Sample records for structural core antigen

  1. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis.

    PubMed

    Reinhardt, Anika; Yang, You; Claus, Heike; Pereira, Claney L; Cox, Andrew D; Vogel, Ulrich; Anish, Chakkumkal; Seeberger, Peter H

    2015-01-22

    Neisseria meningitidis is a leading cause of bacterial meningitis worldwide. We studied the potential of synthetic lipopolysaccharide (LPS) inner core structures as broadly protective antigens against N. meningitidis. Based on the specific reactivity of human serum antibodies to synthetic LPS cores, we selected a highly conserved LPS core tetrasaccharide as a promising antigen. This LPS inner core tetrasaccharide induced a robust IgG response in mice when formulated as an immunogenic glycoconjugate. Binding of raised mouse serum to a broad collection of N. meningitidis strains demonstrated the accessibility of the LPS core on viable bacteria. The distal trisaccharide was identified as the crucial epitope, whereas the proximal Kdo moiety was immunodominant and induced mainly nonprotective antibodies that are responsible for lack of functional protection in polyclonal serum. Our results identified key antigenic determinants of LPS core glycan and, hence, may aid the design of a broadly protective immunization against N. meningitidis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide

    PubMed Central

    Post, Deborah M. B.; Yu, Liping; Krasity, Benjamin C.; Choudhury, Biswa; Mandel, Mark J.; Brennan, Caitlin A.; Ruby, Edward G.; McFall-Ngai, Margaret J.; Gibson, Bradford W.; Apicella, Michael A.

    2012-01-01

    Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other Gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of l-glycero-d-manno-heptose, d-glycero-d-manno-heptose, glucose, 3-deoxy-d-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid. PMID:22247546

  3. Hepatitis B virus core antigen: synthesis in Escherichia coli and application in diagnosis.

    PubMed Central

    Stahl, S; MacKay, P; Magazin, M; Bruce, S A; Murray, K

    1982-01-01

    Fragments of hepatitis B virus DNA cloned in plasmid pBR322 carrying the gene for the viral core antigen have been placed under the control of the lac promoter of Escherichia coli. Several of the new recombinants direct higher levels of synthesis of the antigen, but the degree of enhancement varies with the different structures of the plasmids and hence the mRNAs produced. The antigen in crude bacterial lysates is a satisfactory diagnostic reagent for antibodies to the core antigen in serum samples. Images PMID:7041126

  4. Performance of ARCHITECT HCV core antigen test with specimens from US plasma donors and injecting drug users.

    PubMed

    Mixson-Hayden, Tonya; Dawson, George J; Teshale, Eyasu; Le, Thao; Cheng, Kevin; Drobeniuc, Jan; Ward, John; Kamili, Saleem

    2015-05-01

    Hepatitis C virus (HCV) core antigen is a serological marker of current HCV infection. The aim of this study was mainly to evaluate the performance characteristics of the ARCHITECT HCV core antigen assay with specimens from US plasma donors and injecting drug users. A total of 551 serum and plasma samples with known anti-HCV and HCV RNA status were tested for HCV core antigen using the Abbott ARCHITECT HCV core antigen test. HCV core antigen was detectable in 100% of US plasma donor samples collected during the pre-seroconversion phase of infection (anti-HCV negative/HCV RNA positive). Overall sensitivity of the HCV core antigen assay was 88.9-94.3% in samples collected after seroconversion. The correlation between HCV core antigen and HCV RNA titers was 0.959. HCV core antigen testing may be reliably used to identify current HCV infection. Published by Elsevier B.V.

  5. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  6. [Clinical benefit of HCV core antigen assay in patients receiving interferon and ribavirin combination therapy].

    PubMed

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Saito, Hidetsugu

    2006-02-01

    A highly sensitive second generation HCV core antigen assay has recently been developed. We compared viral disappearance and kinetics data between commercially available core antigen assays, Lumipulse Ortho HCV Ag, and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor Test, Version 2 to estimate the predictive benefit of sustained viral response (SVR) and non-SVR in 59 patients treated with interferon and ribavirin combination therapy. We found a good correlation between HCV core Ag and HCV RNA level regardless of genotype. Although the sensitivity of the core antigen assay was lower than PCR, the dynamic range was broader than that of the PCR assay, so that we did not need to dilute the samples in 59 patients. We detected serial decline of core Ag levels in 24 hrs, 7 days and 14 days after interferon combination therapy. The decline of core antigen levels was significant in SVR patients compared to non-SVR as well as in genotype 2a, 2b patients compared to 1b. Core antigen-negative on day 1 could predict all 10 SVR patients (PPV = 100%), whereas RNA-negative could predict 22 SVR out of 25 on day 14 (PPV = 88.0%). None of the patients who had detectable serum core antigen on day 14 became SVR(NPV = 100%), although NPV was 91.2% on RNA negativity. An easy, simple, low cost new HCV core antigen detecting system seems to be useful for assessing and monitoring IFN treatment for HCV.

  7. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome

    PubMed Central

    Moriel, Danilo G.; Tan, Lendl; Goh, Kelvin G. K.; Ipe, Deepak S.; Lo, Alvin W.; Peters, Kate M.

    2016-01-01

    ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics

  8. [Contribution of HCV core antigen testing in HCV diagnosis by test from the company Abbott Laboratories].

    PubMed

    Trbusek, J

    2009-11-01

    Detection of HCV core antigen as direct marker of hepatitis C infection clearly improves diagnosis of this disease (especially reduction of window period) and brings broad clinical utilization. The company Abbott Laboratories offers fully automated laboratory test for measurement of HCV core antigen on ARCHITECT analyzers.

  9. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    PubMed

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  10. Hepatitis C Virus Core Mutations Associated with False-Negative Serological Results for Genotype 3a Core Antigen

    PubMed Central

    Dunford, Linda; Freitas, Ines; Holder, Paul; Nguyen, Lan Anh; O'Gorman, Joanne; Connell, Jeff; Carr, Michael; Hall, William; De Gascun, Cillian

    2015-01-01

    Genetic characterization of the genotype 3a (GT3a) hepatitis C virus (HCV) core region from HCV core antigen (HCVcAg)-negative/RNA-positive cases and HCVcAg-positive/RNA-positive controls identified significant associations between the substitutions A48T and T49A/P and failure to detect HCVcAg (P < 0.05). Polymorphisms at residues 48 and 49 in the core protein are present across all major epidemic and endemic GTs. These findings have implications for HCV diagnosis, particularly in low-income regions in which GT3a HCV is endemic. PMID:25994168

  11. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method

    PubMed Central

    Tabassum, Shahina; Al-Mahtab, Mamun; Nessa, Afzalun; Jahan, Munira; Shamim Kabir, Chowdhury Mohammad; Kamal, Mohammad; Cesar Aguilar, Julio

    2015-01-01

    Background Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP). Materials and methods The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue. Results All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels. Conclusion Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB. How to cite this article Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10. PMID:29201677

  12. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide.

    PubMed

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M; Corsaro, Maria Michela

    2017-03-04

    Erwinia amylovora ( E. amylovora ) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae . In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry.

  13. An intramolecular disulfide bridge between Cys-7 and Cys61 determines the structure of the secretory core gene product (e antigen) of hepatitis B virus.

    PubMed Central

    Nassal, M; Rieger, A

    1993-01-01

    Hepatitis B virus, the prototypic member of the Hepadnaviridae, is a small enveloped DNA virus that replicates via reverse transcription. Efficient usage of its compact 3.2-kb genome is exemplified by the pre-C/C gene from which two proteins with largely overlapping primary sequences but distinctly different properties are synthesized: the self-assembling core protein p21c (hepatitis B core antigen [HbcAg]) and the secretory, nonparticulate protein p17e (hepatitis B e antigen [HbeAg]). Mature p17e carries a 10-amino-acid N-terminal extension with a Cys residue (Cys-7). Using transient transfection of a human liver cell line with constructs expressing wild-type p17 or a series of Cys mutants of p17, we show that Cys-7 forms an intramolecular S-S bond to Cys61, which in assembly-competent core proteins is available for intermolecular disulfide bonds between two neighboring subunits. Removal of the Cys-7/Cys61 bond by mutating either residue has differential effects: in the absence of Cys-7, secretion is relatively efficient and independent of Cys61; however, the molecules are exported as homodimers exhibiting both HBe and HBc antigenicity. In the absence of Cys61, the nonpaired Cys-7 interferes with secretion efficiency. The amino acid sequence flanking Cys-7 also contributes to the formation of the proper intramolecular S-S bond. These results suggest that the Cys-7/Cys61 bond imposes on p17e a conformation that is critical for its secretion and distinct biophysical and antigenic properties. This mechanism adds selective disulfide formation to the repertoire of hepatitis B virus for efficient use of its tiny genome. Images PMID:8510224

  14. Is HCV core antigen a reliable marker of viral load? An evaluation of HCV core antigen automated immunoassay

    PubMed Central

    Hadziyannis, Emilia; Minopetrou, Martha; Georgiou, Anastasia; Spanou, Fotini; Koskinas, John

    2013-01-01

    Background Hepatitis C viral (HCV) load detection and quantification is routinely accomplished by HCV RNA measurement, an expensive but essential test, both for the diagnosis and treatment of chronic hepatitis C (CHC). HCV core antigen (Ag) testing has been suggested as an attractive alternative to molecular diagnostics. The aim of the study was to evaluate an automated chemiluminescent immunoassay (CLIA) for HCV core Ag measurement in comparison to quantitative HCV RNA determination. Methods HCV Ag was measured in 105 anti-HCV positive patients, from which 89 were HCV RNA positive with CHC and 16 HCV RNA negative after spontaneous HCV clearance. Viral load was quantified with branched DNA (bDNA, Versant, Siemens). Sera were stored at -70°C and then tested with the Architect HCV Ag test (Abbott Laboratories), a two-step CLIA assay, with high throughput and minimal handling of the specimens. Statistical analysis was performed on logarithmically transformed values. Results HCV-Ag was detectable and quantifiable in 83/89 and in grey zone in 4/89 HCV RNA positive sera. HCV-Ag was undetectable in all 16 HCV RNA negative samples. The sample with the lowest viral load that tested positive for HCV-Ag contained 1200 IU/mL HCV RNA. There was a positive correlation between HCV RNA and HCV-Ag (r=0.89). The HCV RNA/ HCV Ag ratio varied from 1.5 to 3.25. Conclusion The HCV core Ag is an easy test with comparable sensitivity (>90%) and satisfactory correlation with the HCV RNA bDNA assay. Its role in diagnostics and other clinical applications has to be determined based on cost effectiveness. PMID:24714621

  15. Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT/ID HPA XT) in routine clinical practice.

    PubMed

    Finning, Kirstin; Bhandari, Radhika; Sellers, Fiona; Revelli, Nicoletta; Villa, Maria Antonietta; Muñiz-Díaz, Eduardo; Nogués, Núria

    2016-03-01

    High-throughput genotyping platforms enable simultaneous analysis of multiple polymorphisms for blood group typing. BLOODchip® ID is a genotyping platform based on Luminex® xMAP technology for simultaneous determination of 37 red blood cell (RBC) antigens (ID CORE XT) and 18 human platelet antigens (HPA) (ID HPA XT) using the BIDS XT software. In this international multicentre study, the performance of ID CORE XT and ID HPA XT, using the centres' current genotyping methods as the reference for comparison, and the usability and practicality of these systems, were evaluated under working laboratory conditions. DNA was extracted from whole blood in EDTA with Qiagen methodologies. Ninety-six previously phenotyped/genotyped samples were processed per assay: 87 testing samples plus five positive controls and four negative controls. Results were available for 519 samples: 258 with ID CORE XT and 261 with ID HPA XT. There were three "no calls" that were either caused by human error or resolved after repeating the test. Agreement between the tests and reference methods was 99.94% for ID CORE XT (9,540/9,546 antigens determined) and 100% for ID HPA XT (all 4,698 alleles determined). There were six discrepancies in antigen results in five RBC samples, four of which (in VS, N, S and Do(a)) could not be investigated due to lack of sufficient sample to perform additional tests and two of which (in S and C) were resolved in favour of ID CORE XT (100% accuracy). The total hands-on time was 28-41 minutes for a batch of 16 samples. Compared with the reference platforms, ID CORE XT and ID HPA XT were considered simpler to use and had shorter processing times. ID CORE XT and ID HPA XT genotyping platforms for RBC and platelet systems were accurate and user-friendly in working laboratory settings.

  16. Expression of the core antigen gene of hepatitis B virus (HBV) in Acetobacter methanolicus using broad-host-range vectors.

    PubMed

    Schröder, R; Maassen, A; Lippoldt, A; Börner, T; von Baehr, R; Dobrowolski, P

    1991-08-01

    Using the broad-host-range promoter probe vector pRS201 for cloning of phage Acm1 promoters, we established a convenient vector system for expression of heterologous genes in different Gram-negative bacteria. The usefulness of this system was demonstrated by expression of the HBV core gene in Acetobacter methanolicus. Plasmids carrying the HBV core gene downstream of different Acm1-phage promoters were transferred to A. methanolicus, a new potential host for recombinant DNA expression. Using enzyme immunoassay and immunoblot techniques, the amount and composition of core antigen produced in A. methanolicus were compared with that derived from Escherichia coli. The expression of immunoreactive core antigen in A. methanolicus exceeds by sevenfold that in E. coli using an expression system with tandemly arranged promoters. Morphological observations by electron microscopy show that the HBV core gene products isolated from both hosts are assembled into regular spherical particles with a diameter of about 28 nm that are comparable to original viral nucleocapsids.

  17. [Biochemical characteristics and antigenic structures of Chlamydia].

    PubMed

    Puy, H; Fuentes, V; Eb, F; Orfila, J

    1989-01-01

    New biotechnology in immunology and molecular biology has enabled the identification and definition of the structure of glycolipids and especially membrane proteins of Chlamydia. Chlamydia antigen lipopolysaccharide, major outer membrane protein, protein 74 kDa, eukaryotic cell binding protein and cysteine rich proteins are all carriers of antigenic determinants, genus, species or type specific. They are very usefull for diagnosis of Chlamydial infections and epidemiological studies. These membranous antigens have an important role in the pathogenesis of these bacteries. Finally these studies have contributed to the isolation of a new species: C. pneumoniae (TWAR strains).

  18. A Higher Correlation of HCV Core Antigen with CD4+ T Cell Counts Compared with HCV RNA in HCV/HIV-1 Coinfected Patients

    PubMed Central

    Zhang, Weidong; Xi, Yuanlin; Cao, Guanghua; Zhi, Yuhong; Wang, Shuiwang; Xu, Chunhui; Wei, Lai; Lu, Fengmin; Zhuang, Hui

    2011-01-01

    Development of HCV infection is typically followed by chronic hepatitis C (CHC) in most patients, while spontaneous HCV viral clearance (SVC) occurs in only a minority of subjects. Compared with the widespread application of HCV RNA testing by quantitative RT-PCR technique, HCV core antigen detection may be an alternative indicator in the diagnosis of hepatitis C virus infections and in monitoring the status of infectious individuals. However, the correlation and differences between these two indicators in HCV infection need more investigation, especially in patients coinfected by HIV-1. In this study, a total of 354 anti-HCV and/or anti-HIV serum positive residents from a village of central China were enrolled. Besides HCV-related hepatopathic variables including clinical status, ALT, AST, anti-HCV Abs, as well as the altered CD4+/CD8+ T cell counts, HCV core antigen and HCV viral load were also measured. The concentration of serum HCV core antigen was highly correlated with level of HCV RNA in CHC patients with or without HIV-1 coinfection. Of note, HCV core antigen concentration was negatively correlated with CD4+ T cell count, while no correlation was found between HCV RNA level and CD4+ T cell count. Our findings suggested that quantitative detection of plasma HCV core antigen may be an alternative indicator of HCV RNA qPCR assay when evaluating the association between HCV replication and host immune status in HCV/HIV-1 coinfected patients. PMID:21858166

  19. ANTIGENIC STRUCTURE OF ACTINOMYCETALES VI.

    PubMed Central

    Kwapinski, J. B.

    1963-01-01

    Kwapinski, J. B. (University of New England, Armidale, N.S.W., Australia). Antigenic structure of Actinomycetales. VI. Serological relationships between antigenic fractions of Actinomyces and Nocardia. J. Bacteriol. 86:179–186. 1963.—A total of 52 chemical fractions were obtained by a comprehensive technique of preparation from three strains of Actinomyces and three strains of Nocardia. The chemical and serological structures and specificities of disintegrated cells, cell walls, cytoplasms, and individual fractions were thoroughly studied. Cytoplasmic materials were found to be serologically alike or identical. The polysaccharide fractions, extracted from cell walls with alkali, formamide, and phenol, proved to be serologically related. Fractions prepared from the Nocardia by extractions in hot and concentrated solutions of acetic acid and sodium hydroxide, as well as the second protein fraction and the acetate-extracted polysaccharides of both the Nocardia and Actinomyces, proved to be genus-specific. PMID:14058939

  20. Changes in structural and antigenic properties of proteins by radiation

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Matsuda, Tsukasa

    1995-08-01

    Radiation effect on structural and antigenic properties of proteins (0.2% in 0.01 M phosphate buffer, pH 7.4) were investigated using ovalbumin (OVA) and bovine serum albumin (BSA). Aggregation of OVA and BSA was induced by radiation and the molecular mass increased significantly in N 2. Significant changes in surface hydrophobicity and [ θ] 222 nm of CD were also observed by radiation showing the destruction of secondary structure of proteins. Antigenicity of irradiated OVA measured by the method of immunodiffusion was decreased by radiation, and the reactivity to anti-OVA antibody was almost diminished at 8 kGy in N 2 and 4 kGy in O 2, respectively. The reactivity of BSA was diminished at 4 kGy both in N 2 and O 2. Changes in hydrophobicity of OVA did not correspond to the decrease in antigenicity, whereas the changes in [ θ] 222 nm relatively well corresponded to the antigenicity. The SDS-PAGE and immunoblotting analysis showed that radiation at higher doses induced the production of protein aggregates and degraded fragments with reactivity to the specific antibodies. These results suggest that the main part of conformation-dependent antigenic structure (conformational epitope) is easily lost by radiation, but some antigenicity, which is mostly due to the amino acid sequence-dependent antigenic structures (sequential epitopes), remains even at higher dose.

  1. Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid

    PubMed Central

    York, Royce L.; Yousefi, Payam A.; Bogdanoff, Walter; Haile, Sara; Tripathi, Sarvind

    2015-01-01

    ABSTRACT Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus

  2. Investigation on Sugar-Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines.

    PubMed

    De Benedetto, Gianluigi; Salvini, Laura; Gotta, Stefano; Cescutti, Paola; Micoli, Francesca

    2018-05-16

    Invasive nontyphoidal Salmonella disease, for which licensed vaccines are not available, is a leading cause of bloodstream infections in Africa. The O-antigen portion of lipopolysaccharide is a good target for protective immunity. Covalent conjugation of the O-antigen to a carrier protein increases its immunogenicity and O-antigen based glycoconjugate vaccines are currently under investigation at the preclinical stage. We developed a conjugation chemistry for linking O-antigen to CRM 197 carrier protein, through sequential insertion of adipic acid dihydrazide (ADH) and adipic acid bis( N-hydroxysuccinimide) ester (SIDEA) as linkers, without impacting O-antigen chain epitopes. Here the resulting sugar-protein connectivity has been investigated in detail. The core portion of the lipopolysaccharide was used as a model molecule to prepare CRM 197 conjugates, making structural investigations easier. The first step of reductive amination with ADH involves the terminal 3-deoxy-d- manno-oct-2-ulosonic acid (KDO) residue of the core region. The second reaction step resulted not to be selective, as SIDEA reacted with both ADH and pyrophosphorylethanolamine (PPEtN) of the core region, independently from the pH at which the reaction was performed. Peptide mapping analysis of the deglycosylated core-CRM 197 conjugates confirmed that lysine residues of CRM 197 were linked to SIDEA not only through KDO-ADH but also through PPEtN. This analysis also confirmed that the conjugation chemistry is random on the protein, involving a large number of lysine residues, particularly the surface exposed ones. The method for core-CRM 197 characterization was successfully extended to O-antigen-CRM 197 conjugate, confirming the results obtained with the core. This study not only allowed full characterization of OAg-CRM 197 conjugates, but can be applied to optimize synthesis and characterization of other OAg-based glycoconjugate vaccines. Analytical methods to investigate saccharide

  3. Long-lived immunity to canine core vaccine antigens in UK dogs as assessed by an in-practice test kit.

    PubMed

    Killey, R; Mynors, C; Pearce, R; Nell, A; Prentis, A; Day, M J

    2018-01-01

    To determine the utility of an in-practice test kit to detect protective serum antibody against canine distemper virus, canine adenovirus and canine parvovirus type 2 in a sample of the UK dog population. Serum samples from 486 dogs, last vaccinated between less than 1 month and 124 months previously, were tested with the VacciCheck™ test kit for protective antibodies against distemper, adenovirus and parvovirus type 2. A high proportion of the dogs tested (93·6%) had protective antibody against all three of the core vaccine antigens: 95·7% of the dogs were seropositive against canine distemper virus, 97·3% against canine adenovirus and 98·5% against canine parvovirus type 2. The small number of dogs that were seronegative for one or more of the antigens (n = 31) may have had waning of previous serum antibody or may have been rare genetic non-responders to that specific antigen. UK veterinarians can be reassured that triennial revaccination of adult dogs with core vaccines provides long-lived protective immunity. In-practice serological test kits are a valuable tool for informing decision-making about canine core revaccination. © 2017 British Small Animal Veterinary Association.

  4. Comparison of a newly developed automated and quantitative hepatitis C virus (HCV) core antigen test with the HCV RNA assay for clinical usefulness in confirming anti-HCV results.

    PubMed

    Kesli, Recep; Polat, Hakki; Terzi, Yuksel; Kurtoglu, Muhammet Guzel; Uyar, Yavuz

    2011-12-01

    Hepatitis C virus (HCV) is a global health care problem. Diagnosis of HCV infection is mainly based on the detection of anti-HCV antibodies as a screening test with serum samples. Recombinant immunoblot assays are used as supplemental tests and for the final detection and quantification of HCV RNA in confirmatory tests. In this study, we aimed to compare the HCV core antigen test with the HCV RNA assay for confirming anti-HCV results to determine whether the HCV core antigen test may be used as an alternative confirmatory test to the HCV RNA test and to assess the diagnostic values of the total HCV core antigen test by determining the diagnostic specificity and sensitivity rates compared with the HCV RNA test. Sera from a total of 212 treatment-naive patients were analyzed for anti-HCV and HCV core antigen both with the Abbott Architect test and with the molecular HCV RNA assay consisting of a reverse transcription-PCR method as a confirmatory test. The diagnostic sensitivity, specificity, and positive and negative predictive values of the HCV core antigen assay compared to the HCV RNA test were 96.3%, 100%, 100%, and 89.7%, respectively. The levels of HCV core antigen showed a good correlation with those from the HCV RNA quantification (r = 0.907). In conclusion, the Architect HCV antigen assay is highly specific, sensitive, reliable, easy to perform, reproducible, cost-effective, and applicable as a screening, supplemental, and preconfirmatory test for anti-HCV assays used in laboratory procedures for the diagnosis of hepatitis C virus infection.

  5. The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers.

    PubMed

    Pleshakova, T O; Kaysheva, A L; Bayzyanova, J М; Anashkina, А S; Uchaikin, V F; Ziborov, V S; Konev, V A; Archakov, A I; Ivanov, Y D

    2018-01-01

    In the present study, the possibility of hepatitis C virus core antigen (HCVcoreAg) detection in buffer solution, using atomic force microscope chip (AFM-chip) with immobilized aptamers, has been demonstrated. The target protein was detected in 1mL of solution at concentrations from 10 -10 М to 10 -13 М. The registration of aptamer/antigen complexes on the chip surface was carried out by atomic force microscopy (AFM). The further mass-spectrometric (MS) identification of AFM-registered objects on the chip surface allowed reliable identification of HCVcoreAg target protein in the complexes. Aptamers, which were designed for therapeutic purposes, have been shown to be effective in HCVcoreAg detection as probe molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers

    PubMed Central

    Feld, Geoffrey K.; Thoren, Katie L.; Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Greenberg, Shoshana G.; Williams, Evan R.; Krantz, Bryan A.

    2011-01-01

    The protein transporter, anthrax lethal toxin, is comprised of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. Following assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LFN). The first α helix and β strand of each LFN unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight on the mechanism of translocation-coupled protein unfolding. PMID:21037566

  7. The interfacial character of antibody paratopes: analysis of antibody-antigen structures.

    PubMed

    Nguyen, Minh N; Pradhan, Mohan R; Verma, Chandra; Zhong, Pingyu

    2017-10-01

    In this study, computational methods are applied to investigate the general properties of antigen engaging residues of a paratope from a non-redundant dataset of 403 antibody-antigen complexes to dissect the contribution of hydrogen bonds, hydrophobic, van der Waals contacts and ionic interactions, as well as role of water molecules in the antigen-antibody interface. Consistent with previous reports using smaller datasets, we found that Tyr, Trp, Ser, Asn, Asp, Thr, Arg, Gly, His contribute substantially to the interactions between antibody and antigen. Furthermore, antibody-antigen interactions can be mediated by interfacial waters. However, there is no reported comprehensive analysis for a large number of structured waters that engage in higher ordered structures at the antibody-antigen interface. From our dataset, we have found the presence of interfacial waters in 242 complexes. We present evidence that suggests a compelling role of these interfacial waters in interactions of antibodies with a range of antigens differing in shape complementarity. Finally, we carry out 296 835 pairwise 3D structure comparisons of 771 structures of contact residues of antibodies with their interfacial water molecules from our dataset using CLICK method. A heuristic clustering algorithm is used to obtain unique structural similarities, and found to separate into 368 different clusters. These clusters are used to identify structural motifs of contact residues of antibodies for epitope binding. This clustering database of contact residues is freely accessible at http://mspc.bii.a-star.edu.sg/minhn/pclick.html. minhn@bii.a-star.edu.sg, chandra@bii.a-star.edu.sg or zhong_pingyu@immunol.a-star.edu.sg. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Inner Core Structure Behind the PKP Core Phase Triplication

    NASA Astrophysics Data System (ADS)

    Blom, N.; Paulssen, H.; Deuss, A. F.; Waszek, L.

    2015-12-01

    Despite its small size, the Earth's inner core plays an important role in the Earth's dynamics. Because it is slowly growing, its structure - and the variation thereof with depth - may reveal important clues about the history of the core, its convection and the resulting geodynamo. Learning more about this structure has been a prime effort in the past decades, leading to discoveries about anisotropy, hemispheres and heterogeneity in the inner core in general. In terms of detailed structure, mainly seismic body waves have contributed to these advances. However, at depths between ~100-200 km, the seismic structure is relatively poorly known. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, whose simultaneous arrival hinders the measurement of inner core waves PKIKP at epicentral distances between roughly 143-148°. As a consequence, the interpretation of deeper structure also remains difficult. To overcome these issues, we stack seismograms in slowness and time, separating PKP and PKIKP phases which arrive simultaneously, but with different slowness. We apply this method to study the inner core's Western hemisphere between South and Central America using paths travelling in the quasi-polar direction between epicentral distances of 140-150°. This enables us to measure PKiKP-PKIKP differential travel times up to greater epicentral distance than has previously been done. The resulting differential travel time residuals increase with epicentral distance, indicating a marked increase in seismic velocity with depth compared to reference model AK135 for the studied polar paths. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity, or (ii) increase in anisotropy over the studied depth range. Our current data set cannot distinguish between the two hypotheses, but in light of previous work we prefer the latter interpretation.

  9. [Regression analysis to select native-like structures from decoys of antigen-antibody docking].

    PubMed

    Chen, Zhengshan; Chi, Xiangyang; Fan, Pengfei; Zhang, Guanying; Wang, Meirong; Yu, Changming; Chen, Wei

    2018-06-25

    Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.

  10. THE LIVER OF WOODCHUCKS CHRONICALLY INFECTED WITH THE WOODCHUCK HEPATITIS VIRUS CONTAINS FOCI OF VIRUS CORE ANTIGEN NEGATIVE HEPATOCYTES WITH BOTH ALTERED AND NORMAL MORPHOLOGY

    PubMed Central

    Xu, Chunxiao; Yamamoto, Toshiki; Zhou, Tianlun; Aldrich, Carol E.; Frank, Katy; Cullen, John M.; Jilbert, Allison R.; Mason, William S.

    2007-01-01

    The livers of woodchucks chronically infected with woodchuck hepatitis virus (WHV) contain foci of morphologically altered hepatocytes (FAH) with “basophilic”, “amphophilic” and “clear cell” phenotypes, which are possibly pre-neoplastic in nature. Interestingly, most fail to express detectable levels of WHV proteins and nucleic acids. We studied sections of WHV-infected liver tissue to determine if all foci of hepatocytes that failed to express detectable levels of WHV, as assessed by immunoperoxidase staining for WHV core antigen, could be classified morphologically as FAH. We found that at least half of the foci of WHV core antigen negative hepatocytes did not show clear morphological differences in either H&E or PAS (periodic acid Schiff) stained sections from surrounding hepatocytes, and were therefore not designated as FAH. In the second approach, we assayed core antigen negative foci for the presence of fetuin B, a serum protein produced by normal hepatocytes, but not by neoplastic hepatocytes in hepatocellular carcinomas. Basophilic and amphophilic FAH had reduced levels of fetuin B compared to hepatocytes present in the surrounding liver; fetuin B staining was detected in clear cell FAH but the level could not be accurately assessed because of the displacement of fetuin B to the cell periphery by accumulated glycogen. The foci of morphologically normal WHV core antigen negative hepatocytes had similar levels of fetuin B to that of the surrounding hepatocytes. The co-existence of at least four types of WHV core antigen negative foci, including those with no obvious morphologic changes, raises the possibility that the different foci arise from distinct primary events. We hypothesize that a common event is loss of the ability to express WHV, allowing these hepatocytes to escape immune mediated cell death and to undergo clonal expansion to form distinct foci. PMID:17078989

  11. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    PubMed Central

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease. PMID:26526043

  12. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens.

    PubMed

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10-20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  13. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    NASA Astrophysics Data System (ADS)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  14. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori.

    PubMed

    Li, Hong; Liao, Tingting; Debowski, Aleksandra W; Tang, Hong; Nilsson, Hans-Olof; Stubbs, Keith A; Marshall, Barry J; Benghezal, Mohammed

    2016-12-01

    This review covers the current knowledge and gaps in Helicobacter pylori lipopolysaccharide (LPS) structure and biosynthesis. H. pylori is a Gram-negative bacterium which colonizes the luminal surface of the human gastric epithelium. Both a constitutive alteration of the lipid A preventing TLR4 elicitation and host mimicry of the Lewis antigen decorated O-antigen of H. pylori LPS promote immune escape and chronic infection. To date, the complete structure of H. pylori LPS is not available, and the proposed model is a linear arrangement composed of the inner core defined as the hexa-saccharide (Kdo-LD-Hep-LD-Hep-DD-Hep-Gal-Glc), the outer core composed of a conserved trisaccharide (-GlcNAc-Fuc-DD-Hep-) linked to the third heptose of the inner core, the glucan, the heptan and a variable O-antigen, generally consisting of a poly-LacNAc decorated with Lewis antigens. Although the glycosyltransferases (GTs) responsible for the biosynthesis of the H. pylori O-antigen chains have been identified and characterized, there are many gaps in regard to the biosynthesis of the core LPS. These limitations warrant additional mutagenesis and structural studies to obtain the complete LPS structure and corresponding biosynthetic pathway of this important gastric bacterium. © 2016 John Wiley & Sons Ltd.

  15. ANTIGENIC STRUCTURE OF THE ACTINOMYCETALES VII.

    PubMed Central

    Kwapinski, J. B.

    1964-01-01

    Kwapinski, J. B. (The University of New England, Armidale, Australia). Antigenic structure of the Actinomycetales. VII. Chemical and serological similarities of cell walls from 100 Actinomycetales strains. J. Bacteriol. 88:1211–1219. 1964.—Cell walls prepared mechanically from 100 strains of Actinomycetales were studied by chromatographic and serological methods. The cell walls of Actinomyces were found to be serologically related to those of the corynebacteria and to some strains of mycobacteria and nocardiae. The cell walls of nocardiae appeared to be more closely related to those of the mycobacteria, Streptomyces, Micromonospora, and Waksmania. The cell walls of Micromonospora and Waksmania showed certain serological similarities to those of Thermoactinomyces and nocardiae. Micropolyspora was antigenically different from other species of the Actinomycetales. Three serological groups of mycobacteria and four groups of nocardiae were distinguished. PMID:14234773

  16. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  17. Structural flexibility of a conserved antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing antibodies.

    PubMed

    Meola, Annalisa; Tarr, Alexander W; England, Patrick; Meredith, Luke W; McClure, C Patrick; Foung, Steven K H; McKeating, Jane A; Ball, Jonathan K; Rey, Felix A; Krey, Thomas

    2015-02-01

    Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation. We also show that residues 412 to 423 are essential for virus entry but not for E2 folding. Together with the neutralizing capacity of the 3/11 Fab fragment, this indicates an unexpected structural flexibility within this epitope. NAbs 3/11 and AP33 (recognizing the extended and β-hairpin conformations, respectively) display similar neutralizing activities despite converse binding kinetics. Our results suggest that HCV utilizes conformational flexibility as an immune evasion strategy, contributing to the limited immunogenicity of this epitope in patients, similar to the conformational flexibility described for other enveloped and nonenveloped viruses. Approximately 180 million people worldwide are infected with hepatitis C virus (HCV), and neutralizing antibodies play an important role in controlling the replication of this major human pathogen. We show here that one of the most conserved antigenic sites within the major glycoprotein E2 (amino acids 412 to 423), which is disordered in the recently reported crystal structure of an E2 core fragment, can adopt different conformations in the context of the infectious virus particle. Recombinant Fab fragments recognizing different conformations of this antigenic site have similar neutralization activities in spite of converse kinetic binding parameters. Of note, an antibody response targeting this antigenic region is less frequent than those targeting other more immunogenic regions in E2. Our results suggest that the observed conformational flexibility in this conserved antigenic

  18. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

  19. [Detection of antigen structures in blood cells in various prepared plasma transfusions].

    PubMed

    Barz, D

    1994-01-01

    We investigated the content of antigen-bearing cells and cell fragments in Fresh Frozen Plasma (FFP) from blood centers, in Octaplas (virus-inactivated fresh plasma produced with the solvent/detergent technique by the Octapharma Company) and in MB-plasma (virus-inactivated fresh plasma after photodynamic treatment with methylen blue coming from the German Red Cross in Springe, Lower Saxony). With the aid of an immunoassay (MAIPA-test) these plasmas were tested regarding Rhesus-D-antigen, HLA-class-I- and HLA-class-II-antigens, platelet specific antigens HPA-1a/HPA-1b and granulocyte specific antigens NA1/NA2. In Octaplas (n = 10) we did not find cells or cell fragments and no antigen-bearing blood cell structures. In FFP (n = 28) there were platelet specific antigens in 27 cases (96.4%) and HLA-class-I-antigens in 4 cases (14.3%). In MB-plasma (n = 14) we found platelet specific antigens in all cases, HLA-class-I-antigens in 4 cases (18.6%), HLA-class-II-antigens and granulocyte specific antigens in 1 case (7.1%) and Rhesus-D-antigen in 3 cases (21.4%). Plasma derived from whole blood showed lower levels of cells and antigens than plasma which was produced with the aid of the cell separator.

  20. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations.

