our dependence on the seminal

  13. Asymmetric spatial soliton dragging.

    PubMed

    Blair, S; Wagner, K; McLeod, R

    1994-12-01

    A new low-latency, cascadable optical logic gate with gain, high contrast, and three-terminal input-output isolation is introduced. The interaction between two orthogonally polarized spatial solitons brought into coincidence at the boundary of a saturating nonlinear medium and propagating in different directions results in the phase-insensitive spatial dragging of a strong pump soliton by a weaker signal. As a result, the strong pump is transmitted through an aperture when the weak signal is not present, and it is dragged to the side by more than a beam width and blocked in the presence of the weak signal, thus implementing an inverter with gain. A multi-input, logically complete NOR gate also can be implemented in a cascaded system. PMID:19855703

  14. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.

    PubMed

    Goode, Daniel J; Imbrigiotta, Thomas E; Lacombe, Pierre J

    2014-12-15

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring. PMID:25461882

  15. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

    NASA Astrophysics Data System (ADS)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-12-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  16. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    USGS Publications Warehouse

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  17. Simulation of Time-dependent Heisenberg Models in 1D

    E-print Network

    A. G. Volosniev; H. -W. Hammer; N. T. Zinner

    2015-07-13

    In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle.

  18. Natural auditory scene statistics shapes human spatial hearing

    PubMed Central

    Parise, Cesare V.; Knorre, Katharina; Ernst, Marc O.

    2014-01-01

    Human perception, cognition, and action are laced with seemingly arbitrary mappings. In particular, sound has a strong spatial connotation: Sounds are high and low, melodies rise and fall, and pitch systematically biases perceived sound elevation. The origins of such mappings are unknown. Are they the result of physiological constraints, do they reflect natural environmental statistics, or are they truly arbitrary? We recorded natural sounds from the environment, analyzed the elevation-dependent filtering of the outer ear, and measured frequency-dependent biases in human sound localization. We find that auditory scene statistics reveals a clear mapping between frequency and elevation. Perhaps more interestingly, this natural statistical mapping is tightly mirrored in both ear-filtering properties and in perceived sound location. This suggests that both sound localization behavior and ear anatomy are fine-tuned to the statistics of natural auditory scenes, likely providing the basis for the spatial connotation of human hearing. PMID:24711409

  19. Weak and Strong Sequential Measurements

    E-print Network

    Aharon Brodutch; Eliahu Cohen

    2015-04-28

    Quantum systems usually travel a multitude of different paths when evolving through time from an initial to a final state. In general, the possible paths will depend on the future and past boundary conditions, as well as the system's dynamics. We present a gedankenexperiment where mutually exclusive paths are followed deterministically and simultaneously, by the same system, depending on which measurement was performed. We show how this `paradoxical' behavior is interpreted in the weak measurement formalism where the back action of the measurement cannot be used to account for the strange behavior. To support our predictions we present a method for performing both the strong and weak measurement.

  20. Characterization of spatial distribution of Tetranychus urticae in peppermint in California and implication for improving sampling plan.

    PubMed

    Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D

    2016-02-01

    Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62 % of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management. PMID:26692381

  1. BUILDING STRONG Industry Listening

    E-print Network

    US Army Corps of Engineers

    Communications Team #12;BUILDING STRONG® U.S. Port and Inland Waterways Modernization Strategy: OptionsBUILDING STRONG® 1 Industry Listening Session Keith Hofseth USACE Institute for Water Resources US Strategy: Options for the Future #12;BUILDING STRONG® U.S. Port and Inland Waterways Modernization Strategy

  2. One spatial map or many? Spatial coding of connected environments.

    PubMed

    Han, Xue; Becker, Suzanna

    2014-03-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will form separate spatial representations; this should incur an accuracy cost when inferring directions from one neighborhood to the other. Interestingly, our data instead suggest that people have a very strong tendency to form local representations, regardless of whether the neighborhoods were learned together or separately. Only when all visible distinctions between neighborhoods were removed did people behave as if they formed one integrated spatial representation. These data are broadly consistent with evidence from rodent hippocampal place cell recordings in connected boxes, and with hierarchical models of spatial coding. PMID:24364723

  3. LHC Phenomenology and Lattice Strong Dynamics

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2013-03-01

    While the LHC experimentalists work to find evidence of physics beyond the standard model, lattice gauge theorists are working as well to characterize the range of possible phenomena in strongly-coupled models of electroweak symmetry breaking. I will summarize the current progress of the Lattice Strong Dynamics (LSD) collaboration on the flavor dependence of SU(3) gauge theories.

  4. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  5. Spatial networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  6. Temporal and spatial scaling impacts on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-05-01

    Convective and stratiform precipitation events have fundamentally different physical causes. Using a radar composite over Germany, this study separates these precipitation types and compares extremes at different spatial and temporal scales, ranging from 1 to 50 km and 5 min to 6 h, respectively. Four main objectives are addressed. First, we investigate extreme precipitation intensities for convective and stratiform precipitation events at different spatial and temporal resolutions to identify type-dependent space and time reduction factors and to analyze regional and seasonal differences over Germany. We find strong differences between the types, with up to 30% higher reduction factors for convective compared to stratiform extremes, exceeding all other observed seasonal and regional differences within one type. Second, we investigate how the differences in reduction factors affect the contribution of each type to extreme events as a whole, again dependent on the scale and the threshold chosen. A clear shift occurs towards more convective extremes at higher resolution or higher percentiles. For horizontal resolutions of current climate model simulations, i.e., ~10 km, the temporal resolution of the data as well as the chosen threshold have profound influence on which type of extreme will be statistically dominant. Third, we compare the ratio of area to duration reduction factor for convective and stratiform events and find that convective events have lower effective advection velocities than stratiform events and are therefore more strongly affected by spatial than by temporal aggregation. Finally, we discuss the entire precipitation distribution regarding data aggregation and identify matching pairs of temporal and spatial resolutions where similar distributions are observed. The information is useful for planning observational networks or storing model data at different temporal and spatial scales.

  7. Strong Navajo marriages.

    PubMed

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenband, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths: (1) maintain communication, (2) nurture your relationship, (3) learn about marriage, (4) be prepared for marriage, and (5) have a strong foundation. PMID:19085828

  8. On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas

    NASA Astrophysics Data System (ADS)

    Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.

    2015-12-01

    The dynamics of a Bose-Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross-Pitaevskii equation is solved numerically by the split-step Crank-Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.

  9. Spatial effects in real networks: Measures, null models, and applications

    NASA Astrophysics Data System (ADS)

    Ruzzenenti, Franco; Picciolo, Francesco; Basosi, Riccardo; Garlaschelli, Diego

    2012-12-01

    Spatially embedded networks are shaped by a combination of purely topological (space-independent) and space-dependent formation rules. While it is quite easy to artificially generate networks where the relative importance of these two factors can be varied arbitrarily, it is much more difficult to disentangle these two architectural effects in real networks. Here we propose a solution to this problem, by introducing global and local measures of spatial effects that, through a comparison with adequate null models, effectively filter out the spurious contribution of nonspatial constraints. Our filtering allows us to consistently compare different embedded networks or different historical snapshots of the same network. As a challenging application we analyze the World Trade Web, whose topology is known to depend on geographic distances but is also strongly determined by nonspatial constraints (degree sequence or gross domestic product). Remarkably, we are able to detect weak but significant spatial effects both locally and globally in the network, showing that our method succeeds in retrieving spatial information even when nonspatial factors dominate. We finally relate our results to the economic literature on gravity models and trade globalization.

  10. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  11. Communication with spatially modulated Light through turbulent Air across Vienna

    E-print Network

    Mario Krenn; Robert Fickler; Matthias Fink; Johannes Handsteiner; Mehul Malik; Thomas Scheidl; Rupert Ursin; Anton Zeilinger

    2014-11-12

    The transverse spatial modes of light offer a large state-space with interesting physical properties. For exploiting it in future long-distance experiments, spatial modes will have to be transmitted over turbulent free-space links. Numerous recent lab-scale experiments have found significant degradation in the mode quality after transmission through simulated turbulence and consecutive coherent detection. Here we experimentally analyze the transmission of one prominent class of spatial modes, the orbital-angular momentum (OAM) modes, through 3 km of strong turbulence over the city of Vienna. Instead of performing a coherent phase-dependent measurement, we employ an incoherent detection scheme which relies on the unambiguous intensity patterns of the different spatial modes. We use a pattern recognition algorithm (an artificial neural network) to identify the characteristic mode pattern displayed on a screen at the receiver. We were able to distinguish between 16 different OAM mode superpositions with only ~1.7% error, and use them to encode and transmit small grey-scale images. Moreover, we found that the relative phase of the superposition modes is not affected by the atmosphere, establishing the feasibility for performing long-distance quantum experiments with the OAM of photons. Our detection method works for other classes of spatial modes with unambiguous intensity patterns as well, and can further be improved by modern techniques of pattern recognition.

  12. A rainfall spatial interpolation algorithm based on inhomogeneous kernels

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Fiori, Elisabetta; Molini, Luca

    2015-04-01

    Rainfall fields constitute the main input of hydrological distributed models, both for long period water balance and for short period flood forecast and monitoring. The importance of an accurate reconstruction of the spatial pattern of rainfall is, thus, well recognized in several fields of application: agricultural planning, water balance at watershed scale, water management, flood monitoring. The latter case is particularly critical, due to the strong effect of the combination of the soil moisture pattern and of the rainfall pattern on the intensity peak of the flood. Despite the importance of the spatial characterization of the rainfall height, this variable still presents several difficulties when an interpolation is required. Rainfall fields present spatial and temporal alternance of large zero-values areas (no-rainfall) and complex pattern of non zero heights (rainfall events). Furthermore, the spatial patterns strongly depend on the type and the origin of rain event (convective, stratiform, orographic) and on the spatial scale. Different kind of rainfall measures and estimates (rainfall gauges, satellite estimates, meteo radar) are available, as well as large amount of literature for the spatial interpolation: from Thiessen polygons to Inverse Distance Weight (IDW) to different variants of kriging, neural network and other deterministic or geostatistic methods. In this work a kernel-based method for interpolation of point measures (raingauges) is proposed, in which spatially inhomogeneous kernel are used. For each gauge a particular kernel is fitted following the particular correlation structures between the rainfall time series of the given gauge and those of its neighbors. In this way the local features of the field are considered following the observed dependence spatial pattern. The kernel are assumed to be Gaussian, whose covariance matrices are fitted basing on the values of the correlation of the time series and the location. A similar approach is used on a binary variant to reconstruct the rainfall - no rainfall areas, to be used as mask of the continuous rainfall interpolated field. The method was applied on a set of 8 years of measurements (2006-2013) of raingauges in Northern Italy.

  13. Spatial and Temporal Patterns of Tidal Dissipation in Synchronous Satellites

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Aharonson, Oded

    2003-01-01

    Tidal heating is an important energy source for several solar system bodies, and there is a wide-spread perception that the pattern of surface heat flow is diagnostic of internal structure. We wish to clarify that situation. Our analysis depends upon two important assumptions: First, that heat transport is dominated by conduction. Second, that the body can be modeled by a sequence of spherically symmetric layers, each with a linear visco-elastic rheology. Under these assumptions, surface heat flow patterns in tidally dominated satellites will reflect radially integrated dissipation patterns. For synchronously rotating satellites with zero obliquity, this pattern depends quite strongly on orbital eccentricity but relatively little on purely radial variations in internal structure. The total amount of heat generated within the body does depend sensitively on internal structure, but the spatial pattern is rather insensitive to structure, especially at low orbital eccentricities.

  14. Ensemble strong coupling

    NASA Astrophysics Data System (ADS)

    Barnes, W. L.

    2015-08-01

    Strong coupling between light and an ensemble of molecules leads to the formation of new hybrid states and offers the exciting prospect of a new route to control material properties. Now a theoretical model has been introduced to complement the recent observation of strong coupling between the vibrational modes of molecules and an electromagnetic (cavity) mode. This new work by del Pino et al (2015 New J. Phys. 17 053040) makes an important contribution by offering fresh insight into the underlying physics, especially into the role of dephasing processes in determining the dynamics of ensemble strong coupling.

  15. Strongly interacting Fermi gases

    E-print Network

    Bakr, Waseem S.

    Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision ...

  16. Excitation wavelength dependent photoluminescence in structurally non-uniform Si/SiGe-island heteroepitxial multilayers

    SciTech Connect

    Modi, N.; Tsybeskov, L.; Lockwood, D. J.; Wu, X.; Baribeau, J.-M.

    2012-06-01

    In nanometer-size Si/SiGe-island heteroepitxial multilayers grown on Si(001), low temperature photoluminescence spectra are observed that strongly depend on the excitation wavelength and show a strong correlation with structural properties revealed by transmission electron microscopy. These experimental results can be explained by assuming that the optically created carriers are strongly localized at Si/SiGe island heterointerfaces. We show that electron-hole pairs are generated and recombine within spatial regions mainly defined by the photoexcitation penetration depth, and that the estimated exciton diffusion length is notably short and comparable with the SiGe-island average size.

  17. Detecting the Amplitude Mode of Strongly Interacting Lattice Bosons by Bragg Scattering

    SciTech Connect

    Bissbort, Ulf; Hofstetter, Walter; Li Yongqiang

    2011-05-20

    We report the first detection of the Higgs-type amplitude mode using Bragg spectroscopy in a strongly interacting condensate of ultracold atoms in an optical lattice. By the comparison of our experimental data with a spatially resolved, time-dependent bosonic Gutzwiller calculation, we obtain good quantitative agreement. This allows for a clear identification of the amplitude mode, showing that it can be detected with full momentum resolution by going beyond the linear response regime. A systematic shift of the sound and amplitude modes' resonance frequencies due to the finite Bragg beam intensity is observed.

  18. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  19. Kinetic Characterization of Strongly Coupled Systems

    SciTech Connect

    Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.

    2007-01-05

    We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.

  20. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  1. Probing strongly coupled anisotropic plasma

    E-print Network

    Dimitrios Giataganas

    2012-07-09

    We calculate the static potential, the drag force and the jet quenching parameter in strongly coupled anisotropic N=4 super Yang-Mills plasma. We find that the jet quenching is in general enhanced in presence of anisotropy compared to the isotropic case and that its value depends strongly on the direction of the moving quark and the direction along which the momentum broadening occurs. The jet quenching is strongly enhanced for a quark moving along the anisotropic direction and momentum broadening happens along the transverse one. The parameter gets lower for a quark moving along the transverse direction and the momentum broadening considered along the anisotropic one. Finally, a weaker enhancement is observed when the quark moves in the transverse plane and the broadening occurs on the same plane. The drag force for quark motion parallel to the anisotropy is always enhanced. For motion in the transverse space the drag force is enhanced compared to the isotropic case only for quarks having velocity above a critical value. Below this critical value the force is decreased. Moreover, the drag force along the anisotropic direction is always stronger than the force in the transverse space. The diffusion time follows exactly the inverse relations of the drag forces. The static potential is decreased and stronger decrease observed for quark-antiquark pair aligned along the anisotropic direction than the transverse one. We finally comment on our results and elaborate on their similarities and differences with the weakly coupled plasmas.

  2. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  3. Strongly correlating liquids and their isomorphs

    E-print Network

    Ulf R. Pedersen; Nicoletta Gnan; Nicholas P. Bailey; Thomas B. Schröder; Jeppe C. Dyre

    2010-04-07

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that strongly correlating liquids are approximately single-parameter liquids with close to unity Prigogine-Defay ratio, and v) that the fictive temperature initially decreases for an isobaric temperature up jump. The "isomorph filter", which allows one to test for universality of theories for the non-Arrhenius temperature dependence of the relaxation time, is also briefly discussed.

  4. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light.

    PubMed

    Wu, Tong; Wang, Rongyao; Zhang, Xiangdong

    2015-01-01

    Whether or not chiral interaction exists between the optical orbital angular momentum (OAM) and a chiral molecule remains unanswered. So far, such an interaction has not been observed experimentally. Here we present a T-matrix method to study the interaction between optical OAM and the chiral molecule in a cluster of nanoparticles. We find that strong interaction between the chiral molecule and OAM can be induced by the excitation of plasmon resonances. An experimental scheme to observe such an interaction has been proposed. Furthermore, we have found that the signal of the OAM dichroism can be either positive or negative, depending on the spatial positions of nanocomposites in the cross-sections of OAM beams. The cancellation between positive and negative signals in the spatial average can explain why the interaction has not been observed in former experiments. PMID:26656892

  5. The Gini Coefficient as a Morphological Measurement of Strongly Lensed Galaxies in the Image Plane

    E-print Network

    Florian, Michael K; Gladders, Michael D

    2015-01-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images on which morphological measurements can be made, although at the expense of a highly spatially variable telescope PSF when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time and resource intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather than the source plane, it would bypass this issue and obviate the need for a source reconstruction process. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that th...

  6. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light

    PubMed Central

    Wu, Tong; Wang, Rongyao; Zhang, Xiangdong

    2015-01-01

    Whether or not chiral interaction exists between the optical orbital angular momentum (OAM) and a chiral molecule remains unanswered. So far, such an interaction has not been observed experimentally. Here we present a T-matrix method to study the interaction between optical OAM and the chiral molecule in a cluster of nanoparticles. We find that strong interaction between the chiral molecule and OAM can be induced by the excitation of plasmon resonances. An experimental scheme to observe such an interaction has been proposed. Furthermore, we have found that the signal of the OAM dichroism can be either positive or negative, depending on the spatial positions of nanocomposites in the cross-sections of OAM beams. The cancellation between positive and negative signals in the spatial average can explain why the interaction has not been observed in former experiments. PMID:26656892

  7. Regulation of spatial selectivity by crossover inhibition.

    PubMed

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs. PMID:23575830

  8. Regulation of Spatial Selectivity by Crossover Inhibition

    PubMed Central

    Cafaro, Jon; Rieke, Fred

    2013-01-01

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or “crossover” inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell’s spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs. PMID:23575830

  9. A strong comeback

    SciTech Connect

    Marier, D.

    1992-03-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders.

  10. Networks of strong ties

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolin; Adamic, Lada A.; Strauss, Martin J.

    2007-05-01

    Social networks transmitting covert or sensitive information cannot use all ties for this purpose. Rather, they can only use a subset of ties that are strong enough to be “trusted”. This paper addresses whether it is still possible, under this restriction, for information to be transmitted widely and rapidly in social networks. We use transitivity as evidence of strong ties, requiring one or more shared contacts in order to count an edge as strong. We examine the effect of removing all non-transitive ties in two real social network data sets, imposing varying thresholds in the number of shared contacts. We observe that transitive ties occupy a large portion of the network and that removing all other ties, while causing some individuals to become disconnected, preserves the majority of the giant connected component. Furthermore, the average shortest path, important for the rapid diffusion of information, increases only slightly relative to the original network. We also evaluate the cost of forming transitive ties by modeling a random graph composed entirely of closed triads and comparing its connectivity and average shortest path with the equivalent Erdös-Renyi random graph. Both the empirical study and random model point to a robustness of strong ties with respect to the connectivity and small world property of social networks.

  11. Strong Little Magnets

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  12. Strongly Coupled Plasma Liquids

    E-print Network

    Z. Donko; P. Hartmann; G. J. Kalman

    2007-10-27

    This paper intends to review some of the prominent properties of strongly coupled classical plasmas having in mind the possible link with the quark-gluon plasma created in heavy-ion collisions. Thermodynamic and transport properties of classical liquid-state one-component plasmas are described and features of collective excitations are presented.

  13. Spatial organization affects lightness perception on articulated surrounds.

    PubMed

    Sawayama, Masataka; Kimura, Eiji

    2013-01-01

    The articulation effect refers to a change in lightness contrast induced by adding small patches of different luminances to a uniform background surrounding a target in a lightness contrast display. This study investigated how local luminance signals are integrated to generate the articulation effect. We asked whether spatial organization due to perceptual grouping can influence the articulation effect even when the spatially averaged luminance of the surrounds is held constant. Grouping factors used were common-fate motion (Experiment 1), similarity of orientation (Experiment 2), and synchrony (Experiment 3). Results of all experiments consistently showed that the articulation effect was larger when the target was strongly grouped with the articulation patches. These findings provide converging evidence for the effects of spatial organization on the articulation effect. Moreover, they suggest that lightness computation underlying the articulation effect depends on a middle-level representation in which perceptual organization is at least partially established. The changes in lightness perception due to spatial organization could be accounted for by the double-anchoring theory of lightness (Bressan, 2006b). PMID:23559595

  14. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael; Wiscombe, Warren

    2004-01-01

    The analysis of aircraft measurements of individual drop sizes in clouds suggests that for sufficiently small volumes the mean number of cloud drops with a given radius is proportional to volume powered by a drop-size dependent exponent. For abundant small drops present, the exponent is 1 as assumed in conventional approach. However, for rarer large drops, the exponents fall below unity. We show striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast and also helps explain why remotely sensed cloud drop size is generally biased.

  15. Plasmons in strong superconductors

    SciTech Connect

    Baldo, M.; Ducoin, C.

    2011-10-15

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T{sub c} superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  16. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed during SCES 2010. As we learned, past dogmas about strongly correlated materials and phenomena must be re-examined with an open and inquisitive mind. Invited speakers and respected leaders in the field were invited to contribute to this special issue and we have insisted that they present new data, ideas, or perspectives, as opposed to simply an overview of their past work. As with the conference, this special issue touches upon recent developments of strongly correlated electron systems in d-electron materials, such as Sr3Ru2O7, graphene, and the new Fe-based superconductors, but it is dominated by topics in f-electron compounds. Contributions reflect the growing appreciation for the influence of disorder and frustration, the need for organizing principles, as well as detailed investigations on particular materials of interest and, of course, new materials. As this special issue could not possibly capture the full breadth and depth that the conference had to offer, it is being published simultaneously with an issue of Journal of Physics: Conference Series containing 157 manuscripts in which all poster presenters at SCES 2010 were invited to contribute. Since this special issue grew out of the 2010 SCES conference, we take this opportunity to give thanks. This conference would not have been possible without the hard work of the SCES 2010 Program Committee, International and National Advisory Committees, Local Committee, and conference organizers, the New Mexico Consortium. We thank them as well as those organizations that generously provided financial support: ICAM-I2CAM, Quantum Design, Lakeshore, the National High Magnetic Field Laboratory and the Department of Energy National Laboratories at Argonne, Berkeley, Brookhaven, Los Alamos and Oak Ridge. Of course, we especially thank the participants for bringing new ideas and new results, without which SCES 2010 would not have been possible. Strongly correlated electron systems contents Spin-orbit coupling and k-dependent Zeeman splitting in strontium ruthenate Emil J Rozbicki, James F Annett, Jean-René Souquet an

  17. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic modulations in the precursor region of FeGeH Wilhelm, M Baenitz, M Schmidt, C Naylor, R Lortz, U

  18. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology. PMID:18325561

  19. Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.

    2012-01-01

    An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.

  20. Unidirectional Pinning and Hysteresis of Spatially Discordant Alternans in Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Karma, Alain; Restrepo, Juan G.

    2012-03-01

    Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac tissue that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-beat dynamics, we explore this pattern’s dynamics in the regime of a calcium-dominated period-doubling instability at the single-cell level. We find a novel nonlinear bifurcation associated with the formation of a discontinuous jump in the amplitude of calcium alternans at nodes separating discordant regions. We show that this jump unidirectionally pins nodes by preventing their motion away from the pacing site following a pacing rate decrease but permitting motion towards this site following a rate increase. This unidirectional pinning leads to strongly history-dependent node motion that is strongly arrhythmogenic.

  1. Spatial memory, recognition memory, and the hippocampus

    E-print Network

    Squire, Larry R.

    Spatial memory, recognition memory, and the hippocampus Nicola J. Broadbent*, Larry R. Squire. Squire, August 27, 2004 There is wide agreement that spatial memory is dependent on the integrity recognition memory is not as clear. We examined the relationship between hippocampal lesion size and both

  2. Multi-parameter high-resolution spatial maps of a CdZnTe radiation detector array

    SciTech Connect

    N. R. Hilton; H. B. Barber; B. A. Brunett; J. D. Eskin; M. S. Goorsky; R. B. James; J. C. Lund; D. G. Marks; T. E. Schlesinger; T. M.Teska; J. M. Van Scyoc; J.M. Woolfenden; H. Yoon

    1998-11-07

    Resistivity results from a 48x48 pixelated CdZnTe (CZT) radiation detector array are presented alongside X-ray topography and detector mapping with a collimated gamma-ray beam. By using a variety of measurements performed on the same sample and registering each data set relative to the others, the spatial dependence of relationships between them was examined. The local correlations between resistivity and one measure of detector performance were strongly influenced by the positions of grain boundaries and other gross crystal defects in the sample. These measurements highlight the need for material studies of spatially heterogeneous CZT to record position information along with the parameters under study.

  3. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  4. Spatial correlations and optical properties in three-dimensional deterministic aperiodic structures

    NASA Astrophysics Data System (ADS)

    Renner, Michael; Freymann, Georg Von

    2015-08-01

    Photonic systems have strongly varying optical properties depending on the spatial correlations present in a given realization. In photonic crystals the correlations are spatially periodic forming Bravais lattices whereas the building blocks of an amorphous medium are randomly distributed without any long-range order. In this manuscript we study the optical properties of so-called deterministic aperiodic structures which fill the gap between the aforementioned two limiting cases. Within this group we vary the spectrum of the spatial correlations from being pure-point over singularly-continuous to absolutely-continuous. The desired correlations are created in direct-laser written three-dimensional polymer structures using one construction principle which allows us to attribute the optical behaviour solely to the encoded spectrum. Infrared reflection measurements reveal the characteristic response of each spectral type verifying the successful fabrication of large deterministic aperiodic structures. To prove the presence of the correlations in all directions we perform transmission experiments parallel to the substrate by means of micro-optical mirrors placed next to the structures. Transport measurements reveal a strong dependence of the effective beam width at the output facet on the encoded lattice type. Finally, we reproduce the lattice type dependent transport behavior in numerical calculations ruling out extrinsic experimental reasons for these findings.