    PubMed

    Buckee, Caroline O; Recker, Mario; Watkins, Eleanor R; Gupta, Sunetra

    2011-09-13

    Many highly diverse pathogen populations appear to exist stably as discrete antigenic types despite evidence of genetic exchange. It has been shown that this may arise as a consequence of immune selection on pathogen populations, causing them to segregate permanently into discrete nonoverlapping subsets of antigenic variants to minimize competition for available hosts. However, discrete antigenic strain structure tends to break down under conditions where there are unequal numbers of allelic variants at each locus. Here, we show that the inclusion of stochastic processes can lead to the stable recovery of discrete strain structure through loss of certain alleles. This explains how pathogen populations may continue to behave as independently transmitted strains despite inevitable asymmetries in allelic diversity of major antigens. We present evidence for this type of structuring across global meningococcal isolates in three diverse antigens that are currently being developed as vaccine components.

  1. Benefit of hepatitis C virus core antigen assay in prediction of therapeutic response to interferon and ribavirin combination therapy.

    PubMed

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay.

  2. Benefit of Hepatitis C Virus Core Antigen Assay in Prediction of Therapeutic Response to Interferon and Ribavirin Combination Therapy

    PubMed Central

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay. PMID:15634970

  3. Inner core structure behind the PKP core phase triplication

    NASA Astrophysics Data System (ADS)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    2015-06-01

    The structure of the Earth's inner core is not well known between depths of ˜100-200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at epicentral distances between roughly 143 and 148°. Consequently, interpretation of the detailed structure of deeper regions also remains difficult. To overcome these issues we stack seismograms in slowness and time, separating the PKP and PKIKP phases which arrive simultaneously but with different slowness. We apply this method to study the inner core's Western hemisphere beneath South and Central America using paths travelling in the quasi-polar direction between 140 and 150° epicentral distance, which enables us to measure PKiKP-PKIKP differential traveltimes up to greater epicentral distance than has previously been done. The resulting PKiKP-PKIKP differential traveltime residuals increase with epicentral distance, which indicates a marked increase in seismic velocity for polar paths at depths greater than 100 km compared to reference model AK135. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity or (ii) increase in anisotropy over the studied depth range. Although this study only samples a small region of the inner core and the current data cannot distinguish between the two alternatives, we prefer the latter interpretation in the light of previous work.

  4. The O-antigen structure of bacterium Comamonas aquatica CJG.

    PubMed

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  5. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  6. Linearized hepatitis B surface antigen and hepatitis B core-related antigen in the natural history of chronic hepatitis B.

    PubMed

    Seto, W-K; Wong, D K-H; Fung, J; Huang, F-Y; Liu, K S-H; Lai, C-L; Yuen, M-F

    2014-11-01

    Changes in two novel HBV serological markers, linearized hepatitis B surface antigen (HQ-HBsAg) and hepatitis B core-related antigen (HBcrAg), in the natural history of chronic hepatitis B (CHB) have not been well characterized. Serum HQ-HBsAg and HBcrAg levels of 404 Asian treatment-naïve CHB patients were analysed in a cross-sectional manner. Patients were categorized into five groups: immune tolerant (IT group, n=52), immune clearance (IC group, n=105), hepatitis B e antigen (HBeAg)-negative hepatitis (ENH group, n=97), HBeAg-negative quiescent group (ENQ group, n=95) and CHB with hepatitis B surface antigen (HBsAg) seroclearance (SC group, n=55). HQ-HBsAg and HBcrAg were measured and correlated with HBV DNA, HBsAg, HBV genotype and clinical parameters. HQ-HBsAg showed good correlation with HBsAg, especially in the ENQ group (r=0.874, p<0.001). Correlation of HQ-HBsAg with HBV DNA was less prominent and weakest in the ENH group (r=0.268, p 0.008). HBcrAg correlated best with HBV DNA in the ENQ group (r=0.537, p<0.001). In the ENQ group, 42.1% of patients had undetectable HBcrAg; this subgroup of patients, when compared with those with detectable HBcrAg, had significantly lower median HBV DNA (3.17/4.48 log IU/mL, p<0.001) and HBsAg (5.05/5.96 log mIU/mL, p<0.001) levels. Forty per cent of the SC group patients had detectable HQ-HBsAg and/or HBcrAg up to 42 months after HBsAg seroclearance. When comparing anti-HBs positivity and median time after HBsAg seroclearance in the SC group with and without detectable HQ-HBsAg/HBcrAg, there was no significant difference (22.7% and 36.4%, respectively, p 0.284, and 76.5 and 93.2 months, respectively, p 0.245). HQ-HBsAg and HBcrAg showed unique patterns of distribution throughout the five disease phases of CHB, including high detectability rates after HBsAg seroclearance, opening up different possibilities for their applicability. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical

  7. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum

    PubMed Central

    Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes

    2012-01-01

    The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784

  8. Structural Basis For Antigenic Peptide Precursor Processing by the Endoplasmic Reticulum Aminopeptidase ERAP1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Nguyen; S Chang; I Evnouchidou

    2011-12-31

    ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of longmore » rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.« less

  9. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    PubMed

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Expression of a cloned lipopolysaccharide antigen from Neisseria gonorrhoeae on the surface of Escherichia coli K-12.

    PubMed Central

    Palermo, D A; Evans, T M; Clark, V L

    1987-01-01

    A gonococcal gene bank maintained in Escherichia coli K-12 was screened by colony immunoblotting, and a transformant expressing a surface antigen reactive to anti-gonococcal outer membrane antiserum was isolated. The isolate carried a recombinant plasmid, pTME6, consisting of approximately 9 kilobases of Neisseria gonorrhoeae DNA inserted into the BamHI site of pBR322. Surface labeling of E. coli HB101(pTME6) confirmed that the antigen was expressed on the E. coli cell surface. The antigenic material was resistant to proteinase K digestion and sensitive to periodate oxidation, indicating that the material was carbohydrate. Purified lipopolysaccharide (LPS) from HB101(pTME6) produced a unique band on silver-stained polyacrylamide gels that contained immunoreactive material as seen on Western blots of LPS samples. Only two of three E. coli LPS mutant strains carrying pTME6 reacted with the antigonococcal antiserum, suggesting that a certain E. coli core structure is necessary for antigen expression. We conclude that pTME6 contains one or more gonococcal genes encoding an LPS core biosynthetic enzyme(s) which can modify E. coli core LPS to produce a gonococcuslike epitope(s). Images PMID:3117695

  11. Radioimmunoassays of hidden viral antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neurath, A.R.; Strick, N.; Baker, L.

    1982-07-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis Bmore » virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.« less

  12. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  13. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix.

    PubMed

    Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol

    2010-11-01

    This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.

  14. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  15. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins

    PubMed Central

    Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.

    2015-01-01

    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365

  16. Antigenic Structure of Rabbit γ Globulin

    PubMed Central

    Dubiski, S.; Dubiska, Anna; Skalba, Danuta; Kelus, A.

    1961-01-01

    By iso-immunization, antisera to five rabbit γ globulin antigens were obtained. They are called A (former Da), B, C, D and E. Individual sera of 670 rabbits belonging to six separate populations were tested by precipitation methods. The distribution of the iso-antigens and their combinations into serum groups were studied. Each particular γ globulin iso-antigen was found to be of hereditary character; they seem to form three genetic systems: A, C and BDE, statistically independent. Various antisera from England, Poland and U.S.A were compared. PMID:13724581

  17. The Core Cysteines, (C909) of Islet Antigen-2 and (C945) of Islet Antigen-2β, Are Crucial to Autoantibody Binding in Type 1 Diabetes

    PubMed Central

    Elvers, Karen T.; Geoghegan, Ivey; Shoemark, Debbie K.; Lampasona, Vito; Bingley, Polly J.; Williams, Alistair J.K.

    2013-01-01

    Cysteines are thought integral to conformational epitopes of islet antigen-2 (IA-2) autoantibodies (IA-2A), possibly through disulfide bond formation. We therefore investigated which cysteines are critical to IA-2A binding in patients with newly diagnosed type 1 diabetes. All 10 cysteines in the intracellular domain of IA-2 were modified to serine by site-directed mutagenesis, and the effects of these changes on autoantibody binding in comparison with wild-type control were investigated by radiobinding assay. Mutation of the protein tyrosine phosphatase (PTP) core cysteine (C909) in IA-2 caused large reductions in autoantibody binding. In contrast, little or no reduction in binding was seen following substitution of the other cysteines. Modification of the core cysteine (C945) in IA-2β also greatly reduced autoantibody binding. Lysine substitution of glutamate-836 in IA-2 or glutamate-872 in IA-2β resulted in modest reductions in binding and identified a second epitope region. Binding to IA-2 PTP and IA-2β PTP was almost abolished by mutation of both the core cysteine and these glutamates. The core cysteine is key to the major PTP conformational epitope, but disulfide bonding contributes little to IA-2A epitope integrity. In most patients, at disease onset, >90% of antibodies binding to the PTP domain of IA-2 recognize just two epitope regions. PMID:22966073

  18. Structures for the ABO(H) Blood Group: Which Textbook Is Correct?

    NASA Astrophysics Data System (ADS)

    Risley, John M.

    2007-09-01

    Six textbooks and two Internet sites show different structures for the A, B, and O(H) antigens of the ABO(H) blood group. However, none of the structures identified as the A, B, and O(H) antigens are correct. The O(H) antigen is a disaccharide, on which the trisaccharide A and B antigens are synthesized. The structures shown in the textbooks and at the Internet sites contain the O(H), A, and B antigens attached at the nonreducing end of various heterosaccharide cores of glycoproteins and glycolipids that are not a part of the specific blood group. This article emphasizes the correct molecular structures because it is important to distinguish between those carbohydrates that make up the antigens and those that are not part of the antigenic structures.

  19. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts.

    PubMed

    Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J

    2000-03-01

    MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.

  20. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  1. Clinical relevance of total HCV core antigen testing for hepatitis C monitoring and for predicting patients' response to therapy.

    PubMed

    Maynard, M; Pradat, P; Berthillon, P; Picchio, G; Voirin, N; Martinot, M; Marcellin, P; Trepo, C

    2003-07-01

    To study the correlation between total Hepatitis C virus (HCV) Core antigen (Ag) and HCV-RNA, and to assess the proficiency of HCV Core Ag testing in monitoring and predicting virologic response during and after pegylated interferon (PEG-IFN) and ribavirin combination therapy. A total of 307 samples from treated and untreated patients were used to assess the correlation between the total HCV Core Ag test and quantitative HCV-RNA assays (Superquant, and Quantiplex branched DNA 2.0 assay). Twenty-four patients received combination therapy for 48 weeks. Blood samples were collected at day 0, and week 2, 4, 12, 24, 48 and 72 for virologic evaluation. A linear relation exists between total HCV Core Ag and HCV-RNA levels. At 3 months the positive predictive value (PPV) of response to therapy was 100% with either HCV Core Ag or HCV-RNA. For HCV Core Ag the negative predictive value (NPV) was 100% whereas for HCV-RNA the NPV was 80% (P > 0.05). At month 1, the PPV was 95% and 100% when determined by HCV Core Ag and HCV-RNA, respectively. The NPV value was 100% for HCV Core Ag and 33% for HCV-RNA (P = 0.005). HCV Core Ag quantification could be useful in clinical practice to predict a sustained virological response early during therapy (4 weeks), reaching an optimal performance at month 3. The determination of total HCV Core Ag levels in serum, constitutes an accurate and reliable alternative to HCV-RNA for monitoring and predicting treatment outcome in patients receiving PEG-IFN/Ribavirin combination therapy.

  2. Seropositivity for Anti-HCV Core Antigen is Independently Associated With Increased All-Cause, Cardiovascular, and Liver Disease-Related Mortality in Hemodialysis Patients

    PubMed Central

    Ohsawa, Masaki; Kato, Karen; Tanno, Kozo; Itai, Kazuyoshi; Fujishima, Yosuke; Okayama, Akira; Turin, Tanvir Chowdhury; Onoda, Toshiyuki; Suzuki, Kazuyuki; Nakamura, Motoyuki; Kawamura, Kazuko; Akiba, Takashi; Sakata, Kiyomi; Fujioka, Tomoaki

    2011-01-01

    Background It is not known whether chronic or past hepatitis C virus (HCV) infection contributes to the high mortality rate in hemodialysis patients. Methods This prospective study of 1077 adult hemodialysis patients without hepatitis B virus infection used Poisson regression analysis to estimate crude and sex- and age-adjusted rates (per 1000 patient-years) of all-cause, cardiovascular, infectious disease-related and liver disease-related mortality in patients negative for HCV antibody (group A), patients positive for HCV antibody and negative for anti-HCV core antigen (group B), and patients positive for anti-HCV core antigen (group C). The relative risks (RRs) for each cause of death in group B vs group C as compared with those in group A were also estimated by Poisson regression analysis after multivariate adjustment. Results A total of 407 patients died during the 5-year observation period. The sex- and age-adjusted mortality rate was 71.9 in group A, 80.4 in group B, and 156 in group C. The RRs (95% CI) for death in group B vs group C were 1.23 (0.72 to 2.12) vs 1.60 (1.13 to 2.28) for all-cause death, 0.75 (0.28 to 2.02) vs 1.64 (0.98 to 2.73) for cardiovascular death, 1.64 (0.65 to 4.15) vs 1.58 (0.81 to 3.07) for infectious disease-related death, and 15.3 (1.26 to 186) vs 28.8 (3.75 to 221) for liver disease-related death, respectively. Conclusions Anti-HCV core antigen seropositivity independently contributes to elevated risks of all-cause and cause-specific death. Chronic HCV infection, but not past HCV infection, is a risk for death among hemodialysis patients. PMID:22001541

  3. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires.

    PubMed

    DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George

    2016-05-10

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.

  4. Magneto-controlled bioelectronics for the antigen-antibody interaction based on magnetic-core/gold-shell nanoparticles functionalized biomimetic interface.

    PubMed

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin

    2008-02-01

    A new protein assay system for the antigen-antibody interaction was developed by immobilization of carcinoembryonic antibody (anti-CEA) onto magnetic-core/gold-shell nanoparticles-functionalized biomimetic interface on multiporous polythionine modified magnetic carbon paste electrodes (MCPE). Differential pulse voltammetric (DPV) technique was employed to investigate the antigen-antibody interaction in pH 6.8 acetate acid buffer solution after incubation with various CEA samples for 50 min at room temperature. The peak currents decreased with increased CEA concentration, and were proportional to the CEA concentration in the range of 1.5-60 ng/ml with a detection limit of 0.3 ng/ml at a signal-to-noise ratio of 3. Moreover, the selectivity, reproducibility and stability of the proposed immunoassay system were acceptable. Compared with the conventional immunoassays, the developed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of carcinoma and its metastasis.

  5. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza

  6. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin.

    PubMed

    Xi, Jun; He, Mengxue

    2018-02-01

    In this study, the effect of high hydrostatic pressure (HHP) on antigenicity, free sulfhydryl group (SH) content, hydrophobicity (Ho), fluorescence intensity and circular dichroism data of soybean β-conglycinin was studied. The antigenicity of soybean β-conglycinin was decreased significantly at pressures 200-400 MPa. The antigenicity inhibition rate of β-conglycinin declined from 92.72 to 55.15%, after being treated at 400 MPa for 15 min. Results indicated that free sulphydryl (SH) groups and surface Ho of β-conglycinin were significantly increased at pressures 200-400 MPa and 5-15 min, whereas these properties decreased at the treatments above 400 MPa and 15 min. The maximum fluorescence intensity was noticed at 400 MPa and 15 min. The circular dichroism data analysis revealed that the amount of β-turns and unordered structure significantly increased, while the content of α-helix1 and β-strand1 noticeably decreased. These results provide evidence that HHP-induced the structural modification of β-conglycinin and could alter the antigenicity of β-conglycinin.

  7. Hepatitis B core-related antigen (HBcrAg) levels in the natural history of hepatitis B virus infection in a large European cohort predominantly infected with genotypes A and D.

    PubMed

    Maasoumy, B; Wiegand, S B; Jaroszewicz, J; Bremer, B; Lehmann, P; Deterding, K; Taranta, A; Manns, M P; Wedemeyer, H; Glebe, D; Cornberg, M

    2015-06-01

    Hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. HBcrAg combines the antigenic reactivity resulting from denatured hepatitis B e antigen (HBeAg), HBV core antigen and an artificial core-related protein (p22cr). In Asian patients, high levels of HBcrAg have been suggested to be an independent risk factor for hepatocellular carcinoma, while low levels could guide safe cessation of treatment with nucleos(t)ide analogues. We here studied HBcrAg levels in different phases of HBV infection in a large European cohort predominantly infected with genotypes A and D: HBeAg-positive immune tolerance (n = 30), HBeAg-positive immune clearance (IC) (n = 60), HBeAg-negative hepatitis (ENH) (n = 50), HBeAg-negative inactive/quiescent carrier phase (c) (n = 109) and acute hepatitis B (n = 8). Median HBcrAg levels were high in the immune tolerance and immune clearance phases (8.41 and 8.11 log U/mL, respectively), lower in ENH subjects (4.82 log U/mL) but only 2.00 log U/mL in ENQ subjects. Correlation between HBcrAg and HBV DNA varied among the different phases of HBV infection, while HBcrAg moderately correlated with hepatitis B surface antigen in all phases. ENQ patients had HBcrAg levels <3 log U/mL in 79%, in contrast to only 12% in the ENH group. HBcrAg levels vary significantly during the different phases of HBV infection. HBcrAg may serve as valuable marker for virus replication and reflect the transcriptional activity of intrahepatic cccDNA. In HBeAg-negative patients, HBcrAg may help to distinguish between inactive carriers (ENQ) and those with active disease (ENH). Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Antigenic characterization of small, round-structured viruses by immune electron microscopy.

    PubMed

    Okada, S; Sekine, S; Ando, T; Hayashi, Y; Murao, M; Yabuuchi, K; Miki, T; Ohashi, M

    1990-06-01

    Small, round-structured viruses (SRSVs) detected from nonbacterial gastroenteritis outbreaks in Tokyo and Saitama Prefecture, Japan, during the period from 1977 to 1988 were tentatively classified into nine antigenic patterns from SRSV-1 (S-1) to SRSV-9 (S-9) by cross-immune electron microscopy (IEM). S-1 and S-2 appeared pattern specific, while S-3 to S-9, distinguishable from each other in their reactivity, appeared somewhat antigenically related. Their antigenic relatedness to the Norwal, Hawaii, and Otofuke agents was also examined by IEM by using antisera to these agents. S-3 appeared most closely related to the Norwalk agent. S-4 and S-5 were related to the Norwalk agent and, presumably, were distantly related to the Hawaii and Otofuke agents. S-6 and S-7 were related to the Hawaii and Otofuke agents. S-8 and S-9 were related to the Otofuke agent and, presumably, were distantly related to the Hawaii agent. The prevalence of each antigenic pattern in 38 outbreaks was examined: S-8 was implicated in 24% of the outbreaks S-5 in 16%, S-4 in 13%, S-9 in 13%, S-6 in 11%, and others in 5%.

  9. X-ray absorption fine structure of artificial antigens for cadmium

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Liu, Aiping; Chen, Fusheng; Wang, Xiaohong

    2011-11-01

    Immunoassay technology as a quick and large-scale screening method to detect metal ions in foods and environmental samples has rapidly been developed due to several advantages over conventional instrument-intensive methods. Unlike biomacromolecule, metal ions are haptens without immunogenicity, so successful preparation of artificial antigens is the first critical step for establishing immunoassay methods for them. In the current paper, cadmium ions were conjugated to BSA and OVA, respectively, using bifunctional chelator, p-SCN-Bn-DTPA. The ultraviolet analysis indicated that the maximum absorption peak of Cd-p-SCN-DTPA-BSA and Cd-p-SCN-DTPA-OVA had a small peak shift and an apparent absorbance increase compared to that of BSA and OVA, and the extents of substitution of ɛ-amino in both conjugates were 51.2% and 58.6%, respectively. In addition, the EXAFS of conjugates implied that Cd 2+ coordinated with N and O atoms of DTPA in artificial antigens, the coordination type and number of Cd-DTPA, Cd-p-SCN-Bn-DTPA-BSA, Cd-p-SCN-Bn-DTPA-OVA were the same. XANES region and geometries of the three compounds were also same. These results implied that the three antigens had the similar local structure and atomic geometry. This was the first time that the XAFS was attempted for the identification of artificial heavy metal ion antigens.

  10. Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins.

    PubMed Central

    García-Barreno, B; Palomo, C; Peñas, C; Delgado, T; Perez-Breña, P; Melero, J A

    1989-01-01

    Monoclonal antibodies directed against the glycoproteins of human respiratory syncytial virus were used in competitive enzyme-linked immunosorbent assays for topological mapping of epitopes. Whereas epitopes of the F glycoprotein could be ascribed to five nonoverlapping antigenic sites, anti-G antibodies recognized unique epitopes, many of whose competition profiles overlapped extensively. Variant viruses selected with a neutralizing (47F) anti-F antibody lost the binding for only 47F and 49F antibodies, which mapped in the same antigenic area. In contrast, viruses selected with an anti-G antibody lost the capacity to bind most of the anti-G antibodies, and their G protein was not recognized by an anti-virus antiserum, indicating major changes in the antigenic structure of the G molecule. Finally, we found great antigenic variation of the G protein among viral isolates. This occurred even within viruses of the same subtype with only limited divergence of amino acid sequence between strains. All of these data indicate marked differences in the antigenic organization of the G and F glycoproteins of respiratory syncytial virus; we discuss these differences in terms of the chemical structure of the glycoproteins. Images PMID:2463385

  11. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion.

    PubMed

    Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind

    2017-06-13

    Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.

  12. Japanese Reference Panel of Blood Specimens for Evaluation of Hepatitis C Virus RNA and Core Antigen Quantitative Assays

    PubMed Central

    Murayama, Asako; Sugiyama, Nao; Watashi, Koichi; Masaki, Takahiro; Suzuki, Ryosuke; Aizaki, Hideki; Mizuochi, Toshiaki; Wakita, Takaji

    2012-01-01

    An accurate and reliable quantitative assay for hepatitis C virus (HCV) is essential for measuring viral propagation and the efficacy of antiviral therapy. There is a growing need for domestic reference panels for evaluation of clinical assay kits because the performance of these kits may vary with region-specific genotypes or polymorphisms. In this study, we established a reference panel by selecting 80 donated blood specimens in Japan that tested positive for HCV. Using this panel, we quantified HCV viral loads using two HCV RNA kits and five core antigen (Ag) kits currently available in Japan. The data from the two HCV RNA assay kits showed excellent correlation. All RNA titers were distributed evenly across a range from 3 to 7 log IU/ml. Although the data from the five core Ag kits also correlated with RNA titers, the sensitivities of individual kits were not sufficient to quantify viral load in all samples. As calculated by the correlation with RNA titers, the theoretical lower limits of detection by these core Ag assays were higher than those for the detection of RNA. Moreover, in several samples in our panel, core Ag levels were underestimated compared to RNA titers. Sequence analysis in the HCV core region suggested that polymorphisms at amino acids 47 to 49 of the core Ag were responsible for this underestimation. The panel established in this study will be useful for estimating the quality of currently available and upcoming HCV assay kits; such quality control is essential for clinical usage of these kits. PMID:22495557

  13. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  14. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    PubMed

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  15. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dislocation core structures of tungsten with dilute solute hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei

    2017-12-01

    In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.

  17. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis.

    PubMed

    Long, Lin; Liu, Jianbo; Lu, Kaishun; Zhang, Tao; Xie, Yunqing; Ji, Yinglu; Wu, Xiaochun

    2018-05-02

    As a promising candidate for artificial enzymes, catalytically active nanomaterials show several advantages over natural enzymes, such as controlled synthesis at low cost, tunability of catalytic activities, and high stability under stringent conditions. Rod-shaped Au-Pt core/shell nanoparticles (Au@Pt NRs), prepared by Au nanorod-mediated growth, exhibit peroxidase-like activities and could serve as an inexpensive replacement for horseradish peroxidase, with potential applications in various bio-detections. The determination of measles virus is accomplished by a capture-enzyme-linked immunosorbent assay (ELISA) using Au@Pt NR-antigen conjugates. Based on the enhanced catalytic properties of this nanozyme probe, a linear response was observed up to 10 ng/mL measles IgM antibodies in human serum, which is 1000 times more sensitive than commercial ELISA. Hence, these findings provide positive proof of concept for the potential of Au@Pt NR-antigen conjugates in the development of colorimetric biosensors that are simple, robust, and cost-effective.

  18. Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity.

    PubMed

    Ren, Jingshan; Wang, Xiangxi; Zhu, Ling; Hu, Zhongyu; Gao, Qiang; Yang, Pan; Li, Xuemei; Wang, Junzhi; Shen, Xinliang; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2015-10-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the primary causes of the epidemics of hand-foot-and-mouth disease (HFMD) that affect more than a million children in China each year and lead to hundreds of deaths. Although there has been progress with vaccines for EV71, the development of a CVA16 vaccine has proved more challenging, and the EV71 vaccine does not give useful cross-protection, despite the capsid proteins of the two viruses sharing about 80% sequence identity. The structural details of the expanded forms of the capsids, which possess nonnative antigenicity, are now well understood, but high resolution information for the native antigenic form of CVA16 has been missing. Here, we remedy this with high resolution X-ray structures of both mature and natural empty CVA16 particles and also of empty recombinant viruslike particles of CVA16 produced in insect cells, a potential vaccine antigen. All three structures are unexpanded native particles and antigenically identical. The recombinant particles have recruited a lipid moiety to stabilize the native antigenic state that is different from the one used in a natural virus infection. As expected, the mature CVA16 virus is similar to EV71; however, structural and immunogenic comparisons highlight differences that may have implications for vaccine production. Hand-foot-and-mouth disease is a serious public health threat to children in Asian-Pacific countries, resulting in millions of cases. EV71 and CVA16 are the two dominant causative agents of the disease that, while usually mild, can cause severe neurological complications, leading to hundreds of deaths. EV71 vaccines do not provide protection against CVA16. A CVA16 vaccine or bivalent EV71/CVA16 vaccine is therefore urgently needed. We report atomic structures for the mature CVA16 virus, a natural empty particle, and a recombinant CVA16 virus-like particle that does not contain the viral genome. All three particles have similar structures and

  19. Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection

    PubMed Central

    Farnell, Edward J.; Tyagi, Nidhi; Ryan, Stephanie; Chalmers, Iain W.; Pinot de Moira, Angela; Jones, Frances M.; Wawrzyniak, Jakub; Fitzsimmons, Colin M.; Tukahebwa, Edridah M.; Furnham, Nicholas; Maizels, Rick M.; Dunne, David W.

    2015-01-01

    The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our

  20. Modified ferrite core-shell nanoparticles magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  1. A scalable method for O-antigen purification applied to various Salmonella serovars

    PubMed Central

    Micoli, F.; Rondini, S.; Gavini, M.; Pisoni, I.; Lanzilao, L.; Colucci, A.M.; Giannelli, C.; Pippi, F.; Sollai, L.; Pinto, V.; Berti, F.; MacLennan, C.A.; Martin, L.B.; Saul, A.

    2014-01-01

    The surface lipopolysaccharide of gram-negative bacteria is both a virulence factor and a B cell antigen. Antibodies against O-antigen of lipopolysaccharide may confer protection against infection, and O-antigen conjugates have been designed against multiple pathogens. Here, we describe a simplified methodology for extraction and purification of the O-antigen core portion of Salmonella lipopolysaccharide, suitable for large-scale production. Lipopolysaccharide extraction and delipidation are performed by acetic acid hydrolysis of whole bacterial culture and can take place directly in a bioreactor, without previous isolation and inactivation of bacteria. Further O-antigen core purification consists of rapid filtration and precipitation steps, without using enzymes or hazardous chemicals. The process was successfully applied to various Salmonella enterica serovars (Paratyphi A, Typhimurium, and Enteritidis), obtaining good yields of high-quality material, suitable for conjugate vaccine preparations. PMID:23142430

  2. ZnSe based semiconductor core-shell structures: From preparation to application

    NASA Astrophysics Data System (ADS)

    Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan

    2018-07-01

    Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.

  3. Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design

    PubMed Central

    Tseng, Andrew; Suguiura, Igor Massahiro de Souza; McDonough, Sean P; Sritrakul, Tepyuda; Li, Ting; Lin, Yi-Pin; Gillilan, Richard E

    2017-01-01

    Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen’s structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines. PMID:29210669

  4. Chamber-core structures for fairing acoustic mitigation

    NASA Astrophysics Data System (ADS)

    Ardelean, Emil; Williams, Andrew; Korshin, Nicholas; Henderson, Kyle; Lane, Steven; Richard, Robert

    2005-05-01

    Extreme noise and vibration levels at lift-off and during ascent can damage sensitive payload components. Recently, the Air Force Research Laboratory, Space Vehicles Directorate has investigated a composite structure fabrication approach, called chamber-core, for building payload fairings. Chamber-core offers a strong, lightweight structure with inherent noise attenuation characteristics. It uses one-inch square axial tubes that are sandwiched between inner and outer face-sheets to form a cylindrical fairing structure. These hollow tubes can be used as acoustic dampers to attenuate the amplitude response of low frequency acoustic resonances within the fairing"s volume. A cylindrical, graphite-epoxy chamber-core structure was built to study noise transmission characteristics and to quantify the achievable performance improvement. The cylinder was tested in a semi-reverberant acoustics laboratory using bandlimited random noise at sound pressure levels up to 110 dB. The performance was measured using external and internal microphones. The noise reduction was computed as the ratio of the spatially averaged external response to the spatially averaged interior response. The noise reduction provided by the chamber-core cylinder was measured over three bandwidths, 20 Hz to 500 Hz, 20 Hz to 2000 Hz, and 20 Hz to 5000 Hz. For the bare cylinder with no acoustic resonators, the structure provided approximately 13 dB of attenuation over the 20 Hz to 500 Hz bandwidth. With the axial tubes acting as acoustic resonators at various frequencies over the bandwidth, the noise reduction provided by the cylinder increased to 18.2 dB, an overall increase of 4.8 dB over the bandwidth. Narrow-band reductions greater than 10 dB were observed at specific low frequency acoustic resonances. This was accomplished with virtually no added mass to the composite cylinder.

  5. Metabolism of gonadotropins: comparisons of the primary structures of the human pituitary and urinary LH beta cores and the chimpanzee CG beta core demonstrate universality of core production.

    PubMed

    Birken, S; Gawinowicz, M A; Maydelman, Y; Milgrom, Y

    2001-10-01

    The gonadotropins are a family of closely related heterodimeric glycoprotein hormones homologous in structure to disulfide-knot growth factors. Metabolic proteolytic processing in vivo of this disulfide cross-linked region results in urinary excretion of a residual highly stable core structure. The primary structure of the pituitary form of the hLH beta core was reported earlier, but it has proved difficult to isolate the urinary core, although antibodies to the pituitary core demonstrated its presence. By conventional and immunoaffinity methods, the urinary core has been isolated and its structure determined by both chemical and mass spectrometric methods. The urinary hLH beta core is the same as the pituitary-extracted hLH beta core, beta 6-40 disulfide bridged to beta 55-93, except that the pituitary core is more heterogeneous containing also beta 49-93. These findings imply a dual origin of urinary cores, both directly from a secreting tissue and by kidney processing of circulating hormone. We also found that pregnant chimpanzees excrete a CG beta core with a primary structure identical to that of the human CG beta core of pregnancy. In conclusion, gonadotropin core generation and urinary excretion of nearly identical gonadotropin metabolites is common among primates. Although possible biological functions of these core fragments remain unproven, they have diagnostic utility because of their stability and abundance.

  6. Distinct galactofuranose antigens in the cell wall and culture supernatants as a means to differentiate Fusarium from Aspergillus species.

    PubMed

    Wiedemann, Annegret; Kakoschke, Tamara Katharina; Speth, Cornelia; Rambach, Günter; Ensinger, Christian; Jensen, Henrik Elvang; Ebel, Frank

    2016-09-01

    Detection of carbohydrate antigens is an important means for diagnosis of invasive fungal infections. For diagnosis of systemic Aspergillus infections, galactomannan is commonly used, the core antigenic structure of which consists of chains of several galactofuranose moieties. In this study, we provide evidence that Fusarium produces at least two distinct galactofuranose antigens: Smaller amounts of galactomannan and larger quantities of a novel antigen recognized by the monoclonal antibody AB135-8. In A. fumigatus, only minor amounts of the AB135-8 antigen are found in supernatants and in the apical regions of hyphae. A galactofuranose-deficient A. fumigatus mutant lacks the AB135-8 antigen, which strongly suggests that galactofuranose is an essential constituent of this antigen. Using a combination of AB135-8 and a galactomannan-specific antibody, we were able to unambiguously differentiate A. fumigatus and Fusarium hyphae in immunohistology. Moreover, since Fusarium releases the AB135-8 antigen, it appears to be a promising target antigen for a serological detection of Fusarium infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Structures of the glycopeptidolipid antigens of two animal pathogens: Mycobacterium senegalense and Mycobacterium porcinum.

    PubMed

    López Marín, L M; Lanéelle, M A; Promé, D; Daffé, M

    1993-08-01

    The structures of the major glycolipid antigens of two animal pathogens Mycobacterium senegalense and Mycobacterium porcinum were elucidated by a combination of fast-atom bombardment mass spectrometry, nuclear magnetic resonance spectroscopy, chemical analyses and radiolabeling experiments. Five glycoconjugates belonging to the class of C-mycoside glycopeptidolipids were characterized in each species. They shared with those recently described in M. peregrinum the same unusual distribution of the disaccharides on the alaninol end of the molecules. Both species showed the presence of the novel sulfated glycopeptidolipid. In addition, some acetylated forms of the glycolipids were also present in the species examined. Identical seroreactivities were observed between the glycolipid antigens extracted from M. senegalense, M. porcinum and M. peregrinum and an antiserum raised against the whole lipid antigens of M. peregrinum. These data reinforce the close taxonomic relationships between the three mycobacterial species and demonstrate the antigenicity of the new variants of mycobacterial glycopeptidolipids.

  8. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires

    PubMed Central

    DeKosky, Brandon J.; Lungu, Oana I.; Park, Daechan; Johnson, Erik L.; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D.; Ippolito, Gregory C.; Gray, Jeffrey J.; Georgiou, George

    2016-01-01

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19+CD20+CD27− IgM-naive B cells, >120,000 antibody clusters from CD19+CD20+CD27+ antigen–experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ–Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511

  9. Diagnostic methods for African horsesickness virus using monoclonal antibodies to structural and non-structural proteins.

    PubMed

    Ranz, A I; Miguet, J G; Anaya, C; Venteo, A; Cortés, E; Vela, C; Sanz, A

    1992-11-01

    A panel of 32 hybridoma cell lines secreting monoclonal antibodies (MAbs) reactive with African horsesickness virus serotype 4 (AHSV-4) has been developed. Four of the MAbs recognized the major core antigen VP7, twenty recognized the outer capsid protein VP2 and eight reacted with the non-structural protein NS1. With the VP7-specific MAbs a rapid and sensitive double antibody sandwich immunoassay has been developed to detect viral antigen in infected Vero cells and in spleen tissue from AHSV-infected horses. The sensitivity of the assay is 10 ng viral antigen per 100 microliters. The NS1-specific MAbs allowed visualization by immunofluorescence of tubule-like structures in the cytoplasm of infected Vero cells. This can be very useful as a confirmatory diagnostic procedure. The antigenic map of the outer capsid VP2 protein with MAbs is also reported.

  10. [Improvement of sensitivity in the second generation HCV core antigen assay by a novel concentration method using polyethylene glycol (PEG)].

    PubMed

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Syundou, Hiromi; Saito, Hidetsugu

    2007-11-01

    A HCV core antigen (Ag) detection assay system, Lumipulse Ortho HCV Ag has been developed and is commercially available in Japan with a lower detection level limit of 50 fmol/l, which is equivalent to 20 KIU/ml in PCR quantitative assay. HCV core Ag assay has an advantage of broader dynamic range compared with PCR assay, however the sensitivity is lower than PCR. We developed a novel HCV core Ag concentration method using polyethylene glycol (PEG), which can improve the sensitivity five times better than the original assay. The reproducibility was examined by consecutive five-time measurement of HCV patients serum, in which the results of HCV core Ag original and concentrated method were 56.8 +/- 8.1 fmol/l (mean +/- SD), CV 14.2% and 322.9 +/- 45.5 fmol/l CV 14.0%, respectively. The assay results of HCV negative samples in original HCV core Ag were all 0.1 fmol/l and the results were same even in the concentration method. The results of concentration method were 5.7 times higher than original assay, which was almost equal to theoretical rate as expected. The assay results of serially diluted samples were also as same as expected data in both original and concentration assay. We confirmed that the sensitivity of HCV core Ag concentration method had almost as same sensitivity as PCR high range assay in the competitive assay study using the serially monitored samples of five HCV patients during interferon therapy. A novel concentration method using PEG in HCV core Ag assay system seems to be useful for assessing and monitoring interferon treatment for HCV.

  11. Hepatitis B virus DNA-positive, hepatitis B surface antigen-negative blood donations intercepted by anti-hepatitis B core antigen testing: the Canadian Blood Services experience.

    PubMed

    O'Brien, Sheila F; Fearon, Margaret A; Yi, Qi-Long; Fan, Wenli; Scalia, Vito; Muntz, Irene R; Vamvakas, Eleftherios C

    2007-10-01

    The benefit of introducing anti-hepatitis B core antigen (HBc) screening for intercepting potentially infectious donations missed by hepatitis B surface antigen (HBsAg) screening in Canada was studied. Anti-HBc testing of all donations was implemented in April 2005, along with antibody to hepatitis B surface antigen (anti-HBs) and hepatitis B virus (HBV) DNA supplemental testing of anti-HBc repeat-reactive, HBsAg-negative donations. The proportion of potentially infectious donations intercepted by anti-HBc over the initial 18 months of testing was calculated based on three assumptions relating infectivity of HBV DNA-positive units to anti-HBs levels. Lookback was conducted for all DNA-positive donations. Of 493,344 donors, 5,585 (1.13%) were repeat-reactive for the presence of anti-HBc, with 29 (0.52%) being HBV DNA-positive and HBsAg-negative. The proportion of potentially infectious donations intercepted by anti-HBc screening was 1 in 17,800 if all HBV DNA-positive donations were infectious, 1 in 26,900 if infectivity was limited to donations with an anti-HBs level of not more than 100 mIU per mL, and 1 in 69,300 if only donations with undetectable anti-HBs were infectious. For 279 components in the lookback study, no traced recipients were HBsAg-positive and 7 recipients were anti-HBc-reactive in association with 4 donors, 3 of whom had an anti-HBs level of more than 100 mIU per mL and 1 of whom had a level of 61 mIU per mL. Implementation of anti-HBc screening reduced the risk of transfusing potentially infectious units by at least as much as had been expected based on the literature. The lookback did not provide proof of transfusion transmission of HBV from HBV DNA-positive, anti-HBc-reactive, HBsAg-negative donors but it did not establish lack of transmission either.

  12. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation

    PubMed Central

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237

  13. Use of existing data for public health planning: a study of the prevalence of hepatitis B surface antigen and core antibody in Al Ain Medical District, United Arab Emirates.

    PubMed Central

    al-Owais, A.; al-Suwaidi, K.; Amiri, N.; Carter, A. O.; Hossain, M. M.; Sheek-Hussein, M. M.

    2000-01-01

    INTRODUCTION: Hepatitis B is of major public health importance. Accurate information on its occurrence, with particular reference to the prevalence of immunity and chronic infection (marked by the presence of hepatitis B core antibody and surface antigen, respectively, in serum), is essential for planning public health programmes for the control of the disease. The generation of marker prevalence data through serological surveys is costly and time-consuming. The present study in Al Ain Medical District, United Arab Emirates, investigated the possibility of obtaining sufficiently accurate marker prevalence estimates from existing data to plan public health programmes. METHODS: Two antenatal screening databases, one student serological survey database, one immunization programme database and one pre-marriage screening database containing information on marker prevalence were identified. Epidemiological data were abstracted from these databases and analysed. RESULTS: The data showed that the prevalence of hepatitis B surface antigen and the prevalence of core antibody in young citizens in 1998 were approximately 2% and 14% respectively, that any immunization campaign aimed at citizens of the United Arab Emirates should target teenagers as they had the highest risk of acquiring the disease, and that pre-immunization screening of young adults would be wasteful. However, the data did not yield information on the prevalence of hepatitis B surface antigen and core antibody in other population subgroups of public health significance. DISCUSSION: While data generated by the study are sufficient to support a hepatitis B immunization programme targeted at teenaged citizens, more accurate data, generated by a well-designed serological survey, would be essential for optimal public health planning. PMID:11143192

  14. Core-shell-structured nanothermites synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Qin, Lijun; Gong, Ting; Hao, Haixia; Wang, Keyong; Feng, Hao

    2013-12-01

    Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core-shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core-shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core-shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core-shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

  15. Structure of the transporter associated with antigen processing trapped by herpes simplex virus

    PubMed Central

    Oldham, Michael L; Grigorieff, Nikolaus; Chen, Jue

    2016-01-01

    The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI: http://dx.doi.org/10.7554/eLife.21829.001 PMID:27935481

  16. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    PubMed

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  17. Structural elucidation of the Brucella melitensis M antigen by high-resolution NMR at 500 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundle, D.R.; Cherwonogrodzky, J.W.; Perry, M.B.

    The Brucella M antigen from the species type strain Brucella melitensis 16M has been identified as a component of the cell wall lipopolysaccharide (LPS). O polysaccharide liberated from this LPS by mild acid hydrolysis exhibited M activity in serological tests and was shown to be a homopolymer of 4-formamido-4,6-dideoxy-..cap alpha..-D-mannopyranosyl residues arranged in an oligosaccharide repeating unit as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the native lipopolysaccharide. Structural analysis of the O polysaccharide by NMR methods was difficult due to apparent microheterogeneity of the repeating unit, which was in fact caused by the presence of rotational isomers ofmore » the N-formyl moiety. This problem was resolved by chemical modification of the polysaccharide to its amino and N-acetyl derivatives, the 500-MHz /sup 1/H and 125-MHz /sup 13/C NMR spectra of which could be analyzed in terms of a unique structure through application of pH-dependent ..beta..-shifts and two-dimensional techniques that included COSY, relayed COSY, and NOESY experiments together with heteronuclear C/H shift correlation spectroscopy. On the basis of these experiments and supported by methylation and periodate oxidation data, the structure of the M polysaccharide was determined as a linear polymer of unbranched pentasaccharide repeating units consisting of four 1,2-linked and one 1,3-lined 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl residues. The marked structural similarity of the M antigen and the A antigen, which is known to be a 1,2-linked homopolysaccharide of 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl units, accounts for cross-serological reactions of the two and the long-standing confusion surrounding the nature of their antigenic determinants.« less

  18. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  19. Structural elucidation of the O-antigen of the Shigella flexneri provisional serotype 88-893: structural and serological similarities with S. flexneri provisional serotype Y394 (1c).

    PubMed

    Foster, R A; Carlin, N I A; Majcher, M; Tabor, H; Ng, L-K; Widmalm, G

    2011-05-01

    The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. (1)H and (13)C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap2Ac-(1→3)[α-D-Glcp-(1→2)-α-D-Glcp-(1→4)]-β-D-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol).

    PubMed

    Murad, K L; Mahany, K L; Brugnara, C; Kuypers, F A; Eaton, J W; Scott, M D

    1999-03-15

    We previously showed that the covalent modification of the red blood cell (RBC) surface with methoxypoly(ethylene glycol) [mPEG; MW approximately 5 kD] could significantly attenuate the immunologic recognition of surface antigens. However, to make these antigenically silent RBC a clinically viable option, the mPEG-modified RBC must maintain normal cellular structure and functions. To this end, mPEG-derivatization was found to have no significant detrimental effects on RBC structure or function at concentrations that effectively blocked antigenic recognition of a variety of RBC antigens. Importantly, RBC lysis, morphology, and hemoglobin oxidation state were unaffected by mPEG-modification. Furthermore, as shown by functional studies of Band 3, a major site of modification, PEG-binding does not affect protein function, as evidenced by normal SO4- flux. Similarly, Na+ and K+ homeostasis were unaffected. The functional aspects of the mPEG-modified RBC were also maintained, as evidenced by normal oxygen binding and cellular deformability. Perhaps most importantly, mPEG-derivatized mouse RBC showed normal in vivo survival ( approximately 50 days) with no sensitization after repeated transfusions. These data further support the hypothesis that the covalent attachment of nonimmunogenic materials (eg, mPEG) to intact RBC may have significant application in transfusion medicine, especially for the chronically transfused and/or allosensitized patient.

  1. A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Lu; Velikovsky, C. Alejandro; Xu, Gang

    Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called 'variable lymphocyte receptors' (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like {gamma}{delta} T-cell receptors (TCRs) but unlike {alpha}{beta} TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus,more » these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and {gamma}{delta} TCRs, and the exclusive expression on the lymphocyte surface that is unique to {alpha}{beta} and {gamma}{delta} TCRs.« less

  2. Precore and core promoter mutations of hepatitis B virus and hepatitis B e antigen-negative chronic hepatitis B in Korea.

    PubMed

    Yoo, Byung Chul; Park, Joong-Won; Kim, Hyung Joon; Lee, Dong Ho; Cha, Young Ju; Park, Sill Moo

    2003-01-01

    The aims of this study were to determine the frequency of precore/core promoter mutations and hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (e-CHB) in Korea. Patients with chronic hepatitis B virus (HBV) infection were tested for HBeAg, anti-HBe, liver profile and HBV-DNA by a branched DNA (bDNA) assay. Serum HBV-DNA was amplified by a polymerase chain reaction and the precore/core promoter sequence was determined. Among the 413 consecutive HBeAg-negative patients, 19.6% were bDNA-positive. Evidence of liver disease was found in 90.1% of bDNA-positive and 41.7% of bDNA-negative patients. Overall, 17.7% of HBeAg-negative patients had e-CHB. Precore mutation (A1896) was detected in 93.7% of HBeAg-negative bDNA-positive and 93.9% of HBeAg-negative bDNA-negative patients. In 59 HBeAg-positive patients, 78% had wild-type and 22% had a mixture of wild-type and A1896 mutant. Core promoter TA mutation was detected in 89.9% of HBeAg-negative bDNA-positive patients, 89.8% of HBeAg-negative bDNA-negative patients, and 74.6% of HBeAg-positive patients. No correlation was found between the presence of precore/core promoter mutations and HBV-DNA levels or disease severity. In Korean patients infected with HBV genotype C, precore mutation occurred almost invariably along with HBeAg seroconversion and core promoter TA mutation was frequent irrespective of viral replication levels or disease severity.

  3. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  4. Structure of screw dislocation core in Ta at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaofeng, E-mail: sfwang@cqu.edu.cn; Jiang, Na; Wang, Rui

    2014-03-07

    The core structure and Peierls stress of the 1/2 〈111〉(110) screw dislocation in Ta have been investigated theoretically using the modified Peierls–Nabarro theory that takes into account the discreteness effect of crystal. The lattice constants, the elastic properties, and the generalized-stacking-fault energy(γ-surface) under the different pressures have been calculated from the electron density functional theory. The core structure of dislocation is determined by the modified Peierls equation, and the Peierls stress is evaluated from the dislocation energy that varies periodically as dislocation moves. The results show the core width and Peierls stress in Ta are weakly dependent of the pressuremore » up to 100 GPa when the length and stress are measured separately by the Burgers vector b and shear modulus μ. This indicates that core structure is approximately scaling invariant for the screw dislocation in Ta. The scaled plasticity of Ta changes little in high pressure environment.« less

  5. STUDIES ON THE ANTIGENIC STRUCTURE OF SOME MAMMALIAN SPERMATOZOA

    PubMed Central

    Henle, Werner; Henle, Gertrude; Chambers, Leslie A.

    1938-01-01

    1. A method has been described for separation of heads and tails of mammalian spermatozoa. 2. By means of absorption technique applied to homologous spermatozoal sera, head-specific and tail-specific antigens could be demonstrated. Both are heat-labile. 3. A heat-stable antigen was found to be common to both heads and tails. This substance is species-specific. 4. Antibodies against the head- and tail-specific antigens led to two different types of agglutination as shown by the slide method. 5. Using heterologous antisera against spermatozoa three different cross-reacting antigens could be observed, two in the heads, one in the tails. 6. One of the head-antigens is not active in the native cell; it comes to action only after breaking the cell. Antibodies against this substance were not found in antisera against native bull spermatozoa but were formed when vibrated spermatozoa or heads were injected into rabbits. 7. The cross-reactions can be removed from an antiserum leaving the head- as well as the tail-specific reaction intact. PMID:19870792

  6. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    PubMed

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  7. Descriptions and preliminary interpretations of cores recovered from the Manson Impact Structure (Iowa)

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Witzke, B. J.; Hartung, J. B.; Shoemaker, E. M.; Roddy, D. J.

    1993-01-01

    A core drilling program initiated by the Iowa Geological Survey Bureau and U.S. Geological Survey in 1991 and 1992 collected 12 cores totalling over 1200 m from the Manson Impact Structure, a probable K-T boundary structure located in north-central Iowa. Cores were recovered from each of the major structural terranes, with 2 cores (M-3 and M-4) from the Terrace Terrane, 4 cores (M-2, M-2A, M-6, and M-9) from the Crater Moat, and 6 cores (M-1, M-5, M-7, M-8, M-10, and M-11) from the Central Peak. These supplemented 2 central peak cores (1-A and 2-A) drilled in 1953. The cores penetrated five major impact lithologies: (1) sedimentary clast breccia; (2) impact ejecta; (3) central peak crystallite rocks; (4) crystalline clast breccia with sandy matrix; and (5) crystallite clast breccia with a melt matrix. Descriptions and preliminary interpretations of these cores are presented.

  8. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  9. Isolation and characterization of ovarian cancer antigen CA 125 using a new monoclonal antibody (VK-8): identification as a mucin-type molecule.

    PubMed

    Lloyd, K O; Yin, B W; Kudryashov, V

    1997-05-29

    A new murine monoclonal antibody (MAb VK-8), detecting the CA 125 ovarian cancer antigen, was used to purify this antigen from OVCAR-3 ovarian cancer cells by affinity chromatography. The biochemical properties of the purified antigen are characteristic of a mucin-type glycoprotein: (1) the molecule is highly glycosylated (77% w/w), mainly with galactose, N-acetylglucosamine, and N-acetylgalactosamine, (2) the protein moiety is rich in serine, threonine and proline, (3) many of the serine and threonine residues are glycosylated, (4) the glycan chains are almost entirely O-linked, with core 2 [Galbeta1 --> 3(GlcNAcbeta1 --> 6)GalNAc] structures predominating and (5) these chains carry fucosylated Type 2 (Le(y) and Le(x) and H type 2) blood group structures. The antigen exhibited a very high m.w. (> 10(3) kDa) in aqueous buffer as well as in urea, but was degraded by proteolytic enzymes to smaller fragments that no longer reacted with the antibody. Although this result, and other immunochemical data, indicate that OC125, the original MAb to CA125, and VK-8 antibodies detect epitopes on the protein portion of the molecule, the involvement of carbohydrate cannot be ruled out. Further insight into the structure and function of the CA125 antigen will come from cloning the gene coding for the peptide backbone, and from more detailed carbohydrate structural analysis.

  10. Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation.

    PubMed

    Longet, Stephanie; Aversa, Vincenzo; O'Donnell, Daire; Tobias, Joshua; Rosa, Monica; Holmgren, Jan; Coulter, Ivan S; Lavelle, Ed C

    2017-12-20

    Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill ® (SmPill ® ) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill ® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill ® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill ® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry ® White film coating layer between the core of SmPill ® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill ® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mapping Antigenic Motifs in the Trypomastigote Small Surface Antigen from Trypanosoma cruzi

    PubMed Central

    Balouz, Virginia; Cámara, María de los Milagros; Cánepa, Gaspar E.; Carmona, Santiago J.; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán

    2015-01-01

    The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. PMID:25589551

  12. Regions of recognition by blocking antibodies on the light chain of botulinum neurotoxin A: antigenic structure of the entire toxin.

    PubMed

    Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger; Atassi, M Zouhair

    2011-06-01

    The continuous regions on botulinum neurotoxin A (BoNT/A) light (L) chain recognized by anti-toxin antibodies (Abs) from mouse, horse and chicken have been mapped. We synthesized a panel of thirty-two 19-residue peptides that overlapped consecutively by 5 residues and encompassed the entire L chain (residues 1-453). Mouse Abs recognized 5 major antigenic regions on the L chain, horse Abs recognized 9 while chicken Abs recognized 8 major antigenic regions. Overall, however, the three host species recognized, to some extent, similar, but not identical, peptides and the levels of Abs directed against a given region varied with the immunized host. Differences in the MHC of the host caused variation in levels of Ab recognition and some epitopes showed right or left frame-shifts among the species. Selected region(s) were also uniquely recognized by one species (e.g., peptide L1 by horse Abs). Mapping of the L chain antigenic regions and the previous localization of the regions on the H chain with the same antisera, has permitted description of the complete antigenic structure of BoNT/A. The locations in the 3-dimensional structure of the antigenic regions of the entire toxin are shown for mouse Abs. In the 3-D structure, the antigenic regions are on the surface of the toxin and when antibodies are bound the enzymatic activity of the light chain is obstructed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  14. DNA nanoparticles with core-shell morphology.

    PubMed

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  15. Magnetization processes in core/shell exchange-spring structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less

  16. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  17. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Paulson, James C.

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which representmore » the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.« less

  18. Research advances in polymer emulsion based on "core-shell" structure particle design.

    PubMed

    Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing

    2013-09-01

    In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Ratcliffe, James G.

    2006-01-01

    Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data

  20. Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses.

    PubMed

    Shanker, Sreejesh; Czako, Rita; Sankaran, Banumathi; Atmar, Robert L; Estes, Mary K; Prasad, B V Venkataram

    2014-06-01

    Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Susceptibility to the majority of NoV infections is determined by genetically controlled secretor-dependent expression of histo-blood group antigens (HBGAs), which are also critical for NoV attachment to host cells. Human NoVs are classified into two major genogroups (genogroup I [GI] and GII), with each genogroup further divided into several genotypes. GII NoVs are more prevalent and exhibit periodic emergence of new variants, suggested to be driven by altered HBGA binding specificities and antigenic drift. Recent epidemiological studies show increased activity among GI NoVs, with some members showing the ability to bind nonsecretor HBGAs. NoVs bind HBGAs through the protruding (P) domain of the major capsid protein VP1. GI NoVs, similar to GII, exhibit significant sequence variations in the P domain; it is unclear how these variations affect HBGA binding specificities. To understand the determinants of possible strain-specific HBGA binding among GI NoVs, we determined the structure of the P domain of a GI.7 clinical isolate and compared it to the previously determined P domain structures of GI.1 and GI.2 strains. Our crystallographic studies revealed significant structural differences, particularly in the loop regions of the GI.7 P domain, altering its surface topography and electrostatic landscape and potentially indicating antigenic variation. The GI.7 strain bound to H- and A-type, Lewis secretor, and Lewis nonsecretor families of HBGAs, allowing us to further elucidate the structural determinants of nonsecretor HBGA binding among GI NoVs and to infer several contrasting and generalizable features of HBGA binding in the GI NoVs. Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Recent epidemiological studies have shown increased prevalence of genogroup I (GI) NoVs. Although secretor-positive status is strongly correlated with NoV infection, cases of NoV infection associated with

  1. Multiple genome alignment for identifying the core structure among moderately related microbial genomes.

    PubMed

    Uchiyama, Ikuo

    2008-10-31

    Identifying the set of intrinsically conserved genes, or the genomic core, among related genomes is crucial for understanding prokaryotic genomes where horizontal gene transfers are common. Although core genome identification appears to be obvious among very closely related genomes, it becomes more difficult when more distantly related genomes are compared. Here, we consider the core structure as a set of sufficiently long segments in which gene orders are conserved so that they are likely to have been inherited mainly through vertical transfer, and developed a method for identifying the core structure by finding the order of pre-identified orthologous groups (OGs) that maximally retains the conserved gene orders. The method was applied to genome comparisons of two well-characterized families, Bacillaceae and Enterobacteriaceae, and identified their core structures comprising 1438 and 2125 OGs, respectively. The core sets contained most of the essential genes and their related genes, which were primarily included in the intersection of the two core sets comprising around 700 OGs. The definition of the genomic core based on gene order conservation was demonstrated to be more robust than the simpler approach based only on gene conservation. We also investigated the core structures in terms of G+C content homogeneity and phylogenetic congruence, and found that the core genes primarily exhibited the expected characteristic, i.e., being indigenous and sharing the same history, more than the non-core genes. The results demonstrate that our strategy of genome alignment based on gene order conservation can provide an effective approach to identify the genomic core among moderately related microbial genomes.

  2. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  3. Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi.

    PubMed

    Balouz, Virginia; Cámara, María de Los Milagros; Cánepa, Gaspar E; Carmona, Santiago J; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán; Buscaglia, Carlos A

    2015-03-01

    The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity.

    PubMed Central

    Hackstadt, T; Peacock, M G; Hitchcock, P J; Cole, R L

    1985-01-01

    We isolated lipopolysaccharides (LPSs) from phase variants of Coxiella burnetii Nine Mile and compared the isolated LPS and C. burnetii cells by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The LPSs were found to be the predominant component which varied structurally and antigenically between virulent phase I and avirulent phase II. A comparison of techniques historically used to extract the phase I antigenic component revealed that the aqueous phase of phenol-water, trichloroacetic acid, and dimethyl sulfoxide extractions of phase I C. burnettii cells all contained phase I LPS, although the efficiency and specificity of extraction varied. Our studies provide additional evidence that phase variation in C. burnetii is analogous to the smooth-to-rough LPS variation of gram-negative enteric bacteria, with phase I LPS being equivalent to smooth LPS and phase II being equivalent to rough LPS. In addition, we identified a variant with a third LPS chemotype with appears to have a structural complexity intermediate to phase I and II LPSs. All three C. burnetii LPS contain a 2-keto-3-deoxyoctulosonic acid-like substance, heptose, and gel Limulus amoebocyte lysates in subnanogram amounts. The C. burnetii LPSs were nontoxic to chicken embryos at doses of over 80 micrograms per embryo, in contrast to Salmonella typhimurium smooth- and rough-type LPSs, which were toxic in nanogram amounts. Images PMID:3988339

  5. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane

    PubMed Central

    Krshnan, Logesvaran; Park, Soohyung; Im, Wonpil; Call, Melissa J.; Call, Matthew E.

    2016-01-01

    The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR–CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling. PMID:27791034

  6. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane.

    PubMed

    Krshnan, Logesvaran; Park, Soohyung; Im, Wonpil; Call, Melissa J; Call, Matthew E

    2016-10-25

    The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.

  7. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus.

    PubMed

    Goto, H; Minamoto, N; Ito, H; Ito, N; Sugiyama, M; Kinjo, T; Kawai, A

    2000-01-01

    Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358-367, and that the other site IV epitope of MAb 7-12 mapped to aa 375-383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.

  8. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  9. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  10. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  11. Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation.

    PubMed

    Liang, Yuh-Jin; Kuo, Huan-Hsien; Lin, Chi-Hung; Chen, Yen-Ying; Yang, Bei-Chia; Cheng, Yuan-Yuan; Yu, Alice L; Khoo, Kay-Hooi; Yu, John

    2010-12-28

    A systematic survey of expression profiles of glycosphingolipids (GSLs) in two hESC lines and their differentiated embryoid body (EB) outgrowth with three germ layers was carried out using immunofluorescence, flow cytometry, and MALDI-MS and MS/MS analyses. In addition to the well-known hESC-specific markers stage-specific embryonic antigen 3 (SSEA-3) and SSEA-4, we identified several globosides and lacto-series GSLs, previously unrevealed in hESCs, including Gb(4)Cer, Lc(4)Cer, fucosyl Lc(4)Cer, Globo H, and disialyl Gb(5)Cer. During hESC differentiation into EBs, MS analysis revealed a clear-cut switch in the core structures of GSLs from globo- and lacto- to ganglio-series, which was not as evident by immunostaining with antibodies against SSEA-3 and SSEA-4, owing to their cross-reactivities with various glycosphingolipids. Such a switch was attributable to altered expression of key glycosyltransferases (GTs) in the biosynthetic pathways by the up-regulation of ganglio-series-related GTs with simultaneous down-regulation of globo- and lacto-series-related GTs. Thus, these results provide insights into the unique stage-specific transition and mechanism for alterations of GSL core structures during hESC differentiation. In addition, unique glycan structures uncovered by MS analyses may serve as surface markers for further delineation of hESCs and help identify of their functional roles not only in hESCs but also in cancers.

  12. [Fundamental and clinical evaluation of hepatitis B virus core-related antigen assay by LUMIPULSE f].

    PubMed

    Tanaka, Yasuhito; Takagi, Kazumi; Hiramatsu, Kumiko; Naganuma, Hatsue; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi

    2006-07-01

    A sensitive chemiluminescence enzyme immunoassay (CLEIA) has been developed for hepatitis B virus (HBV) core-related antigens (HBcrAg) detection. The HBcrAg is designated as the precore/core gene products including HBeAg. The aim of this study is to evaluate reproducibility of HBcrAg and correlation with HBV-DNA in serum using the automatic LUMIPULSE f to estimate an assay suitable for general laboratory use. In this study, we demonstrated that HBcrAg assay had highly intra-assay reproducible [coefficients of variation(CVs); 2.8-5.2%] and inter-assay reproducible [CVs; 3.9-9.1%]. When the cutoff value was tentatively set at 1 kU/ml, all healthy controls (HBsAg/HBV-DNA negative; n=100) and anti-HCV antibody-positive (n=50) sera were identified as negative. The assay showed a detection limit of 0.5 kU/ml using four serially diluted HBV high-titer sera, indicating higher sensitivity than HBV-DNA (transcription-mediated amplification). The HBcrAg concentration correlated positively with serum HBV-DNA (n=125, r = 0.860, p < 0.0001) regardless of HBeAg, although the HBcrAg levels were higher in HBeAg-positive group than in HBeAg-negative group. In the natural course of HBV infection, the HBcrAg concentration usually changed in accordance with HBV-DNA levels, however during lamivudine therapy the change of HBcrAg was more gradual than that of HBV-DNA. In conclusion, HBcrAg concentration provides a reflection of HBV virus load equivalent to HBV-DNA level, and the assay therefore offers a simple method for monitoring hepatitis B patients.

  13. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  14. Transporters associated with antigen processing (TAP) in sea bass (Dicentrarchus labrax, L.): molecular cloning and characterization of TAP1 and TAP2.

    PubMed

    Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S

    2011-11-01

    The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray

    PubMed Central

    Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame

    2016-01-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596

  16. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the

  17. MHC structure and function − antigen presentation. Part 2

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells. PMID:25807243

  18. Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell.

    PubMed

    González-Fernández, M; Carrasco-Marín, E; Alvarez-Domínguez, C; Outschoorn, I M; Leyva-Cobián, F

    1997-02-25

    The role of thymus-independent type 2 (TI-2) antigens (polysaccharides) on the MHC-II-restricted processing of protein antigens was studied in vitro. In general, antigen presentation is inhibited when both peritoneal and splenic macrophages (M phi) as well as Küpffer cells (KC) are preincubated with acidic polysaccharides or branched dextrans. However, the inhibitory effect of neutral polysaccharides was minimal when KC were used as antigen presenting cells (APC). Morphological evaluation of the uptake of fluoresceinated polysaccharides clearly correlates with this selective and differential interference. Polysaccharides do not block MHC-I-restricted antigen presentation. Some chemical characteristics shared by different saccharides seem to be specially related to their potential inhibitory abilities: (i) those where two anomeric carbon atoms of two interlinked sugars and (ii) those containing several sulfate groups per disaccharide repeating unit. No polysaccharide being inhibitory in M phi abrogated antigen processing in other APC: lipopolysaccharide-activated B cells, B lymphoma cells, or dendritic cells (DC). Using radiolabeled polysaccharides it was observed that DC and B cells incorporated less radioactivity as a function of time than M phi. Morphological evaluation of these different APC incubated for extended periods of time with inhibitory concentrations of polysaccharides revealed intense cytoplasmic vacuolization in M phi but not in B cells or DC. The large majority of M phi lysosomes containing polysaccharides fail to fuse with incoming endocytic vesicles and delivery of fluid-phase tracers was reduced, suggesting that indigestible carbohydrates reduced the fusion of these loaded lysosomes with endosomes containing recently internalized tracers. It is suggested that the main causes of this antigen presentation blockade are (i) the chemical characteristics of certain carbohydrates and whether the specific enzymatic machinery for their intracellular

  19. Structural characterization of core-bradavidin in complex with biotin

    PubMed Central

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  20. Sub-structure formation in starless cores

    NASA Astrophysics Data System (ADS)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  1. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  2. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  3. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less

  4. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    PubMed

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (p<0.05). The capacity of HBcAg to modulate both HBsAg- and HBcAg-specific immunity in HBV TM, and activation of endogenous DC in HBV TM without inducing liver damage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  6. Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle.

    PubMed

    Anggraeni, Melisa R; Connors, Natalie K; Wu, Yang; Chuan, Yap P; Lua, Linda H L; Middelberg, Anton P J

    2013-09-13

    Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Research core drilling in the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.

    1992-01-01

    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence

  8. Lipopolysaccharide Antigens of Pseudomonas aeruginosa and Design of Novel Vaccines.

    DTIC Science & Technology

    1987-09-01

    Pseudomonas aeruginosa, OA 1-C LChemical structure, Fisher immunotypes, M; ig0-Chain polysaccharide , and Synthetic antigens 19. ABSTRACT (Conu on rftvm if...have been characterized in our laboratories. Partial structures for the remaining two types have been elucidated. The O-chain polysaccharides of the... polysaccharide antigens for native structure, and (5) binding-site xa[lJ11:, of the antibodies using the synthetic antigens. b% B.. Sirmificance: General

  9. Dynamico-FE: A Structure-Preserving Hydrostatic Dynamical Core

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Dubos, Thomas; Kritsikis, Evaggelos

    2017-04-01

    It is well known that the inviscid, adiabatic equations of atmospheric motion constitute a non-canonical Hamiltonian system, and therefore posses many important conserved quantities such as as mass, potential vorticity and total energy. In addition, there are also key mimetic properties (such as curl grad = 0) of the underlying continuous vector calculus. Ideally, a dynamical core should have similar properties. A general approach to deriving such structure-preserving numerical schemes has been developed under the frameworks of Hamiltonian methods and mimetic discretizations, and over the past decade, there has been a great deal of work on the development of atmospheric dynamical cores using these techniques. An important example is Dynamico, which conserves mass, potential vorticity and total energy; and possesses additional mimetic properties such as a curl-free pressure gradient. Unfortunately, the underlying finite-difference discretization scheme used in Dynamico has been shown to be inconsistent on general grids. To resolve these accuracy issues, a scheme based on mimetic Galerkin discretizations has been developed that achieves higher-order accuracy while retaining the structure-preserving properties of the existing discretization. This presentation will discuss the new dynamical core, termed Dynamico-FE, and show results from a standard set of test cases on both the plane and the sphere.

  10. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis

    PubMed Central

    Stiasny, Karin

    2017-01-01

    SUMMARY Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. PMID:28179396

  11. Neutron Radiation Damage Estimation in the Core Structure Base Metal of RSG GAS

    NASA Astrophysics Data System (ADS)

    Santa, S. A.; Suwoto

    2018-02-01

    Radiation damage in core structure of the Indonesian RGS GAS multi purpose reactor resulting from the reaction of fast and thermal neutrons with core material structure was investigated for the first time after almost 30 years in operation. The aim is to analyze the degradation level of the critical components of the RSG GAS reactor so that the remaining life of its component can be estimated. Evaluation results of critical components remaining life will be used as data ccompleteness for submission of reactor operating permit extension. Material damage analysis due to neutron radiation is performed for the core structure components made of AlMg3 material and bolts reinforcement of core structure made of SUS304. Material damage evaluation was done on Al and Fe as base metal of AlMg3 and SUS304, respectively. Neutron fluences are evaluated based on the assumption that neutron flux calculations of U3Si8-Al equilibrium core which is operated on power rated of 15 MW. Calculation result using SRAC2006 code of CITATION module shows the maximum total neutron flux and flux >0.1 MeV are 2.537E+14 n/cm2/s and 3.376E+13 n/cm2/s, respectively. It was located at CIP core center close to the fuel element. After operating up to the end of #89 core formation, the total neutron fluence and fluence >0.1 MeV were achieved 9.063E+22 and 1.269E+22 n/cm2, respectively. Those are related to material damage of Al and Fe as much as 17.91 and 10.06 dpa, respectively. Referring to the life time of Al-1100 material irradiated in the neutron field with thermal flux/total flux=1.7 which capable of accepting material damage up to 250 dpa, it was concluded that RSG GAS reactor core structure underwent 7.16% of its operating life span. It means that core structure of RSG GAS reactor is still capable to receive the total neutron fluence of 9.637E+22 n/cm2 or fluence >0.1 MeV of 5.672E+22 n/cm2.

  12. Identification of threshold prostate specific antigen levels to optimize the detection of clinically significant prostate cancer by magnetic resonance imaging/ultrasound fusion guided biopsy.

    PubMed

    Shakir, Nabeel A; George, Arvin K; Siddiqui, M Minhaj; Rothwax, Jason T; Rais-Bahrami, Soroush; Stamatakis, Lambros; Su, Daniel; Okoro, Chinonyerem; Raskolnikov, Dima; Walton-Diaz, Annerleim; Simon, Richard; Turkbey, Baris; Choyke, Peter L; Merino, Maria J; Wood, Bradford J; Pinto, Peter A

    2014-12-01

    Prostate specific antigen sensitivity increases with lower threshold values but with a corresponding decrease in specificity. Magnetic resonance imaging/ultrasound targeted biopsy detects prostate cancer more efficiently and of higher grade than standard 12-core transrectal ultrasound biopsy but the optimal population for its use is not well defined. We evaluated the performance of magnetic resonance imaging/ultrasound targeted biopsy vs 12-core biopsy across a prostate specific antigen continuum. We reviewed the records of all patients enrolled in a prospective trial who underwent 12-core transrectal ultrasound and magnetic resonance imaging/ultrasound targeted biopsies from August 2007 through February 2014. Patients were stratified by each of 4 prostate specific antigen cutoffs. The greatest Gleason score using either biopsy method was compared in and across groups as well as across the population prostate specific antigen range. Clinically significant prostate cancer was defined as Gleason 7 (4 + 3) or greater. Univariate and multivariate analyses were performed. A total of 1,003 targeted and 12-core transrectal ultrasound biopsies were performed, of which 564 diagnosed prostate cancer for a 56.2% detection rate. Targeted biopsy led to significantly more upgrading to clinically significant disease compared to 12-core biopsy. This trend increased more with increasing prostate specific antigen, specifically in patients with prostate specific antigen 4 to 10 and greater than 10 ng/ml. Prostate specific antigen 5.2 ng/ml or greater captured 90% of upgrading by targeted biopsy, corresponding to 64% of patients who underwent multiparametric magnetic resonance imaging and subsequent fusion biopsy. Conversely a greater proportion of clinically insignificant disease was detected by 12-core vs targeted biopsy overall. These differences persisted when controlling for potential confounders on multivariate analysis. Prostate cancer upgrading with targeted biopsy increases

  13. A High-resolution Study of Presupernova Core Structure

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.; Heger, Alexander

    2018-06-01

    The density structure surrounding the iron core of a massive star when it dies is known to have a major effect on whether or not the star explodes. Here we repeat previous surveys of presupernova evolution with some important corrections to code physics and four to 10 times better mass resolution in each star. The number of presupernova masses considered is also much larger. Over 4000 models are calculated in the range from 12 to 60 M ⊙ with varying mass loss rates. The core structure is not greatly affected by the increased spatial resolution. The qualitative patterns of compactness measures and their extrema are the same, but with the increased number of models, the scatter seen in previous studies is replaced by several localized branches. More physics-based analyses by Ertl et al. and Müller et al. show these branches with less scatter than the single-parameter characterization of O’Connor & Ott. These branches are particularly apparent for stars in the mass ranges 14–19 and 22–24 M ⊙. The multivalued solutions are a consequence of interference between several carbon- and oxygen-burning shells during the late stages of evolution. For a relevant range of masses, whether a star explodes or not may reflect the small, almost random differences in its late evolution more than its initial mass. The large number of models allows statistically meaningful statements about the radius, luminosity, and effective temperatures of presupernova stars, their core structures, and their remnant mass distributions.