  5. Spatial correlations and optical properties in three-dimensional deterministic aperiodic structures.

    PubMed

    Renner, Michael; von Freymann, Georg

    2015-01-01

    Photonic systems have strongly varying optical properties depending on the spatial correlations present in a given realization. In photonic crystals the correlations are spatially periodic forming Bravais lattices whereas the building blocks of an amorphous medium are randomly distributed without any long-range order. In this manuscript we study the optical properties of so-called deterministic aperiodic structures which fill the gap between the aforementioned two limiting cases. Within this group we vary the spectrum of the spatial correlations from being pure-point over singularly-continuous to absolutely-continuous. The desired correlations are created in direct-laser written three-dimensional polymer structures using one construction principle which allows us to attribute the optical behaviour solely to the encoded spectrum. Infrared reflection measurements reveal the characteristic response of each spectral type verifying the successful fabrication of large deterministic aperiodic structures. To prove the presence of the correlations in all directions we perform transmission experiments parallel to the substrate by means of micro-optical mirrors placed next to the structures. Transport measurements reveal a strong dependence of the effective beam width at the output facet on the encoded lattice type. Finally, we reproduce the lattice type dependent transport behavior in numerical calculations ruling out extrinsic experimental reasons for these findings. PMID:26268153

  6. Spatial correlations and optical properties in three-dimensional deterministic aperiodic structures

    PubMed Central

    Renner, Michael; Freymann, Georg von

    2015-01-01

    Photonic systems have strongly varying optical properties depending on the spatial correlations present in a given realization. In photonic crystals the correlations are spatially periodic forming Bravais lattices whereas the building blocks of an amorphous medium are randomly distributed without any long-range order. In this manuscript we study the optical properties of so-called deterministic aperiodic structures which fill the gap between the aforementioned two limiting cases. Within this group we vary the spectrum of the spatial correlations from being pure-point over singularly-continuous to absolutely-continuous. The desired correlations are created in direct-laser written three-dimensional polymer structures using one construction principle which allows us to attribute the optical behaviour solely to the encoded spectrum. Infrared reflection measurements reveal the characteristic response of each spectral type verifying the successful fabrication of large deterministic aperiodic structures. To prove the presence of the correlations in all directions we perform transmission experiments parallel to the substrate by means of micro-optical mirrors placed next to the structures. Transport measurements reveal a strong dependence of the effective beam width at the output facet on the encoded lattice type. Finally, we reproduce the lattice type dependent transport behavior in numerical calculations ruling out extrinsic experimental reasons for these findings. PMID:26268153

  7. Microcausality in strongly interacting fields

    E-print Network

    L. Rauber; W. Cassing

    2014-01-21

    We study the properties of strongly interacting massive quantum fields in space-time as resulting from a parametric decay of the fields with a large decay width $\\gamma$. The resulting imaginary part of the retarded and advanced propagators in this case is of Lorentzian form and the theory conserves microcausality, i.e. the commutator between the fields vanishes for space-like distances in space-time. However, when considering separately space-like and time-like components of the spectral function in momentum space we find microcausality to be violated for each component separately. This implies that the modeling of effective field theories for strongly interacting systems has to be considered with great care and restrictions to time-like four momenta in case of broad spectral functions have to be ruled out. Furthermore, when employing effective propagators with a width $\\gamma({\\bf p}^2)$ depending explicitly on three-momentum ${\\bf p}$ the commutator of the fields no longer vanishes for $r>t$ since the related field theory becomes nonlocal and violates microcausality.

  8. Mammographic Breast Density in Chinese Women: Spatial Distribution and Autocorrelation Patterns

    PubMed Central

    Lai, Christopher W. K.; Law, Helen K. W.

    2015-01-01

    Mammographic breast density (MBD) is a strong risk factor for breast cancer. The spatial distribution of MBD in the breast is variable and dependent on physiological, genetic, environmental and pathological factors. This pilot study aims to define the spatial distribution and autocorrelation patterns of MBD in Chinese women aged 40–60. By analyzing their digital mammographic images using a public domain Java image processing program for segmentation and quantification of MBD, we found their left and right breasts were symmetric to each other in regard to their breast size (Total Breast Area), the amount of BMD (overall PD) and Moran's I values. Their MBD was also spatially autocorrelated together in the anterior part of the breast in those with a smaller breast size, while those with a larger breast size tend to have their MBD clustered near the posterior part of the breast. Finally, we observed that the autocorrelation pattern of MBD was dispersed after a 3-year observation period. PMID:26332221

  9. Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses

    SciTech Connect

    Okada, Go; Morrell, Brian; Koughia, Cyril; Kasap, Safa; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean

    2011-09-19

    The measurement of spatially resolved high doses in microbeam radiation therapy has always been a challenging task, where a combination of high dose response and high spatial resolution (microns) is required for synchrotron radiation peaked around 50 keV. The x-ray induced Sm{sup 3+}{yields} Sm{sup 2+} valence conversion in Sm{sup 3+} doped fluorophosphates glasses has been tested for use in x-ray dosimetry for microbeam radiation therapy. The conversion efficiency depends almost linearly on the dose of irradiation up to {approx}5 Gy and saturates at doses exceeding {approx}80 Gy. The conversion shows strong correlation with x-ray induced absorbance of the glass which is related to the formation of phosphorus-oxygen hole centers. When irradiated through a microslit collimator, a good spatial resolution and high ''peak-to-valley'' contrast have been observed by means of confocal photoluminescence microscopy.

  10. Spatial Uncertainty Analysis of Ecological Models

    SciTech Connect

    Jager, H.I.; Ashwood, T.L.; Jackson, B.L.; King, A.W.

    2000-09-02

    The authors evaluated the sensitivity of a habitat model and a source-sink population model to spatial uncertainty in landscapes with different statistical properties and for hypothetical species with different habitat requirements. Sequential indicator simulation generated alternative landscapes from a source map. Their results showed that spatial uncertainty was highest for landscapes in which suitable habitat was rare and spatially uncorrelated. Although, they were able to exert some control over the degree of spatial uncertainty by varying the sampling density drawn from the source map, intrinsic spatial properties (i.e., average frequency and degree of spatial autocorrelation) played a dominant role in determining variation among realized maps. To evaluate the ecological significance of landscape variation, they compared the variation in predictions from a simple habitat model to variation among landscapes for three species types. Spatial uncertainty in predictions of the amount of source habitat depended on both the spatial life history characteristics of the species and the statistical attributes of the synthetic landscapes. Species differences were greatest when the landscape contained a high proportion of suitable habitat. The predicted amount of source habitat was greater for edge-dependent (interior) species in landscapes with spatially uncorrelated(correlated) suitable habitat. A source-sink model demonstrated that, although variation among landscapes resulted in relatively little variation in overall population growth rate, this spatial uncertainty was sufficient in some situations, to produce qualitatively different predictions about population viability (i.e., population decline vs. increase).

  11. Strongly Charged Polymer Brushes

    E-print Network

    Ben O'Shaughnessy; Qingbo Yang

    2005-08-10

    Charged polymer brushes are layers of surface-tethered chains. Experimental systems are frequently strongly charged. Here we calculate phase diagrams for such brushes in terms of salt concentration n_s, grafting density and polymer backbone charge density. Electrostatic stiffening and counterion condensation effects arise which are absent from weakly charged brushes. In various phases chains are locally or globally fully stretched and brush height H has unique scaling forms; at higher salt concentrations we find H ~ n_s^(-1/3), in good agreement with experiment.

  12. Strongly intensive quantities

    SciTech Connect

    Gorenstein, M. I.; Gazdzicki, M.

    2011-07-15

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  13. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  14. Strongly correlated materials.

    PubMed

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao

    2012-09-18

    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO? and Fe?O?, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials. PMID:22893361

  15. Genomewide Spatial Correspondence Between Nonsynonymous Divergence and Neutral Polymorphism Reveals Extensive Adaptation in Drosophila

    PubMed Central

    Macpherson, J. Michael; Sella, Guy; Davis, Jerel C.; Petrov, Dmitri A.

    2007-01-01

    The effect of recurrent selective sweeps is a spatially heterogeneous reduction in neutral polymorphism throughout the genome. The pattern of reduction depends on the selective advantage and recurrence rate of the sweeps. Because many adaptive substitutions responsible for these sweeps also contribute to nonsynonymous divergence, the spatial distribution of nonsynonymous divergence also reflects the distribution of adaptive substitutions. Thus, the spatial correspondence between neutral polymorphism and nonsynonymous divergence may be especially informative about the process of adaptation. Here we study this correspondence using genomewide polymorphism data from Drosophila simulans and the divergence between D. simulans and D. melanogaster. Focusing on highly recombining portions of the autosomes, at a spatial scale appropriate to the study of selective sweeps, we find that neutral polymorphism is both lower and, as measured by a new statistic QS, less homogeneous where nonsynonymous divergence is higher and that the spatial structure of this correlation is best explained by the action of strong recurrent selective sweeps. We introduce a method to infer, from the spatial correspondence between polymorphism and divergence, the rate and selective strength of adaptation. Our results independently confirm a high rate of adaptive substitution (?1/3000 generations) and newly suggest that many adaptations are of surprisingly great selective effect (?1%), reducing the effective population size by ?15% even in highly recombining regions of the genome. PMID:18073425

  16. Oracle Spatial Data Option Spatial Cartridge Oracle8i SpatialIBM ESRI DB2 Spatial ExtenderInformix Informix Spatial

    E-print Network

    Li, Xiang

    ; ---- Oracle Spatial Data Option Spatial Cartridge Oracle8i SpatialIBM ESRI DB2 Spatial ExtenderInformix Informix Spatial Datablade Oracle Oracle8i Spatial Oracle Spatial ----SDO_GEOMETRY SDO_GEOMETRY Oracle

  17. Limber equation for luminosity dependent correlations

    E-print Network

    A. Gardini; S. A. Bonometto; A. Maccio`

    1999-11-11

    The passage from angular to spatial correlations, in the case of spatial clustering length depending on the average distance between nearby objects is studied. We show that, in a number of cases, the scaling law of angular correlation amplitudes, which holds for constant spatial clustering length, is still true also for a luminosity dependent spatial correlation. If the Limber equation is then naively used to obtain `the' spatial clustering length from the angular function amplitude, a quantity close to the average object separation is obtained. The case of cluster clustering is explicitly considered.

  18. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  19. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  20. Time-dependent, lattice approach to atomic collisions

    SciTech Connect

    Schultz, D.R.

    1995-12-31

    Recent progress in developing and applying methods of direct numerical solution of atomic collision problems is described. Various forms of the three-body problem are used to illustrate these techniques. Specifically, the process of ionization in proton-, antiproton-, and electron-impact of atomic hydrogen is considered in applications ranging in computational intensity from collisions simulated in two spatial dimensions to treatment of the three-dimensional, fully correlated two-electron Schroedinger equation. These examples demonstrate the utility and feasibility of treating strongly interacting atomic systems through time-dependent, lattice approaches.

  1. Strongly correlated surface states

    NASA Astrophysics Data System (ADS)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo band banding (KBB): a modification of edges and their properties due to interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that not only KBB preserves the topology but it could also explain the experimentally observed anomalously high Fermi velocity at the surface as the case of large KBB effect.

  2. Evaluation of spatial models to predict vulnerability of forest birds to brood parasitism by cowbirds

    USGS Publications Warehouse

    Gustafson, E.J.; Knutson, M.G.; Niemi, G.J.; Friberg, M.

    2002-01-01

    We constructed alternative spatial models at two scales to predict Brown-headed Cowbird (Molothrus ater) parasitism rates from land cover maps. The local-scale models tested competing hypotheses about the relationship between cowbird parasitism and distance of host nests from a forest edge (forest-nonforest boundary). The landscape models tested competing hypotheses about how landscape features (e.g., forests, agricultural fields) interact to determine rates of cowbird parasitism. The models incorporate spatial neighborhoods with a radius of 2.5 km in their formulation, reflecting the scale of the majority of cowbird commuting activity. Field data on parasitism by cowbirds (parasitism rate and number of cowbird eggs per nest) were collected at 28 sites in the Driftless Area Ecoregion of Wisconsin, Minnesota, and Iowa and were compared to the predictions of the alternative models. At the local scale, there was a significant positive relationship between cowbird parasitism and mean distance of nest sites from the forest edge. At the landscape scale, the best fitting models were the forest-dependent and forest-fragmentation-dependent models, in which more heavily forested and less fragmented landscapes had higher parasitism rates. However, much of the explanatory power of these models results from the inclusion of the local-scale relationship in these models. We found lower rates of cowbird parasitism than did most Midwestern studies, and we identified landscape patterns of cowbird parasitism that are opposite to those reported in several other studies of Midwestern songbirds. We caution that cowbird parasitism patterns can be unpredictable, depending upon ecoregional location and the spatial extent, and that our models should be tested in other ecoregions before they are applied there. Our study confirms that cowbird biology has a strong spatial component, and that improved spatial models applied at multiple spatial scales will be required to predict the effects of landscape and forest management on cowbird parasitism of forest birds.

  3. Foreshocks of strong earthquakes

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  4. On Strong Cosmic Censorship

    E-print Network

    James Isenberg

    2015-05-24

    For almost half of the one hundred year history of Einstein's theory of general relativity, Strong Cosmic Censorship has been one of its most intriguing conjectures. The SCC conjecture addresses the issue of the nature of the singularities found in most solutions of Einstein's gravitational field equations: Are such singularities generically characterized by unbounded curvature? Is the existence of a Cauchy horizon (and the accompanying extensions into spacetime regions in which determinism fails) an unstable feature of solutions of Einstein's equations? In this short review article, after briefly commenting on the history of the SCC conjecture, we survey some of the progress made in research directed either toward supporting SCC or toward uncovering some of its weaknesses. We focus in particular on model versions of SCC which have been proven for restricted families of spacetimes (e.g., the Gowdy spacetimes), and the role played by the generic presence of Asymptotically Velocity Term Dominated behavior in these solutions. We also note recent work on spacetimes containing weak null singularities, and their relevance for the SCC conjecture.