  14. An Efficient Analysis Methodology for Fluted-Core Composite Structures

    NASA Technical Reports Server (NTRS)

    Oremont, Leonard; Schultz, Marc R.

    2012-01-01

    The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.

  15. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray.

    PubMed

    Mickum, Megan L; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W Evan; Wilkins, Patricia P; Van Die, Irma; Smith, David F; Nyame, A Kwame; Cummings, Richard D; Rivera-Marrero, Carlos A

    2016-05-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Three-dimensional structure of an antibody-antigen complex.

    PubMed

    Sheriff, S; Silverton, E W; Padlan, E A; Cohen, G H; Smith-Gill, S J; Finzel, B C; Davies, D R

    1987-11-01

    We have determined the three-dimensional structure of two crystal forms of an antilysozyme Fab-lysozyme complex by x-ray crystallography. The epitope on lysozyme consists of three sequentially separated subsites, including one long, nearly continuous, site from Gln-41 through Tyr-53 and one from Gly-67 through Pro-70. Antibody residues interacting with lysozyme occur in each of the six complementarity-determining regions and also include one framework residue. Arg-45 and Arg-68 form a ridge on the surface of lysozyme, which binds in a groove on the antibody surface. Otherwise the surface of interaction between the two proteins is relatively flat, although it curls at the edges. The surface of interaction is approximately 26 X 19 A. No water molecules are found in the interface. The positive charge on the two arginines is complemented by the negative charge of Glu-35 and Glu-50 from the heavy chain of the antibody. The backbone structure of the antigen, lysozyme, is mostly unperturbed, although there are some changes in the epitope region, most notably Pro-70. One side chain not in the epitope, Trp-63, undergoes a rotation of approximately 180 degrees about the C beta--C gamma bond. The Fab elbow bends in the two crystal forms differ by 7 degrees.

  17. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families

    PubMed Central

    Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.

    2013-01-01

    Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to

  18. Mass Spectrometry-Based Identification Of The Tumor Antigen UN1 as the Transmembrane CD43 Sialoglycoprotein*

    PubMed Central

    de Laurentiis, Annamaria; Gaspari, Marco; Palmieri, Camillo; Falcone, Cristina; Iaccino, Enrico; Fiume, Giuseppe; Massa, Ornella; Masullo, Mariorosario; Tuccillo, Franca Maria; Roveda, Laura; Prati, Ubaldo; Fierro, Olga; Cozzolino, Immacolata; Troncone, Giancarlo; Tassone, Pierfrancesco; Scala, Giuseppe; Quinto, Ileana

    2011-01-01

    The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100–120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis. PMID:21372249

  19. MEFA (multiepitope fusion antigen)-Novel Technology for Structural Vaccinology, Proof from Computational and Empirical Immunogenicity Characterization of an Enterotoxigenic Escherichia coli (ETEC) Adhesin MEFA

    PubMed Central

    Duan, Qiangde; Lee, Kuo Hao; Nandre, Rahul M; Garcia, Carolina; Chen, Jianhan; Zhang, Weiping

    2017-01-01

    Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children’s diarrhea and travelers’ diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1–CS3), CFA/IV (CS4–CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens. PMID:28944092

  20. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    PubMed

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element

  1. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    PubMed

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization

  2. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  3. An endoglycosidase-assisted LC-MS/MS-based strategy for the analysis of site-specific core-fucosylation of low-concentrated glycoproteins in human serum using prostate-specific antigen (PSA) as example.

    PubMed

    Lang, Robert; Leinenbach, Andreas; Karl, Johann; Swiatek-de Lange, Magdalena; Kobold, Uwe; Vogeser, Michael

    2018-05-01

    Recently, site-specific fucosylation of glycoproteins has attracted attention as it can be associated with several types of cancers including prostate cancer. However, individual glycoproteins, which might serve as potential cancer markers, often are very low-concentrated in complex serum matrices and distinct glycan structures are hard to detect by immunoassays. Here, we present a mass spectrometry-based strategy for the simultaneous analysis of core-fucosylated and total prostate-specific antigen (PSA) in human serum in the low ng/ml concentration range. Sample preparation comprised an immunoaffinity capture step to enrich total PSA from human serum using anti-PSA antibody coated magnetic beads followed by consecutive two-step on-bead partial deglycosylation with endoglycosidase F3 and tryptic digestion prior to LC-MS/MS analysis. The method was shown to be linear from 0.5 to 60 ng/ml total PSA concentrations and allows the simultaneous quantification of core-fucosylated PSA down to 1 ng/ml and total PSA lower than 0.5 ng/ml. The imprecision of the method over two days ranged from 9.7-23.2% for core-fucosylated PSA and 10.3-18.3% for total PSA depending on the PSA level. The feasibility of the method in native sera was shown using three human specimens. To our knowledge, this is the first MS-based method for quantification of core-fucosylated PSA in the low ng/ml concentration range in human serum. This method could be used in large patient cohorts as core-fucosylated PSA may be a diagnostic biomarker for the differentiation of prostate cancer and other prostatic diseases, such as benign prostatic hyperplasia (BPH). Furthermore, the described strategy could be used to monitor potential changes in site-specific core-fucosylation of other low-concentrated glycoproteins, which could serve as more specific markers ("marker refinement") in cancer research. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The effect of loss of O-antigen ligase on phagocytic susceptibility of motile and non-motile Pseudomonas aeruginosa.

    PubMed

    Demirdjian, Sally; Schutz, Kristin; Wargo, Matthew J; Lam, Joseph S; Berwin, Brent

    2017-12-01

    The bacterial pathogen Pseudomonas aeruginosa undergoes adaptation and selection over the course of chronic respiratory tract infections which results in repeatedly-observed phenotypic changes that are proposed to enable its persistence. Two of the clinically significant P. aeruginosa phenotypic changes are loss of flagellar motility and modifications to LPS structure, including loss of O-antigen expression. The effect of loss of O-antigen, frequently described as conversion from smooth to rough LPS, and the combined effect of loss of motility and O-antigen on phagocytic susceptibility by immune cells remain unknown. To address this, we generated genetic deletion mutants of waaL, which encodes the O-antigen ligase responsible for linking O-antigen to lipid A-core oligosaccharide, in both motile and non-motile P. aeruginosa strains. With the use of these bacterial strains we provide the first demonstration that, despite a progressive selection for P. aeruginosa with rough LPS during chronic pulmonary infections, loss of the LPS O-antigen does not confer phagocytic resistance in vitro. However, use of the waaLmotABmotCD mutant revealed that loss of motility confers resistance to phagocytosis regardless of the smooth or rough LPS phenotype. These findings reveal how the O-antigen of P. aeruginosa can influence bacterial clearance during infection and expand our current knowledge about the impact of bacterial phenotypic changes during chronic infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    PubMed

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection.

  6. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    NASA Astrophysics Data System (ADS)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  7. Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control.

    PubMed

    Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw

    2011-08-01

    The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

  8. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis.

    PubMed

    Heinz, Franz X; Stiasny, Karin

    2017-03-01

    Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. Copyright © 2017 American Society for Microbiology.

  9. Structural mimicry of O-antigen by a peptide revealed in a complex with an antibody raised against Shigella flexneri serotype 2a.

    PubMed

    Theillet, François-Xavier; Saul, Frederick A; Vulliez-Le Normand, Brigitte; Hoos, Sylviane; Felici, Franco; Weintraub, Andrej; Mulard, Laurence A; Phalipon, Armelle; Delepierre, Muriel; Bentley, Graham A

    2009-05-15

    The use of carbohydrate-mimicking peptides to induce immune responses against surface polysaccharides of pathogenic bacteria offers a novel approach to vaccine development. Factors governing antigenic and immunogenic mimicry, however, are complex and poorly understood. We have addressed this question using the anti-lipopolysaccharide monoclonal antibody F22-4, which was raised against Shigella flexneri serotype 2a and shown to protect against homologous infection in a mouse model. In a previous crystallographic study, we described F22-4 in complex with two synthetic fragments of the O-antigen, the serotype-specific saccharide moiety of lipopolysaccharide. Here, we present a crystallographic and NMR study of the interaction of F22-4 with a dodecapeptide selected by phage display using the monoclonal antibody. Like the synthetic decasaccharide, the peptide binds to F22-4 with micromolar affinity. Although the peptide and decasaccharide use very similar regions of the antigen-binding site, indicating good antigenic mimicry, immunogenic mimicry by the peptide was not observed. The F22-4-antigen interaction is significantly more hydrophobic with the peptide than with oligosaccharides; nonetheless, all hydrogen bonds formed between the peptide and F22-4 have equivalents in the oligosaccharide complex. Two bridging water molecules are also in common, adding to partial structural mimicry. Whereas the bound peptide is entirely helical, its structure in solution, as shown by NMR, is helical in the central region only. Moreover, docking the NMR structure into the antigen-binding site shows that steric hindrance would occur, revealing poor complementarity between the major solution conformation and the antibody that could contribute to the absence of immunogenic mimicry.

  10. Impact of obesity on the predictive accuracy of prostate-specific antigen density and prostate-specific antigen in native Korean men undergoing prostate biopsy.

    PubMed

    Kim, Jae Heon; Doo, Seung Whan; Yang, Won Jae; Lee, Kwang Woo; Lee, Chang Ho; Song, Yun Seob; Jeon, Yoon Su; Kim, Min Eui; Kwon, Soon-Sun

    2014-10-01

    To evaluate the impact of obesity on the biopsy detection of prostate cancer. We retrospectively reviewed data of 1182 consecutive Korean patients (≥50 years) with serum prostate-specific antigen levels of 3-10 ng/mL who underwent initial extended 12-cores biopsy from September 2009 to March 2013. Patients who took medications that were likely to influence the prostate-specific antigen level were excluded. Receiver operating characteristic curves were plotted for prostate-specific antigen and prostate-specific antigen density predicting cancer status among non-obese and obese men. A total of 1062 patients (mean age 67.1 years) were enrolled in the analysis. A total of 230 men (21.7%) had a positive biopsy. In the overall study sample, the area under the receiver operator characteristic curve of serum prostate-specific antigen for predicting prostate cancer on biopsy were 0.584 and 0.633 for non-obese and obese men, respectively (P = 0.234). However, the area under the curve for prostate-specific antigen density in predicting cancer status showed a significant difference (non-obese 0.696, obese 0.784; P = 0.017). There seems to be a significant difference in the ability of prostate-specific antigen density to predict biopsy results between non-obese and obese men. Obesity positively influenced the overall ability of prostate-specific antigen density to predict prostate cancer. © 2014 The Japanese Urological Association.

  11. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2.

    PubMed

    Mpakali, Anastasia; Giastas, Petros; Mathioudakis, Nikolas; Mavridis, Irene M; Saridakis, Emmanuel; Stratikos, Efstratios

    2015-10-23

    Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Structural characterization of Mumps virus fusion protein core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less

  13. Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin

    2018-05-01

    Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.

  14. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling.

    PubMed

    Rockey, William M; Hernandez, Frank J; Huang, Sheng-You; Cao, Song; Howell, Craig A; Thomas, Gregory S; Liu, Xiu Ying; Lapteva, Natalia; Spencer, David M; McNamara, James O; Zou, Xiaoqin; Chen, Shi-Jie; Giangrande, Paloma H

    2011-10-01

    RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.

  15. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  16. Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls-Nabarro theory

    NASA Astrophysics Data System (ADS)

    Hu, Xiangsheng; Wang, Shaofeng

    2018-02-01

    The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.

  17. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    PubMed Central

    Liu, Peng; Chen, Ying; Yu, Zhiwu

    2016-01-01

    A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570), and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrscopy, X-ray diffractometry (XRD), contact angle meter (CA), and scanning electron microscope (SEM). The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570). Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures. PMID:28774141

  18. Structural studies on lipopolysaccharides of serologically non-typable strains of Helicobacter pylori, AF1 and 007, expressing Lewis antigenic determinants.

    PubMed

    Knirel, Y A; Kocharova, N A; Hynes, S O; Widmalm, G; Andersen, L P; Jansson, P E; Moran, A P

    1999-11-01

    In contrast to other Helicobacter pylori strains, which have serologically detectable Lewis(x)+ (Le(x)) and Lewis(y)++ (++Le(y)) antigenic determinants in the O-specific polysaccharide chains of the lipopolysaccharides, H. pylori AF1 and 007 were non-typable with anti-Le(x) and anti-Le(y) antibodies. The carbohydrate portions of the lipopolysaccharides were liberated by mild acid hydrolysis and subsequently studied by sugar and methylation analyses, 1H-NMR spectroscopy and electrospray ionization-mass spectrometry. Compared with each other, and with lipopolysaccharides of strains studied previously, the lipopolysaccharides of both AF1 and 007 showed similarities, but also differences, in the structures of the core region and O-specific polysaccharide chains. The O-specific polysaccharide chains of both strains consisted of a short or long polyfucosylated poly-N-acetyl-beta-lactosamine chains, which were distinguished from those of other strains by a high degree of fucosylation producing a polymeric Le(x)chain terminating with Le(x) or Le(y) units:[sequence: see text] where n = 0 or 1 in strain AF1 and 0 in strain 007, m = 0-2, 6-7 in strain AF1 and m = 0-2, 6-7 or approximately 40 in strain 007, the medium-size species being predominant. Therefore, compared with other strains, the lack of reactivity of lipopolysaccharide of H. pylori AF1 and 007 with anti-Le(x) and anti-Le(y) may reflect the presence of a polymeric Le(x) chain and has important implications for serological and pathogenesis studies. As the substitution pattern of a D-glycero-D-manno-heptose residue in the outer core varied in the two strains, and an extended DD-heptan chain was present in some lipopolysaccharide species but not in others, this region was less conservative than the inner core region. The inner core L-glycero-D-manno-heptose region of both strains carried a 2-aminoethyl phosphate group, rather than a phosphate group, as reported previously for other H. pylori strains.

  19. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  20. Murine T-Cell Response to Native and Recombinant Protein Antigens of Rickettsia Tsutsugamushi

    DTIC Science & Technology

    1993-02-01

    Wright, and J. Sadoff. 1985. 18-kilodalton protein of Mycobacterium leprae recognized by Immunoenzymatic analysis by monoclonal antibodies of bacte- Vo...determinants and closely resembles T-cell antigenic determinants, Rothbard and Taylor, by the GroEL homolog (65 kDa) of Mycobacterium tuberculo- analysis of...not be completely present in protein that is recognized by 20% of the mycobacterium - peptide 91-110. If this were the core of the antigenic deter

  1. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  2. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeastmore » and parasitic protozoa.« less

  3. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  4. Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, James; Treadway, Joe; Pennycook, Stephen J

    2006-01-01

    Aberration-corrected Z-contrast scanning transmission electron microscopy of core/shell nanocrystals shows clear correlations between structure and quantum efficiency. Uniform shell coverage is obtained only for a graded CdS/ZnS shell material and is found to be critical to achieving near 100% quantum yield. The sublattice sensitivity of the images confirms that preferential growth takes place on the anion-terminated surfaces. This explains the three-dimensional "nanobullet" shape observed in the case of core/shell nanorods.

  5. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  6. AntigenMap 3D: an online antigenic cartography resource.

    PubMed

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  7. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators

    PubMed Central

    Telitel, Sofia; Dumur, Frédéric; Faury, Thomas; Graff, Bernadette; Tehfe, Mohamad-Ali; Fouassier, Jean-Pierre

    2013-01-01

    Summary Eleven di- and trifunctional compounds based on a core-pyrene π structure (Co_Py) were synthesized and investigated for the formation of free radicals. The application of two- and three-component photoinitiating systems (different Co_Pys with the addition of iodonium or sulfonium salts, alkyl halide or amine) was investigated in detail for cationic and radical photopolymerization reactions under near-UV–vis light. The proposed compounds can behave as new photocatalysts. Successful results in terms of rates of polymerization and final conversions were obtained. The strong MO coupling between the six different cores and the pyrene moiety was studied by DFT calculations. The different chemical intermediates are characterized by ESR and laser flash photolysis experiments. The mechanisms involved in the initiation step are discussed, and relationships between the core structure, the Co_Py absorption property, and the polymerization ability are tentatively proposed. PMID:23766803

  8. Local and global anatomy of antibody-protein antigen recognition.

    PubMed

    Wang, Meryl; Zhu, David; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong

    2018-05-01

    Deciphering antibody-protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein-protein complexes. We investigated the physicochemical properties of regions on and away from the antibody-antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody-protein antigen recognition is entropy driven, with residues having low side-chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody-antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody-antigen interfaces and of Fab domains as compared with nonantibody protein-protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures. Copyright © 2017 John Wiley & Sons, Ltd.

  9. An origin of arc structures deeply embedded in dense molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Onishi, Toshikazu; Tokuda, Kazuki; Inutsuka, Shu-ichiro

    2015-04-01

    We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1 pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000 au scale. As well as on a spatial extent, the velocity ranges of the arc structures, ˜0.5 km s-1, are in agreement with the ALMA observations. We also found that circumstellar discs are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.

  10. Engineering Chimeric Antigen Receptors

    PubMed Central

    Kulemzin, S. V.; Kuznetsova, V. V.; Mamonkin, M.; Taranin, A. V.; Gorchakov, A. A.

    2017-01-01

    Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering. PMID:28461969

  11. Conservation of myeloid surface antigens on primate granulocytes.

    PubMed

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  12. Structure of air shower disc near the core

    NASA Technical Reports Server (NTRS)

    Inoue, N.; Kawamoto, M.; Misaki, Y.; Maeda, T.; Takeuchi, T.; Toyoda, Y.

    1985-01-01

    The longitudinal structure of the air shower disk is studied by measuring the arrival time distributions of air shower particles for showers with electron size in the range 3.2 x 10 to the 5.5. power to 3.2 x 10 to the 7.5 power in the Akeno air-shower array (930 gcm squared atmospheric depth). The average FWHM as a parameter of thickness of air shower disk increases with core distances at less than 50m. AT the present stage, dependence on electron size, zenith angle and air shower age is not apparent. The average thickness of the air shower disk within a core distance of 50m could be determined by an electromagnetic cascade starting from the lower altitude.

  13. Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan

    2017-11-15

    In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (p<0.05), although no significant difference was observed between oils containing collagen mesh structure and collagen core/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (p<0.05) higher antioxidant properties than collagen mesh structure up to a certain period. Therefore, collagen core/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural characterization of Co-Re superlattices

    NASA Astrophysics Data System (ADS)

    Melo, L. V.; Trindade, I.; From, M.; Freitas, P. P.; Teixeira, N.; da Silva, M. F.; Soares, J. C.

    1991-12-01

    Co-Re superlattices were prepared with nominal periodicities of 65-67 Å and varying bilayer composition. The structural characterization was made by x-ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x-ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.

  15. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  16. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  17. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-03-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  18. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    DOE PAGES

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; ...

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less

  19. Space Launch System, Core Stage, Structural Test Design and Implementation

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  20. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    USGS Publications Warehouse

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  1. Molecular cloning, expression and first antigenic characterization of human astrovirus VP26 structural protein and a C-terminal deleted form.

    PubMed

    Royuela, Enrique; Sánchez-Fauquier, Alicia

    2010-01-01

    The open reading frame 2 (ORF2) of human astrovirus (HAstV) encodes the structural VP26 protein that seems to be the main antigenic viral protein. However, its functional role remains unclear. Bioinformatic predictions revealed that VP29 and VP26 proteins could be involved in virus-cell interaction. In this study, we describe for the first time the cloning and expression in Escherichia coli (E. coli) of a recombinant VP26 (rVP26) protein and a VP26 C-terminal truncated form (VP26 Delta C), followed by purification by NTA-Ni(2+) agarose affinity chromatography. Protein expression and purification were evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot (WB). Then, the purified proteins were evaluated for antigenic properties in enzyme linked immunosorbent assay (ELISA) using a polyclonal antibody (PAb) and a neutralizing monoclonal antibody (nMAb) named PL2, both of them directed to HAstV. The results presented herein indicate that the C-terminal end of the VP26 protein is essential to maintain the neutralizing epitope recognized by nMAb PL2 and that the N-terminus of VP26 protein may contain antigenic lineal-epitopes recognized by PAb. Thus, these recombinant proteins can be ideal tools for further antigenic, biochemical, structural and functional VP26 protein characterization, in order to evaluate its potential role in immunodiagnosis and vaccine studies.

  2. Direct Observation of Dislocation Core Structures in CdTe/GaAs(001).

    PubMed

    McGibbon, A J; Pennycook, S J; Angelo, J E

    1995-07-28

    A strategy is presented for determining sublattice polarity at defects in compound semiconductors. Core structures of 60-degree and Lomer dislocations in the CdTe/GaAs(001) system have been obtained by the application of maximum-entropy analysis to Z-contrast images (Z is atomic number) obtained in a 300-kilovolt scanning transmission electron microscope. Sixty-degree dislocations were observed to be of the glide type, whereas in the case of Lomer dislocations, both a symmetric (Hornstra-like) core and an unexpected asymmetric structure made up of a fourfold ring were seen.

  3. Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein.

    PubMed

    Zhang, J Z; Ng, M H; Xia, N S; Lau, S H; Che, X Y; Chau, T N; Lai, S T; Im, S W

    2001-06-01

    A 23 kDa peptide locating to amino acid residues 394 to 604 of the major Hepatitis E Virus (HEV) structural protein was expressed in E. coli. This peptide was found to interact naturally with one another to form homodimers and it was recognized strongly and commonly in its dimeric form by HEV reactive human sera. The antigenic activity associated with the dimeric form was abrogated when the dimer was dissociated into monomer and the activity was reconstituted after the monomer was re-associated into dimer again. The dimeric form of the peptide elicited a vigorous antibody response in experimental animals and the resulting antisera were found to cross-react against HEV, effecting an efficient immune capture of the virus. These results attributed the antigenic activity associated with the dimeric form of the peptide to conformational antigenic determinants generated as a result of interaction between the peptide molecules. It is suggested that some of these antigenic determinants may be expressed by the HEV capsid and raised the possibility of this bacterially expressed peptide as an HEV vaccine candidate. Copyright 2001 Wiley-Liss, Inc.

  4. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Jang, Ho Am; Kim, Min Seon; Cho, Jae Hyun; Lee, Junbeom; Di Lorenzo, Flaviana; Sturiale, Luisa; Silipo, Alba; Molinaro, Antonio; Lee, Bok Luel

    2017-11-24

    Lipopolysaccharide, the outer cell-wall component of Gram-negative bacteria, has been shown to be important for symbiotic associations. We recently reported that the lipopolysaccharide O-antigen of Burkholderia enhances the initial colonization of the midgut of the bean bug, Riptortus pedestris However, the midgut-colonizing Burkholderia symbionts lack the O-antigen but display the core oligosaccharide on the cell surface. In this study, we investigated the role of the core oligosaccharide, which directly interacts with the host midgut, in the Riptortus-Burkholderia symbiosis. To this end, we generated the core oligosaccharide mutant strains, Δ wabS , Δ wabO , Δ waaF, and Δ waaC, and determined the chemical structures of their oligosaccharides, which exhibited different compositions. The symbiotic properties of these mutant strains were compared with those of the wild-type and O-antigen-deficient Δ wbiG strains. Upon introduction into Riptortus via the oral route, the core oligosaccharide mutant strains exhibited different rates of colonization of the insect midgut. The symbiont titers in fifth-instar insects revealed significantly reduced population sizes of the inner core oligosaccharide mutant strains Δ waaF and Δ waaC These two strains also negatively affected host growth rate and fitness. Furthermore, R. pedestris individuals colonized with the Δ waaF and Δ waaC strains were vulnerable to septic bacterial challenge, similar to insects without a Burkholderia symbiont. Taken together, these results suggest that the core oligosaccharide from Burkholderia symbionts plays a critical role in maintaining a proper symbiont population and in supporting the beneficial effects of the symbiont on its host in the Riptortus-Burkholderia symbiosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structure and biochemical functions of four simian virus 40 truncated large-T antigens.

    PubMed Central

    Chaudry, F; Harvey, R; Smith, A E

    1982-01-01

    The structure of four abnormal T antigens which are present in different simian virus 40 (SV40)-transformed mouse cell lines was studied by tryptic peptide mapping, partial proteolysis fingerprinting, immunoprecipitation with monoclonal antibodies, and in vitro translation. The results obtained allowed us to deduce that these proteins, which have apparent molecular weights of 15,000, 22,000, 33,000 and 45,000, are truncated forms of large-T antigen extending to different amounts into the amino acid sequences unique to large-T. The proteins are all phosphorylated, probably at a site between amino acids 106 and 123. The mRNAs coding for the proteins probably contain the normal large-T splice but are shorter than the normal transcripts of the SV40 early region. The truncated large-Ts were tested for the ability to bind to double-stranded DNA-cellulose. This showed that the 33,000- and 45,000-molecular-weight polypeptides contained sequences sufficient for binding under the conditions used, whereas the 15,000- and 22,000-molecular-weight forms did not. Together with published data, this allows the tentative mapping of a region of SV40 large-T between amino acids 109 and 272 that is necessary and may be sufficient for the binding to double-stranded DNA-cellulose in vitro. None of the truncated large-T species formed a stable complex with the host cell protein referred to as nonviral T-antigen or p53, suggesting that the carboxy-terminal sequences of large-T are necessary for complex formation. Images PMID:6292504

  6. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    PubMed

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  7. Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells

    PubMed Central

    Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André

    2013-01-01

    Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760

  8. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies

    PubMed Central

    Rasmussen, Jed A.; Fletcher, Joshua R.; Long, Matthew E.; Allen, Lee-Ann H.; Jones, Bradley D.

    2015-01-01

    The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen. PMID:25999917

  9. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  10. Extraction of Cell-Wall Polysaccharide Antigen from Streptococci

    PubMed Central

    Slade, Hutton D.

    1965-01-01

    Slade, Hutton D. (Northwestern University Medical School, Chicago, Ill., and Max-Planck Institut für Immunbiologie, Freiburg, Germany). Extraction of cell-wall polysaccharide antigen from streptococci. J. Bacteriol. 90:667–672. 1965.—The carbohydrate grouping antigens in the cell walls of streptococci belonging to groups A, E, G, L, and T were extracted with 5% trichloroacetic acid at 90 C. The antigens were removed also from dry whole cells by extraction with trichloroacetic acid followed by treatment with phenol-water. Details of the methods are presented. The antigens obtained by use of either of these procedures were suitable for studies on immunological specificity and chemical structure. Quantitative enzymatic and chemical analyses of two group E antigens and one group T preparation showed the presence of l-rhamnose (22 to 44%), d-glucose (7 to 22%), d-galactose (T antigen only, 26%), glucosamine (2 to 16%), and galactosamine (T antigen only, 3%). In addition, analyses of A and G antigen preparations are presented. The protein and phosphate content of the A and E antigens were about 1% each. Quantitative precipitin curves of these antigens are presented. PMID:16562065

  11. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets*

    PubMed Central

    Rhoden, John J.; Dyas, Gregory L.

    2016-01-01

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022

  12. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets.

    PubMed

    Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J

    2016-05-20

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  14. Clustering algorithms for identifying core atom sets and for assessing the precision of protein structure ensembles.

    PubMed

    Snyder, David A; Montelione, Gaetano T

    2005-06-01

    An important open question in the field of NMR-based biomolecular structure determination is how best to characterize the precision of the resulting ensemble of structures. Typically, the RMSD, as minimized in superimposing the ensemble of structures, is the preferred measure of precision. However, the presence of poorly determined atomic coordinates and multiple "RMSD-stable domains"--locally well-defined regions that are not aligned in global superimpositions--complicate RMSD calculations. In this paper, we present a method, based on a novel, structurally defined order parameter, for identifying a set of core atoms to use in determining superimpositions for RMSD calculations. In addition we present a method for deciding whether to partition that core atom set into "RMSD-stable domains" and, if so, how to determine partitioning of the core atom set. We demonstrate our algorithm and its application in calculating statistically sound RMSD values by applying it to a set of NMR-derived structural ensembles, superimposing each RMSD-stable domain (or the entire core atom set, where appropriate) found in each protein structure under consideration. A parameter calculated by our algorithm using a novel, kurtosis-based criterion, the epsilon-value, is a measure of precision of the superimposition that complements the RMSD. In addition, we compare our algorithm with previously described algorithms for determining core atom sets. The methods presented in this paper for biomolecular structure superimposition are quite general, and have application in many areas of structural bioinformatics and structural biology.

  15. Antigenic regions within the hepatitis C virus envelope 1 and non-structural proteins: identification of an IgG3-restricted recognition site with the envelope 1 protein.

    PubMed Central

    Sällberg, M; Rudén, U; Wahren, B; Magnius, L O

    1993-01-01

    Antibody binding to antigenic regions of hepatitis C virus (HCV) envelope 1 (E1; residues 183-380, E2/non-structural (NS) 1 (residues 380-437), NS1 (residues 643-690), and NS4 (1684-1751) proteins were assayed for 50 sera with antibodies to HCV (anti-HCV) and for 46 sera without anti-HCV. Thirty-four peptides, 18 residues long with an eight-amino acid overlap within each HCV region, were synthesized and tested with all 96 sera. Within the E region 183-380, the major binding site was located to residues 203-220, and was recognized by eight sera. Within the E2/NS1 region 380-437, the peptide covering residues 410-427 was recognized by two sera, and within the NS1 region 643-690, peptides covering residues 663-690 were recognized by four sera. Within the NS4 region 1684-1751, 27 sera were reactive to one or more of the NS4 peptides, and 21 out of these were reactive with peptide 1694-1711. One part of the major binding site could be located to residues 1701-1704, with the sequence Leu-Tyr-Arg-Glu. The IgG1, IgG3 and IgG4 subclasses were reactive with the five antigenic regions of HCV core, residues 1-18, 11-28, 21-38, 51-68 and 101-118. Reactivity to the major envelope site consisted almost exclusively of IgG3, and reactivity to the major site of NS4 consisted only of IgG1. Thus, a non-restricted IgG response to linear HCV-encoded binding sites was found to the core protein, whereas IgG subclass-restricted linear binding sites were found within the E1 protein, and within the NS4 protein. PMID:7680297

  16. Thrombi produced in stagnation point flows have a core-shell structure.

    PubMed

    Herbig, Bradley A; Diamond, Scott L

    2017-12-01

    In regions of flow separation/reattachment within diseased arteries, the local hemodynamics can result in stagnation point flow that provides an atypical environment in atherosclerosis. Impinging flows occur with recirculation eddies distal of coronary stenosis or diseased carotid bifurcations. By perfusing whole blood directly perpendicular to a fibrillar collagen thrombotic surface, a microfluidic device produced a stagnation point flow. Side view visualization of thrombosis in this assay allowed for observation of clot structure and composition at various flow rates and blood biochemistry conditions. For clotting over collagen/tissue factor surfaces, platelet thrombi formed in this device displayed a core-shell architecture with a fibrin-rich, platelet P-selectin-positive core and an outer platelet P-selectin-negative shell. VWF was detected in clots at low and high shear, but when N-acetylcysteine was added to the whole blood, both platelet and VWF deposition were markedly decreased at either low or high flow. To further examine the source of clot stability, 1 mM GPRP was added to prevent fibrin formation while allowing the PAR1/4-cleaving activity of thrombin to progress. The inhibition of fibrin polymerization did not change the overall structure of the clots, demonstrating the stability of these clots without fibrin. Impinging flow microfluidics generate thrombi with a core-shell structure.

  17. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  18. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  19. Re-refinement of the spliceosomal U4 snRNP core-domain structure

    PubMed Central

    Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541

  20. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    PubMed Central

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-01-01

    PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539

  1. Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry

    PubMed

    Jelesarov; Leder; Bosshard

    1996-06-01

    Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.

  2. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  3. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmarkmore » the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.« less

  4. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, L.H.; Calabi, F.; Lefebvre, F.A.

    1987-12-01

    The CD1 human antigens are a family of at least three components, CD1a, CD1b, and CD1c, that are characteristic of the cortical stage of thymocyte maturation. CD1a was originally named HTA1 or T6 and thought to be the human equivalent of mouse Tla. The genes coding for all three have not been identified by transfection into mouse cells. The transfectants express the surface antigens that can then be recognized by the corresponding cluster of monoclonal antibodies used to define the three members of CD1. The full sequence of the genomic DNA is described for all three. The intron-exon structure ofmore » CD1a is deduced by comparison with a near-full-length cDNA clone. Similar structures are proposed for the other two, largely based on sequence homology. An unusually long 5'-untranslated exon (280 bases long) is highly conserved between the three genes, suggesting an important but unknown function. CD1c has a duplicated form of this exon that is thought to be spliced out. The major homology between the three antigens is in the ..beta../sub 2/-microglobulin-binding-domain. The general relatedness to major histocompatibility complex class I and class II molecules is significant but low, with no section of higher homology to mouse Tla.« less

  5. Rational design of protamine nanocapsules as antigen delivery carriers.

    PubMed

    González-Aramundiz, José Vicente; Presas, Elena; Dalmau-Mena, Inmaculada; Martínez-Pulgarín, Susana; Alonso, Covadonga; Escribano, José M; Alonso, María J; Csaba, Noemi Stefánia

    2017-01-10

    Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antibody to hepatitis B core antigen levels in the natural history of chronic hepatitis B: a prospective observational study.

    PubMed

    Jia, Wei; Song, Liu-Wei; Fang, Yu-Qing; Wu, Xiao-Feng; Liu, Dan-Yang; Xu, Chun; Wang, Xiao-Mei; Wang, Wen; Lv, Dong-Xia; Li, Jun; Deng, Yong-Qiong; Wang, Yan; Huo, Na; Yu, Min; Xi, Hong-Li; Liu, Dan; Zhou, Yi-Xing; Wang, Gui-Qiang; Xia, Ning-Shao; Zhang, Ming-Xiang

    2014-12-01

    Previous studies have revealed antibody to hepatitis B core antigen (anti-HBc) levels as a predictor of treatment response in hepatitis B early antigen (HBeAg)-positive chronic hepatitis B (CHB) patients in both interferon and nucleos(t)ide analog therapy cohorts. However, there is no information about anti-HBc levels in the natural history of CHB. This study aimed to define anti-HBc levels of different phases in the natural history of CHB. Two hundred eleven treatment-naive CHB patients were included in the study. They were classified into 4 phases: immune tolerance (IT) phase (n = 39), immune clearance (IC) phase (n = 48), low or no-replicative (LR) phase (n = 55), and HBeAg-negative hepatitis (ENH, n = 69). Fifty patients who were HBsAg negative and anti-HBc positive were also recruited as past HBV infection (PBI) control group. Anti-HBc levels were measured by a newly developed double-sandwich immunoassay. Correlation of anti-HBc levels with alanine aminotransferase (ALT) and other HBV-related markers within each phase was performed. Serum anti-HBc levels were statistically significant between patients in different phases of CHB (P < 0.001). The median anti-HBc levels were: IT (3.17 log 10 IU/mL), IC (4.39 log 10 IU/mL), LR (3.29 log 10 IU/mL), ENH (4.12 log 10 IU/mL), and PBI (0.61 log 10 IU/mL). There existed a strong correlation in IC (r = 0.489, P < 0.001), a poor correlation in ENH (r = 0.275, P = 0.042), and no correlation in patients with ALT reached 5 times upper limit of normal (r = 0.120, P = 0.616). Anti-HBc levels show significant differences during the natural course of CHB. These results may provide some potentially useful insights into hepatitis B pathogenesis and immune activation against hepatitis B virus.