  5. Spatial structuring of bacterial communities within individual Ginkgo biloba trees.

    PubMed

    Leff, Jonathan W; Del Tredici, Peter; Friedman, William E; Fierer, Noah

    2015-07-01

    Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from >?100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts. PMID:25367625

  6. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    PubMed Central

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  7. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  8. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated spatial recall using a virtual environment in two groups of patients with hippocampal damage (moderate/severe) and a normal control group. The results showed that patients with severe hippocampal damage are impaired in learning and recalling allocentric spatial information. Furthermore, hippocampal volume reduction impaired allocentric navigation beyond what can be predicted by memory quotient as a widely used measure of general memory function. PMID:26490854

  9. A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^

    NASA Astrophysics Data System (ADS)

    Wellner, Karen Linette

    1995-01-01

    This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study: (1) The teaching of spatially dependent content to students without prerequisite spatial structures results in understanding no further beyond that which can be memorized; (2) assessment for projective spatial structures should precede science lessons dealing with time-space relationships, and (3) a student's level of spatial ability may directly impact upon interpretation of three-dimensional models.

  10. Spatially DistributedSpatially Distributed Experimentation toExperimentation to

    E-print Network

    Rubloff, Gary W.

    : Spatially distributed atomic layer deposition Spatially Distributed Atomic LayerSpatially Distributed Atomic properties Significance Atomic layer deposition (ALD) is widely sought for its atomic-scale thickness control, MKS Instruments #12;Rubloff: Spatially distributed atomic layer deposition Spatially Distributed

  11. On the Spatial Scales of Wave Heating in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Carbonell, Marc; Ballester, Jose Luis

    2015-09-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations.

  12. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters

    E-print Network

    Li, Nan; Rangel, Esteban M; Florian, Michael K; Bleem, Lindsey E; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2015-01-01

    Gravitational lensing has become one of the most powerful tools available for investigating the 'dark side' of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly-lensed variable sources offer yet further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image-simulation pipeline, PICS (Pipeline for Images of Cosmological Strong lensing) to generate realistic strong gravitational lensing signals from group and cluster scale lenses. PICS uses a low-noise and unbiased densit...

  13. Strong deshielding in aromatic isoxazolines.

    PubMed

    Ungvarská Ma?u?ká, Lucia; Vilková, Mária; Kožíšek, Jozef; Imrich, Ján

    2016-01-01

    Very strong proton deshielding was found in di/tri-aromatic isoxazoline regioisomers prepared from acridin-4-yl dipolarophiles and stable benzonitrile oxides (BNO). Three alkenes, (acridin-4-yl)-CH?CH-R (R?=?COOCH3 , Ph, and CONH2 ), reacted with three BNO dipoles (2,4,6-trimethoxy, 2,4,6-trimethyl, 2,6-dichloro) to give pairs of target isoxazolines with acridine bound to C-4 or C-5 carbon of the isoxazoline (denoted as 4-Acr or 5-Acr). Regioselectivity was dependent on both the dipolarophile and dipole character. The ester and amide dipolarophile displayed variable regioselectivity in cycloadditions whereas the styrene one afforded prevailing 4-Acr regioisomers. 2,4,6-Trimethoxy-BNO was most prone to form 5-Acr isoxazolines while mesitonitrile oxide gave major 4-Acr isoxazolines. Basic hydrolysis of the amide cycloadduct led to an unexpected isoxazolone product. The structure of the target compounds was studied by NMR, MS, and X-ray crystallography. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26365723

  14. Cloud-dependency of NO2 columns from satellite measurements: gaining profile information

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Wagner, Thomas

    Clouds have strong impact on the radiative transfer in the troposphere, and are thus crucially determining the sensitivity of satellite measurements for tropospheric trace gases (Air-Mass Factors AMFs, Averaging Kernels AKs). Generally, clouds shield the layers below from the view from above. But at the cloud top and above, the sensitivity is enhanced due to multiple scattering and the high cloud albedo, respectively. Thus, the effect of clouds on sensitivity (AMF) strongly depends on the trace gas profile. Here we present an empirical study of the dependency of tropospheric slant column densities of NO2 on cloud properties (cloud fraction and cloud top height) for various satellite instruments (SCIAMACHY, OMI, GOME-2). The dependencies are investigated for different seasons and different meteorological subsets for the polluted hotspots of the world (China, US West-and Eastcoast, Western Europe) with high spatial resolution. Making use of the strong dependency of the strength of cloud effects on the NO2 profile, profile information can be gained from the empirical cloud dependencies. In addi-tion, these empirical dependencies can be compared to expected dependencies for model profiles of clouds and NO2, which offers a way to validate profiles rather than integrated columns.

  15. Applying Spatial Statistics to Isolate the Effects of Fuels, Topography, and Weather on Burn Severity

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Cochrane, M. A.; Baer, A. D.; Zhu, Z.

    2007-12-01

    Fire severity datasets derived from satellite remote sensing data are now being used extensively in wildfire research and land management. Maps of burn severity based on the differenced normalized burn ratio (dNBR) are being produced and disseminated by the Monitoring Trends in Burn Severity (MTBS) project for all major wildfires in the United States from 1984 to present. This abundance of data presents unprecedented new opportunities for understanding how weather, terrain, and fuels interact to determine fire severity patterns, and for testing the effectiveness of fuel-reduction strategies for mitigating wildfire impacts. However, these datasets present challenges for statistical analysis because of their large sizes and the non-independence of spatially autocorrelated pixels. To explore the importance of spatial autocorrelation, we analyzed the spatial patterns of burn severity in two recent wildfires - the 2004 School Fire in the Blue Mountains of southeastern Washington and the 2005 Warm Fire on the Kaibab Plateau in northern Arizona. Conditional autoregressive (CAR) models were fitted with dNBR as the dependent variable and topography, fuels, and locations of recent fuel treatments as the independent variables. In both fires, elevation, slope, and aspect had strong effects on burn severity. Fuels had stronger effects on burn severity for the School fire than for the Warm Fire. In both fires, fuel treatments that combined thinning and prescribed burning resulted in statistically significant reductions in fire severity. The CAR models were then decomposed to isolate the spatial signal, which reflected spatially structured variability in dNBR that was not related to the independent variables. The spatial signals were correlated with the burn progression maps, reflecting spatial and temporal variability in weather and fire behavior (e.g. wind versus plume driven) over the course of the fire. These results suggest that spatial autocorrelation in the analysis of remotely- sensed burn severity datasets is not simply a nuisance, but in fact captures substantive and interpretable effects of weather and fire behavior on burn severity.

  16. Entanglement in condensates involving strong interactions

    E-print Network

    David E. Miller; Abdel-Nasser M. Tawfik

    2004-01-09

    We look at two well known examples of interacting systems relating to condensed matter in which we put the strong interacting parameters. At high quark chemical potentials and low temperatures we study the entropy arising from the excitation in the BCS model of superconductivity and the Bose-Einstein condensation (BEC) of colored quark pairs. We compare it with the ground state entropy for a system consisting of two colored quarks. In the BCS model we found that the entropy strongly depends on the energy gap. Both for the very small values of the momenta as well as those much greater than the characterizing Fermi momentum $p_f$, the ground state entropy is dominant. For the BEC case we suggest a phenomenological model to build up colored bosonic quark pairs. Here the entropy entirely depends upon the short ranged repulsive interactions between the quark pairs and vanishes for large momenta.

  17. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  18. Strong-Field Tunneling without Ionization

    SciTech Connect

    Nubbemeyer, T.; Gorling, K.; Saenz, A.; Eichmann, U.; Sandner, W.

    2008-12-05

    In the tunneling regime of strong laser field ionization we measure a substantial fraction of neutral atoms surviving the laser pulse in excited states. The measured excited neutral atom yield extends over several orders of magnitude as a function of laser intensity. Our findings are compatible with the strong-field tunneling-plus-rescattering model, confirming the existence of a widely unexplored neutral exit channel (frustrated tunneling ionization). Strong experimental support for this mechanism as origin of excited neutral atoms stems from the dependence of the excited neutral yield on the laser ellipticity, which is as expected for a rescattering process. Theoretical support for the proposed mechanism comes from the agreement of the neutral excited state distribution centered at n=6-10 obtained from both, a full quantum mechanical and a semiclassical calculation, in agreement with the experimental results.

  19. Radiative properties of strongly magnetized plasmas

    SciTech Connect

    Weisheit, J.C.

    1992-12-01

    The subject of atomic properties in the presence of very strong magnetic fields is experiencing a new wave of interest, especially insofar as non-hydrogenic systems are concerned, and we believe the research summarized here is on the crest of that wave. Only recently there have appeared a major review of Thomas-Fermi theory [Spruch, L. 1991, Rev. Mod. Phys. 63 151]; a new set of fundamental theorems pertaining to the Hamiltonian of a (Thomas-Fermi) atom in a strong field [Lieb E.H., Solovej J.P., Yngvason J., Phys. Rev. Lett. 69, 749 (1992)]; and the first numerical, Hartree-Fock (HF) results for multi-electron atoms in strong B fields, but obtained under the restrictive assumption that the [rho]- and z-dependence of individual orbitals is completely separable [Miller M.C., Neuhauser D. Mon. Not. R. astr. Soc., 253, 107 (1991)].

  20. Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation

    PubMed Central

    Knierim, James J.; Hamilton, Derek A.

    2011-01-01

    The most common behavioral test of hippocampus-dependent, spatial learning and memory is the Morris water task, and the most commonly studied behavioral correlate of hippocampal neurons is the spatial specificity of place cells. Despite decades of intensive research, it is not completely understood how animals solve the water task and how place cells generate their spatially specific firing fields. Based on early work, it has become the accepted wisdom in the general neuroscience community that distal spatial cues are the primary sources of information used by animals to solve the water task (and similar spatial tasks) and by place cells to generate their spatial specificity. More recent research, along with earlier studies that were overshadowed by the emphasis on distal cues, put this common view into question by demonstrating primary influences of local cues and local boundaries on spatial behavior and place-cell firing. This paper first reviews the historical underpinnings of the “standard” view from a behavioral perspective, and then reviews newer results demonstrating that an animal's behavior in such spatial tasks is more strongly controlled by a local-apparatus frame of reference than by distal landmarks. The paper then reviews similar findings from the literature on the neurophysiological correlates of place cells and other spatially-correlated cells from related brain areas. A model is proposed by which distal cues primarily set the orientation of the animal's internal spatial coordinate system, via the head direction cell system, whereas local cues and apparatus boundaries primarily set the translation and scale of that coordinate system. PMID:22013211

  1. Spatial variability of trends in hydrological extremes induced by orographically enhanced rainfall events due to westerly atmospheric circulations.

    PubMed

    Pfister, L; Drogue, G; Poirier, C; Hoffmann, L

    2005-01-01

    Since the mid 1970s, the number of days with westerly atmospheric circulations has strongly increased during winter months. As a consequence, rainfall totals, rainfall event duration and intensity have been subject to significant positive trends throughout the Mosel river basin. However, the trends identified through the non-parametrical test named Kendall's tau have shown to be spatially varying. The intensity of the trends appears to be directly linked to orographic obstacles that are well known to have a strong influence on average rainfall totals. A direct consequence of the changes having affected winter rainfall under westerly atmospheric circulations on the one hand and the spatial variability of these changes on the other hand, is a spatially varying positive trend in maximum winter streamflow. Thus, even though a clear large-scale change has affected winter rainfall over the past decades, its intensity is either strongly moderated or enhanced by orographic obstacles. The related changes in streamflow are directly dependent on the spatial variability of the changed rainfall characteristics. PMID:15918354

  2. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  3. Concepts in strong Langmuir turbulence theory

    SciTech Connect

    DuBois, D.F.; Rose, H.A.

    1990-01-01

    Some of the basic concepts of strong Langmuir turbulence (SLT) theory are reviewed. In SLT system, a major fraction of the turbulent energy is carried by local, time-dependent, nonlinear excitations called cavitons. Modulational instability, localization of Langmuir fields by density fluctuations, caviton nucleation, collapse, and burnout and caviton correlations are reviewed. Recent experimental evidence will be presented for SLT phenomena in the interaction of powerful HF waves with the ionosphere and in laser-plasma interaction experiments. 38 refs., 11 figs.

  4. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  5. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes ?1 and ?2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes ?1 and ?2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  6. Temporal and spatial patterns of nitrate in a claypan soil

    SciTech Connect

    Ghidey, F.; Alberts, E.E.

    1999-03-01

    The temporal and spatial patterns of NO{sub 3}-N were studied on a 35-ha field located in the claypan soil region of north-central Missouri. Soil samples were collected from the 0- to 5-, 5- to 10-, and 10- to 15-cm depths and were analyzed for NO{sub 3}-N concentrations. Surface water samples from the field were collected for NO{sub 3}-N and NH{sub 4}-N analysis during each surface runoff event. Groundwater samples were also taken from the field well four times a year for 5 yr and analyzed for NO{sub 3}-N concentrations. The effects of topography, depth to claypan, soil pH, organic matter (OM) content, cation exchange capacity (CEC), and soil water content on the spatial distribution of NO{sub 3}-N concentration were also evaluated. Nitrate-N concentration in the 0- to 5-cm soil depth increased in the first few weeks following application, then decreased rapidly and was very low at harvest. During the study period, nitrate movement below the layer of fertilizer application was very low, and <5% of the total N applied in the soil was lost to surface runoff. Nitrate-N concentration in groundwater samples decreased by an average of 0.40 mg L{sup {minus}1} yr{sup {minus}1} from 1992 to 1996. The semivariograms did not exhibit strong spatial dependency except for the samples collected 1 and 4 wk after fertilizer applications in 1993 and 1995, respectively. Nitrate-N concentration was poorly correlated to soil water content and depth to claypan and relatively strongly correlated to elevation and soil pH.

  7. Tomographic retrieval for scattered light limb measurements: multiple spectral fit windows to improve the spatial resolution

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Dörner, Steffen; Wagner, Thomas

    2015-04-01

    The Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on the ENVISAT satellite probed the atmosphere at the day side of Earth in alternating sequences of nadir and limb measurements from August 2002 to April 2012. Limb measurements allow the retrieval of stratospheric profiles of various trace gases on a global scale. It has been shown that combining measurements of the same air volume from different viewing positions along the orbit, 2D distribution fields of stratospheric trace gases can be acquired in one inversion step. Since the atmospheric scattering and absorption processes are wavelength dependent, the spatial sensitivity for limb observations also varies with wavelength. In general, for longer wavelengths, photons from more remote areas along the line of sight are contributing stronger to the measurement than for shorter wavelengths because of the lower probability of Rayleigh scattering. In addition, the radiative transfer is modified by the ozone absorption structures making longer light paths less probable within strong ozone absorption bands. In this study, additional information on the spatial distribution of NO2 is investigated by analysing results obtained by Differential Optical Absorption Spectroscopy (DOAS) in various spectral fit windows. Combing the fit results in one profile retrieval algorithm helps to improve the spatial sensitivity and resolution of the measurements. The largest improvements for the spatial resolution and sensitivity are expected for the upper troposphere/ lower stratosphere (UTLS) region where the variation of the spatial sensitivity with wavelength is strongest.

  8. Novel evidence for within-species leaf economics spectrum at multiple spatial scales

    PubMed Central

    Hu, Yu-Kun; Pan, Xu; Liu, Guo-Fang; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Zhang, Ya-Lin; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Zhou, Meng-Yao; Song, Yao-Bin; Dong, Ming

    2015-01-01

    Leaf economics spectrum (LES), characterizing covariation among a suite of leaf traits relevant to carbon and nutrient economics, has been examined largely among species but hardly within species. In addition, very little attempt has been made to examine whether the existence of LES depends on spatial scales. To address these questions, we quantified the variation and covariation of four leaf economic traits (specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus contents) in a cosmopolitan wetland species (Phragmites australis) at three spatial (inter-regional, regional, and site) scales across most of the species range in China. The species expressed large intraspecific variation in the leaf economic traits at all of the three spatial scales. It also showed strong covariation among the four leaf economic traits across the species range. The coordination among leaf economic traits resulted in LES at all three scales and the environmental variables determining variation in leaf economic traits were different among the spatial scales. Our results provide novel evidence for within-species LES at multiple spatial scales, indicating that resource trade-off could also constrain intraspecific trait variation mainly driven by climatic and/or edaphic differences. PMID:26579151

  9. The role of rat dorsomedial prefrontal cortex in spatial working memory.

    PubMed

    Horst, N K; Laubach, M

    2009-12-01

    We used an operant delayed spatial alternation task to examine the role of rat dorsomedial prefrontal cortex (dmPFC) in spatial working memory. The task was designed to restrict movements during the delay period to minimize use of motor-mediating strategies. Inactivation of dmPFC (muscimol) resulted in increased errors and increased the temporal variability of responding. Animals did not show perseveration after errors (i.e., responding again at the erroneous location). Under control conditions, the time between spatial responses was greater and more variable before errors as compared to correct responses. These effects were eliminated when muscimol was infused into dmPFC. Trial outcome also affected movement and delay times in the next trial. This effect was diminished with muscimol in dmPFC. By contrast, when muscimol was infused in dorsal agranular insular cortex (AId)-a region that is strongly interconnected with dorsomedial prefrontal regions-there was no effect on delayed spatial alternation performance. These experiments confirm that dmPFC is necessary for successful delayed spatial alternation and establish that there is a relationship between response time variability and trial outcome that depends on dorsomedial prefrontal function. PMID:19665526

  10. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales

    PubMed Central

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865

  11. Predicting spatial similarity of freshwater fish biodiversity

    PubMed Central

    Azaele, Sandro; Muneepeerakul, Rachata; Maritan, Amos; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2009-01-01

    A major issue in modern ecology is to understand how ecological complexity at broad scales is regulated by mechanisms operating at the organismic level. What specific underlying processes are essential for a macroecological pattern to emerge? Here, we analyze the analytical predictions of a general model suitable for describing the spatial biodiversity similarity in river ecosystems, and benchmark them against the empirical occurrence data of freshwater fish species collected in the Mississippi–Missouri river system. Encapsulating immigration, emigration, and stochastic noise, and without resorting to species abundance data, the model is able to reproduce the observed probability distribution of the Jaccard similarity index at any given distance. In addition to providing an excellent agreement with the empirical data, this approach accounts for heterogeneities of different subbasins, suggesting a strong dependence of biodiversity similarity on their respective climates. Strikingly, the model can also predict the actual probability distribution of the Jaccard similarity index for any distance when considering just a relatively small sample. The proposed framework supports the notion that simplified macroecological models are capable of predicting fundamental patterns—a theme at the heart of modern community ecology. PMID:19359481

  12. Photon number dependent group velocity in vacuum induced transparency

    NASA Astrophysics Data System (ADS)

    Lauk, Nikolai; Fleischhauer, Michael

    2015-05-01

    Vacuum induced transparency (VIT) is an effect which occurs in an ensemble of three level atoms in a ? configuration that interact with two quantized fields. Coupling of one transition to a cavity mode induces transparency for the second field on the otherwise opaque transition similar to the well known EIT effect. In the strong coupling regime even an empty cavity leads to transparency, in contrast to EIT where the presence of a strong control field is required. This transparency is accompanied by a reduction of the group velocity for the propagating field. However, unlike in EIT the group velocity in VIT depends on the number of incoming photons, i.e. different photon number components propagate with different velocities. Here we investigate the possibility of using this effect to spatially separate different photon number components of an initially coherent pulse. We present the results of our calculations and discuss a possible experimental realization.

  13. Upscale integration of normalized difference vegetation index - The problem of spatial heterogeneity

    NASA Technical Reports Server (NTRS)

    Aman, Angora; Randriamanantena, Heremino P.; Podaire, Alain; Frouin, Robert

    1992-01-01

    An analysis is conducted of the correspondence between the normalized difference vegetation index (NDVI) calculated from average reflectances, or M(NDVI), and the I(NDVI) that is integrated from individual NDVIs, by simulating AVHRR data from high spatial resolution SPOT 1 radiometer and Landsat TM data. The West African and French sites analyzed at 300-1000 m scale show a strong correlation between the two types of index; the relationship is almost perfectly linear, with a slope that is somewhat dependent on vegetation cover. Effecting the scale change using M(NDVI) instead of I(NDVI) does not introduce significant errors.

  14. Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.

    2006-03-01

    A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.

  15. Pattern Formation in Populations with Density-Dependent Movement and Two Interaction Scales

    E-print Network

    Martínez-García, Ricardo; Hernández-García, Emilio; López, Cristóbal

    2015-01-01

    We study the spatial patterns formed by a system of interacting particles where the mobility of any individual is determined by the population crowding at two different spatial scales. In this way we model the behavior of some biological organisms (like mussels) that tend to cluster at short ranges as a defensive strategy, and strongly disperse if there is a high population pressure at large ranges for optimizing foraging. We perform stochastic simulations of a particle-level model of the system, and derive and analyze a continuous density description (a nonlinear diffusion equation). In both cases we show that this interplay of scale-dependent-behaviors gives rise to a rich formation of spatial patterns ranging from labyrinths to periodic cluster arrangements. In most cases these clusters have the very peculiar appearance of ring-like structures, i.e., organisms arranging in the perimeter of the clusters, that we discuss in detail.

  16. Pattern Formation in Populations with Density-Dependent Movement and Two Interaction Scales

    PubMed Central

    Martínez-García, Ricardo; Murgui, Clara; Hernández-García, Emilio; López, Cristóbal

    2015-01-01

    We study the spatial patterns formed by a system of interacting particles where the mobility of any individual is determined by the population crowding at two different spatial scales. In this way we model the behavior of some biological organisms (like mussels) that tend to cluster at short ranges as a defensive strategy, and strongly disperse if there is a high population pressure at large ranges for optimizing foraging. We perform stochastic simulations of a particle-level model of the system, and derive and analyze a continuous density description (a nonlinear diffusion equation). In both cases we show that this interplay of scale-dependent-behaviors gives rise to a rich formation of spatial patterns ranging from labyrinths to periodic cluster arrangements. In most cases these clusters have the very peculiar appearance of ring-like structures, i.e., organisms arranging in the perimeter of the clusters, which we discuss in detail. PMID:26147351

  17. Spatial and temporal patterns of subtidal and intertidal crabs excursions

    NASA Astrophysics Data System (ADS)

    Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.

    2014-01-01

    Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.

  18. Bifurcations and interacting modes in coupled lasers : a strong coupling theory.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2003-08-01

    The paper presents a theoretical study of synchronization between two coupled lasers. A theory valid for arbitrary coupling between lasers is used. Its key feature is that the laser field is decomposed in terms of the composite-cavity modes reflecting the spatial field dependence over the entire coupled-laser system. The ensuing multimode equations are reduced to class-B, and further to class-A equations which resemble competing species equations. Bifurcation analysis, supported by insight provided by analytical solutions, is used to investigate influences of pump, carrier decay rate, polarization decay rate, and coupling mirror losses on synchronization between lasers. Population pulsation is found to be an essential mode competition mechanism responsible for bistability in the synchronized solutions. Finally, we discovered that the mechanism leading to laser synchronization changes from strong composite-cavity mode competition in class-A regime to frequency locking of composite-cavity modes in class-B regime.

  19. Real-Time Evolution of Strongly Coupled Fermions driven by Dissipation

    E-print Network

    Emilie Huffman; Debasish Banerjee; Shailesh Chandrasekharan; Uwe-Jens Wiese

    2015-12-01

    We consider the real-time evolution of a strongly coupled system of lattice fermions whose dynamics is driven entirely by dissipative Lindblad processes, with linear or quadratic quantum jump operators. The fermion 2-point functions obey a closed set of diff?erential equations, which can be solved with linear algebra methods. The staggered occupation order parameter of the t-V model decreases exponentially during the dissipative time evolution. The structure factor associated with the various Fourier modes shows the slowing down of low-momentum modes, which is due to particle number conservation. The processes with nearest-neighbor-dependent Lindblad operators have a decay rate that is proportional to the coordination number of the spatial lattice.

  20. Drag and jet quenching of heavy quarks in a strongly coupled N=2* plasma

    E-print Network

    Carlos Hoyos-Badajoz

    2009-09-14

    The drag of a heavy quark and the jet quenching parameter are studied in the strongly coupled N=2* plasma using the AdS/CFT correspondence. Both increase in units of the spatial string tension as the theory departs from conformal invariance. The description of heavy quark dynamics using a Langevin equation is also considered. It is found that the difference between the velocity dependent factors of the transverse and longitudinal momentum broadening of the quark admit an interpretation in terms of relativistic effects, so the distribution is spherical in the quark rest frame. When conformal invariance is broken there is a broadening of the longitudinal momentum distribution. This effect may be useful in understanding the jet distribution observed in experiments.

  1. STUD Pulse performance comparisons between weak and strong damping limits of SBS

    NASA Astrophysics Data System (ADS)

    Huller, Stefan; Afeyan, Bedros

    2012-10-01

    The physical mechanisms that make STUD pulses (spike trains of uneven duration and delay) optimal rely, among other physical effects, on damping of the driven waves in between spikes. By varying the damping of ion acoustic waves in inhomogeneously flowing plasma regions ranging from -8 to -2 of the Mach number, we can establish to what extent STUD pulses can be effective to control SBS growth in various damping levels. By changing the duty cycle of the chain of spikes, by changing their modulation period, by adding random inter spike phase kicks and by changing the spatial hot spot profile scrambling rate, we establish bounds on how much Brillouin backscattering Rosenbluth gain can be tolerated at the average intensity and still have STUD pulses control SBS as compared to RPP or SSD or ISI. The situation is complicated by the implication of the strong coupling regime in hot spots, by pump depletion and by initial noise level dependencies which we also examine.

  2. Real-Time Evolution of Strongly Coupled Fermions driven by Dissipation

    E-print Network

    Huffman, Emilie; Chandrasekharan, Shailesh; Wiese, Uwe-Jens

    2015-01-01

    We consider the real-time evolution of a strongly coupled system of lattice fermions whose dynamics is driven entirely by dissipative Lindblad processes, with linear or quadratic quantum jump operators. The fermion 2-point functions obey a closed set of diff?erential equations, which can be solved with linear algebra methods. The staggered occupation order parameter of the t-V model decreases exponentially during the dissipative time evolution. The structure factor associated with the various Fourier modes shows the slowing down of low-momentum modes, which is due to particle number conservation. The processes with nearest-neighbor-dependent Lindblad operators have a decay rate that is proportional to the coordination number of the spatial lattice.

  3. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA

    USGS Publications Warehouse

    Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L.

    2010-01-01

    Changes in carbon density (i.e., carbon stock per unit area) and land cover greatly affect carbon sequestration. Previous studies have shown that land cover change detection strongly depends on spatial scale. However, the influence of the spatial resolution of land cover change information on the estimated terrestrial carbon sequestration is not known. Here, we quantified and evaluated the impact of land cover change databases at various spatial resolutions (250 m, 500 m, 1 km, 2 km, and 4 km) on the magnitude and spatial patterns of regional carbon sequestration in four counties in Georgia and Alabama using the General Ensemble biogeochemical Modeling System (GEMS). Results indicated a threshold of 1 km in the land cover change databases and in the estimated regional terrestrial carbon sequestration. Beyond this threshold, significant biases occurred in the estimation of terrestrial carbon sequestration, its interannual variability, and spatial patterns. In addition, the overriding impact of interannual climate variability on the temporal change of regional carbon sequestration was unrealistically overshadowed by the impact of land cover change beyond the threshold. The implications of these findings directly challenge current continental- to global-scale carbon modeling efforts relying on information at coarse spatial resolution without incorporating fine-scale land cover dynamics.