  7. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  8. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  9. Insight into the core-shell structures of Cu-In-S microspheres

    NASA Astrophysics Data System (ADS)

    Wochnik, Angela S.; Frank, Anna; Heinzl, Christoph; Häusler, Jonas; Schneider, Julian; Hoffmann, Ramona; Matich, Sonja; Scheu, Christina

    2013-12-01

    In this study we report about the inner and outer structure of CuInS2 microspheres which might be used e.g. in pastes for simple, low-cost solar cell preparation, as well as in electrodes for light-driven water splitting. The microspheres are synthesized via a mild, template-free solvothermal synthesis route and characterised by electron and focused ion beam microscopy, X-ray diffraction, inductively coupled plasma atomic emission and energy dispersive X-ray spectroscopy. The investigations of cross sections prepared by focused ion beam showed that the spheres consist of compact cores and flaky surface structures. Depending on the reaction time, the core possesses a stoichiometric or Cu-rich chemical composition surrounded by an In-rich shell. The flaky surface always comprises a stoichiometric composition in tetragonal chalcopyrite crystal structure, whereas the other areas additionally show minor contributions of CuS, and CuInS2 in hexagonal wurtzite structure. The presence of different phases can be beneficial for future applications since they offer different absorption behaviour in the visible range.

  10. Antigen Masking During Fixation and Embedding, Dissected

    PubMed Central

    Scalia, Carla Rossana; Boi, Giovanna; Bolognesi, Maddalena Maria; Riva, Lorella; Manzoni, Marco; DeSmedt, Linde; Bosisio, Francesca Maria; Ronchi, Susanna; Leone, Biagio Eugenio; Cattoretti, Giorgio

    2016-01-01

    Antigen masking in routinely processed tissue is a poorly understood process caused by multiple factors. We sought to dissect the effect on antigenicity of each step of processing by using frozen sections as proxies of the whole tissue. An equivalent extent of antigen masking occurs across variable fixation times at room temperature. Most antigens benefit from longer fixation times (>24 hr) for optimal detection after antigen retrieval (AR; for example, Ki-67, bcl-2, ER). The transfer to a graded alcohol series results in an enhanced staining effect, reproduced by treating the sections with detergents, possibly because of a better access of the polymeric immunohistochemical detection system to tissue structures. A second round of masking occurs upon entering the clearing agent, mostly at the paraffin embedding step. This may depend on the non-freezable water removal. AR fully reverses the masking due both to the fixation time and the paraffin embedding. AR itself destroys some epitopes which do not survive routine processing. Processed frozen sections are a tool to investigate fixation and processing requirements for antigens in routine specimens. PMID:27798289

  11. Structural Basis of PP2A Inhibition by Small t Antigen

    PubMed Central

    Cho, Uhn Soo; Morrone, Seamus; Sablina, Anna A; Arroyo, Jason D; Hahn, William C; Xu, Wenqing

    2007-01-01

    The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. PMID:17608567

  12. “Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation

    PubMed Central

    Ruan, Chunlei

    2018-01-01

    “Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. PMID:29659516

  13. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  14. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.

    PubMed

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten

    2015-11-01

    A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .

  15. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells.

    PubMed

    Ito, Masaki; Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: "physical adjuvants" increase the efficacy of antigen presentation by antigen-presenting cells (APC) and "signal adjuvants" induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create "adjuvant-free" antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif's function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens.

  16. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella.

    PubMed

    De Benedetto, G; Alfini, R; Cescutti, P; Caboni, M; Lanzilao, L; Necchi, F; Saul, A; MacLennan, C A; Rondini, S; Micoli, F

    2017-01-11

    Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications. In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS. Copyright © 2016. Published by Elsevier Ltd.

  17. Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen-Manganese Transporter MntC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha

    MntC is a metal-binding protein component of the Mn 2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensionalmore » structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn 2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn 2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn 2 +.« less

  18. On the mineral core of ferritin-like proteins: structural and magnetic characterization

    NASA Astrophysics Data System (ADS)

    García-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M. L.

    2015-12-01

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM

  19. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    NASA Astrophysics Data System (ADS)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  20. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    PubMed

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  1. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    DOE PAGES

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...

    2016-01-06

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less

  2. Using molecular principal axes for structural comparison: determining the tertiary changes of a FAB antibody domain induced by antigenic binding

    PubMed Central

    Silverman, B David

    2007-01-01

    Background Comparison of different protein x-ray structures has previously been made in a number of different ways; for example, by visual examination, by differences in the locations of secondary structures, by explicit superposition of structural elements, e.g. α-carbon atom locations, or by procedures that utilize a common symmetry element or geometrical feature of the structures to be compared. Results A new approach is applied to determine the structural changes that an antibody protein domain experiences upon its interaction with an antigenic target. These changes are determined with the use of two different, however comparable, sets of principal axes that are obtained by diagonalizing the second-order tensors that yield the moments-of-geometry as well as an ellipsoidal characterization of domain shape, prior to and after interaction. Determination of these sets of axes for structural comparison requires no internal symmetry features of the domains, depending solely upon their representation in three-dimensional space. This representation may involve atomic, Cα, or residue centroid coordinates. The present analysis utilizes residue centroids. When the structural changes are minimal, the principal axes of the domains, prior to and after interaction, are essentially comparable and consequently may be used for structural comparison. When the differences of the axes cannot be neglected, but are nevertheless slight, a smaller relatively invariant substructure of the domains may be utilized for comparison. The procedure yields two distance metrics for structural comparison. First, the displacements of the residue centroids due to antigenic binding, referenced to the ellipsoidal principal axes, are noted. Second, changes in the ellipsoidal distances with respect to the non-interacting structure provide a direct measure of the spatial displacements of the residue centroids, towards either the interior or exterior of the domain. Conclusion With use of x-ray data

  3. Update to core reporting practices in structural equation modeling.

    PubMed

    Schreiber, James B

    This paper is a technical update to "Core Reporting Practices in Structural Equation Modeling." 1 As such, the content covered in this paper includes, sample size, missing data, specification and identification of models, estimation method choices, fit and residual concerns, nested, alternative, and equivalent models, and unique issues within the SEM family of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine

    PubMed Central

    Li, Bo; Siuta, Michael; Bright, Vanessa; Koktysh, Dmitry; Matlock, Brittany K; Dumas, Megan E; Zhu, Meiying; Holt, Alex; Stec, Donald; Deng, Shenglou; Savage, Paul B; Joyce, Sebastian; Pham, Wellington

    2016-01-01

    The present study investigated the immunoenhancing property of our newly designed nanovaccine, that is, its ability to induce antigen-specific immunity. This study also evaluated the synergistic effect of a novel compound PBS-44, an α-galactosylceramide analog, in boosting the immune response induced by our nanovaccine. The nanovaccine was prepared by encapsulating ovalbumin (ova) and an adjuvant within the poly(lactic-co-glycolic acid) nanoparticles. Quantitative analysis of our study data showed that the encapsulated vaccine was physically and biologically stable; the core content of our nanovaccine was found to be released steadily and slowly, and nearly 90% of the core content was slowly released over the course of 25 days. The in vivo immunization studies exhibited that the nanovaccine induced stronger and longer immune responses compared to its soluble counterpart. Similarly, intranasal inhalation of the nanovaccine induced more robust antigen-specific CD8+ T cell response than intraperitoneal injection of nanovaccine. PMID:27895483

  5. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures

    DOE PAGES

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...

    2016-12-14

    Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less

  6. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen

    Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less

  7. Low Cost Large Core Vehicle Structures Assessment

    NASA Technical Reports Server (NTRS)

    Hahn, Steven E.

    1998-01-01

    Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy payloads into low earth orbit for missions such as a manned mission to Mars, a Next Generation Space Telescope, a lunar-based telescope, the Air Force's proposed space based laser, and large commercial satellites. In this study, structural concepts with the potential to reduce fabrication costs were evaluated in application to the Magnum Launch Vehicle (MLV) and the Liquid Fly Back Booster (LFBB) shuttle upgrade program. Seventeen concepts were qualitatively evaluated to select four concepts for more in-depth study. The four structural concepts selected were: an aluminum-lithium monocoque structure, an aluminum-lithium machined isogrid structure, a unitized composite sandwich structure, and a unitized composite grid structure. These were compared against a baseline concept based on the Space Shuttle External Tank (ET) construction. It was found that unitized composite structures offer significant cost and weight benefits to MLV structures. The limited study of application to LFBB structures indicated lower, but still significant benefits. Technology and facilities development roadmaps to prepare the approaches studied for application to MLV and LFBB were constructed. It was found that the cost and schedule to develop these approaches were in line with both MLV and LFBB development schedules. Current Government and Boeing programs which address elements of the development of the technologies identified are underway. It is recommended that NASA devote resources in a timely fashion to address the specific elements related to MLV and LFBB structures.

  8. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  9. Velocity and Attenuation Structure of the Earth's Inner Core Boundary From Semi-Automatic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Jin, J.; Song, X.; Sun, D.; Helmberger, D. V.

    2013-12-01

    The structure of the Earth's inner core boundary (ICB) is complex. Hemispherical differences and local variations of velocity and attenuation structures, as well as the ICB topography have been reported in previous studies. We are using an automatic waveform modeling method to improve the resolution of the ICB structures. The full waveforms of triplicated PKP phases at distance ranges from 120 to 165 degrees are used to model the lowermost 200 km of the outer core and the uppermost 600km of the inner core. Given a 1D velocity and attenuation model, synthetic seismograms are generated by Generalized Ray Theory. We are also experimenting 2D synthetic methods (WKM, AXISEM, and 2D FD) for 2D models (in the mantle and the inner core). The source time function is determined by observed seismic data. We use neighborhood algorithm to search for a group of models that minimize the misfit between predictions and observations. Tests on synthetic data show the efficiency of this method in resolving detailed velocity and attenuation structures of the ICB simultaneously. We are analyzing seismic record sections at dense arrays along different paths and will report our modeling and inversion results in the meeting.

  10. The multifunctional wound dressing with core-shell structured fibers prepared by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Qilin; Xu, Feiyang; Xu, Xingjian; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-06-01

    The non-woven wound dressing with core-shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber's core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag-NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber's core-shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing's clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing's anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

  11. One-Seeded Fruits in the Core Caryophyllales: Their Origin and Structural Diversity

    PubMed Central

    Sukhorukov, Alexander P.; Mavrodiev, Evgeny V.; Struwig, Madeleen; Nilova, Maya V.; Dzhalilova, Khalima Kh.; Balandin, Sergey A.; Erst, Andrey; Krinitsyna, Anastasiya A.

    2015-01-01

    The core Caryophyllales consist of approximately 30 families (12 000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the ‘Earlier Diverging’ clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted. PMID:25710481

  12. Immunity to tumour antigens.

    PubMed

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  13. Core structure of two-dimensional Fermi gas vortices in the BEC-BCS crossover region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madeira, Lucas; Gandolfi, Stefano; Schmidt, Kevin E.

    2017-05-02

    We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure properties behave over the BEC-BCS crossover. We calculate the vortex excitation energy, density pro les, and vortex core properties related to the current. We nd a density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit. Size-effect dependencies in the disk geometry were carefully studied.

  14. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  15. Antigenic structure of soluble herpes simplex virus (HSV) glycoprotein D correlates with inhibition of HSV infection.

    PubMed Central

    Nicola, A V; Peng, C; Lou, H; Cohen, G H; Eisenberg, R J

    1997-01-01

    Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus. PMID:9060653

  16. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells

    PubMed Central

    Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: “physical adjuvants” increase the efficacy of antigen presentation by antigen-presenting cells (APC) and “signal adjuvants” induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create “adjuvant-free” antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif’s function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens. PMID:29190754

  17. Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers.

    PubMed

    Qin, Qian; Yin, Zhaojun; Wu, Xuanjun; Haas, Karen M; Huang, Xuefei

    2016-09-01

    For successful carbohydrate based anti-cancer vaccines, it is critical that B cells are activated to secret antibodies targeting the tumor associated carbohydrate antigens (TACAs). Despite the availability of many TACA based constructs, systematic understanding of the effects of structural features on anti-glycan antibody responses is lacking. In this study, a series of defined synthetic glyco-polymers bearing a representative TACA, i.e., the Thomsen-nouveau (Tn) antigen, have been prepared to probe the induction of early B cell activation and antibody production via a T cell independent mechanism. Valency and density of the antigen in the polymers turned out to be critical. An average of greater than 6 Tn per chain was needed to induce antibody production. Glycopolymers with 40 antigens per chain and backbone molecular weight of 450 kDa gave the strongest stimulation to B cells in vitro, which correlated well with its in vivo activity. Deviations from the desired valency and density led to decreased antibody production or even antigen specific B cell non-responsiveness. These findings provide important insights on how to modulate anti-TACA immune responses facilitating the development of TACA based anti-cancer vaccines using glycopolymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens.

    PubMed

    Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J; Blanchard, Helen

    2015-09-01

    Human galectin-4 is a lectin that is expressed mainly in the gastrointestinal tract and exhibits metastasis-promoting roles in some cancers. Its tandem-repeat nature exhibits two distinct carbohydrate recognition domains allowing crosslinking by simultaneous binding to sulfated and non-sulfated (but not sialylated) glycosphingolipids and glycoproteins, facilitating stabilization of lipid rafts. Critically, galectin-4 exerts favourable or unfavourable effects depending upon the cancer. Here we report the first X-ray crystallographic structural information on human galectin-4, specifically the C-terminal carbohydrate recognition domain of human (galectin-4C) in complex with lactose, lactose-3'-sulfate, 2'-fucosyllactose, lacto-N-tetraose and lacto-N-neotetraose. These structures enable elucidation of galectin-4C binding fine-specificity towards sulfated and non-sulfated lacto- and neolacto-series sphingolipids as well as to human blood group antigens. Analysis of the lactose-3'-sulfate complex structure shows that galectin-4C does not recognize the sulfate group using any specific amino acid, but binds the ligand nonetheless. Complex structures with lacto-N-tetraose and lacto-N-neotetraose displayed differences in binding interactions exhibited by the non-reducing-end galactose. That of lacto-N-tetraose points outward from the protein surface whereas that of lacto-N-neotetraose interacts directly with the protein. Recognition patterns of human galectin-4C towards lacto- and neolacto-series glycosphingolipids are similar to those of human galectin-3; however, detailed scrutiny revealed differences stemming from the extended binding site that offer distinction in ligand profiles of these two galectins. Structural characterization of the complex with 2'-fucosyllactose, a carbohydrate with similarity to the H antigen, and molecular dynamics studies highlight structural features that allow specific recognition of A and B antigens, whilst a lack of interaction with the 2

  19. Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas

    2013-06-01

    Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.

  20. Covalent binding of C3b to tetanus toxin: influence on uptake/internalization of antigen by antigen-specific and non-specific B cells.

    PubMed Central

    Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G

    1996-01-01

    Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046

  1. Databases of Conformations and NMR Structures of Glycan Determinants.

    PubMed

    Sarkar, Anita; Drouillard, Sophie; Rivet, Alain; Perez, Serge

    2015-12-01

    The present study reports a comprehensive nuclear magnetic resonance (NMR) characterization and a systematic conformational sampling of the conformational preferences of 170 glycan moieties of glycosphingolipids as produced in large-scale quantities by bacterial fermentation. These glycans span across a variety of families including the blood group antigens (A, B and O), core structures (Types 1, 2 and 4), fucosylated oligosaccharides (core and lacto-series), sialylated oligosaccharides (Types 1 and 2), Lewis antigens, GPI-anchors and globosides. A complementary set of about 100 glycan determinants occurring in glycoproteins and glycosaminoglycans has also been structurally characterized using molecular mechanics-based computation. The experimental and computational data generated are organized in two relational databases that can be queried by the user through a user-friendly search engine. The NMR ((1)H and (13)C, COSY, TOCSY, HMQC, HMBC correlation) spectra and 3D structures are available for visualization and download in commonly used structure formats. Emphasis has been given to the use of a common nomenclature for the structural encoding of the carbohydrates and each glycan molecule is described by four different types of representations in order to cope with the different usages in chemistry and biology. These web-based databases were developed with non-proprietary software and are open access for the scientific community available at http://glyco3d.cermav.cnrs.fr. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  3. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    PubMed

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen

    PubMed Central

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S.; Wrapp, Daniel; Kirchdoerfer, Robert N.; Turner, Hannah L.; Cottrell, Christopher A.; Becker, Michelle M.; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L.; Kettenbach, Arminja N.; Denison, Mark R.; Chappell, James D.; Graham, Barney S.; Ward, Andrew B.

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines. PMID:28807998

  5. Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.

    PubMed

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G; Couto, Alicia S

    2011-07-22

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.

  6. Structures of MART-1 26/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning aminomore » acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.« less

  7. Structures of MART-126/27–35 Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    PubMed Central

    Borbulevych, Oleg Y.; Insaidoo, Francis K.; Baxter, Tiffany K.; Powell, Daniel J.; Johnson, Laura A.; Restifo, Nicholas P.; Baker, Brian M.

    2007-01-01

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26–35 decamer, although only the 27–35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26–35 and 27–35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-126/27–35-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27–35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone. PMID:17719062

  8. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model.

    PubMed

    Lin, Yi-Jiun; Huang, Li-Rung; Yang, Hung-Chih; Tzeng, Horng-Tay; Hsu, Ping-Ning; Wu, Hui-Lin; Chen, Pei-Jer; Chen, Ding-Shinn

    2010-05-18

    We recently developed a mouse model of hepatitis B virus (HBV) persistence, in which a single i.v. hydrodynamic injection of HBV DNA to C57BL/6 mice allows HBV replication and induces a partial immune response, so that about 20-30% of the mice carry HBV for more than 6 months. The model was used to identify the viral antigen crucial for HBV persistence. We knocked out individual HBV genes by introducing a premature termination codon to the HBV core, HBeAg, HBx, and polymerase ORFs. The specific-gene-deficient HBV mutants were hydrodynamically injected into mice and the HBV profiles of the mice were monitored. About 90% of the mice that received the HBcAg-mutated HBV plasmid exhibited high levels of hepatitis B surface antigenemia and maintained HBsAg expression for more than 6 months after injection. To map the region of HBcAg essential for viral clearance, we constructed a set of serial HBcAg deletion mutants for hydrodynamic injection. We localized the essential region of HBcAg to the carboxyl terminus, specifically to the 10 terminal amino acids (HBcAg176-185). The majority of mice receiving this HBV mutant DNA did not elicit a proper HBcAg-specific IFN-gamma response and expressed HBV virions for 6 months. These results indicate that the immune response triggered in mice by HBcAg during exposure to HBV is important in determining HBV persistence.

  9. The impact of p53 protein core domain structural alteration on ovarian cancer survival.

    PubMed

    Rose, Stephen L; Robertson, Andrew D; Goodheart, Michael J; Smith, Brian J; DeYoung, Barry R; Buller, Richard E

    2003-09-15

    Although survival with a p53 missense mutation is highly variable, p53-null mutation is an independent adverse prognostic factor for advanced stage ovarian cancer. By evaluating ovarian cancer survival based upon a structure function analysis of the p53 protein, we tested the hypothesis that not all missense mutations are equivalent. The p53 gene was sequenced from 267 consecutive ovarian cancers. The effect of individual missense mutations on p53 structure was analyzed using the International Agency for Research on Cancer p53 Mutational Database, which specifies the effects of p53 mutations on p53 core domain structure. Mutations in the p53 core domain were classified as either explained or not explained in structural or functional terms by their predicted effects on protein folding, protein-DNA contacts, or mutation in highly conserved residues. Null mutations were classified by their mechanism of origin. Mutations were sequenced from 125 tumors. Effects of 62 of the 82 missense mutations (76%) could be explained by alterations in the p53 protein. Twenty-three (28%) of the explained mutations occurred in highly conserved regions of the p53 core protein. Twenty-two nonsense point mutations and 21 frameshift null mutations were sequenced. Survival was independent of missense mutation type and mechanism of null mutation. The hypothesis that not all missense mutations are equivalent is, therefore, rejected. Furthermore, p53 core domain structural alteration secondary to missense point mutation is not functionally equivalent to a p53-null mutation. The poor prognosis associated with p53-null mutation is independent of the mutation mechanism.

  10. Short stop mediates axonal compartmentalization of mucin-type core 1 glycans

    PubMed Central

    Kinoshita, Takaaki; Sato, Chikara; Fuwa, Takashi J.; Nishihara, Shoko

    2017-01-01

    T antigen, mucin-type core 1 O-glycan, is highly expressed in the embryonic central nervous system (CNS) and co-localizes with a Drosophila CNS marker, BP102 antigen. BP102 antigen and Derailed, an axon guidance receptor, are localized specifically in the proximal axon segment of isolated primary cultured neurons, and their mobility is restricted at the intra-axonal boundary by a diffusion barrier. However, the preferred trafficking mechanism remains unknown. In this study, the major O-glycan T antigen was found to localize within the proximal compartments of primary cultured Drosophila neurons, whereas the N-glycan HRP antigen was not. Ultrastructural analysis by atmospheric scanning electron microscopy revealed that microtubule bundles cross one another at the intra-axonal boundary, and that T antigens form circular pattern before the boundary. We then identified Short stop (Shot), a crosslinker protein between F-actin and microtubules, as a mediator for the proximal localization of T antigens; null mutation of shot cancelled preferential localization of T antigens. Moreover, F-actin binding domain of Shot was required for their proximal localization. Together, our results allow us to propose a novel trafficking pathway where Shot crosslinks F-actin and microtubules around the intra-axonal boundary, directing T antigen-carrying vesicles toward the proximal plasma membrane. PMID:28150729

  11. Potassium dependent rescue of a myopathy with core-like structures in mouse

    PubMed Central

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-01

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations. DOI: http://dx.doi.org/10.7554/eLife.02923.001 PMID:25564733

  12. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  13. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    PubMed

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2018-01-30

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT.

    PubMed

    Shen, Chuanlai; Xu, Tao; Wu, You; Li, Xiaoe; Xia, Lingzhi; Wang, Wei; Shahzad, Khawar Ali; Zhang, Lei; Wan, Xin; Qiu, Jie

    2017-11-27

    Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin 257-264 -specific CD8 + T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen 18-27 - and surface antigen 183-191 -specific CD8 + T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.

  15. Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.

    PubMed

    Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2013-01-01

    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core

    NASA Astrophysics Data System (ADS)

    Fernández-Soler, P.; Ruiz Arriola, E.

    2017-07-01

    The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.

  17. Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen.

    PubMed

    Kong, Leopold; Lee, David E; Kadam, Rameshwar U; Liu, Tong; Giang, Erick; Nieusma, Travis; Garces, Fernando; Tzarum, Netanel; Woods, Virgil L; Ward, Andrew B; Li, Sheng; Wilson, Ian A; Law, Mansun

    2016-10-24

    Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

  18. Immunochemical characterization of the O antigens of two Proteus strains, O8-related antigen of Proteus mirabilis 12 B-r and O2-related antigen of Proteus genomospecies 5/6 12 B-k, infecting a hospitalized patient in Poland.

    PubMed

    Drzewiecka, Dominika; Shashkov, Alexander S; Arbatsky, Nikolay P; Knirel, Yuriy A

    2016-05-01

    A hospitalized 73-year-old woman was infected with a Proteus mirabilis strain, 12 B-r, isolated from the place of injection of a blood catheter. Another strain, 12 B-k, recognized as Proteus genomospecies 5 or 6, was isolated from the patient's faeces, which was an example of a nosocomial infection rather than an auto-infection. Serological investigation using ELISA and Western blotting showed that strain 12 B-k from faeces belonged to the Proteus O2 serogroup. Strain 12 B-r from the wound displayed cross-reactions with several Proteus O serogroups due to common epitopes on the core or O-specific parts of the lipopolysaccharide. Studies of the isolated 12 B-r O-specific polysaccharide by NMR spectroscopy revealed its close structural similarity to that of Proteus O8. The only difference in 12 B-r was the presence of an additional GlcNAc-linked phosphoethanolamine residue, which creates a putative epitope responsible for the cross-reactivity with Pt. mirabilis O16. The new O-antigen form could appear as a result of adaptation of the bacterium to a changing environment. On the basis of the data obtained, we suggest division of the O8 serogroup into two subgroups: O8a for strains of various Proteus species that have been previously classified into the O8 serogroup, and O8a,b for Pt. mirabilis 12 B-r, where 'a' is a common epitope and 'b' is a phosphoethanolamine-associated epitope. These findings further confirm serological and structural heterogeneity of O antigens of Proteus strains isolated lately from patients in Poland.

  19. Cellular immune responses in patients with hepatitis B surface antigen seroclearance induced by antiviral therapy

    PubMed Central

    2011-01-01

    Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg) seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg) and envelope (rHBsAg) proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS) assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P < 0.001) and S peptide pool (P = 0.001) respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033) and CD8+ (P = 0.040) T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects. PMID:21320337

  20. THE BIOLOGICAL ACTIVITY OF SOLUBLE ANTIGEN-ANTIBODY COMPLEXES

    PubMed Central

    Ishizaka, Kimishige; Ishizaka, Teruko; Campbell, Dan H.

    1959-01-01

    Soluble BSA-anti-BSA complexes, formed in antigen excess, give immediate skin reactions in normal guinea pigs. The mechanism of the reaction is not that of passive or reversed passive anaphylaxis. The complex itself is toxic. Skin activity of the complex depends on its composition. It has become obvious that the complex composed of two antigen molecules and one antibody molecule, (Ag2Ab), does not have the activity, whereas, Ag3Ab2 and more complicated complexes do. The role of complement as well as speculation on the structural changes of antibody-antigen complexes is presented. PMID:13620844

  1. The three-dimensional structure of a T-cell antigen receptor V alpha V beta heterodimer reveals a novel arrangement of the V beta domain.

    PubMed Central

    Housset, D; Mazza, G; Grégoire, C; Piras, C; Malissen, B; Fontecilla-Camps, J C

    1997-01-01

    The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand. PMID:9250664

  2. Ovarian tumor antigens.

    PubMed

    Bhattacharya, M; Barlow, J J

    1978-09-01

    Evidence has been reported for at least two common tumor-associated antigens, or antigenic determinants, in human cystadenocarcinomas of the ovary that are apparently absent in tissues of normal reproductive organs. These antigenic determinants are immunologically distinct from carcinoembryonic antigen, alpha-fetoprotein, ferritins and histocompatibility antigens. One of these two ovarian cystadenocarcinoma-associated antigens (OCAA) is not detectable in any ovarian carcinomas except serous or mucinous types, other gynecologic or nongynecologic malignancies thus far tested, while the second antigen is present in about 90% of all gynecologic tumors and occasionally in breast and colon tumors. OCAA has been purified and partially characterized. It is a high molecular weight glycoprotein which carries the unique ovarian tumor-specific antigenic determinant along with some normal cross-reacting determinants. High levels of this glycoprotein antigen have been detected in the sera of ovarian cancer patients with advanced disease by the radioimmunoassay inhibition technique. The serial determination of circulating OCAA appeared to correlate with tumor volume as well as the clinical status of the patients.

  3. [Interaction of chaotropically modified immunoglobulins with protein and glicolipid antigens].

    PubMed

    Gordienko, A I; Khimich, N V

    2006-01-01

    The features of interaction of native and chaotropically modified immunoglobulins with proteins (ovalbumin) and glicolipids (lipopolysaccharides, LPS) enterobacteria Escherichia coli K235, Salmonella minnesota and Salmonella enteritidis have been investigated. It has been established, that after processing of native antibodies with 3.5 M KSCN their ability to contact to the specified antigenes repeatedly grows. Besides the intensity of interaction of modified immunoglobulins with the mentioned above antigenes was various, that is determined by the presence of structural distinctions between antigen determinants of proteins and glycolipid antigens, and also between O-polysaccharide chains of LPS in different species of enterobacteria.

  4. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  5. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  6. Serum HBV core-related antigen is a good predictor for spontaneous HBeAg seroconversion in chronic hepatitis B patients.

    PubMed

    Song, Guangjun; Yang, Ruifeng; Rao, Huiying; Feng, Bo; Ma, Hui; Jin, Qian; Wei, Lai

    2017-03-01

    Early prediction of spontaneous hepatitis B virus e antigen (HBeAg) seroconversion is pivotal in the prevention of unnecessary drug prescription, corresponding financial burden, and adverse reactions. One hundred and thirteen chronic hepatitis B patients with HBeAg-positive in the immune active phase were followed up for about 1.5 years. Patients were classified into two groups: spontaneous HBeAg seroconversion group (group A, n = 18) and non-spontaneous HBeAg seroconversion group. Among the non-spontaneous HBeAg seroconversion group, 35 patients were selected as controls (group B, n = 35). At week 12, there was a significant difference in hepatitis B core-related antigen (HBcrAg) levels between the two groups (group A 4.32 ± 1.05 log 10  kU/ml, and group B 5.16 ± 0.53 log 10  kU/ml, P = 0.004), and this significance magnified at week 28. Only two variables, HBcrAg level and the reduction in the HBcrAg levels (ΔHBcrAg) at week 28 were enrolled, with the odds ratio of 4.19 and 0.21, respectively. The optimal cutoffs of HBcrAg levels and the ΔHBcrAg at week 28 were 4.90 and 2.00 log 10  kU/ml, respectively. The positive predictive value and negative predictive value of HBcrAg levels at week 28 were 73.9% and 96.7%, respectively. The positive predictive value and negative predictive value of the ΔHBcrAg at week 28 were 76.2% and 93.8%, respectively. The measurement of HBcrAg is useful for monitoring the natural course of chronic hepatitis B virus infection. The dynamics of HBcrAg levels could accurately predict the spontaneous HBeAg seroconversion. J. Med. Virol. 89:463-468, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Coaxial Electrospinning and Characterization of Core-Shell Structured Cellulose Nanocrystal Reinforced PMMA/PAN Composite Fibers

    PubMed Central

    Li, Chao; Li, Qingde; Ni, Xiaohui; Liu, Guoxiang; Cheng, Wanli; Han, Guangping

    2017-01-01

    A modified coaxial electrospinning process was used to prepare composite nanofibrous mats from a poly(methyl methacrylate) (PMMA) solution with the addition of different cellulose nanocrystals (CNCs) as the sheath fluid and polyacrylonitrile (PAN) solution as the core fluid. This study investigated the conductivity of the as-spun solutions that increased significantly with increasing CNCs addition, which favors forming uniform fibers. This study discussed the effect of different CNCs addition on the morphology, thermal behavior, and the multilevel structure of the coaxial electrospun PMMA + CNCs/PAN composite nanofibers. A morphology analysis of the nanofibrous mats clearly demonstrated that the CNCs facilitated the production of the composite nanofibers with a core-shell structure. The diameter of the composite nanofibers decreased and the uniformity increased with increasing CNCs concentrations in the shell fluid. The composite nanofibrous mats had the maximum thermal decomposition temperature that was substantially higher than electrospun pure PMMA, PAN, as well as the core-shell PMMA/PAN nanocomposite. The BET (Brunauer, Emmett and Teller) formula results showed that the specific surface area of the CNCs reinforced core-shell composite significantly increased with increasing CNCs content. The specific surface area of the composite with 20% CNCs loading rose to 9.62 m2/g from 3.76 m2/g for the control. A dense porous structure was formed on the surface of the electrospun core-shell fibers. PMID:28772933

  8. [Research advances of genomic GYP coding MNS blood group antigens].

    PubMed

    Liu, Chang-Li; Zhao, Wei-Jun

    2012-02-01

    The MNS blood group system includes more than 40 antigens, and the M, N, S and s antigens are the most significant ones in the system. The antigenic determinants of M and N antigens lie on the top of GPA on the surface of red blood cells, while the antigenic determinants of S and s antigens lie on the top of GPB on the surface of red blood cells. The GYPA gene coding GPA and the GYPB gene coding GPB locate at the longarm of chromosome 4 and display 95% homologus sequence, meanwhile both genes locate closely to GYPE gene that did not express product. These three genes formed "GYPA-GYPB-GYPE" structure called GYP genome. This review focuses on the molecular basis of genomic GYP and the variety of GYP genome in the expression of diversity MNS blood group antigens. The molecular basis of Miltenberger hybrid glycophorin polymorphism is specifically expounded.

  9. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    PubMed Central

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  10. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  11. Structure and function of three novel MHC class I antigens derived from a C3H ultraviolet-induced fibrosarcoma

    PubMed Central

    1986-01-01

    The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences. PMID:3489061

  12. Fragmentation of Massive Dense Cores Down to <~ 1000 AU: Relation between Fragmentation and Density Structure

    NASA Astrophysics Data System (ADS)

    Palau, Aina; Estalella, Robert; Girart, Josep M.; Fuente, Asunción; Fontani, Francesco; Commerçon, Benoit; Busquet, Gemma; Bontemps, Sylvain; Sánchez-Monge, Álvaro; Zapata, Luis A.; Zhang, Qizhou; Hennebelle, Patrick; di Francesco, James

    2014-04-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.

  13. Antigenic Properties of the HIV Envelope on Virions in Solution

    PubMed Central

    Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.

    2014-01-01

    The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318

  14. High-sensitivity O-glycomic analysis of mice deficient in core 2 β1,6-N-acetylglucosaminyltransferases

    PubMed Central

    Ismail, Mohd Nazri; Stone, Erica L; Panico, Maria; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Ho, Samuel B; Fukuda, Minoru; Marth, Jamey D; Haslam, Stuart M; Dell, Anne

    2011-01-01

    Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1–3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids. PMID:20855471

  15. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    PubMed

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  16. Structural Analysis and Involvement in Plant Innate Immunity of Xanthomonas axonopodis pv. citri Lipopolysaccharide*

    PubMed Central

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G.; Couto, Alicia S.

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response. PMID:21596742

  17. Multiple Experimental Efforts to Understand the Structure and Dynamics of Earth's Core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Han, L.; Bennett, N.; Hou, M.; Kuwayama, Y.; Huang, H.

    2014-12-01

    It requires integration of data from different types of high-pressure experiments to understand the structure and dynamics of Earth's core. In particular, measurements of physical properties and element partitioning in systems relevant to the core provide complementary data to narrow down the range of possible core compositions. We have performed both static and dynamic compression experiments and combined results from these with literature data to establish a reliable thermal equation of state of iron. This allows us to precisely determine the density deficit in the solid inner core. The combination of density and sound velocity measurements for both solid and liquid iron and its alloys provide tight constraints on the density deficit in the liquid outer core and the amount of sulphur required to match the geophysical observations. We then conducted element-partitioning experiments between solid and liquid iron in both multi-anvil apparatus and the laser-heated diamond-anvil cell to determine the sulphur, silicon, and oxygen partitioning between the liquid outer core and solid inner core. We present newly developed high-pressure experimental and nano-scale analytical techniques that allow us to simulate the conditions of the inner core boundary (ICB) and analyze the chemical compositions of coexisting phases in the recovered samples. We have established protocols to obtain high-quality partitioning data in the laser-heating diamond-anvil cell combined with FIB/SEM crossbeam technology. The partitioning data obtained up to at least 200 GPa provide additional criteria to explain the observed density and velocity jumps at the ICB.