  4. Angular dependence of stimulated Brillouin scattering in homogeneous plasma

    SciTech Connect

    Giacone, R.E.; McKinstrie, C.J.; Betti, R.

    1995-12-01

    The angular dependence of stimulated Brillouin scattering (SBS) in a finite homogeneous plasma is studied. For parameters typical of inertial confinement fusion experiments, the initial evolution of SBS is well approximated by a one-dimensional model. In the context of this linear model, the threshold intensity of the absolute instability and the steady-state spatial growth rate of the convective instability are both independent of the scattering angle. However, the saturation time of the convective instability exhibits a strong inverse dependence on the scattering angle: Forward SBS always occurs in the transient regime and the intensity of the scattered light is less than that predicted by a steady-state analysis. In particular, no light is emitted in the propagation direction of the incident wave. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Process-dependent residual trapping of CO2 in sandstone

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally M.

    2014-04-01

    This paper demonstrates that the nature and extent of residual CO2 trapping depend on the process by which the CO2 phase is introduced into the rock. We compare residual trapping of CO2 in Berea Sandstone by imbibing water into a core containing either exsolved CO2 or CO2 introduced by drainage. X-ray computed tomography measurements are used to map the spatial distribution of CO2 preimbibition and postimbibition. Unlike during drainage where the CO2 distribution is strongly influenced by the heterogeneity of the rock, the distribution of exsolved CO2 is comparatively uniform. Postimbibition, the CO2 distribution retained the essential features for both the exsolved and drainage cases, but twice as much residual trapping is observed for exsolved CO2 even with similar preimbibition gas saturations. Residually trapped exsolved gas also disproportionately reduced water relative permeability. Development of process-dependent parameterization will help better manage subsurface flow processes and unlock benefits from gas exsolution.

  6. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    NASA Astrophysics Data System (ADS)

    Réjou-Méchain, M.; Muller-Landau, H. C.; Detto, M.; Thomas, S. C.; Le Toan, T.; Saatchi, S. S.; Barreto-Silva, J. S.; Bourg, N. A.; Bunyavejchewin, S.; Butt, N.; Brockelman, W. Y.; Cao, M.; Cárdenas, D.; Chiang, J.-M.; Chuyong, G. B.; Clay, K.; Condit, R.; Dattaraja, H. S.; Davies, S. J.; Duque, A.; Esufali, S.; Ewango, C.; Fernando, R. H. S.; Fletcher, C. D.; Gunatilleke, I. A. U. N.; Hao, Z.; Harms, K. E.; Hart, T. B.; Hérault, B.; Howe, R. W.; Hubbell, S. P.; Johnson, D. J.; Kenfack, D.; Larson, A. J.; Lin, L.; Lin, Y.; Lutz, J. A.; Makana, J.-R.; Malhi, Y.; Marthews, T. R.; McEwan, R. W.; McMahon, S. M.; McShea, W. J.; Muscarella, R.; Nathalang, A.; Noor, N. S. M.; Nytch, C. J.; Oliveira, A. A.; Phillips, R. P.; Pongpattananurak, N.; Punchi-Manage, R.; Salim, R.; Schurman, J.; Sukumar, R.; Suresh, H. S.; Suwanvecho, U.; Thomas, D. W.; Thompson, J.; Uríarte, M.; Valencia, R.; Vicentini, A.; Wolf, A. T.; Yap, S.; Yuan, Z.; Zartman, C. E.; Zimmerman, J. K.; Chave, J.

    2014-12-01

    Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.

  7. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  8. Changes in Auditory Frequency Guide Visual-Spatial Attention

    ERIC Educational Resources Information Center

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2011-01-01

    How do the characteristics of sounds influence the allocation of visual-spatial attention? Natural sounds typically change in frequency. Here we demonstrate that the direction of frequency change guides visual-spatial attention more strongly than the average or ending frequency, and provide evidence suggesting that this cross-modal effect may be…

  9. Spatial coherence and the orbital angular momentum of light in astronomy

    NASA Astrophysics Data System (ADS)

    Hetharia, D.; van Exter, M. P.; Löffler, W.

    2014-12-01

    The orbital angular momentum (OAM) of light is potentially interesting for astronomical study of rotating objects such as black holes, but the effect of reduced spatial coherence of astronomical light sources like stars is largely unknown. In a laboratory-scale experiment, we find that the detected OAM spectrum depends strongly on the position of the light-twisting object along the line of sight. We develop a simple intuitive model to predict the influence of reduced spatial coherence on the propagating OAM spectrum for, e.g., astronomical observations. Further, we derive equations to predict the effect of line-of-sight misalignment and the received intensity in higher-order OAM modes for limited-size detectors such as telescopes.

  10. Estimation of the background noise level with a horizontal array against spatially uncorrelated and structural interferences

    NASA Astrophysics Data System (ADS)

    Ivanenkov, A. S.; Rodionov, A. A.; Turchin, V. I.

    2013-03-01

    A method of estimating the isotropic sea noise level with a horizontal array in the presence of uncorrelated interference and interference with a complex spatial structure is proposed and experimentally tested. The algorithm is based on the approximation of the Capon spatial spectrum of the received signal using a model Capon spectrum for the sum of isotropic noise and uncorrelated interference. A numerical simulation is carried out to study the dependence of the accuracy of the proposed method on the interference intensity, the distance from the array to the sources of structural interference, and the number of structural interference sources. It is shown that the use of the Capon spectrum provides a strong suppression of an intense structural interference source positioned near the array. The efficiency of the proposed method is confirmed experimentally.

  11. Sexual orientation and spatial memory.

    PubMed

    Cánovas, Ma Rosa; Cimadevilla, José Manuel

    2011-11-01

    The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system. PMID:22047869

  12. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  13. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  14. Implicit body representations and tactile spatial remapping.

    PubMed

    Longo, Matthew R; Mancini, Flavia; Haggard, Patrick

    2015-09-01

    To perceive the location of a tactile stimulus in external space (external tactile localisation), information about the location of the stimulus on the skin surface (tactile localisation on the skin) must be combined with proprioceptive information about the spatial location of body parts (position sense)--a process often referred to as 'tactile spatial remapping'. Recent research has revealed that both of these component processes rely on highly distorted implicit body representations. For example, on the dorsal hand surface position sense relies on a squat, wide hand representation. In contrast, tactile localisation on the same skin surface shows large biases towards the knuckles. These distortions can be seen as behavioural 'signatures' of these respective perceptual processes. Here, we investigated the role of implicit body representation in tactile spatial remapping by investigating whether the distortions of each of the two component processes (tactile localisation and position sense) also appear when participants localise the external spatial location of touch. Our study reveals strong distortions characteristic of position sense (i.e., overestimation of distances across vs along the hand) in tactile spatial remapping. In contrast, distortions characteristic of tactile localisation on the skin (i.e., biases towards the knuckles) were not apparent in tactile spatial remapping. These results demonstrate that a common implicit hand representation underlies position sense and external tactile localisation. Furthermore, the present findings imply that tactile spatial remapping does not require mapping the same signals in a frame of reference centred on a specific body part. PMID:26196650

  15. Dynamo Activity in Strongly Magnetized Accretion Disks

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-01-01

    Strongly magnetized accretion disks around black holes have many attractive features that may explain the enigmatic behavior observed from X-ray binaries. The physics and structure of these disks are governed by a dynamo-like mechanism, which channels the accretion power liberated by the magnetorotational instability into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. In our simulations, the strength of this self-sustained toroidal magnetic field depends on the net vertical magnetic flux we impose, which allows us to study weak-to-strong magnetization regimes. We find that the entire disk develops into a magnetic pressure-dominated state for a sufficiently strong net vertical magnetic flux. Over the two orders of magnitude in net vertical magnetic flux that we consider, the effective ?-viscosity parameter scales as a power-law. We quantify dynamo properties of toroidal magnetic flux production and its buoyant escape as a function of disk magnetization. Finally, we compare our simulations to an analytic model for the vertical structure of strongly magnetized disks applicable to the high/soft state of X-ray binaries.

  16. Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...

  17. Spatial Variability Some Physical and Chemical Prpperties Soil surface In Dasht-e-Tabriz Different Landforms

    NASA Astrophysics Data System (ADS)

    Foroughifar, Hamed; Asghar Jafarzadeh, Ali; Torabi, Hosien; Aliasgharzad, Naser; Toomanian, Norair

    2010-05-01

    Spatial distribution of soil properties at the field and watershed scale(region scale) affect yield potential, hydrologic responses , and transport of herbicides and No3 to surface or groundwater.The present study aim was to evaluate some physical and chemical properties spatial variability and frequency distribution within and between landforms of Dash-e-Tabriz in the northwest of Iran.For this evaluation 98 samples from soils surface of layer according to grid sampling design and with 500-1000 meters distance based on soils variability were selected and analysed.Landforms were hill, piedmont plain, plain, river alluvial plain and lowland.The study of soil variables frequency distribution showed that Bd, CEC, Caco3, pH,clay and silt follow normal distribution ,which to study their variation one can use parametric statistical method.Variables such as MWD, N(total), SAR, EC, P(available) and sand showed log-normal distribution,that for their variation study,should first be transformed to a logarithmic scale.The variables frequency distribution increase within landforms,which in lowland, hill, and river alluvial plain they showed normal distribution and only EC in piedmont plain and sand, OC and N(total) in plain had log-normal distributions.The results indicate significantly differences of soil properties distribution among landforms,which clay ,pH, EC ,SAR and MWD, CEC, Bd, N(total), OC, P(available), sand, silt were strongly and moderately spatial dependent respectively and Caco3 had no spatial dependence and it is following nugget model.These results indicate that strong spatial dependence due to the effects of intrinsic factors such as parent material, relief and soil types. Also soil properties variations result from variation in depositional environments and or differences in pedogenic or hydrologic processes for different landform positions,and so it can be affected by the flood irrigation,fertilizeir addition,high watertable level or agriculture practices.These effects may cause data departure from normal distribution and cause skewness (positive or negative) for soil mapping unit. Key words : Spatial Variability , Frequency Distribution, Landform, EC, SAR, CEC, MWD, Dasht-e-Tabriz

  18. Refined critical balance in strong Alfvénic turbulence

    NASA Astrophysics Data System (ADS)

    Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.

    2015-04-01

    We present numerical evidence that in strong Alfvénic turbulence, the critical balance principle - equality of the non-linear decorrelation and linear propagation times - is scale invariant, in the sense that the probability distribution of the ratio of these times is independent of scale. This result only holds if the local alignment of the Elsasser fields is taken into account in calculating the non-linear time. At any given scale, the degree of alignment is found to increase with fluctuation amplitude, supporting the idea that the cause of alignment is mutual dynamical shearing of Elsasser fields. The scale-invariance of critical balance (while all other quantities of interest are strongly intermittent, i.e. have scale-dependent distributions) suggests that it is the most robust of the scaling principles used to describe Alfvénic turbulence. The quality afforded by situ fluctuation measurements in the solar wind allows for direct verification of this fundamental principle.

  19. Peltier effect in strongly driven quantum wires

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Crivelli, D.; Prelovšek, P.

    2014-08-01

    We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.

  20. Refined critical balance in strong Alfvenic turbulence

    E-print Network

    A. Mallet; A. A. Schekochihin; B. D. G. Chandran

    2015-08-24

    We present numerical evidence that in strong Alfvenic turbulence, the critical balance principle---equality of the nonlinear decorrelation and linear propagation times---is scale invariant, in the sense that the probability distribution of the ratio of these times is independent of scale. This result only holds if the local alignment of the Elsasser fields is taken into account in calculating the nonlinear time. At any given scale, the degree of alignment is found to increase with fluctuation amplitude, supporting the idea that the cause of alignment is mutual dynamical shearing of Elsasser fields. The scale-invariance of critical balance (while all other quantities of interest are strongly intermittent, i.e., have scale-dependent distributions) suggests that it is the most robust of the scaling principles used to describe Alfvenic turbulence. The quality afforded by situ fluctuation measurements in the solar wind allows for direct verification of this fundamental principle.

  1. Strong lensing interferometry for compact binaries

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Yang, I.-Sheng

    2015-03-01

    We propose a possibility to improve the current precision measurements on compact binaries. When the orbital axis is almost perpendicular to our line of sight, a pulsar behind its companion can form two strong lensing images. These images cannot be resolved, but we can use multiwavelength interferometry to accurately determine the passage through superior conjunction. This method does not depend strongly on the stability of the pulse profile and applies equally well to both slow and fast pulsars. We discuss the possible improvement this can bring to the bound on stochastic gravitational wave background and to determine black hole spin. We also discuss the possibility of discovering a suitable binary system by the Square Kilometer Array to which our method can apply.

  2. Recent advances of strong strong beam beam simulation

    NASA Astrophysics Data System (ADS)

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi, Kazuhito

    2006-03-01

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It also appears to be more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  3. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  4. Hippocampal-prefrontal input supports spatial encoding in working memory

    PubMed Central

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E.; Fusi, Stefano; Gogos, Joseph A.; Gordon, Joshua A.

    2015-01-01

    Summary Spatial working memory, the caching of behaviorally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. While the prefrontal cortex and hippocampus are known to jointly contribute to successful spatial working memory, the anatomical pathway and temporal window for interaction of these structures critical to spatial working memory has not yet been established. Here, we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. PMID:26053122

  5. Spatial auditory processing in pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study. Results showed that males produce calls that were highly directional that together with social status influenced the response of receivers. Results from the playback study were able to confirm that the isolated acoustic components of this display resulted in similar responses among males. These three chapters provide further information about comparative aspects of spatial auditory processing in pinnipeds.

  6. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".

  7. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  8. Signatures of double-electron re-combination in high-order harmonic generation driven by spatially inhomogeneous fields

    E-print Network

    Chacón, A; Lewenstein, M

    2015-01-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the two-active electron and single-active electron approximation models of the negative hydrogen ion atom, we provide strong evidence that a double non-sequential two-electron recombination appears to be the main responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schr\\"odinger equation (TDSE), and on investigations of the classical electron trajectories resulting from the Newton's equation of motion. Additional comparisons between the negative hydrogen ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multi-electronic systems driven by spatially inhomogeneous fields.

  9. Fractional effective action at strong electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kleinert, Hagen; Strobel, Eckhard; Xue, She-Sheng

    2013-07-01

    In 1936, Weisskopf [K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XIV (1936)] showed that for vanishing electric or magnetic fields the strong-field behavior of the one-loop Euler-Heisenberg effective Lagrangian of quantum electro dynamics (QED) is logarithmic. Here we generalize this result for different limits of the Lorentz invariants E?2-B?2 and B?·E?. The logarithmic dependence can be interpreted as a lowest-order manifestation of an anomalous power behavior of the effective Lagrangian of QED, with critical exponents ?=e2/(12?) for spinor QED, and ?S=?/4 for scalar QED.

  10. Thermalization of Strongly Coupled Field Theories

    SciTech Connect

    Balasubramanian, V.; Bernamonti, A.; Copland, N.; Craps, B.; Staessens, W.; Boer, J. de; Keski-Vakkuri, E.; Mueller, B.; Schaefer, A.; Shigemori, M.

    2011-05-13

    Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.

  11. Thermalization of strongly coupled field theories.

    PubMed

    Balasubramanian, V; Bernamonti, A; de Boer, J; Copland, N; Craps, B; Keski-Vakkuri, E; Müller, B; Schäfer, A; Shigemori, M; Staessens, W

    2011-05-13

    Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first. PMID:21668141

  12. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  13. Heat treatment modelling using strongly continuous semigroups.

    PubMed

    Malek, Alaeddin; Abbasi, Ghasem

    2015-07-01

    In this paper, mathematical simulation of bioheat transfer phenomenon within the living tissue is studied using the thermal wave model. Three different sources that have therapeutic applications in laser surgery, cornea laser heating and cancer hyperthermia are used. Spatial and transient heating source, on the skin surface and inside biological body, are considered by using step heating, sinusoidal and constant heating. Mathematical simulations describe a non-Fourier process. Exact solution for the corresponding non-Fourier bioheat transfer model that has time lag in its heat flux is proposed using strongly continuous semigroup theory in conjunction with variational methods. The abstract differential equation, infinitesimal generator and corresponding strongly continuous semigroup are proposed. It is proved that related semigroup is a contraction semigroup and is exponentially stable. Mathematical simulations are done for skin burning and thermal therapy in 10 different models and the related solutions are depicted. Unlike numerical solutions, which suffer from uncertain physical results, proposed analytical solutions do not have unwanted numerical oscillations. PMID:25912988

  14. Hofstadter's Butterfly in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Dean, Cory

    2015-03-01

    In 1976, Douglas Hofstadter predicted that in the presence of both a strong magnetic field, and a spatially varying periodic potential, Bloch electrons confined to a 2D quantum well exhibit a self-similar fractal energy spectrum known as the ``Hofstadter's Butterfly.'' In subsequent years, experimental discovery of the quantum Hall effect gave birth to an expansive field of research into 2D electronic systems in the presence of a magnetic field, however, direct confirmation of the fractal spectrum remained elusive. Recently we demonstrated that graphene, in which Bloch electrons can be described by Dirac fermions, provides a new opportunity to investigate this nearly 40 year old problem. In this talk I will discuss the experimental realization of Hofstader's butterfly by exploiting nano-scale interfacial effects between graphene and hexagonal boron nitride substrates, together with application of extremely high magnetic fields. Utilizing newly developed techniques to fabricate ultra-clean graphene devices, I will additionally demonstrate the capability to probe for the first time the effect of strong electron interactions within the fractal Hofstadter spectrum.

  15. Frequency-dependent magnetotransport in a two-dimensional magnetic modulation system

    NASA Astrophysics Data System (ADS)

    Badran, Esmael; Ulloa, Sergio E.

    1998-06-01

    We analyze the dynamics of a charged particle moving in the presence of spatially modulated magnetic fields, motivated by recent transport experiments by Ye et al. (Phys. Rev. Lett. 74 (1995) 3013 ). We show from Poincaré surfaces of section that the ratio of pinned orbits to chaotic orbits depends strongly on the energy and the structure parameters. We present a complete characterization of the dynamical behavior of such structures, and calculate the magnetoconductivity using a classical Kubo formula. We investigate the contribution to the conductivity from pinned and runaway orbits. Although the DC conductivity of the system depends strongly on the ratio of pinned to runaway trajectories, the high-frequency response reflects the topology of the different orbits.

  16. Wavelength dependence in radio-wave scattering and specular-point theory

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1976-01-01

    Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.

  17. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. PMID:21143474

  18. States of Strongly Interacting Matter

    E-print Network

    H. Satz

    2002-01-08

    I discuss the phase structure of strongly interacting matter at high temperatures and densities, as predicted by statistical QCD, and consider in particular the nature of the transition of hot hadronic matter to a plasma of deconfined quarks and gluons.

  19. Holography and strongly correlated systems

    E-print Network

    Iqbal, Nabil

    2011-01-01

    In this thesis we apply techniques arising from string theory - gauge-gravity/duality, or holography - to problems associated with strongly coupled quantum field theories under extreme conditions such as finite temperature ...

  20. New quarks: exotic versus strong

    E-print Network

    B. Holdom

    2011-12-30

    The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.

  1. Polymer ejection from strong spherical confinement

    E-print Network

    J. Piili; R. P. Linna

    2015-05-27

    We examine the ejection of an initially strongly confined flexible polymer from a spherical capsid through a nanoscale pore. We use molecular dynamics for unprecedentedly high initial monomer densities. We show that the time for an individual monomer to eject grows exponentially with the number of ejected monomers. By measurements of the force at the pore we show this dependence to be a consequence of the excess free energy of the polymer due to confinement growing exponentially with the number of monomers initially inside the capsid. We show that the pressure inside the capsid driving the ejection dominates the process that is characterized by the ejection time growing linearly with the lengths of different polymers. We show that the superlinear dependence obtained for polymers amenable to computer simulations results from a finite-size effect due to the final retraction of polymers' tails from capsids.

  2. Super-strong magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tao, R.

    2001-03-01

    A typical MR fluid is a suspension of magnetic particles of micrometer size in a liquid. Upon application of a strong magnetic field, the fluid turns into a solid. This process is reversible and the response time is of milliseconds. MR fluids presently have a yield shear stress around 80 kPa, which is adequate for applications in shock absorbers and vibration dampers, but is inadequate for automobile clutch etc. Efforts in searching for new materials in the past decades came with limited results. Thus we have developed a new approach to change the microstructure of MR fluids and make them super-strong. It is well known that under a strong magnetic field, the ideal structure of MR fluids is a body-centered tetragonal (bct) lattice. The mechanical strength of MR fluids strongly depends on the microstructure. A bct-lattice based thick column has a much higher yield stress than a single-chain structure. When a magnetic field is applied to a MR fluid, the particles first form chains. With time, the chains may aggregate into columns. However, the unassisted aggregation is not very useful, as it is slow and produces columns with a limited thickness. Our method is based on assisted aggregations. Immediately after a magnetic field is applied, we compress the MR fluid in the field direction before a shear force is applied. The compression pushes the induced chains together to form thick columns. This microstructure change greatly enhances the yield stress. The experiment on an iron-based MR fluid finds 800 kPa for the yield stress, ten times stronger than that without the compression. When the magnetic field is removed, the MR fluid still returns to the liquid state quickly. The upper limit of this structure-enhanced yield stress seems well above 800 kPa. The super-strong MR fluids are suitable for many industrial applications. *Supported by NSF Grant 0196022

  3. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  4. Individual Differences in Spatial Text Processing: High Spatial Ability Can Compensate for Spatial Working Memory Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana

    2009-01-01

    The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…

  5. Intra- and Inter-Task Reliability of Spatial Attention Measures in Pseudoneglect

    PubMed Central

    Learmonth, Gemma; Gallagher, Aodhan; Gibson, Jamie; Thut, Gregor; Harvey, Monika

    2015-01-01

    Healthy young adults display a leftward asymmetry of spatial attention (“pseudoneglect”) that has been measured with a wide range of different tasks. Yet at present there is a lack of systematic evidence that the tasks commonly used in research today are i) stable measures over time and ii) provide similar measures of spatial bias. Fifty right-handed young adults were tested on five tasks (manual line bisection, landmark, greyscales, gratingscales and lateralised visual detection) on two different days. All five tasks were found to be stable measures of bias over the two testing sessions, indicating that each is a reliable measure in itself. Surprisingly, no strongly significant inter-task correlations were found. However, principal component analysis revealed left-right asymmetries to be subdivided in 4 main components, namely asymmetries in size judgements (manual line bisection and landmark), luminance judgements (greyscales), stimulus detection (lateralised visual detection) and judgements of global/local features (manual line bisection and grating scales). The results align with recent research on hemispatial neglect which conceptualises the condition as multi-component rather than a single pathological deficit of spatial attention. We conclude that spatial biases in judgment of visual stimulus features in healthy adults (e.g., pseudoneglect) is also a multi-component phenomenon that may be captured by variations in task demands which engage task-dependent patterns of activation within the attention network. PMID:26378925

  6. Simulating strongly correlated electrons with a strongly interacting Fermi gas

    SciTech Connect

    Thomas, John E.

    2013-05-28

    The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.

  7. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew

    2015-09-01

    Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.

  8. Users as essential contributors to spatial cyberinfrastructures.

    PubMed

    Poore, Barbara S

    2011-04-01

    Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825

  9. Users as essential contributors to spatial cyberinfrastructures

    PubMed Central

    Poore, Barbara S.

    2011-01-01

    Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825

  10. Predictors, spatial distribution, and occurrence of woody invasive plants in subtropical urban ecosystems.

    PubMed

    Staudhammer, Christina L; Escobedo, Francisco J; Holt, Nathan; Young, Linda J; Brandeis, Thomas J; Zipperer, Wayne

    2015-05-15

    We examined the spatial distribution, occurrence, and socioecological predictors of woody invasive plants (WIP) in two subtropical, coastal urban ecosystems: San Juan, Puerto Rico and Miami-Dade, United States. These two cities have similar climates and ecosystems typical of subtropical regions but differ in socioeconomics, topography, and urbanization processes. Using permanent plot data, available forest inventory protocols and statistical analyses of geographic and socioeconomic spatial predictors, we found that landscape level distribution and occurrence of WIPs was not clustered. We also characterized WIP composition and occurrence using logistic models, and found they were strongly related to the proportional area of residential land uses. However, the magnitude and trend of increase depended on median household income and grass cover. In San Juan, WIP occurrence was higher in areas of high residential cover when incomes were low or grass cover was low, whereas the opposite was true in Miami-Dade. Although Miami-Dade had greater invasive shrub cover and numbers of WIP species, San Juan had far greater invasive tree density, basal area and crown cover. This study provides an approach for incorporating field and available census data in geospatial distribution models of WIPs in cities throughout the globe. Findings indicate that identifying spatial predictors of WIPs depends on site-specific factors and the ecological scale of the predictor. Thus, mapping protocols and policies to eradicate urban WIPs should target indicators of a relevant scale specific to the area of interest for their improved and proactive management. PMID:25776798

  11. Bootstrap percolation on spatial networks.

    PubMed

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links' lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  12. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  13. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around ?1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value ?1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  14. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = ?0.373**), pH (r = ?0.429**), GC (r = ?0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  15. Spatial constancy mechanisms in motor control

    PubMed Central

    Medendorp, W. Pieter

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  16. DEVELOPMENT OF INDICES FOR AGRICULTURAL DROUGHT MONITORING USING A SPATIALLY DISTRIBUTED

    E-print Network

    DEVELOPMENT OF INDICES FOR AGRICULTURAL DROUGHT MONITORING USING A SPATIALLY DISTRIBUTED HYDROLOGIC of Indices for Agricultural Drought Monitoring Using a Spatially Distributed Hydrologic Model. (August 2004, agricultural drought depends on soil moisture and evapotranspiration deficits. Hence, two drought indices

  17. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    E-print Network

    Wiedermann, Marc; Kurths, Jürgen; Donner, Reik V

    2015-01-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks...

  18. Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators

    PubMed Central

    Paul, E. C.; Hor-Meyll, M.; Ribeiro, P. H. Souto; Walborn, S. P.

    2014-01-01

    We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is accomplished by means of the polarization dependence of the modulator, which allows the conversion of a phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for unwanted coincidence counts due to polarization decoherence effects. PMID:24939691

  19. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ...of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities...vision and strategies. Sec. 2. White House Council on Strong Cities, Strong Communities. There is established a White House Council on Strong Cities, Strong...

  20. Spatial regression analysis on 32 years total column ozone data

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.

    2014-02-01

    Multiple-regressions analysis have been performed on 32 years of total ozone column data that was spatially gridded with a 1° × 1.5° resolution. The total ozone data consists of the MSR (Multi Sensor Reanalysis; 1979-2008) and two years of assimilated SCIAMACHY ozone data (2009-2010). The two-dimensionality in this data-set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on non-seasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Nino (ENSO) and stratospheric alternative halogens (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at high and mid-latitudes, the solar cycle affects ozone positively mostly at the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high Northern latitudes, the effect of QBO is positive and negative at the tropics and mid to high-latitudes respectively and ENSO affects ozone negatively between 30° N and 30° S, particularly at the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid to high latitudes. We observe ozone contributing effects for potential vorticity and day length, negative effect on ozone for geopotential height and variable ozone effects due to the polar vortex at regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. In particular the recovery rates over Antarctica might not be statistically significant. Furthermore, the results show that there is no spatial homogeneous pattern which regression model and explanatory variables provide the best fit to the data and the most accurate estimates of the recovery rates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.