  18. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    PubMed

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of Monoclonal Antibodies to Lipopolysaccharide for Antigenic Analysis of Coxiella burnetii

    PubMed Central

    Hotta, Akitoyo; Kawamura, Midori; To, Ho; Andoh, Masako; Yamaguchi, Tsuyoshi; Fukushi, Hideto; Amano, Ken-Ichi; Hirai, Katsuya

    2003-01-01

    Antigenic differences among Coxiella burnetii strains were analyzed. The monoclonal antibodies against the lipopolysaccharide outer core did not react with the strains containing a QpRS plasmid or with plasmidless strains, whereas they reacted with strains containing a QpH1 or QpDV plasmid. C. burnetii isolates could be divided into two groups immunologically. PMID:12682176

  20. Using seismic reflection data to reveal high-resolution structure and pathway of the upper Western Boundary Undercurrent core at Eirik Drift

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele

    2015-12-01

    The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.

  1. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, Richard M.

    1997-01-01

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.

  2. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, R.M.

    1997-07-15

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.

  3. Seismic velocity and attenuation structures at the top 400 km of the inner core

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient

  4. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.

    PubMed

    Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki

    2014-08-12

    Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.

  5. Glycan analysis of Fonsecaea monophora from clinical and environmental origins reveals different structural profile and human antigenic response

    PubMed Central

    Burjack, Juliana R.; Santana-Filho, Arquimedes P.; Ruthes, Andrea C.; Riter, Daniel S.; Vicente, Vania A.; Alvarenga, Larissa M.; Sassaki, Guilherme L.

    2014-01-01

    Dematiaceous fungi constitute a large and heterogeneous group, characterized by having a dark pigment, the dihydroxynaftalen melanin—DHN, inside their cell walls. In nature they are found mainly as soil microbiota or decomposing organic matter, and are spread in tropical and subtropical regions. The fungus Fonsecaea monophora causes chromoblastomycosis in humans, and possesses essential mechanisms that may enhance pathogenicity, proliferation and dissemination inside the host. Glycoconjugates confer important properties to these pathogenic microorganisms. In this work, structural characterization of glycan structures present in two different strains of F. monophora MMHC82 and FE5p4, from clinical and environmental origins, respectively, was performed. Each one were grown on Minimal Medium (MM) and Czapeck-Dox (CD) medium, and the water soluble cell wall glycoconjugates and exopolysaccharides (EPS) were evaluated by NMR, methylation and principal component analysis (PCA). By combining the methylation and 2D NMR analyses, it was possible to visualize the glycosidic profiles of the complex carbohydrate mixtures. Significant differences were observed in β-D-Galf-(1→5) and (1→6) linkages, α- and β-D-Glcp-(1→3), (1→4), and (1→6) units, as well as in α-D-Manp. PCA from 1H-NMR data showed that MMHC82 from CD medium showed a higher variation in the cell wall carbohydrates, mainly related to O-2 substituted β-D-Galf (δ 106.0/5.23 and δ 105.3/5.23) units. In order to investigate the antigenic response of the glycoconjugates, these were screened against serum from chromoblastomycosis patients. The antigen which contained the cell wall of MMHC82 grown in MM had β-D-Manp units that promoted higher antigenic response. The distribution of these fungal species in nature and the knowledge of how cell wall polysaccharides and glycoconjugates structure vary, may contribute to the better understanding and the elucidation of the pathology caused by this fungus. PMID

  6. A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.

    PubMed

    Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang

    2011-12-01

    Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.

  7. GrowYourIC: A Step Toward a Coherent Model of the Earth's Inner Core Seismic Structure

    NASA Astrophysics Data System (ADS)

    Lasbleis, Marine; Waszek, Lauren; Day, Elizabeth A.

    2017-11-01

    A complex inner core structure has been well established from seismic studies, showing radial and lateral heterogeneities at various length scales. Yet no geodynamic model is able to explain all the features observed. One of the main limits for this is the lack of tools to compare seismic observations and numerical models successfully. We use here a new Python tool called GrowYourIC to compare models of inner core structure. We calculate properties of geodynamic models of the inner core along seismic raypaths, for random or user-specified data sets. We test kinematic models which simulate fast lateral translation, superrotation, and differential growth. We explore first the influence on a real inner core data set, which has a sparse coverage of the inner core boundary. Such a data set is however able to successfully constrain the hemispherical boundaries due to a good sampling of latitudes. Combining translation and rotation could explain some of the features of the boundaries separating the inner core hemispheres. The depth shift of the boundaries, observed by some authors, seems unlikely to be modeled by a fast translation but could be produced by slow translation associated with superrotation.

  8. Validation of a coupled core-transport, pedestal-structure, current-profile and equilibrium model

    NASA Astrophysics Data System (ADS)

    Meneghini, O.

    2015-11-01

    The first workflow capable of predicting the self-consistent solution to the coupled core-transport, pedestal structure, and equilibrium problems from first-principles and its experimental tests are presented. Validation with DIII-D discharges in high confinement regimes shows that the workflow is capable of robustly predicting the kinetic profiles from on axis to the separatrix and matching the experimental measurements to within their uncertainty, with no prior knowledge of the pedestal height nor of any measurement of the temperature or pressure. Self-consistent coupling has proven to be essential to match the experimental results, and capture the non-linear physics that governs the core and pedestal solutions. In particular, clear stabilization of the pedestal peeling ballooning instabilities by the global Shafranov shift and destabilization by additional edge bootstrap current, and subsequent effect on the core plasma profiles, have been clearly observed and documented. In our model, self-consistency is achieved by iterating between the TGYRO core transport solver (with NEO and TGLF for neoclassical and turbulent flux), and the pedestal structure predicted by the EPED model. A self-consistent equilibrium is calculated by EFIT, while the ONETWO transport package evolves the current profile and calculates the particle and energy sources. The capabilities of such workflow are shown to be critical for the design of future experiments such as ITER and FNSF, which operate in a regime where the equilibrium, the pedestal, and the core transport problems are strongly coupled, and for which none of these quantities can be assumed to be known. Self-consistent core-pedestal predictions for ITER, as well as initial optimizations, will be presented. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0012652.

  9. The structure of melting mushy zones, with implications for Earth's inner core (Invited)

    NASA Astrophysics Data System (ADS)

    Bergman, M. I.; Huguet, L.; Alboussiere, T.

    2013-12-01

    Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting

  10. HCV Core Antigen Testing for Diagnosis of HCV Infection: A systematic review and meta-analysis

    PubMed Central

    Freiman, J. Morgan; Tran, Trang M.; Schumacher, Samuel G; White, Laura F.; Ongarello, Stefano; Cohn, Jennifer; Easterbrook, Philippa J.; Linas, Benjamin P.; Denkinger, Claudia M.

    2017-01-01

    Background Diagnosis of chronic Hepatitis C Virus (HCV) infection requires both a positive HCV antibody screen and confirmatory nucleic acid test (NAT). HCV core antigen (HCVcAg) is a potential alternative to NAT. Purpose This systematic review evaluated the accuracy of diagnosis of active HCV infection among adults and children for five HCVcAg tests compared to NAT. Data Sources EMBASE, PubMed, Web of Science, Scopus, and Cochrane from 1990 through March 31, 2016. Study Selection Cohort, cross-sectional, and randomized controlled trials were included without language restriction Data Extraction Two independent reviewers extracted data and assessed quality using an adapted Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Data Synthesis 44 studies evaluated 5 index tests. Studies for the ARCHITECT had the highest quality, while those for Ortho ELISA were the lowest. From bivariate analyses, the sensitivity and specificity with 95% CI were: ARCHITECT 93.4% (90.1, 96.4) and 98.8% (97.4, 99.5), Ortho ELISA 93.2% (81.6, 97.7) and 99.2% (87.9, 100), and Hunan Jynda 59.5% (46.0, 71.7) and 82.9% (58.6, 94.3). Insufficient data were available for a meta-analysis for Lumipulse and Lumispot. In three quantitative studies using ARCHITECT, HCVcAg correlated closely with HCV RNA above 3000 IU/mL. Limitations There was insufficient data on covariates such as HIV or HBV status for sub-group analyses. Few studies reported genotypes of isolates and there were scant data for genotypes 4, 5, and 6. Most studies were conducted in high resource settings within reference laboratories. Conclusions HCVcAg assays with signal amplification have high sensitivity, high specificity, and good correlation with HCV RNA above 3000 IU/mL. HCVcAg assays have the potential to replace NAT in high HCV prevalence settings. PMID:27322622

  11. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.

    PubMed

    Tsuchiya, Yuko; Mizuguchi, Kenji

    2016-04-01

    Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.

  12. Extremely high energy hadron and gamma-ray families(3). Core structure of the halo of superfamily

    NASA Technical Reports Server (NTRS)

    Yamashita, S.; Ohsawa, A.; Chinellato, J. A.; Shibuya, E. H.

    1985-01-01

    The study of the core structure seen in the halo of Mini-Andromeda 3(M.A.3), which was observed in the Chacaltaya emulsion chamber, is presented. On the assumption that lateral distribution of darkness of the core is exponential type, i.e., D=D0exp(-R/r0), subtraction of D from halo darkness is performed until the cores are gone. The same quantity on cores obtained by this way are summarized. The analysis is preliminary and is going to be developed.

  13. Glioma antigen.

    PubMed

    Toda, Masahiro

    2012-01-01

    Because several antigenic peptides of human tumors that are recognized by T-lymphocytes have been identified, immune responses against cancer can now be artificially manipulated. Furthermore, since T-lymphocytes have been found to play an important role in the rejection of tumors by the host and also to have antigen-specific proliferative potentials and memory mechanisms, T-lymphocytes are thought to play a central role in cancer vaccination. Although multidisciplinary therapies have been attempted for the treatment of gliomas, the results remain unsatisfactory. For the development of new therapies against gliomas, it is required to identify tumor antigens as targets for specific immunotherapy. In this chapter, recent progress in research on glioma antigens is described.

  14. Binding of New Methylene Blue to Endotoxins and Its Effects on the Endotoxin Activity Studied By Double Diffusion and Limulus Amebocyte Lysate Assays

    DTIC Science & Technology

    1989-05-30

    bacteria. Its structure (Figure 1-I) contains O-antigen polysaccharide , core polysaccharide and lipid A (Rietschel et al., 1984; Luderitz et al., 1982...The O-antigen polysaccharide is composed of repeating oligosaccharide, specific to the species and the strain of the bacteria; the core polysaccharide ...consists of 11 or less monosaccharide units including three 2-keto-3-deoxyoctonate (KDO), and is more conserved structurally than the O-antigen

  15. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    PubMed

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  16. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites.

    PubMed

    Osinaga, Eduardo

    2007-01-01

    Simple mucin-type O-glycan structures, such as Tn, TF, sialyl-Tn and Tk antigens, are among of the most specific human cancer-associated structures. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. In the last few years several simple mucin-type O-glycan antigens were identified in different species belonging to the main two helminth parasite phyla, and sialyl-Tn bearing glycoproteins were detected in Trypanosoma cruzi. These results are of interest to understand new aspects in parasite glycoimmunology and may help identify new biological characteristics of parasites as well of the host-parasite relationship. Considering that different groups reported a negative correlation between certain parasite infections and cancer development, we could hypothesize that simple mucin-type O-glycosylated antigens obtained from parasites could be good potential targets for cancer immunotherapy.

  17. Structure-based non-canonical amino acid design to covalently crosslink an antibody–antigen complex

    PubMed Central

    Xu, Jianqing; Tack, Drew; Hughes, Randall A.; Ellington, Andrew D.; Gray, Jeffrey J.

    2014-01-01

    Engineering antibodies to utilize non-canonical amino acids (NCAA) should greatly expand the utility of an already important biological reagent. In particular, introducing crosslinking reagents into antibody complementarity determining regions (CDRs) should provide a means to covalently crosslink residues at the antibody–antigen interface. Unfortunately, finding the optimum position for crosslinking two proteins is often a matter of iterative guessing, even when the interface is known in atomic detail. Computer-aided antibody design can potentially greatly restrict the number of variants that must be explored in order to identify successful crosslinking sites. We have therefore used Rosetta to guide the introduction of an oxidizable crosslinking NCAA, l-3,4-dihydroxyphenylalanine (l-DOPA), into the CDRs of the anti-protective antigen scFv antibody M18, and have measured crosslinking to its cognate antigen, domain 4 of the anthrax protective antigen. Computed crosslinking distance, solvent accessibility, and interface energetics were three factors considered that could impact the efficiency of l-DOPA-mediated crosslinking. In the end, 10 variants were synthesized, and crosslinking efficiencies were generally 10% or higher, with the best variant crosslinking to 52% of the available antigen. The results suggest that computational analysis can be used in a pipeline for engineering crosslinking antibodies. The rules learned from l-DOPA crosslinking of antibodies may also be generalizable to the formation of other crosslinked interfaces and complexes. PMID:23680795

  18. Geochemical Comparison of Four Cores from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.

    1996-01-01

    Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately

  19. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile

    USGS Publications Warehouse

    Drees, Kevin P.; Neilson, Julia W.; Betancourt, Julio L.; Quade, Jay; Henderson, David A.; Pryor, Barry M.; Maier, Raina M.

    2006-01-01

    Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70 degrees S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.

  20. Hepatitis B core antigen antibody as an indicator of a low grade carrier state for hepatitis B virus in a Saudi Arabian blood donor population.

    PubMed

    Bernvil, S S; Andrews, V; Kuhns, M C; McNamara, A L

    1997-03-01

    Blood donor screening for anti-hepatitis B core antigen (anti-HBc) was introduced as a surrogate marker of non-A, non-B hepatitis prior to the availability of a specific test for hepatitis C. In areas endemic for hepatitis B virus (HBV), such as Saudi Arabia, earlier studies indicated that up to 30% of blood donors might disqualify if screened for anti-HBc. The issue was readdressed in a study of 6035 consecutive first-time Saudi national blood donors in an attempt to identify a subgroup of anti-HBc positive donors who might be at high risk of being low grade carriers of HBV. An isolated anti-HBc of high titer in a donor with a low or absent anti-hepatitis B surface antigen (anti-HBsAg) was taken as an indicator of increased risk of a low grade carrier state. Using this algorithm, an additional 125 (2%) donors would disqualify. HBsAg immune complex assays and polymerase chain reaction of donor samples with an isolated anti-HBc identified two donors with immune complexes and two donors with HBV DNA. All four donor samples expressed over 90% neutralization in the anti-HBc supplementary testing, indicating high titer anti-HBc. These findings seem to support the suggested policy of donor exclusion based on the anti-HBc and anti-HBsAg serology as a means to eliminate low grade carriers of HBV in endemic areas without jeopardizing the blood supply.

  1. The CD1 family: serving lipid antigens to T cells since the Mesozoic era.

    PubMed

    Zajonc, Dirk M

    2016-08-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).

  2. The CD1 family: serving lipid antigens to T cells since the Mesozoic era

    PubMed Central

    Zajonc, Dirk M.

    2016-01-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414

  3. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    PubMed Central

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  4. Antigenic Determinants of Alpha-Like Proteins of Streptococcus agalactiae

    PubMed Central

    Maeland, Johan A.; Bevanger, Lars; Lyng, Randi Valsoe

    2004-01-01

    The majority of group B streptococcus (GBS) isolates express one or more of a family of surface-anchored proteins that vary by strain and that form ladder-like patterns on Western blotting due to large repeat units. These proteins, which are important as GBS serotype markers and as inducers of protective antibodies, include the alpha C (Cα) and R4 proteins and the recently described alpha-like protein 2 (Alp2), encoded by alp2, and Alp3, encoded by alp3. In this study, we examined antigenic determinants possessed by Alp2 and Alp3 by testing of antibodies raised in rabbits, mainly by using enzyme-linked immunosorbent assays (ELISA) and an ELISA absorption test. The results showed that Alp2 and Alp3 shared an antigenic determinant, which may be a unique immunological marker of the Alp variants of GBS proteins. Alp2, in addition, possessed an antigenic determinant which showed specificity for Alp2 and a third determinant which showed serological cross-reactivity with Cα. Alp3, in addition to the determinant common to Alp2 and Alp3, harbored an antigenic site which also was present in the R4 protein, whereas no Alp3-specific antigenic site was detected. These ELISA-based results were confirmed by Western blotting and a fluorescent-antibody test. The results are consistent with highly complex antigenic structures of the alpha-like proteins in a fashion which is in agreement with the recently described structural mosaicism of the alp2 and alp3 genes. The results are expected to influence GBS serotyping, immunoprotection studies, and GBS vaccine developments. PMID:15539502

  5. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi

    2008-11-07

    The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less

  6. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    PubMed

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  7. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  8. Convection Destroys the Core/Mantle Structure in Hybrid C/O/Ne White Dwarfs

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill

    2017-01-01

    A hybrid C/O/Ne white dwarf (WD)—an unburned C/O core surrounded by an O/Ne/Na mantle—can be formed if the carbon flame is quenched in a super-AGB star or white dwarf merger remnant. We show that this segregated hybrid structure becomes unstable to rapid mixing within 2000 years of the onset of WD cooling. Carbon burning includes a weak reaction that removes electrons, resulting in a lower electron-to-baryon ratio ({Y}{{e}}) in the regions processed by carbon burning compared to the unburned C/O core, making the O/Ne mantle denser than the C/O core as the WD cools. This is unstable to efficient mixing. We use the results of {\\mathtt{MESA}} models with different size C/O cores to quantify the rate at which the cores mix with the mantle as they cool. In all cases, we find that the WDs undergo significant core/mantle mixing on timescales shorter than the time available to grow the WD to the Chandrasekhar mass (MCh) by accretion. As a result, hybrid WDs that reach MCh due to later accretion will have lower central carbon fractions than assumed thus far. We briefly discuss the implications of these results for the possibility of SNe Ia from hybrid WDs.

  9. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  10. Rods and cones contain antigenically distinctive S-antigens.

    PubMed

    Nork, T M; Mangini, N J; Millecchia, L L

    1993-09-01

    S-antigen (48 kDa protein or arrestin) is known to be present in rod photoreceptors. Its localization in cones is less clear with several conflicting reports among various species examined. This study employed three different anti-S-antigen antibodies (a48K, a polyclonal antiserum and two monoclonal antibodies, MAb A9-C6 and MAb 5c6.47) and examined their localization in rods and cones of human and cat retinas. To identify the respective cone types, an enzyme histochemical technique for carbonic anhydrase (CA) was employed to distinguish blue cones (CA-negative) from red or green cones (CA-positive). S-antigen localization was then examined by immunocytochemical staining of adjacent sections. In human retinas, a similar labeling pattern was seen with both a48K and MAb A9-C6, i.e., the rods and blue-sensitive cones were strongly positive, whereas the red- or green-sensitive cones showed little immunoreactivity. All human photoreceptors showed reactivity to MAb 5c6.47. In the cat retina, only CA-positive cones could be found. As in the human retina, both rods and cones of the cat were positive for MAb 5c6.47. A difference from the labeling pattern in human retina was noted for the other S-antigen antibodies; a48K labeled rods and all of the cones, whereas MAb A9-C6 reacted strongly with the rods but showed no cone staining. These results suggest that both rods and cones contain S-antigen but that they are antigenically distinctive.

  11. Coring device with a improved core sleeve and anti-gripping collar with a collective core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, A.L.; Filshtinsky, M.

    1986-01-28

    This patent describes an improved coring apparatus used in combination with a coring bit and drill string. This device consists of: an outer driving structure adapted to be connected at one end to the coring bit for cutting a core in a borehole, and at the other end to the lower end of the drill string in telescoping and co-rotatable manner therewith; an inner barrel disposed within the outer driving structure and including a lower end portion adjacent to the bit; first means supporting the inner barrel in spaced relationship to the outer driving structure while permitting rotation of themore » driving structure with respect to the inner barrel; a woven metal mesh sleeve mounted in surrounding relation on at least a portion of the exterior surface of the inner barrel; second means, connected to a free end of the sleeve opposite the leading portion of the sleeve, for maintaining the portion of the sleeve which surrounds the inner barrel in compression and to maintain an inside diameter greater than the outside diameter of the inner barrel of the portion of the sleeve surrounding the inner barrel while the portion of the sleeve positioned inside the inner barrel being in tension to grip and compress a core received within the sleeve and having an outside diameter less than the inside diameter of the inner barrel when in tension, wherein the second means is also for engaging the core when the means is drawn into the inner barrel, and third means positioned within the inner barrel and connected to the leading portion of the sleeve to draw the sleeve within the inner barrel and to apply tension to the portion of the sleeve within the barrel to encase and grip the core as it is cut.« less

  12. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    PubMed Central

    Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.

    2018-01-01

    The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632

  13. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE PAGES

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...

    2018-04-25

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  14. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  15. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings.

    PubMed

    Hirai, Go; Sodeoka, Mikiko

    2015-05-19

    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  16. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-11-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.

  17. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed Central

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-01-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067

  18. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  19. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  20. Performance characteristics of prostate-specific antigen density and biopsy core details to predict oncological outcome in patients with intermediate to high-risk prostate cancer underwent robot-assisted radical prostatectomy.

    PubMed

    Yashi, Masahiro; Nukui, Akinori; Tokura, Yuumi; Takei, Kohei; Suzuki, Issei; Sakamoto, Kazumasa; Yuki, Hideo; Kambara, Tsunehito; Betsunoh, Hironori; Abe, Hideyuki; Fukabori, Yoshitatsu; Nakazato, Yoshimasa; Kaji, Yasushi; Kamai, Takao

    2017-06-23

    Many urologic surgeons refer to biopsy core details for decision making in cases of localized prostate cancer (PCa) to determine whether an extended resection and/or lymph node dissection should be performed. Furthermore, recent reports emphasize the predictive value of prostate-specific antigen density (PSAD) for further risk stratification, not only for low-risk PCa, but also for intermediate- and high-risk PCa. This study focused on these parameters and compared respective predictive impact on oncologic outcomes in Japanese PCa patients. Two-hundred and fifty patients with intermediate- and high-risk PCa according to the National Comprehensive Cancer Network (NCCN) classification, that underwent robot-assisted radical prostatectomy at a single institution, and with observation periods of longer than 6 months were enrolled. None of the patients received hormonal treatments including antiandrogens, luteinizing hormone-releasing hormone analogues, or 5-alpha reductase inhibitors preoperatively. PSAD and biopsy core details, including the percentage of positive cores and the maximum percentage of cancer extent in each positive core, were analyzed in association with unfavorable pathologic results of prostatectomy specimens, and further with biochemical recurrence. The cut-off values of potential predictive factors were set through receiver-operating characteristic curve analyses. In the entire cohort, a higher PSAD, the percentage of positive cores, and maximum percentage of cancer extent in each positive core were independently associated with advanced tumor stage ≥ pT3 and an increased index tumor volume > 0.718 ml. NCCN classification showed an association with a tumor stage ≥ pT3 and a Gleason score ≥8, and the attribution of biochemical recurrence was also sustained. In each NCCN risk group, these preoperative factors showed various associations with unfavorable pathological results. In the intermediate-risk group, the percentage of positive cores showed

  1. Application of hepatitis B core particles produced by human primary hepatocellular carcinoma (PLC/342) propagated in nude mice to the determination of anti-HBc by passive hemagglutination.

    PubMed

    Miyamoto, K; Itoh, Y; Tsuda, F; Matsui, T; Tanaka, T; Miyamoto, H; Naitoh, S; Imai, M; Usuda, S; Nakamura, T

    1986-05-22

    Human primary hepatocellular carcinoma (PLC/342), carried by nude mice, produces hepatitis B core particles as well as hepatitis B surface antigen particles. Core particles purified form PLC/342 tumors displayed epitopes of hepatitis B core antigen (HBcAg) but not epitopes of hepatitis B e antigen (HBeAg) on their surface, unlike core particles prepared from Dane particles, derived from plasma of asymptomatic carriers, that expressed epitopes of both HBcAg and HBeAg. Core particles obtained from PLC/342 tumors were applied to the determination of antibody to HBcAg (anti-HBc) by passive hemagglutination. The assay detected anti-HBc not only in individuals with persistent infection with hepatitis B virus and in those who had recovered from transient infection, but also in patients with acute type B hepatitis, indicating that it can detect anti-HBc of either IgG or IgM class. A liberal availability of core particles from tumors carried by nude mice, taken together with an easy applicability of the method, would make the passive hemagglutination for anti-HBc a valuable tool in clinical and epidemiological studies, especially in places where sophisticated methods are not feasible.

  2. Seismic Structure in the Vicinity of the Inner Core Boundary beneath northeastern Asia

    NASA Astrophysics Data System (ADS)

    Ibourichene, A. S.; Romanowicz, B. A.

    2016-12-01

    The inner core boundary (ICB) separates the solid inner core from the liquid outer core. The crystallization of iron occurring at this limit induces the expulsion of lighter elements such as H, O, S, Si into the outer core, generating chemically-driven convection, which provides power for the geodynamo. Both the F layer, right above the ICB, and the uppermost inner core, are affected by this process so that their properties provide important constraints for a better understanding of core dynamics and, ultimately, the generation and sustained character of the earth's magnetic field. In this study, we investigate the evolution of model parameters (P-velocity, density and quality factor) with depth in the vicinity of the ICB. For this purpose, we combine observations of two body wave phases sensitive to this region: the PKP(DF) phase refracted in the inner core and the PKiKP reflected on the ICB. Variations in the PKP(DF)/PKiKP amplitude ratio and PKP(DF)-PKiKP differential travel times can be related to structure around the ICB. We use waveform data from earthquakes located in Sumatra and recorded by the dense USArray seismic network, which allows us to sample ICB structure beneath northeastern Asia. Observed waveforms are compared to synthetics computed using the DSM method (e.g., Geller et Takeuchi, 1995) in model AK135 (e.g., Montagner & Kennett, 1996) in order to measure amplitude and travel time anomalies. Previous studies (e.g., Tanaka, 1997 ; Cao and Romanowicz, 2004, Yu and Wen, 2006; Waszek and Deuss, 2011) have observed an hemispherical pattern in the vicinity of the ICB exhibiting a faster and more attenuated eastern hemisphere compared to the western hemisphere. The region studied is located in the eastern hemisphere. We find that, on average, travel time anomalies are consistent with previous studies of the eastern hemisphere, however, amplitude ratios are not. We conduct a parameter search for the 1D model that best fits our data. We also consider

  3. Monoclonal antibodies against simian virus 40 T antigens: evidence for distinct sublcasses of large T antigen and for similarities among nonviral T antigens.

    PubMed Central

    Gurney, E G; Harrison, R O; Fenno, J

    1980-01-01

    We have isolated three clones of hybrid cells which synthesize antibodies specific for determinants on simian virus 40 (SV40) T antigens. Mouse myeloma NS1 cells were fused with spleen cells from mice that had been immunized with SV40-transformed mouse cells. Hybrid cells were selected in HAT medium and cloned in soft agar. We used an enzyme-linked immunosorbent assay for detection and quantification of mouse antibodies against SV40 T antigens. Monoclonal antibodies from 3 of the 24 clones that scored as positive in the enzyme-linked immunosorbent assay were verified by immunoprecipitation to be specific for SV40 T antigens. Two clones (7 and 412) produced antibodies that recognized denaturation-sensitive antigenic determinants unique to large T antigen. Antibodies from clone 7 appeared to have a low affinity for large T antigen. Antibodies from clone 412 had a higher affinity for large T antigen but did not recognize a subclass of large T antigen that was recognized by tumor serum. Antibodies of the third clone, clone 122, recognized a denaturation-stable antigenic determinant of the 53,000-dalton mouse nonviral T antigen in SV40-transformed cells. Antibodies from clone 122 also recognized similar (51,000- to 56,000-dalton) nonviral T antigens in SV40-transormed or lytically infected cells from five mammalian species and in four uninfected mouse lines. From these observations, we have concluded that (i) the 94,000-dalton SV40 large T antigen may exist as immunologically distinguishable subclasses, and (ii) the nonviral T antigens of five mammalian species share at least one antigenic determinant. Images PMID:6155477

  4. HCV core-antigen assay as an alternative to HCV RNA quantification: A correlation study for the assessment of HCV viremia.

    PubMed

    Alonso, Roberto; Pérez-García, Felipe; López-Roa, Paula; Alcalá, Luis; Rodeño, Pilar; Bouza, Emilio

    2018-03-01

    Detection of hepatitis C virus (HCV) RNA and the HCV core antigen assay (HCV-Ag) are reliable techniques for the diagnosis of active and chronic HCV infection. Our aim was to evaluate the HCV-Ag assay as an alternative to quantification of HVC RNA. A comparison was made of the sensitivity and specificity of an HCV-Ag assay (204 serum samples) with those of a PCR assay, and the correlation between the two techniques was determined. The sensitivity and specificity of HCV-Ag was 76.6% and 100%, respectively. Both assays were extremely well correlated (Pearson coefficient=0.951). The formula (LogCV=1.15*LogAg+2.26) was obtained to calculate the viral load by PCR from HCV-Ag values. HCV-Ag was unable to detect viral loads below 5000IU/mL. Although the HCV-Ag assay was less sensitive than the PCR assay, the correlation between both assays was excellent. HCV-Ag can be useful as a first step in the diagnosis of acute or chronic HCV infection and in emergency situations. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    The integration of nanomaterials with biomolecules has recently led to the development of new ways of designing biosensors, and through their assembly, to new hybrid structures for novel and exciting applications. In this work, we develop a coarse-grained model for nanoparticles grafted with antibody molecules and their binding with antigens. In particular, we isolate two possible states for antigen-antibody pairs during the binding process, termed as recognition and anchoring states. Using molecular simulation, we calculate the thermodynamic and structural features of three possible crystal structures or polymorphs, the body-centered cubic, simple cubic, and face-centered cubic phases, and of the melt. This leads us to determine the domain of stability of the three solid phases. In particular, the role played by the switching process between anchoring and recognition states during melting is identified, shedding light on the complex microscopic mechanisms in these systems.

  6. Detection of core-periphery structure in networks based on 3-tuple motifs

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Xiang, Bing-Bing; Chen, Han-Shuang; Small, Michael; Zhang, Hai-Feng

    2018-05-01

    Detecting mesoscale structure, such as community structure, is of vital importance for analyzing complex networks. Recently, a new mesoscale structure, core-periphery (CP) structure, has been identified in many real-world systems. In this paper, we propose an effective algorithm for detecting CP structure based on a 3-tuple motif. In this algorithm, we first define a 3-tuple motif in terms of the patterns of edges as well as the property of nodes, and then a motif adjacency matrix is constructed based on the 3-tuple motif. Finally, the problem is converted to find a cluster that minimizes the smallest motif conductance. Our algorithm works well in different CP structures: including single or multiple CP structure, and local or global CP structures. Results on the synthetic and the empirical networks validate the high performance of our method.

  7. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  8. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less

  9. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutationmore » substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  10. Kefiran suppresses antigen-induced mast cell activation.

    PubMed

    Furuno, Tadahide; Nakanishi, Mamoru

    2012-01-01

    Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.

  11. Radiographic analysis of sedimentary structures and depositional histories in Apollo 15 cores

    NASA Technical Reports Server (NTRS)

    Coch, N. K.

    1977-01-01

    Radiographs of the Apollo 15 deepdrill drive tubes were analyzed on an SDS electronic enhancer to determine sedimentary structures in the core samples. The data obtained were compared with all other Apollo mission radiographs and used to make inferences on the character of sedimentary depositional processes on the lunar surface.

  12. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    PubMed Central

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-01-01

    To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol−1 (15.1 kJ mol−1). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared

  13. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia

    PubMed Central

    Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas

    2004-01-01

    Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307

  14. O-Antigens of Escherichia coli Strains O81 and HS3-104 Are Structurally and Genetically Related, Except O-Antigen Glucosylation in E. coli HS3-104.

    PubMed

    Zdorovenko, E L; Wang, Y; Shashkov, A S; Chen, T; Ovchinnikova, O G; Liu, B; Golomidova, A K; Babenko, V V; Letarov, A V; Knirel, Y A

    2018-05-01

    Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.

  15. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads

    NASA Astrophysics Data System (ADS)

    Liu, Z. L.; Ding, Z. H.; Yao, K. L.; Tao, J.; Du, G. H.; Lu, Q. H.; Wang, X.; Gong, F. L.; Chen, X.

    2003-09-01

    Composite microbeads consisting of polymer-coated iron oxide nanoparticles are prepared by the microemulsion polymerization of styrene, divinyl benzene and methacrylic acid in the presence of emulsifiers. Fourier transform infrared spectrometer analysis indicates the presence of -COOH groups and Fe 3O 4 of the microbeads. The amount of -COOH groups localized on the surface, which is about 0.15 mmol/g, is determined by conductometric titration. Transmission electron microscope picture reveals that the microbeads have a core-shell structure. The dissolving experiments of microbeads in hydrochloric acid and toluene further identify the core-shell structure. Optical microscope indicates that the magnetic microbeads have uniform and spherical forms with the size of 1-5 μm. Magnetic sensitivity measurement indicates that the microbeads can be used conveniently. Magnetic property measurement shows very little residual magnetization and coercivity, which are below 0.5 emu/g and around 15 Oe, respectively. The magnetic properties are greatly related to the particle sizes. The thermal gravity analysis result shows the improvement of thermal stability. The experiment of immobilized antibody indicates that the functional groups on the surface are appropriate.

  16. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xin; Wang, Qiang; Chen, Xiangnan

    2014-11-17

    A core-shell structured hybrid of polyaniline at helical carbon nanotubes was synthesized using in situ polymerization, which the helical carbon nanotubes were uniformly surrounded by a layer of polyaniline nanorods array. More interestingly, repeatable responses were experimentally observed that the sensitivity to ammonia gas of the as-prepared helical shaped core-shell hybrid displays an enhancement of more than two times compared to those of only polyaniline or helical carbon nanotubes sensors because of the peculiar structures with high surface area. This kind of hybrid comprising nanorod arrays of conductive polymers covering carbon nanotubes and related structures provide a potential in sensorsmore » of trace gas detection for environmental monitoring and safety forecasting.« less

  17. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene-like nanoparticles with core-shell structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; Yang Haibin; Fu Wuyou

    W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less

  18. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  19. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments

    PubMed Central

    Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83–248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence. PMID:28915104

  20. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  1. Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens.

    PubMed

    Blake, Damer P; Hesketh, Patricia; Archer, Andrew; Carroll, Fionnadh; Smith, Adrian L; Shirley, Martin W

    2004-11-01

    The genomes of protozoan parasites encode thousands of gene products and identification of the subset that stimulates a protective immune response is a daunting task. Most screens for vaccine candidates identify molecules by capacity to induce immune responses rather than protection. This paper describes the core findings of a strategy developed with the coccidial parasite Eimeria maxima to rationally identify loci within its genome that encode immunoprotective antigens. Our strategy uses a novel combination of parasite genetics, DNA fingerprinting, drug-resistance and strain-specific immunity and centres on two strains of E. maxima that each induce a lethal strain-specific protective immune response in the host and show a differential response to anti-Eimeria chemotherapy. Through classical mating studies with these strains we have demonstrated that loci encoding molecules stimulating strain-specific protective immunity or resistance to the anti-coccidial drug robenidine segregate independently. Furthermore, passage of populations of recombinant parasites in the face of killing in the immune host was accompanied by the elimination of some polymorphic DNA markers defining the parent strain used to immunise the host. Consideration of the numbers of parasites recombinant for the two traits implicates very few antigen-encoding loci. Our data provide a potential strategy to identify putative antigen-encoding loci in other parasites.

  2. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  3. B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure.