  1. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    ERIC Educational Resources Information Center

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  2. Probing strongly coupled anisotropic plasmas from higher curvature gravity

    E-print Network

    Viktor Jahnke; Anderson Seigo Misobuchi

    2015-10-23

    We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.

  3. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    E-print Network

    Felix Karbstein; Holger Gies; Maria Reuter; Matt Zepf

    2015-07-04

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  4. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests

    PubMed Central

    Boixadera, Ester; Bonal, Raúl

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129

  5. Spatial distribution of pulmonary blood flow in dogs in increased force environments

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. F.; Ritman, E. L.; Chevalier, P. A.; Sass, D. J.; Wood, E. H.

    1978-01-01

    Spatial distribution of pulmonary blood flow during 2- to 3-min exposures to 6-8 Gy acceleration was studied, using radioactive microspheres in dogs, and compared to previously reported 1 Gy control distributions. Isotope distributions were measured by scintiscanning individual 1-cm-thick cross sections of excised, fixed lungs. Results indicate: (1) the fraction of cardiac output traversing left and right lungs did not change systematically with the duration and magnitude of acceleration; but (2) the fraction is strongly affected by the occurrence or absence of fast deep breaths, which cause an increase or decrease, respectively, in blood flow through the dependent lung; and (3) Gy acceleration caused a significant increase in relative pulmonary vascular resistance (PVR) in nondependent and dependent regions of the lung concurrent with a decrease in PVR in the midsagittal region of the thorax.

  6. Strongly coupled quantum heat machines

    E-print Network

    David Gelbwaser-Klimovsky; Alán Aspuru-Guzik

    2015-04-18

    Quantum heat machines (QHMs) models generally assume a weak coupling to the baths. This supposition is grounded in the separability principle between systems and allows the derivation of the evolution equation for this case. In the weak coupling regime, the machine's output is limited by the coupling strength, restricting their application. Seeking to overcome this limitation, we here analyze QHMs in the virtually unexplored strong coupling regime, where separability, as well as other standard thermodynamic assumptions, may no longer hold. We show that strongly coupled QHMs may be as efficient as their weakly coupled counterparts. In addition, we find a novel turnover behavior where their output saturates and disappears in the limit of ultra-strong coupling.

  7. SPATIAL PREFERENTIAL ATTACHMENT NETWORKS: POWER LAWS AND CLUSTERING COEFFICIENTS

    E-print Network

    Mörters, Peter

    AND PETER M¨ORTERS Abstract: We define a class of growing networks in which new nodes are given a spatial in preferential attachment models that do not incorporate further 1 #12;2 EMMANUEL JACOB AND PETER M] and Cooper et al. [7]. These papers show that combining preferential attachment and spatial dependence can

  8. Influences of temporal rainfall radar and spatial rainfall-runoff model resolution on flood prediction

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Steinbrich, Andreas

    2013-04-01

    The rainfall-runoff-model DROGen (Distributed RunOff Generation) was developed to simulate runoff generation processes during floods and flash floods generation with a very high spatial resolution for the whole state of Baden-Württemberg in Southwest Germany. The model connects available spatial geo information with detailed process understanding at the plot and hillslope scale and is not calibrated. The model was successfully validated in 8 meso-scale watersheds with different geology, soils, topography and land-use and the results were very satisfying. We believe that the high spatial resolution of 1*1m² and a temporal resolution of 1 hour especially improved flow dynamics and the runoff concentration behaviour of the different runoff components. Some spatial information used by DROGen is available in very high resolution of 1*1m² (e.g. DEM and degree of sealing of land surface). Other data are much more generalized (e.g. soil information at the scale of 1:200.000) or at a fixed temporal resolution of one hour (e.g. calibrated precipitation radar data of the German weather survey (RADOLAN)). In order to find the adequate temporal and spatial resolution we investigated how the the spatial resolution of the geo data and the temporal resolution of the rainfall radar data effects the model result. Regarding the spatial resolution, we found, that the processes of runoff generation and runoff concentration are sensitive at different spatial scales. A decrease of spatial resolution from 1m to 25m lead to an implausible increase of the generation of saturation overland flow and to an accelerated concentration of subsurface flow, while Hortonian overland flow was almost not affected by the spatial resolution. For the model validation runs we realized that for short convective rain events a one hour resolution of the rainfall data might be not sufficient because of severe underestimation of peak intensities. We developed and tested a new method to estimate the temporal distribution of rain intensity in higher resolution by using only the information of the hourly radar data and an assumed temporal distribution of rainfall at each radar grid cell. The methods preserves the total rainfall amount at each cell and preserves the overall rainfall pattern and movement of precipitation cells. Generally, we could improve the prediction of the model for short convective events in particular for the peak discharge. The higher temporal resolution effects the runoff generation and depends strongly on soil characteristics. On soils with high infiltration capacity the increase of temporal resolution effects the generation of fast overland runoff. This effect decreases with decreasing infiltration capacity of soils. The analysis revealed that a variable temporal resolution is needed to model convective and advective rainfall events with the same model parameterization. A "correct" spatial resolution of the distributed model, however, depends strongly on the dominant runoff generation process in a watershed and is also different for runoff generation and runoff concentration.

  9. Strong interaction studies with kaonic atoms

    E-print Network

    J. Marton; M. Bazzi; G. Beer; C. Berucci; D. Bosnar; A. M. Bragadireanu; M. Cargnelli; A. Clozza; C. Curceanu; A. d'Uffizi; C. Fiorini; F. Ghio; C. Guaraldo; R. Hayano; M. Iliescu; T. Ishiwatari; M. Iwasaki; P. Levi Sandri; S. Okada; D. Pietreanu; K. Piscicchia; T. Ponta; R. Quaglia; A. Romero Vidal; E. Sbardella; A. Scordo; H. Shi; D. L. Sirghi; F. Sirghi; H. Tatsuno; O. Vazquez Doce; E. Widmann; J. Zmeskal

    2015-08-21

    The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.

  10. Assessing the performance of the independence method in modeling spatial extreme rainfall

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Thibaud, Emeric; Leonard, Michael; Westra, Seth

    2015-09-01

    Spatial statistical methods are often employed to improve precision when estimating marginal distributions of extreme rainfall. Methods such as max-stable and copula models parameterize the spatial dependence and provide a continuous spatial representation. Alternatively, the independence method can be used to estimate marginal parameters without the need for parameterizing the spatial dependence, and this method has been under-utilized in hydrologic applications. This paper investigates the effectiveness of the independence method for marginal parameter estimation of spatially dependent extremes. Its performance is compared with three spatial dependence models (max-stable Brown-Resnick, max-stable Schlather, and Gaussian copula) by means of a simulation study. The independence method is statistically robust in estimating parameters and their associated confidence intervals for spatial extremes with various underlying dependence structures. The spatial dependence models perform comparably with the independence method when the spatial dependence structure is correctly specified; otherwise they exhibit considerably worse performance. We conclude that the independence method is more appealing for modeling the marginal distributions of spatial extremes (e.g., regional estimation of trends in rainfall extremes) due to its greater robustness and simplicity. The four statistical methods are illustrated using a spatial data set comprising 69 subdaily rainfall series from the Greater Sydney region, Australia.

  11. Spatial spread of adaptation within the cone network of turtle retina.

    PubMed

    Copenhagen, D R; Green, D G

    1987-12-01

    1. The spatial characteristics of adaptation were studied in the red-sensitive cones of the snapping turtle retina using intracellular microelectrodes. Light responses elicited with slit-shaped test and adapting stimuli revealed that test response amplitudes and adaptation decline similarly with distance from the impaled cone. The spatial spread of adaptation and the light response cannot be accounted for by scattered light and must therefore result from electrical coupling between cones. 2. The reduction in the amplitude of the test response correlated strongly with the magnitude of the sustained hyperpolarization induced by the adapting fields. This dependence of adaptation on membrane potential was independent of the spatial configuration of the adapting field. 3. The time courses of flash responses were monotonically related to the membrane potential induced by adapting stimuli and were also independent of adapting field configuration. 4. Adapting slits imaged on the cone receptive field centres uniformly depressed sensitivity without altering the shape of the field or its exponential fall-off. Since the membrane potential evoked by the adapting slit falls off exponentially, the invariance of receptive field shape implies that the spread of adaptation cannot be attributed solely to voltage-dependent desensitization of the transduction apparatus in the cones. Therefore a substantial part of the membrane potential dependency of adaptation probably results from a shunting of signals across the plasma membrane of the cone. 5. Full field backgrounds depressed sensitivity but did not alter the receptive field profiles. On the model of electrical coupling proposed by Lamb & Simon (1976), this suggests that to the extent that the voltage-dependent desensitization results from an increased conductance and hence an increased shunt of the signals at the plasma membrane, there must be a concomitant increase in the conductance of the electrical pathways linking cones to one another. PMID:3446810

  12. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    NASA Astrophysics Data System (ADS)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  13. Quantum Well Width Dependence of Threshold Current Density in InGaN Lasers

    SciTech Connect

    Amano, H.; Chow, W.W.; Han, J.; Takeuchi, T.

    1999-03-16

    The quantum confined Stark effect was found to result in a strong quantum well width dependence of threshold current density in strained group-III nitride quantum well lasers. For an In{sub 0.2}Ga{sub 0.8}N/GaN structure with quantum well width in the neighborhood of 3.5nm, our analysis shows that the reduction in spontaneous emission loss by the electron-hole spatial separation outweighs the corresponding reduction in gain to produce a threshold current density minimum.

  14. Spatial distribution of fishes in a Northwest Atlantic ecosystem in relation to risk of predation by a marine mammal.

    PubMed

    Swain, Douglas P; Benoît, Hugues P; Hammill, Mike O

    2015-09-01

    Numerous studies have shown that, at spatial scales of metres to several kilometres, animals balance the trade-off between foraging success and predation mortality by increasing their use of safer but less profitable habitats as predation risk increases. However, it is less clear whether prey respond similarly at the larger spatiotemporal scales of many ecosystems. We determine whether this behaviour is evident in a large marine ecosystem, the southern Gulf of St. Lawrence (sGSL, 75 000 km(2) ) over a 42-year period. This ecosystem is characterized by a recent increase in the abundance of a large marine predator, the grey seal (Halichoerus grypus Fabricius), by more than an order of magnitude. We compared changes in spatial distribution over the 1971-2012 period between important prey of grey seals (Atlantic cod, Gadus morhua L.; white hake, Urophycis tenuis Mitchill; and thorny skate, Amblyraja radiata Donovan) and non-prey fishes. Distribution was modelled using generalized additive models incorporating spatially variable effects of predation risk, density dependence and water temperature. Distributions of cod, hake and skate were strongly related to risk of predation by seals, with distribution shifting into lower risk areas as predation risk increased. Non-prey species did not show similar changes in habitat use. Spatial variation in fish condition suggests that these low-risk areas are also less profitable for cod and skate in terms of food availability. The effects of density dependence and water temperature were also important in models, but did not account for the changes in habitat use as the risk of predation increased. These results indicate that these fish are able to assess and respond to spatial variation in predation risk at very large spatial scales. They also suggest that non-consumptive 'risk' effects may be an important component of the declines in productivity of seal prey in this ecosystem, and of the indirect effects at lower trophic levels. PMID:25976520

  15. Compton Sailing and Strong Polarization

    E-print Network

    David Eichler

    2004-05-24

    It is noted that a surface layer of matter in contact with a sufficiently super-Eddington, radially combed photon flux typically attains a relativistic coasting state whereby the radiation does not accelerate the matter. Radiation that scatters off this layer is most likely to be observed along the velocity vector of the matter, where it would be most strongly polarized.

  16. Generation of strongly chaotic beats

    E-print Network

    I. Sliwa; P. Szlachetka; K. Grygiel

    2007-04-25

    The letter proposes a procedure for generation of strongly chaotic beats that have been hardly obtainable hitherto. The beats are generated in a nonlinear optical system governing second-harmonic generation of light. The proposition is based on the concept of an optical coupler but can be easily adopted to other nonlinear systems and Chua's circuits.

  17. Mostow's Strong Rigidity David Fisher

    E-print Network

    Fisher, David

    of R2 by the discrete sub- group Z2 . In fact, it isn't too hard to see that any flat metric arisesMostow's Strong Rigidity Theorem David Fisher Department of Mathematics, Indiana University(H2 ) = SL(2, R), we can consider the quo- tient H2 /. If is has no elements of finite or- der

  18. A strongly coupled anyon material

    E-print Network

    Daniel K. Brattan

    2014-12-03

    We use alternative quantisation of the D3-D5 system to explore properties of a strongly coupled anyon material at finite density and temperature. We study the transport properties of the material and find both diffusion and massive holographic zero sound modes. By studying the anyon number conductivity we also find evidence for the anyonic analogue of the metal-insulator transition.

  19. Strong coupling electroweak symmetry breaking

    SciTech Connect

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  20. STRONG HEART STUDY DATA BOOK

    EPA Science Inventory

    Epidemiologic study of cardiovascular disease in American Indians. Examination on the prevalence of major risk factors of CVD in American Indian men and women ages 45-74 in the American Indian communities from the three centers that participate in the Strong Heart Study.