    PubMed

    Farci, Patrizia; Diaz, Giacomo; Chen, Zhaochun; Govindarajan, Sugantha; Tice, Ashley; Agulto, Liane; Pittaluga, Stefania; Boon, Denali; Yu, Claro; Engle, Ronald E; Haas, Mark; Simon, Richard; Purcell, Robert H; Zamboni, Fausto

    2010-05-11

    Hepatitis B virus (HBV)-associated acute liver failure (ALF) is a dramatic clinical syndrome due to a sudden loss of hepatic cells leading to multiorgan failure. The mechanisms whereby HBV induces ALF are unknown. Here, we show that liver tissue collected at the time of liver transplantation in two patients with HBV-associated ALF is characterized by an overwhelming B cell response apparently centered in the liver with massive accumulation of plasma cells secreting IgG and IgM, accompanied by complement deposition. We demonstrate that the molecular target of these antibodies is the hepatitis B core antigen (HBcAg); that these anti-bodies display a restricted variable heavy chain (V(H)) repertoire and lack somatic mutations; and that these two unrelated individuals with ALF use an identical predominant V(H) gene with unmutated variable domain (IGHV1-3) for both IgG and IgM anti-HBc antibodies, indicating that HBcAg is the target of a germline human V(H) gene. These data suggest that humoral immunity may exert a primary role in the pathogenesis of HBV-associated ALF.

  4. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  5. Core structures of haemosiderins deposited in various organs in β-thalassaemia/haemoglobin e disease

    NASA Astrophysics Data System (ADS)

    St. Pierre, T. G.; Tran, K. C.; Webb, J.; Macey, D. J.; Pootrakul, P.; Dickson, D. P. E.

    1992-04-01

    Mössbauer spectra were recorded of tissue from β-thalassaemia/haemoglobin E spleen, liver, pancreas and heart and of crude haemosiderins (insoluble iron fractions) isolated from the organs. Iron in the crude haemosiderins from the spleen and heart remains paramagnetic below 4.2K indicating that the iron is in a non-crystalline form. Superparamagnetic behaviour of the crude haemosiderins from the pancreas and liver indicate the presence of ferrihydrite cores with some cores with a structure based on defect-goethite.

  6. Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Hwang, Jihoon; Lee, Kiho; Yoon, Sungwon; Suh, B. J.; Hyun Kim, Kyung; Kim, J.-Y.; Jang, Z. H.; Kim, Bongjae; Min, B. I.; Kang, J.-S.

    2013-04-01

    The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.

  7. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  8. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  9. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  10. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    NASA Astrophysics Data System (ADS)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  11. Preparation of core-shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan

    2017-09-01

    Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.

  12. Electrochemical Synthesis of Core-Shell-Structured NbC-Fe Composite Powder for Enforcement in Low-Carbon Steel.

    PubMed

    Li, Hongmei; Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan

    2017-11-01

    An NbC-Fe composite powder was synthesized from an Nb₂O₅/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl₂-NaCl. The composite has a core-shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core-shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel.

  13. Dual-point reflective refractometer based on parallel no-core fiber/FBG structure

    NASA Astrophysics Data System (ADS)

    Guo, Cuijuan; Niu, Panpan; Wang, Juan; Zhao, Junfa; Zhang, Cheng

    2018-01-01

    A novel dual-point reflective fiber-optic refractometer based on multimode interference (MMI) effect and fiber Bragg grating (FBG) reflection is proposed and experimentally demonstrated, which adopts parallel structure. Each point of the refractometer consists of a single mode-no core-single mode fiber (SNS) structure cascaded with a FBG. Assisted by the reflection of FBG, refractive index (RI) measurement can be achieved by monitoring the peak power variation of the reflected FBG spectrum. By selecting different length of the no core fiber and center wavelength of the FBG, independent dual-point refractometer is easily realized. Experiment results show that the refractometer has a nonlinear relationship between the surrounding refractive index (SRI) and the peak power of the reflected FBG spectrum in the RI range of 1.3330-1.4086. Linear relationship can be approximately obtained by dividing the measuring range into 1.3330-1.3611 and 1.3764-1.4086. In the RI range of 1.3764-1.4086, the two sensing points have higher RI sensitivities of 319.34 dB/RIU and 211.84 dB/RIU, respectively.

  14. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping

    PubMed Central

    Heras, Begoña; Totsika, Makrina; Peters, Kate M.; Paxman, Jason J.; Gee, Christine L.; Jarrott, Russell J.; Perugini, Matthew A.; Whitten, Andrew E.; Schembri, Mark A.

    2014-01-01

    Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms. PMID:24335802

  15. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa.

    PubMed

    Clifford, Jennifer C; Rapicavoli, Jeannette N; Roper, M Caroline

    2013-06-01

    Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.

  16. Prostate-specific antigen screening impacts on biochemical recurrence in patients with clinically localized prostate cancer.

    PubMed

    Hashimoto, Takeshi; Ohori, Makoto; Shimodaira, Kenji; Kaburaki, Naoto; Hirasawa, Yosuke; Satake, Naoya; Gondo, Tatsuo; Nakagami, Yoshihiro; Namiki, Kazunori; Ohno, Yoshio

    2018-06-01

    To clarify the impact of prostate-specific antigen screening on surgical outcomes of prostate cancer. Patients who underwent radical prostatectomy were divided into two groups according to prostate-specific antigen testing opportunity (group 1, prostate-specific antigen screening; group 2, non-prostate-specific antigen screening). Perioperative clinical characteristics were compared using the Wilcoxon rank-sum and χ 2 -tests. Cox proportional hazards models were used to identify independent predictors of postoperative biochemical recurrence-free survival. In total, 798 patients (63.2%) and 464 patients (36.8%) were categorized into groups 1 and 2, respectively. Group 2 patients were more likely to have a higher prostate-specific antigen level and age at diagnosis and larger prostate volume. Clinical T stage, percentage of positive cores and pathological Gleason score did not differ between the groups. The 5-year biochemical recurrence-free survival rate was 83.9% for group 1 and 71.0% for group 2 (P < 0.001). On multivariate analysis, prostate-specific antigen testing opportunity (hazard ratio 2.530; P < 0.001) was an independent predictive factor for biochemical recurrence after surgery, as well as pathological T stage, pathological Gleason score, positive surgical margin and lymphovascular invasion. Additional analyses showed that prostate-specific antigen screening had a greater impact on biochemical recurrence in a younger patients, patients with a high prostate-specific antigen level, large prostate volume and D'Amico high risk, and patients meeting the exclusion criteria of the Prostate Cancer Research International Active Surveillance study. Detection by screening results in favorable outcomes after surgery. Prostate-specific antigen screening might contribute to reducing biochemical recurrence in patients with localized prostate cancer. © 2018 The Japanese Urological Association.

  17. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    PubMed

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  18. A smart membrane based on an antigen-responsive hydrogel.

    PubMed

    Zhang, Rongsheng; Bowyer, Adrian; Eisenthal, Robert; Hubble, John

    2007-07-01

    Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody. The backbone is covalently cross-linked by conjugated divinyl sulfone (DVS) groups. The gel structure is additionally stabilized by affinity crosslinks formed by biospecific interactions between the bound IgG and FITC. FTIR spectra of the gel are consistent with formation of covalent bonds between cysteine groups in the IgG and DVS groups in the dextran. Results obtained using isothermal titration calorimetry (ITC) confirmed the competitive interaction binding between IgG-FITC-dextran and free sodium fluorescein at pH 5.0. Scanning electron microscopy (SEM) of samples prepared using cryofixation and cryofracturing techniques showed that observed changes in permeability correlate with free fluorescein-dependent structural changes in the gel. Three-dimensional images obtained from confocal laser scanning microscopy show that these changes occur throughout the gel and indicate that SEM results are not artifacts of sample preparation. The permeability of these gels, as shown by blue-dextran (12 kDa) diffusion, increases in response to the presence of free fluorescein of the external medium, which causes competitive displacement of the affinity cross-links. Sequential addition and removal of sodium fluorescein showed that these permeability changes are reversible. (c) 2006 Wiley Periodicals, Inc.

  19. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  20. High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure.

    PubMed

    Zhou, Guorui; Wu, Qiang; Kumar, Rahul; Ng, Wai Pang; Liu, Hao; Niu, Longfei; Lalam, Nageswara; Yuan, Xiaodong; Semenova, Yuliya; Farrell, Gerald; Yuan, Jinhui; Yu, Chongxiu; Zeng, Jie; Tian, Gui Yun; Fu, Yong Qing

    2017-06-16

    A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.

  1. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  2. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    PubMed

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cancer vaccine--Antigenics.

    PubMed

    2002-01-01

    Antigenics is developing a therapeutic cancer vaccine based on heat-shock proteins (HSPs). The vaccine [HSPPC-96, Oncophage] is in a pivotal phase III clinical trial for renal cancer at 80 clinical sites worldwide. The trial is enrolling at least 500 patients who are randomised to receive surgical removal of the primary tumour followed by out-patient treatment with Oncophage((R)) or surgery only. This study was initiated on the basis of results from a pilot phase I/II study and preliminary results from a phase II study in patients with renal cell cancer. In October 2001, Oncophage was designated as a fast-track product by the Food and Drug Administration in the US for the treatment of renal cell carcinoma. Oncophage is in phase I/II trials in Italy for colorectal cancer (30 patients) and melanoma. The trials in Italy are being conducted at the Istituto dei Tumouri, Milan (in association with Sigma-Tau). Preliminary data from the phase II trial for melanoma was presented at the AACR-NCI-EORTC International Conference in Florida, USA, in October 2001. Oncophage is also in a phase I/II (42 patients) and a phase II trial (84 patients) in the US for renal cell cancer, a phase II trial in the US for non-Hodgkin's lymphoma (35 patients), a phase II trial in the US for sarcoma (20-35 patients), a phase I/II trial in the US for melanoma (36 patients), and phase I/II trials in Germany for gastric (30 patients) and pancreatic cancers. A pilot phase I trial in patients with pancreatic cancer began in the US in 1997 with 5 patients enrolled. In November 2000, Antigenics announced that this trial had been expanded to a phase I/II study which would now include survival as an endpoint and would enroll 5 additional patients. The US trials are being performed at Memorial Sloan-Kettering Cancer Center and the M.D. Anderson Cancer Center. The trials in Germany are being carried out at Johannes Gutenberg-University Hospital, Mainz. Oncophage is an autologous vaccine consisting of

  4. Structural evidence for the role of polar core residue Arg175 in arrestin activation

    PubMed Central

    Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu

    2015-01-01

    Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E. PMID:26510463

  5. Structural evidence for the role of polar core residue Arg175 in arrestin activation.

    PubMed

    Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu

    2015-10-29

    Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.

  6. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape.

    PubMed

    Peacock, Thomas; Reddy, Kolli; James, Joe; Adamiak, Beata; Barclay, Wendy; Shelton, Holly; Iqbal, Munir

    2016-01-07

    H9N2 avian influenza virus is a major cause of poultry production loss across Asia leading to the wide use of vaccines. Efficacy of vaccines is often compromised due to the rapid emergence of antigenic variants. To improve the effectiveness of vaccines in the field, a better understanding of the antigenic epitopes of the major antigen, hemagglutinin, is required. To address this, a panel of nine monoclonal antibodies were generated against a contemporary Pakistani H9N2 isolate, which represents a major Asian H9N2 viral lineage. Antibodies were characterized in detail and used to select a total of 26 unique 'escape' mutants with substitutions across nine different amino acid residues in hemagglutinin including seven that have not been described as antigenic determinants for H9N2 viruses before. Competition assays and structural mapping revealed two novel, discrete antigenic sites "H9-A" and "H9-B". Additionally, a second subset of escape mutants contained amino acid deletions within the hemagglutinin receptor binding site. This constitutes a novel method of escape for group 1 hemagglutinins and could represent an alternative means for H9N2 viruses to overcome vaccine induced immunity. These results will guide surveillance efforts for arising antigenic variants as well as evidence based vaccine seed selection and vaccine design.

  7. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape

    PubMed Central

    Peacock, Thomas; Reddy, Kolli; James, Joe; Adamiak, Beata; Barclay, Wendy; Shelton, Holly; Iqbal, Munir

    2016-01-01

    H9N2 avian influenza virus is a major cause of poultry production loss across Asia leading to the wide use of vaccines. Efficacy of vaccines is often compromised due to the rapid emergence of antigenic variants. To improve the effectiveness of vaccines in the field, a better understanding of the antigenic epitopes of the major antigen, hemagglutinin, is required. To address this, a panel of nine monoclonal antibodies were generated against a contemporary Pakistani H9N2 isolate, which represents a major Asian H9N2 viral lineage. Antibodies were characterized in detail and used to select a total of 26 unique ‘escape’ mutants with substitutions across nine different amino acid residues in hemagglutinin including seven that have not been described as antigenic determinants for H9N2 viruses before. Competition assays and structural mapping revealed two novel, discrete antigenic sites “H9-A” and “H9-B”. Additionally, a second subset of escape mutants contained amino acid deletions within the hemagglutinin receptor binding site. This constitutes a novel method of escape for group 1 hemagglutinins and could represent an alternative means for H9N2 viruses to overcome vaccine induced immunity. These results will guide surveillance efforts for arising antigenic variants as well as evidence based vaccine seed selection and vaccine design. PMID:26738561

  8. Structural, evolutionary and genetic analysis of the histidine biosynthetic "core" in the genus Burkholderia.

    PubMed

    Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato

    2009-12-01

    In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.

  9. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon

  10. Seismic structures in the inner and outer core constrained by the PKP observations near the caustic distance range

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2002-05-01

    We have extensively collected PKP waveforms around the PKP caustic distance range (141o - 147o) recorded in several dense regional arrays and the Global Seismic Network covering from 1990 to 2000. PKP observations at this distance range (141o - 147o) are usually purposely avoided in travel time analyses, because of the interference of various PKP branches. The observations there, however, will be extremely useful for constraining the seismic structures at both the top of the inner core and the bottom of the outer core. Moreover, because PKIKP phases sample a depth range of 100 km - 170 km below the inner-core boundary at this distant range, their observations fill the sampling depth gap between the PKiKP-PKIKP observations at the smaller distances and the PKPbc-PKIKP phases at the larger distances. Before the PKP caustics (141o - 145o), the diffracted PKP phases near the B caustics (PKPBdiff) and PKiKP phases are discernible in the long-period seismograms, and their differential travel times and waveforms could be used to constrain seismic structures at the bottom of the outer core and/or at the base of the mantle. The observed long-period PKiKP-PKPBdiff waveforms exhibit a hemispheric difference between those sampling the "eastern" and "western" hemispheres, with those sampling the "western" hemisphere showing larger time separations between the two phases. These observations can be explained by models with P velocity gradients of 0.0806 (km/s)/ 200 km for the "western" hemisphere and 0.114 (km/s)/200 km for the "eastern" hemisphere at the bottom of the outer core. Alternatively, these observations can also be explained by models with different velocity structures at the bottom 200 km of the mantle with P velocity variations in an order of 3 percent with respect to PREM. Broadband PKP observations after the PKP caustics (145o - 147o), on the other hand, provide high-quality constraints on the seismic structures at both the top of the inner core and the bottom of

  11. Structural and genetic relationships of closely related O-antigens of Cronobacter spp. and Escherichia coli: C. sakazakii G2594 (serotype O4)/E. coli O103 and C. malonaticus G3864 (serotype O1)/E. coli O29.

    PubMed

    Shashkov, Alexander S; Wang, Min; Turdymuratov, Eldar M; Hu, Shaohui; Arbatsky, Nikolay P; Guo, Xi; Wang, Lei; Knirel, Yuriy A

    2015-03-02

    O-Antigen (O-polysaccharide) variation is the basis for bacterial serotyping and is important in bacterial virulence and niche adaptation. In this work, we present structural and genetic evidences for close relationships between the O-antigens of the Cronobacter spp. and Escherichia coli. Cronobacter sakazakii G2594 (serotype O4) and Cronobacter malonaticus G3864 (serotype O1) are structurally related to those of E. coli O103 and O29, respectively, and some other members of the Enterobacteriaceae family differing in the patterns of lateral glucosylation (C. sakazakii G2594) or O-acetylation (C. malonaticus G3864). The O-antigen gene clusters of the corresponding Cronobacter and E. coli strains contain the same genes with high-level similarity, and the structural differences within both O-antigen pairs were suggested to be due to modification genes carried by prophages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hierarchical Velocity Structure in the Core of Abell 2597

    NASA Technical Reports Server (NTRS)

    Still, Martin; Mushotzky, Richard

    2004-01-01

    We present XMM-Newton RGS and EPIC data of the putative cooling flow cluster Abell 2597. Velocities of the low-ionization emission lines in the spectrum are blue shifted with respect to the high-ionization lines by 1320 (sup +660) (sub -210) kilometers per second, which is consistent with the difference in the two peaks of the galaxy velocity distribution and may be the signature of bulk turbulence, infall, rotation or damped oscillation in the cluster. A hierarchical velocity structure such as this could be the direct result of galaxy mergers in the cluster core, or the injection of power into the cluster gas from a central engine. The uniform X-ray morphology of the cluster, the absence of fine scale temperature structure and the random distribution of the the galaxy positions, independent of velocity, suggests that our line of sight is close to the direction of motion. These results have strong implications for cooling flow models of the cluster Abell 2597. They give impetus to those models which account for the observed temperature structure of some clusters using mergers instead of cooling flows.

  13. Computational design of d-peptide inhibitors of hepatitis delta antigen dimerization

    NASA Astrophysics Data System (ADS)

    Elkin, Carl D.; Zuccola, Harmon J.; Hogle, James M.; Joseph-McCarthy, Diane

    2000-11-01

    Hepatitis delta virus (HDV) encodes a single polypeptide called hepatitis delta antigen (DAg). Dimerization of DAg is required for viral replication. The structure of the dimerization region, residues 12 to 60, consists of an anti-parallel coiled coil [Zuccola et al., Structure, 6 (1998) 821]. Multiple Copy Simultaneous Searches (MCSS) of the hydrophobic core region formed by the bend in the helix of one monomer of this structure were carried out for many diverse functional groups. Six critical interaction sites were identified. The Protein Data Bank was searched for backbone templates to use in the subsequent design process by matching to these sites. A 14 residue helix expected to bind to the d-isomer of the target structure was selected as the template. Over 200 000 mutant sequences of this peptide were generated based on the MCSS results. A secondary structure prediction algorithm was used to screen all sequences, and in general only those that were predicted to be highly helical were retained. Approximately 100 of these 14-mers were model built as d-peptides and docked with the l-isomer of the target monomer. Based on calculated interaction energies, predicted helicity, and intrahelical salt bridge patterns, a small number of peptides were selected as the most promising candidates. The ligand design approach presented here is the computational analogue of mirror image phage display. The results have been used to characterize the interactions responsible for formation of this model anti-parallel coiled coil and to suggest potential ligands to disrupt it.

  14. Naturally occurring deletions/insertions in HBV core promoter tend to decrease in hepatitis B e antigen-positive chronic hepatitis B patients during antiviral therapy.

    PubMed

    Peng, Yaqin; Liu, Baoming; Hou, Jinlin; Sun, Jian; Hao, Ran; Xiang, Kuanhui; Yan, Ling; Zhang, Jiangbo; Zhuang, Hui; Li, Tong

    2015-01-01

    Mutations in HBV core promoter (CP) are suggested to affect viral replication and disease progression. We investigated CP deletion/insertion mutations (Del/Ins) in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients before and during antiviral treatment. Direct and clone sequencings were used for detection of CP Del/Ins in 12 patients. The dynamic changes of CP Del/Ins were tracked in these cases until week 48 of treatment. The effects of Del/Ins on CP activities and hepatitis B X protein (HBx) were analysed using luciferase assay and sequence comparison, respectively. Furthermore, 292 untreated HBeAg-positive CHB cases were also analysed. Twelve cases with multi-peak PCR direct sequencing electropherograms at baseline were confirmed to have CP Del/Ins by clone sequencing, with detection rates varying from 14.8% to 93.3% of clones analysed. Follow-up studies showed the detection rates of CP Del/Ins in patients decreased from 100% (12/12) at baseline to 16.7% (2/12) at week 48 of treatment (P<0.001), in parallel with a decline in HBV DNA, hepatitis B surface antigen (HBsAg), alanine aminotransferase (ALT) and aspartate transaminase (AST) levels along with an increase in HBeAg loss. Luciferase assay results showed distinct promoter activities among Del/Ins-harbouring CP sequences. Importantly, 71.8% (148/206) of Del/Ins sequences potentially resulted in HBx carboxy-terminal truncations. CP Del/Ins mutations were also found in 27.4% (80/292) of untreated cases. Naturally occurring complex of CP Del/Ins mutants existed in untreated HBeAg-positive CHB patients. These mutations would affect HBV transcription activities and integrity of HBx, which might correlate with disease progression. Their prevalence decreases on antiviral therapy in parallel with the decline in HBV DNA, HBsAg and ALT and AST levels.

  15. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  16. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    PubMed

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. B80 and B101-103 clusters: Remarkable stability of the core-shell structures established by validated density functionalsa)

    NASA Astrophysics Data System (ADS)

    Li, Fengyu; Jin, Peng; Jiang, De-en; Wang, Lu; Zhang, Shengbai B.; Zhao, Jijun; Chen, Zhongfang

    2012-02-01

    Prompted by the very recent claim that the volleyball-shaped B80 fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010), 10.1103/PhysRevB.82.153409] is lower in energy than the B80 buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007), 10.1103/PhysRevLett.98.166804] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010), 10.1021/jp1018873], and inspired by the most recent finding of another core-shell isomer as the lowest energy B80 isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011), 10.1103/PhysRevLett.106.225502], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B80. Our global minimum search showed that both B101 and B103 also prefer a core-shell structure and that B103 can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.

  18. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    PubMed

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  19. Chlorphenesin: an Antigen-Associated Immunosuppressant

    PubMed Central

    Whang, H. Y.; Neter, E.

    1970-01-01

    Chlorphenesin (3-p-chlorophenoxy-1,2-propanediol), when injected intravenously together with either of two common bacterial antigens, inhibits the antibody response of the rabbit. The antigens studied are those common to Enterobacteriaceae and to gram-positive bacteria. The immunosuppression is contingent upon incubation of chlorphenesin and antigen in vitro prior to administration, since separate injection of antigen and inhibitor or of mixtures without prior incubation yields undiminished antibody response. Chlorphenesin, as shown by hemagglutination-inhibition tests, does not alter the antigenic determinants, because antibody neutralization occurs in the presence or absence of the drug. The immunosuppressive effect is reversible, since precipitation of chlorphenesin at 4 C substantially restores immunogenicity. Animals immunized with antigen-drug mixtures, which fail to respond with significant antibody production, nonetheless are immunologically primed. It is concluded that chlorphenesin represents another example of antigen-associated immunosuppressants. PMID:16557800

  20. Chlorphenesin: an antigen-associated immunosuppressant.

    PubMed

    Whang, H Y; Neter, E

    1970-07-01

    Chlorphenesin (3-p-chlorophenoxy-1,2-propanediol), when injected intravenously together with either of two common bacterial antigens, inhibits the antibody response of the rabbit. The antigens studied are those common to Enterobacteriaceae and to gram-positive bacteria. The immunosuppression is contingent upon incubation of chlorphenesin and antigen in vitro prior to administration, since separate injection of antigen and inhibitor or of mixtures without prior incubation yields undiminished antibody response. Chlorphenesin, as shown by hemagglutination-inhibition tests, does not alter the antigenic determinants, because antibody neutralization occurs in the presence or absence of the drug. The immunosuppressive effect is reversible, since precipitation of chlorphenesin at 4 C substantially restores immunogenicity. Animals immunized with antigen-drug mixtures, which fail to respond with significant antibody production, nonetheless are immunologically primed. It is concluded that chlorphenesin represents another example of antigen-associated immunosuppressants.

  1. Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8.

    PubMed

    Bengoechea, José Antonio; Pinta, Elise; Salminen, Tiina; Oertelt, Clemens; Holst, Otto; Radziejewska-Lebrecht, Joanna; Piotrowska-Seget, Zofia; Venho, Reija; Skurnik, Mikael

    2002-08-01

    The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.

  2. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  3. Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhengliang L., E-mail: Leon.wu@bio-techne.com; Zhou, Hui; Ethen, Cheryl M.

    The 1918 H1N1 influenza virus was responsible for one of the most deadly pandemics in human history. Yet to date, the structure component responsible for its virulence is still a mystery. In order to search for such a component, the neuraminidase (NA) antigen of the virus was expressed, which led to the discovery of an active form (tetramer) and an inactive form (dimer and monomer) of the protein due to different glycosylation. In this report, the N-glycans from both forms were released and characterized by mass spectrometry. It was found that the glycans from the active form had 26% core-6more » fucosylated, while the glycans from the inactive form had 82% core-6 fucosylated. Even more surprisingly, the stalk region of the active form was almost completely devoid of core-6-linked fucose. These findings were further supported by the results obtained from in vitro incorporation of azido fucose and {sup 3}H-labeled fucose using core-6 fucosyltransferase, FUT8. In addition, the incorporation of fucose did not change the enzymatic activity of the active form, implying that core-6 fucose is not directly involved in the enzymatic activity. It is postulated that core-6 fucose prohibits the oligomerization and subsequent activation of the enzyme. - Graphical abstract: Proposed mechanism for how core-fucose prohibits the tetramerization of the 1918 pandemic viral neuraminidase. Only the cross section of the stalk region with two N-linked glycans are depicted for clarity. (A) Carbohydrate–carbohydrate interaction on non-fucosylated monomer allows tetramerization. (B) Core-fucosylation disrupts the interaction and prevents the tetramerization. - Highlights: • Expressed 1918 pandemic influenza viral neuraminidase has inactive and active forms. • The inactive form contains high level of core-6 fucose, while the active form lacks such modification. • Core fucose could interfere the oligomerization of the neuraminidase and thus its activation. • This discovery may

  4. Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sai, Cong Doanh; Ngac, An Bang

    2018-03-01

    Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.

  5. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines.

    PubMed

    Brinãs, Raymond P; Sundgren, Andreas; Sahoo, Padmini; Morey, Susan; Rittenhouse-Olson, Kate; Wilding, Greg E; Deng, Wei; Barchi, Joseph J

    2012-08-15

    The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.

  6. Detection of the elite structure in a virtual multiplex social system by means of a generalised K-core.

    PubMed

    Corominas-Murtra, Bernat; Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the K-core algorithm that allows to identify a social core that is composed of well-connected hubs together with their 'connectors'. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalised K-core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalised Kcore and the recently introduced M-core, the elites of the different 'nations' present in the game are perfectly identified as modules of the generalised K-core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional K-core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection.

  7. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less

  8. The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.

  9. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  11. Structural and electronic properties of CdS/ZnS core/shell nanowires: A first-principles study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Seok; Kim, Yong-Hoon

    2015-03-01

    Carrying out density functional theory (DFT) calculation, we studied the relative effects of quantum confinement and strain on the electronic structures of II-IV semiconductor compounds with a large lattice-mismatch, CdS and ZnS, in the core/shell nanowire geometry. We considered different core radii and shell thickness of the CdS/ZnS core/shell nanowire, different surface facets, and various defects in the core/shell interface and surface regions. To properly describe the band level alignment at the core/shell boundary, we adopted the self-interaction correction (SIC)-DFT scheme. Implications of our findings in the context of device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author

  12. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  13. The Metabolic Core and Catalytic Switches Are Fundamental Elements in the Self-Regulation of the Systemic Metabolic Structure of Cells

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan

    2011-01-01

    Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic

  14. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    PubMed

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  15. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various

  16. Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.

    I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.

  17. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063.

    PubMed

    Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino

    2015-11-01

    The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.

  18. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia.

    PubMed Central

    Epstein, L M; Forney, J D

    1984-01-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei. Images PMID:6092921

  19. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.

    PubMed

    Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank

    2017-11-07

    In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.

  20. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  1. PKiKP amplitude observations and structure of the inner core boundary

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D.; Adushkin, V.; Ovtchinnikov, V.

    2003-04-01

    We present PKiKP amplitude observations at distances from 5.6 to 90 degrees that evidence substantial lateral variability of reflecting conditions on the inner core boundary. Unlike other PKiKP studies, that frequently use array data, detection of PKiKP phase in the work was accomplished on single vertical component. We have carefully investigated short-period digital vertical channels of 9 stations in Central Asia that recorded 43 Underground Nuclear Explosions carried out at Nevada, Lop-Nor, Novaya Zemlya and Semipalatinsk Test Sites in 1968 - 1994, and found numerous convincing examples of PKiKP waveforms. The amplitude data set varies in the range from 1 to 62 nm with predominant period of less than 1 s. Using known seismic source parameters we compared the expected PKiKP amplitudes and travel times to the experimental ones. The observed travel times are generally agreed with PREM within 1 s scatter, though amplitudes aren't. In addition, the whole stack of experimental amplitudes may hardly be simultaneously agreed with any regular model of the inner core boundary either sharp or with transition. Thorough analysis of the data set indicates, that detection of PKiKP and its amplitude is basically pre-defined by actual physical conditions at reflection point on the surface of the inner core which may vary substantially due to boundary processes of freezing and chemical (structural) convection.

  2. Structural and Immunological Analysis of Anthrax Recombinant Protective Antigen Adsorbed to Aluminum Hydroxide Adjuvant

    PubMed Central

    Wagner, Leslie; Verma, Anita; Meade, Bruce D.; Reiter, Karine; Narum, David L.; Brady, Rebecca A.; Little, Stephen F.

    2012-01-01

    New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies. PMID:22815152

  3. Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses

    PubMed Central

    Kratsch, Christina; Klingen, Thorsten R.; Mümken, Linda; Steinbrück, Lars; McHardy, Alice C.

    2016-01-01

    Human influenza viruses are rapidly evolving RNA viruses that cause short-term respiratory infections with substantial morbidity and mortality in annual epidemics. Uncovering the general principles of viral coevolution with human hosts is important for pathogen surveillance and vaccine design. Protein regions are an appropriate model for the interactions between two macromolecules, but the currently used epitope definition for the major antigen of influenza viruses, namely hemagglutinin, is very broad. Here, we combined genetic, evolutionary, antigenic, and structural information to determine the most relevant regions of the hemagglutinin of human influenza A/H3N2 viruses for interaction with human immunoglobulins. We estimated the antigenic weights of amino acid changes at individual sites from hemagglutination inhibition data using antigenic tree inference followed by spatial clustering of antigenicity-altering protein sites on the protein structure. This approach determined six relevant areas (patches) for antigenic variation that had a key role in the past antigenic evolution of the viruses. Previous transitions between successive predominating antigenic types of H3N2 viruses always included amino acid changes in either the first or second antigenic patch. Interestingly, there was only partial overlap between the antigenic patches and the patches under strong positive selection. Therefore, besides alterations of antigenicity, other interactions with the host may shape the evolution of human influenza A/H3N2 viruses. PMID:27774294

  4. Serological purification of polysaccharide antigens from Streptococcus mutans serotypes a and d: characterization of multiple antigenic determinants.

    PubMed

    Linzer, R; Mukasa, H; Slade, H D

    1975-10-01

    The polysaccharide antigen preparations from serotype a and serotype d strains of Streptococcus mutans contained both a serotype-specific antigenic determinant and a common a-d antigenic determinant, as demonstrated by agar gel diffusion studies and a quantitative cross-precipitin assay. The chromatographically purified antigens were isolated by a method which depended on their serological specificity to determine if these two antigenic determinants were located on the same molecule. The a and d polysaccharides were recovered from specific antigen-antibody complexes and characterized with respect to their immunological specificity and chemical composition. Agar gel diffusion tests demonstrated that, in both the a and d preparations, the serotype-specific antigenic determinant and the common a-d antigenic determinant were present in one molecule.

  5. Evaluation of "credit card" libraries for inhibition of HIV-1 gp41 fusogenic core formation.

    PubMed

    Xu, Yang; Lu, Hong; Kennedy, Jack P; Yan, Xuxia; McAllister, Laura A; Yamamoto, Noboru; Moss, Jason A; Boldt, Grant E; Jiang, Shibo; Janda, Kim D

    2006-01-01

    Protein-protein interactions are of critical importance in biological systems, and small molecule modulators of such protein recognition and intervention processes are of particular interest. To investigate this area of research, we have synthesized small-molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motif, appended with a variety of chemical functions, which we have termed "credit-card" structures. From two of our "credit-card" libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation, and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors.

  6. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...

  7. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    PubMed Central

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.

    2012-01-01

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726

  8. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B.

    PubMed

    Chen, En-Qiang; Feng, Shu; Wang, Meng-Lan; Liang, Ling-Bo; Zhou, Ling-Yun; Du, Ling-Yao; Yan, Li-Bo; Tao, Chuan-Min; Tang, Hong

    2017-03-14

    Recently, hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. This study aimed to investigate whether serum quantitative HBcrAg (qHBcrAg) was a satisfactory surrogate marker of intrahepatic covalently closed circular DNA (cccDNA). A total of 139 patients with liver biopsy were enrolled, consisting of 59 patients in immune tolerance (IT) phase, 52 patients in immune clearance (IC) phase, 18 patients in low-replication (LR) phase, and 10 patients in reactivation phase. All patients in IC phase have received entecavir (ETV) therapy, and 32 of them undergone a second liver biopsy at 24 months. Among those patients, qHBcrAg was strongly correlated with intrahepatic cccDNA, which is superior to that of qHBsAg and HBV DNA. And similar findings were also observed in patients in IT, IC, LR and reactivation phases. Among the 32 ETV-treated patients with a second liver biopsy in IC phase, the decline of intrahepatic cccDNA was accompanied by changes in both qHBcrAg and qHBsAg. However, as compared to qHBsAg, the change of qHBcrAg was more strongly associated with intrahepatic cccDNA-decline. In summary, serum qHBcrAg should be a satisfactory surrogate of intrahepatic HBV cccDNA in CHB patients.

  9. Prevalence, risk factors, and impact of isolated antibody to hepatitis B core antigen and occult hepatitis B virus infection in HIV-1-infected pregnant women.

    PubMed

    Khamduang, Woottichai; Ngo-Giang-Huong, Nicole; Gaudy-Graffin, Catherine; Jourdain, Gonzague; Suwankornsakul, Weerapong; Jarupanich, Tapnarong; Chalermpolprapa, Veeradate; Nanta, Sirisak; Puarattana-Aroonkorn, Noossara; Tonmat, Sakchai; Lallemant, Marc; Goudeau, Alain; Sirirungsi, Wasna

    2013-06-01

    Prevalence and risk factors for isolated antibody to hepatitis B core antigen (anti-HBc) and occult hepatitis B virus (HBV) infection are not well known in human immunodeficiency virus type 1 (HIV-1)-infected pregnant women. It is unclear if women with occult infections are at risk of transmitting HBV to their infants. HIV-1-infected and HBV surface antigen (HBsAg)-negative pregnant women were tested for antibody to HBsAg (anti-HBs) and anti-HBc using enzyme immunoassay. Women with isolated anti-HBc were assessed for occult HBV infection, defined as HBV DNA levels >15 IU/mL, using the Abbott RealTime HBV DNA assay. Infants born to women with isolated anti-HBc and detectable HBV DNA were tested at 4 months of age for HBV DNA. Logistic regression analysis was used to identify factors associated with isolated anti-HBc and occult HBV infection. Among 1812 HIV-infected pregnant women, 1682 were HBsAg negative. Fourteen percent (95% confidence interval [CI], 12%-15%) of HBsAg-negative women had an isolated anti-HBc that was independently associated with low CD4 count, age >35 years, birth in northern Thailand, and positive anti-hepatitis C virus serology. Occult HBV infection was identified in 24% (95% CI, 18%-30%) of women with isolated anti-HBc, representing 2.6% (95% CI, 1.9%-3.5%) of HIV-1-infected pregnant women, and was inversely associated with HIV RNA levels. None of the women with isolated anti-HBc and occult HBV infection transmitted HBV to their infants. HIV-1-infected pregnant women with isolated anti-HBc and occult HBV infection have very low HBV DNA levels and are thus at very low risk to transmit HBV to their infants.

  10. Testing the dynamic coupling of the core-mantle and inner core boundaries

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter E.

    2015-07-01

    The proposal that the seismically observed hemispherical asymmetry of Earth's inner core is controlled by the heat flux structure imposed on the outer core by the lower mantle is tested with numerical dynamo models driven by mixed thermochemical convection. We find that models driven by a single core-mantle boundary (CMB) spherical harmonic of degree and mode 2, the dominant mode in lower mantle seismic shear velocity tomography, produce a similar structure at the inner core boundary (ICB) shifted 30∘ westward. The sensitivity of the ICB to the CMB is further tested by increasing the CMB heterogeneity amplitude. In addition, two seismic tomographic models are tested: first with CMB resolution up to degree and order 4, and second with resolution up to degree and order 8. We find time-averaged ICB heat flux in these cases to be similar at large scale, with small-scale differences due to higher CMB harmonics (above degree 4). The tomographic models produce "Earth-like" magnetic fields, while similar models with twice the CMB heat flow amplitudes produce less Earth-like fields, implying that increasing CMB heterogeneity forces the model out of an Earth-like regime. The dynamic ICB heat fluxes are compared to the proposed translation mode of the inner core to test whether the CMB controls inner core growth and structure. This test indicates that, although CMB tomography is unlikely to be driving inner core translation, the ICB heat flux response is weak enough to not interfere with the most unstable translation mode, if it is occurring.

  11. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    PubMed

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  12. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  13. Demonstration of human kidney differentiation antigens with monoclonal antibodies.

    PubMed

    Candelier, J J; Couillin, P; Bellon, G; Le Pendu, J; Eydoux, P; Boue, A

    1988-10-01

    Six human differentiation antigens (EE24.6, EG9.11, EG14.1, EI16.1, EK8.1, EK17.1) have been defined using monoclonal antibodies obtained from mice immunized with embryonic kidney cells. Their histologic distribution was determined on frozen sections of embryonic, fetal, and adult human kidneys by immunofluorescence assay. EE24.6, an ureteral bud marker, was detected only on the germ layer of mature kidney urothelium. EG9.11 and EG14.1 were detected on the S-shaped bodies and also on the adult proximal convoluted tubule for the former and the glomerular basement membrane for the latter. EI16.1, a marker of condensed mesenchyme, was detected only on epithelial cells of adult proximal convoluted tubule. EK8.1 was found in the mesangium, connective tissue, and with particularly dense labeling in the basement membranes. This labeling pattern was present throughout renal organogenesis. EK17.1 recognized both cell and plasma human fibronectins. Staining for all antibodies was nearly identical in mesonephros and metanephros. These results demonstate that some antigens follow their embryonic destiny. They indicate an antigenic similarity between the mesonephros and the metanephros and, therefore, a very early appearance of these antigens. During differentiation, these antigens concentrate on more defined structures, and staining became increased with an increased degree of differentiation.

  14. Ten-core versus 16-core transrectal ultrasonography guided prostate biopsy for detection of prostatic carcinoma: a prospective comparative study in Indian population

    PubMed Central

    Prakash, V. Surya; Mohan, G. Chandra; Krishnaiah, S. Venkata; Vijaykumar, V.; Babu, G. Ramesh; Reddy, G. Vijaya Bhaskar; Mahaboob, V. S.

    2013-01-01

    Purpose: To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Methods: Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Results: Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). Conclusions: The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients. PMID:24392441

  15. Ten-core versus 16-core transrectal ultrasonography guided prostate biopsy for detection of prostatic carcinoma: a prospective comparative study in Indian population.

    PubMed

    Prakash, V Surya; Mohan, G Chandra; Krishnaiah, S Venkata; Vijaykumar, V; Babu, G Ramesh; Reddy, G Vijaya Bhaskar; Mahaboob, V S

    2013-01-01

    To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients.

  16. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    PubMed

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  17. Inner Core Imaging Using P'P'

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Ward, J. A.; Bastow, I. D.; Irving, J. C. E.

    2016-12-01

    The Earth's inner core is a surprisingly complex region of our planet. Simple models of inner core solidification and evolution would lead us to expect a layered structure, which has "frozen in" in information about the state of the core at the time of solidification. However, seismic observations of Earth's inner core are not dominated by a radial "tree-ring" like pattern, but instead have revealed a hemispherical dichotomy in addition to depth dependent variations. There is a degree-one structure in isotropic and anisotropic velocities and in attenuation between the so-called eastern and western hemispheres of the inner core, with different depth distributions proposed for these varying phenomena. A range of mechanisms have been proposed to explain the hemispherical differences. These include models that require differences between the two hemispheres at the time of formation, post-solidification texturing, convection in the inner core, or hybrid mechanisms. Regional observations of the inner core suggest that a simple division between East and West may not be able to fully capture the structure present in the inner core. More detailed seismic observations will help us to understand the puzzle of the inner core's evolution. In this study we focus on updating observations of the seismic phase P'P', an inner core sensitive body wave with a more complex path than those typically used to study the inner core. By making new measurements of P'P' we illuminate new regions of the core with a high frequency phase that is sensitive to small scale structures. We examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core turning branch, P'P'df, with the arrival times of branches that turn in the outer core. P'P' is a relatively small amplitude phase, so we use both linear and non-linear stacking methods to make observations of the P'P' signals. These measurements are sensitive to the broad scale

  18. The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Mound, J. E.; Davies, C. J.; Silva, L.

    2015-12-01

    Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.

  19. Packing in protein cores

    NASA Astrophysics Data System (ADS)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  20. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements

    PubMed Central

    1981-01-01

    A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778

  1. Shear, heat and pH induced conformational changes of wheat gluten - Impact on antigenicity.

    PubMed

    Rahaman, Toheder; Vasiljevic, Todor; Ramchandran, Lata

    2016-04-01

    Processing can induce conformational changes of food proteins depending on the conditions used that may affect their antigenicity. This study investigated the effect of pH (3,5,7) temperature (80,90,100 °C) and shear (500,1000,1500 s(-1)) on the conformational changes (surface hydrophobicity, FTIR, SDS-PAGE and thiol content) of gluten in relation to its antigenicity (determined by Enzyme-linked Immunosorbent Assay). Overall, at pH 3, up to 90 °C, conformational changes and possible burial of some antigenic hydrophobic residues resulted in reduction of antigenicity to one-third that of control. Further heating to 100 °C caused increase in antigenicity due to exposure of some hidden epitopes. However, at pH 5 and 7, the antigenicity declined only at 100 °C due to modification in thiol content and related structural changes causing destruction and/or masking of some epitopes. Shear alone had no effect on antigenicity of gluten but could have a synergistic influence at pH 7 and 100 °C. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors.

    PubMed

    Walcher, Petra; Mayr, Ulrike B; Azimpour-Tabrizi, Chakameh; Eko, Francis O; Jechlinger, Wolfgang; Mayrhofer, Peter; Alefantis, Tim; Mujer, Cesar V; DelVecchio, Vito G; Lubitz, Werner

    2004-12-01

    The bacterial ghost (BG) platform system is a novel vaccine delivery system endowed with intrinsic adjuvant properties. BGs are nonliving Gram-negative bacterial cell envelopes which are devoid of their cytoplasmic contents, yet maintain their cellular morphology and antigenic structures, including bioadhesive properties. The main advantages of BGs as carriers of subunit vaccines include their ability to stimulate a high immune response and to target the carrier itself to primary antigen-presenting cells. The intrinsic adjuvant properties of BGs enhance the immune response to target antigens, including T-cell activation and mucosal immunity. Since native and foreign antigens can be carried in the envelope complex of BGs, combination vaccines with multiple antigens of diverse origin can be presented to the immune system simultaneously. Beside the capacity of BGs to function as carriers of protein antigens, they also have a high loading capacity for DNA. Thus, loading BGs with recombinant DNA takes advantage of the excellent bioavailability for DNA-based vaccines and the high expression rates of the DNA-encoded antigens in target cell types such as macrophages and dendritic cells. There are many spaces within BGs including the inner and outer membranes, the periplasmic space and the internal lumen which can carry antigens, DNA or mediators of the immune response. All can be used for subunit antigen to design new vaccine candidates with particle presentation technology. In addition, the fact that BGs can also carry piggyback large-size foreign antigen particles, increases the technologic usefulness of BGs as combination vaccines against viral and bacterial pathogens. Furthermore, the BG antigen carriers can be stored as freeze-dried preparations at room temperature for extended periods without loss of efficacy. The potency, safety and relatively low production cost of BGs offer a significant technical advantage over currently utilized vaccine technologies.

  3. AbDb: antibody structure database—a database of PDB-derived antibody structures

    PubMed Central

    Ferdous, Saba

    2018-01-01

    Abstract In order to analyse structures of proteins of a particular class, these need to be extracted from Protein Data Bank (PDB) files. In the case of antibodies, there are a number of special considerations: (i) identifying antibodies in the PDB is not trivial, (ii) they may be crystallized with or without antigen, (iii) for analysis purposes, one is normally only interested in the Fv region of the antibody, (iv) structural analysis of epitopes, in particular, requires individual antibody–antigen complexes from a PDB file which may contain multiple copies of the same, or different, antibodies and (v) standard numbering schemes should be applied. Consequently, there is a need for a specialist resource containing pre-numbered non-redundant antibody Fv structures with their cognate antigens. We have created an automatically updated resource, AbDb, which collects the Fv regions from antibody structures using information from our SACS database which summarizes antibody structures from the PDB. PDB files containing multiple structures are split and numbered and each antibody structure is associated with its antigen where available. Antibody structures with only light or heavy chains have also been processed and sequences of antibodies are compared to identify multiple structures of the same antibody. The data may be queried on the basis of PDB code, or the name or species of the antibody or antigen, and the complete datasets may be downloaded. Database URL: www.bioinf.org.uk/abs/abdb/ PMID:29718130

  4. Solution structure of a small protein containing a fluorinated side chain in the core

    PubMed Central

    Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.

    2007-01-01

    We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960

  5. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    PubMed

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  6. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  7. ANTIGENIC MODULATION

    PubMed Central

    Old, Lloyd J.; Stockert, Elisabeth; Boyse, Edward A.; Kim, Jae Ho

    1968-01-01

    Antigenic modulation (the loss of TL antigens from TL+ cells exposed to TL antibody in the absence of lytic complement) has been demonstrated in vitro. An ascites leukemia, phenotype TL.1,2,3, which modulates rapidly and completely when incubated with TL antiserum in vitro, was selected for further study of the phenomenon. Over a wide range of TL antibody concentrations modulation at 37°C was detectable within 10 min and was complete within approximately 1 hr. The cells were initially sensitized to C' by their contact with antibody, thereafter losing this sensitivity to C' lysis together with their sensitivity to TL antibody and C' in the cytotoxic test. The capacity of the cells to undergo modulation was abolished by actinomycin D and by iodoacetamide, and by reducing the temperature of incubation to 0°C. Thus modulation apparently is an active cellular process. Antigens TL. 1,2, and 3 are all modulated by anti-TL.1,3 serum and by anti-TL.3 serum. This modulation affects all three TL components together, even when antibody to one or two of them is lacking. aAnti-TL.2 serum does not induce modulation and in fact impairs modulation by the other TL antibodies. The influence of the TL phenotype of cells upon the demonstrable content of H-2 (D region) isoantigen, first shown in cells modulated in vivo, has been observed with cells modulated in vitro. Cells undergoing modulation show a progressive increase in H-2 (D region) antigen over a period of 4 hr, with no change in H-2 antigens of the K region. Restoration of the TL+ phenotype of modulated cells after removal of antibody is less rapid than TL+ → TL- modulation and may require several cell divisions. PMID:5636556

  8. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  9. ParallelStructure: A R Package to Distribute Parallel Runs of the Population Genetics Program STRUCTURE on Multi-Core Computers

    PubMed Central

    Besnier, Francois; Glover, Kevin A.

    2013-01-01

    This software package provides an R-based framework to make use of multi-core computers when running analyses in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses among combinations of populations within a single data set without the need to manually produce multiple projects, as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and parallel_structure() as well as an example data file. We compared the performance in computing time for this example data on two computer architectures and showed that the use of the present functions can result in several-fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/projects/parallstructure/. PMID:23923012

  10. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear.

    PubMed

    Rahaman, Toheder; Vasiljevic, Todor; Ramchandran, Lata

    2017-02-15

    Processing induced conformational changes can modulate digestibility of food allergens and thereby their antigenicity. Effect of different pH (3, 5, 7), temperature (room temperature, 120°C) and shear (0s(-1), 1000s(-1)) on simulated gastrointestinal digestibility of β-lg and post digestion antigenic characteristics have been studied. At all pH levels unheated β-lg showed resistance to peptic digestion with high antigenic value while it was fairly susceptible to pancreatin with moderate reduction in antigenicity. Heating at 120°C significantly improved both peptic and pancreatic digestion attributed to structural alterations that resulted in much lower antigenicity; the level of reduction being pH dependant. The lowest antigenicity was recorded at pH 5. Shearing (1000s(-1)) had a minor impact reducing digestibility and thereby enhancing antigenicity of unheated β-lg at pH 5 and 7 slightly; however in conjunction with heating (120°C) it reduced antigenicity further irrespective of the pH. Overall, treatment at pH 5, 120°C and 1000s(-1) could potentially reduce post digestion antigenicity of β-lg. Copyright © 2016. Published by Elsevier Ltd.

  11. Fine Structure of the Outermost Solid Core from Analysis of PKiKP Coda Waves

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D.; Kaazik, P.; Ovtchinnikov, V.

    2006-05-01

    Near surface heterogeneities in the Earth's inner core have recently been confirmed to exist, and pods of partial melt or variations in seismic anisotropy either due to orientation of iron crystals or changes in strength were indicated as possible sources for such peculiarities. In the same time, analysis of the phase reflected from the inner core boundary (PKiKP) predicts complex character of the reflecting discontinuity in the form of local thin transition layers resulting in mosaic structure of the Earth's inner core's surface. Precritical PKiKP waveforms and coda waves provide necessary seismological constraints to investigate fine structure of the upper part of the Earth's inner core and its boundary, and rank high among researches that detected the described specifics of the solid core. PKiKP coda studies have to do with weak amplitudes and subtle effects, which frequently requires using a reference core related seismic phase and array data processing, as well as eliminating max number of factors biasing the resulting estimates (for example, source related inaccuracies typical for earthquake analysis). In this work we report new observations of PKiKP coda waves detected on records of a group of Underground Nuclear Explosions (UNEs) carried out in USSR and recorded at distances from 6 to 95 degrees by stations of the world seismological network. Our dataset benefits from using accurate ground truth information on source parameters (locations, origin times, depths, etc.), requires no accounting for different source radiation patterns and contains records corresponding to the whole range of precritical reflection including so called transparent zone where amplitudes of direct PKiKP phase are negligible. The processed dataset incorporates records of the array of sources consisted of the same magnitude explosions closely carried out at Semipalatinsk Test Site and recorded by stations located in Eurasia, Africa and North America. We detect PKiKP coda waves on

  12. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    NASA Astrophysics Data System (ADS)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  13. Sialylation of Thomsen-Friedenreich antigen is a noninvasive blood-based biomarker for GNE myopathy

    PubMed Central

    Leoyklang, Petcharat; Malicdan, May Christine; Yardeni, Tal; Celeste, Frank; Ciccone, Carla; Li, Xueli; Jiang, Rong; Gahl, William A.; Carrillo-Carrasco, Nuria; He, Miao; Huizing, Marjan

    2014-01-01

    GNE myopathy is an adult-onset progressive myopathy, resulting from mutations in GNE, the key enzyme of sialic acid synthesis. The pathomechanism of GNE myopathy likely involves aberrant sialylation, since administration of sialic acid itself, or its precursor, N-acetylmannosamine (ManNAc), rescued hyposialylation of GNE myopathy mice. Recently, clinical trials for GNE myopathy patients were initiated. A robust, noninvasive biomarker is highly desirable for diagnosis of GNE myopathy and for evaluating response to therapy. Since muscle biopsies of patients with GNE myopathy demonstrated hyposialylation of predominantly O-linked glycans, we analyzed the O-linked glycome of patients’ plasma proteins using mass spectrometry. Most patients showed increased plasma levels of the core 1 O-linked glycan, Thomsen-Friedenreich (T)-antigen and/or decreased amounts of its sialylated form, ST-antigen. In addition, compared to unaffected individuals, all analyzed patients had a consistently increased ratio of T-antigen to ST-antigen. Importantly, the T/ST ratios were in the normal range in a GNE myopathy patient treated with intravenous immunoglobulins as a source of sialic acid, indicating response to therapy. Natural history and clinical trial data will reveal whether T/ST ratios can be correlated to muscle function. These findings not only highlight plasma T/ST ratios as a robust blood-based biomarker for GNE myopathy, but may also help explain the pathology and course of the disease. PMID:25123033

  14. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    PubMed

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  15. Empirical transfer functions: Application to determination of outermost core velocity structure using SmKS phases

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine; Eaton, David W.

    2007-11-01

    SmKS waves provide good resolution of outer-core velocity structure, but are affected by heterogeneity in the D'' region. We have developed an Empirical Transfer Function (ETF) technique that transforms a reference pulse (here, SmKS) into a target waveform (SKKS) by: (1) time-windowing the respective pulses, (2) applying Wiener deconvolution, and (3) convolving the output with a Gaussian waveform. Common source and path effects are implicitly removed by this process. We combine ETFs from 446 broadband seismograms to produce a global stack, from which S3KS-SKKS differential time can be measured accurately. As a result of stacking, the scatter in our measurements (0.43 s) is much less than the 1.29 s scatter in previous compilations. Although our data do not uniquely constrain outermost core velocities, we show that the fit of most standard models can be improved by perturbing the outermost core velocity. Our best-fitting model is formed using IASP91 with PREM-like velocity at the top of the core.

  16. Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation

    PubMed Central

    Gallegos, Alena M.; Bevan, Michael J.

    2004-01-01

    Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs. PMID:15492126

  17. Cellular Pathway(S) of Antigen Processing and Presentation in Fish APC: Endosomal Involvement and Cell-Free Antigen Presentation

    PubMed Central

    Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.

    1992-01-01

    Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103

  18. Galactofuranose antigens, a target for diagnosis of fungal infections in humans

    PubMed Central

    Marino, Carla; Rinflerch, Adriana; de Lederkremer, Rosa M

    2017-01-01

    The use of biomarkers for the detection of fungal infections is of interest to complement histopathological and culture methods. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. D-Galactofuranose (Galf) is the antigenic epitope in glycoconjugates of several pathogenic fungi. Since Galf is not biosynthesized by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal antibody that recognizes Galf is commercialized for detection of aspergillosis. The linkage of Galf in the natural glycans and the chemical structures of the synthesized Galf-containing oligosaccharides are described in this paper. The oligosaccharides could be used for the synthesis of artificial carbohydrate-based antigens, not enough exploited for diagnosis. PMID:28883999

  19. Galactofuranose antigens, a target for diagnosis of fungal infections in humans.

    PubMed

    Marino, Carla; Rinflerch, Adriana; de Lederkremer, Rosa M

    2017-08-01

    The use of biomarkers for the detection of fungal infections is of interest to complement histopathological and culture methods. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. D-Galactofuranose (Gal f ) is the antigenic epitope in glycoconjugates of several pathogenic fungi. Since Gal f is not biosynthesized by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal antibody that recognizes Gal f is commercialized for detection of aspergillosis. The linkage of Gal f in the natural glycans and the chemical structures of the synthesized Gal f -containing oligosaccharides are described in this paper. The oligosaccharides could be used for the synthesis of artificial carbohydrate-based antigens, not enough exploited for diagnosis.

  20. The way to uncover community structure with core and diversity

    NASA Astrophysics Data System (ADS)

    Chang, Y. F.; Han, S. K.; Wang, X. D.

    2018-07-01

    Communities are ubiquitous in nature and society. Individuals that share common properties often self-organize to form communities. Avoiding the shortages of computation complexity, pre-given information and unstable results in different run, in this paper, we propose a simple and efficient method to deepen our understanding of the emergence and diversity of communities in complex systems. By introducing the rational random selection, our method reveals the hidden deterministic and normal diverse community states of community structure. To demonstrate this method, we test it with real-world systems. The results show that our method could not only detect community structure with high sensitivity and reliability, but also provide instructional information about the hidden deterministic community world and the real normal diverse community world by giving out the core-community, the real-community, the tide and the diversity. Thizs is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in complex systems.

  1. Sound velocity of iron-light element compounds and the chemical structure of the inner core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakamaki, T.; Fukui, H.; Tanaka, R.; Shibazaki, Y.; Kamada, S.; Sakairi, T.; Takahashi, S.; Tsutsui, S.; Baron, A. Q. R.

    2016-12-01

    The light elements in the core could constrain the conditions of accretion, subsequent magma ocean, and core formation stages of the Earth. There are several studies for sound velocity measurements of the iron-light elements alloys. However, the measurements are not enough to constrain the light element abundance in the core tightly at present due to inter-laboratory inconsistencies using different methods which are originated from the difficulties to make such measurements under the extreme conditions. We measured the sound velocity of iron alloy compounds at high pressure and temperature relevant to the Earth's core using double-sided laser heating of a DAC combined with inelastic X-ray scattering at SPring-8. We measured the compressional velocity of hcp-Fe up to 166 GPa and 3000 K, and derived a clear temperature dependence of the Birch's law for hcp-Fe. We measured the compressional velocity of Fe0.89Si0.11 alloy and Fe3C at high pressure and temperature, and we could not detect temperature dependency in Birch's law in these compounds. Additionally, we measured the sound velocity of Fe3S, Fe0.83Ni0.09Si0.08 alloy, and FeH at high pressure. Combining our new data set which showed remarkable differences from previous data on the sound velocity, we present a model of the chemical structure of the inner core. The outer core composition was also estimated based on partitioning behaviors of these light elements between solid and liquid iron alloys under the core conditions.

  2. Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering

    PubMed Central

    Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.

    2011-01-01

    The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796

  3. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells

    PubMed Central

    Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette

    2016-01-01

    Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763

  4. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  5. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less

  6. Quantitative analysis of antigen for the induction of tolerance in carcinoembryonic antigen transgenic mice.

    PubMed Central

    Hasegawa, T; Isobe, K; Nakashima, I; Shimokata, K

    1992-01-01

    In order to analyse the amounts of antigen in the thymus for the induction of tolerance, several carcinoembryonic antigen (CEA) transgenic lines were established which expressed human CEA antigen with different amounts. The chimeric KSN nude mice transplanted with the thymus of the B601 line (in which CEA mRNA and CEA protein could be detected in various tissues) to kidney capsule showed tolerance to human CEA. On the other hand, the chimeric KSN nude mice transplanted with the thymus of the B602 or BC60 line (in which neither CEA mRNA nor CEA protein could be detected by Northern blot analysis and flow cytometry analysis) or normal C57BL/6 (B6) did not develop the tolerance to human CEA. However, the chimeric KSN nude mice transplanted simultaneously with thymus of the B6 and spleen of the B601 line became tolerant to human CEA antigen. In the case of systemic immunization with cells which had CEA antigen, the B601 line was tolerant to human CEA. Surprisingly, the B602 and BC60 lines were also tolerant to CEA molecule. These results indicate that not only the antigen present in the thymus but also the antigen which flows from the peripheral organs to the thymus may be necessary for the induction of CEA tolerance. Images Figure 1 PMID:1493931

  7. Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn

    2011-03-01

    Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.

  8. Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody.

    PubMed

    Malito, Enrico; Biancucci, Marco; Faleri, Agnese; Ferlenghi, Ilaria; Scarselli, Maria; Maruggi, Giulietta; Lo Surdo, Paola; Veggi, Daniele; Liguori, Alessia; Santini, Laura; Bertoldi, Isabella; Petracca, Roberto; Marchi, Sara; Romagnoli, Giacomo; Cartocci, Elena; Vercellino, Irene; Savino, Silvana; Spraggon, Glen; Norais, Nathalie; Pizza, Mariagrazia; Rappuoli, Rino; Masignani, Vega; Bottomley, Matthew James

    2014-12-02

    Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.

  9. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core-disruptive accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romander, C M; Cagliostro, D J

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).« less

  10. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1 - xS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Yuan, Hang; Niu, Jin Zhong; Xu, Shasha; Zhou, Changhua; Ma, Lan; Li, Lin Song

    2011-09-01

    Highly photoluminescent (PL) reverse type-I ZnSe/CdSe nanocrystals (NCs) and ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were successfully synthesized by a phosphine-free method. By this low-cost, 'green' synthesis route, more than 10 g of high-quality ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS NCs were synthesized in a large scale synthesis. After the overgrowth of a CdS/CdxZn1 - xS/ZnS multishell on ZnSe/CdSe cores, the PL quantum yields (QYs) increased from 28% to 75% along with the stability improvement. An amphiphilic oligomer was used as a surface coating agent to conduct a phase transfer experiment, core/multishell NCs were dissolved in water by such surface modification and the QYs were still kept above 70%. The as-prepared water dispersible ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs not only have high fluorescence QYs but also are extremely stable in various physiological conditions. Furthermore, a biosensor system (lateral flow immunoassay system, LFIA) for the detection of human hepatitis B surface antigen (HBsAg) was developed by using this water-soluble core/multishell NCs as a fluorescent label and a nitrocellulose filter membrane for lateral flow. The result showed that such ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were excellent fluorescent labels to detect HBsAg. The sensitivity of HBsAg detection could reach as high as 0.05 ng ml - 1.

  11. Structural Relationships Between Minor and Major Proteins of Hepatitis B Surface Antigen

    PubMed Central

    Stibbe, Werner; Gerlich, Wolfram H.

    1983-01-01

    The minor glycoproteins from hepatitis B surface antigen, GP33 and GP36, contain at their carboxy-terminal part the sequence of the major protein P24. They have 55 additional amino acids at the amino-terminal part which are coded by the pre-S region of the viral DNA. Images PMID:6842680

  12. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen.

    PubMed

    Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert

    2014-11-01

    Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a

  13. A core competency-based objective structured clinical examination (OSCE) can predict future resident performance.

    PubMed

    Wallenstein, Joshua; Heron, Sheryl; Santen, Sally; Shayne, Philip; Ander, Douglas

    2010-10-01

    This study evaluated the ability of an objective structured clinical examination (OSCE) administered in the first month of residency to predict future resident performance in the Accreditation Council for Graduate Medical Education (ACGME) core competencies. Eighteen Postgraduate Year 1 (PGY-1) residents completed a five-station OSCE in the first month of postgraduate training. Performance was graded in each of the ACGME core competencies. At the end of 18 months of training, faculty evaluations of resident performance in the emergency department (ED) were used to calculate a cumulative clinical evaluation score for each core competency. The correlations between OSCE scores and clinical evaluation scores at 18 months were assessed on an overall level and in each core competency. There was a statistically significant correlation between overall OSCE scores and overall clinical evaluation scores (R = 0.48, p < 0.05) and in the individual competencies of patient care (R = 0.49, p < 0.05), medical knowledge (R = 0.59, p < 0.05), and practice-based learning (R = 0.49, p < 0.05). No correlation was noted in the systems-based practice, interpersonal and communication skills, or professionalism competencies. An early-residency OSCE has the ability to predict future postgraduate performance on a global level and in specific core competencies. Used appropriately, such information can be a valuable tool for program directors in monitoring residents' progress and providing more tailored guidance. © 2010 by the Society for Academic Emergency Medicine.

  14. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  15. Characterization and storage of malaria antigens: Localization and chemical characterization of Plasmodium knowlesi schizont antigens

    PubMed Central

    Deans, J. A.; Cohen, S.

    1979-01-01

    The identification of malarial antigens that induce protective immunity could provide a rational basis for developing an effective antimalarial vaccine as well as specific serodiagnostic tests indicative of clinical immune status. Since protective immunity is probably induced by stage-dependent rather than stage-independent antigens, the antigenic composition of different stages of Plasmodium knowlesi has been compared, and a limited chemical characterization undertaken. This information should provide some insight into the types of preparative procedure appropriate for the purification of functionally important malarial antigens. PMID:120777

  16. Leukemia-associated antigens in man.

    PubMed

    Brown, G; Capellaro, D; Greaves, M

    1975-12-01

    Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.

  17. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody.

    PubMed

    Vulliez-Le Normand, B; Saul, F A; Phalipon, A; Bélot, F; Guerreiro, C; Mulard, L A; Bentley, G A

    2008-07-22

    The anti-LPS IgG mAb F22-4, raised against Shigella flexneri serotype 2a bacteria, protects against homologous, but not heterologous, challenge in an experimental animal model. We report the crystal structures of complexes formed between Fab F22-4 and two synthetic oligosaccharides, a decasaccharide and a pentadecasaccharide that were previously shown to be both immunogenic and antigenic mimics of the S. flexneri serotype 2a O-antigen. F22-4 binds to an epitope contained within two consecutive 2a serotype pentasaccharide repeat units (RU). Six sugar residues from a contiguous nine-residue segment make direct contacts with the antibody, including the nonreducing rhamnose and both branching glucosyl residues from the two RUs. The glucosyl residue, whose position of attachment to the tetrasaccharide backbone of the RU defines the serotype 2a O-antigen, is critical for recognition by F22-4. Although the complete decasaccharide is visible in the electron density maps, the last four pentadecasaccharide residues from the reducing end, which do not contact the antibody, could not be traced. Although considerable mobility in the free oligosaccharides can thus be expected, the conformational similarity between the individual RUs, both within and between the two complexes, suggests that short-range transient ordering to a helical conformation might occur in solution. Although the observed epitope includes the terminal nonreducing residue, binding to internal epitopes within the polysaccharide chain is not precluded. Our results have implications for vaccine development because they suggest that a minimum of two RUs of synthetic serotype 2a oligosaccharide is required for optimal mimicry of O-Ag epitopes.

  18. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody

    PubMed Central

    Vulliez-Le Normand, B.; Saul, F. A.; Phalipon, A.; Bélot, F.; Guerreiro, C.; Mulard, L. A.; Bentley, G. A.

    2008-01-01

    The anti-LPS IgG mAb F22-4, raised against Shigella flexneri serotype 2a bacteria, protects against homologous, but not heterologous, challenge in an experimental animal model. We report the crystal structures of complexes formed between Fab F22-4 and two synthetic oligosaccharides, a decasaccharide and a pentadecasaccharide that were previously shown to be both immunogenic and antigenic mimics of the S. flexneri serotype 2a O-antigen. F22-4 binds to an epitope contained within two consecutive 2a serotype pentasaccharide repeat units (RU). Six sugar residues from a contiguous nine-residue segment make direct contacts with the antibody, including the nonreducing rhamnose and both branching glucosyl residues from the two RUs. The glucosyl residue, whose position of attachment to the tetrasaccharide backbone of the RU defines the serotype 2a O-antigen, is critical for recognition by F22-4. Although the complete decasaccharide is visible in the electron density maps, the last four pentadecasaccharide residues from the reducing end, which do not contact the antibody, could not be traced. Although considerable mobility in the free oligosaccharides can thus be expected, the conformational similarity between the individual RUs, both within and between the two complexes, suggests that short-range transient ordering to a helical conformation might occur in solution. Although the observed epitope includes the terminal nonreducing residue, binding to internal epitopes within the polysaccharide chain is not precluded. Our results have implications for vaccine development because they suggest that a minimum of two RUs of synthetic serotype 2a oligosaccharide is required for optimal mimicry of O-Ag epitopes. PMID:18621718

  19. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    PubMed

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-07

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  20. The Fuzziness of Giant Planets’ Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helled, Ravit; Stevenson, David

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not bemore » distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.« less

  1. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putativemore » nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.« less

  2. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  3. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy.

    PubMed

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D; Deperalta, Galahad; Wecksler, Aaron T

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.

  4. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-03-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  5. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    PubMed

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  6. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  7. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  8. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  9. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization.

    PubMed

    Yue, Yiying; Han, Jingquan; Han, Guangping; French, Alfred D; Qi, Yadong; Wu, Qinglin

    2016-08-20

    Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Do FY antigens act as minor histocompatibility antigens in the graft-versus-host disease paradigm after human leukocyte antigen-identical sibling hematopoietic stem cell transplantation?

    PubMed

    Sellami, Mohamed Hichem; Chaabane, Manel; Kaabi, Houda; Torjemane, Lamia; Ladeb, Saloua; Ben Othmane, Tarek; Hmida, Slama

    2012-03-01

    FY antigens are candidate minor histocompatibility antigens relevant to renal allograft rejection, but no data have been reported about their role in graft-versus-host disease (GVHD) incidence after human leukocyte antigen (HLA)-identical siblings hematopoietic stem cell transplantation (HSCT). The aim of this study was to examine the effect of donor/recipient disparity at FY antigens on the incidence of GVHD in Tunisian patients receiving an HLA-identical HSCT. This work enrolled 105 Tunisian pairs of recipients and their HLA-identical sibling donors of HSCs. FY genotyping was performed with the polymerase chain reaction-sequence-specific primer method and donor/recipient disparity for these antigens was analyzed at two levels: incompatibility and nonidentity. The case-control analyses showed no significant correlation between FY disparity and the incidence of either acute or chronic GVHD. Sample size calculation showed that 572 cases and 1716 controls would be necessary to be able to detect a significant association with 80% power and two-sided type I error level of 5% (α=0.05). The lack of association in the studied cohort may be explained by the low immunogenicity of FY antigens in HSCT context, compared with other antigens such as HA-1 and CD31.

  11. Core Mediator structure at 3.4 Å extends model of transcription initiation complex.

    PubMed

    Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick

    2017-05-11

    Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

  12. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease

    PubMed Central

    Saul, Allan; MacLennan, Calman A.; Micoli, Francesca; Rondini, Simona

    2015-01-01

    Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The

  13. Double layer-like structures in the core of an argon helicon plasma source with uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umair Siddiqui, M., E-mail: musiddiqui@wisc.edu; Hershkowitz, Noah

    2014-02-15

    A hot (T{sub e} ≈ 10 eV) electron population is observed in the core of a 3 mTorr argon helicon plasma source at 500 W RF power and 900 G uniform axial magnetic field strength, 12 cm from the edge of the helicon antenna. A double layer-like structure consisting of a localized axial electric field of approximately 8 V/cm over 1–2 cm is observed adjacent to the hot electron population. The potential step generated by the electric field is shown to be large enough to trap the hot electrons. To our knowledge this is the first observation of these structures in the core of amore » helicon discharge.« less

  14. Nitrite sensing composite systems based on a core-shell emissive-superamagnetic structure: Construction, characterization and sensing behavior

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Liu, Liang; Zha, Jianhua; Yuan, Ningyi

    2017-04-01

    Two recyclable nitrite sensing composite samples were designed and constructed through a core-shell structure, with Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensors, respectively. These samples and their structure were identified with their electron microscopy images, N2 adsorption/desorption isotherms, magnetic response, IR spectra and thermogravimetric analysis. Their nitrite sensing behavior was discussed based on emission intensity quenching, their limit of detection was found as low as 1.2 μM. Further analysis suggested a static sensing mechanism between nitrite and chemosensors through an additive reaction between NO+ and chemosensors. After finishing their nitrite sensing, these composite samples and their emission could be recycled and recovered by sulphamic acid.

  15. Depleted cores, multicomponent fits, and structural parameter relations for luminous early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2014-11-01

    New surface brightness profiles from 26 early-type galaxies with suspected partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sérsic model whereas for the lenticular galaxies a core-Sérsic bulge plus an exponential disc model gives the best representation. We additionally caution about the use of excessive multiple Sérsic functions for decomposing galaxies and compare with past fits in the literature. The structural parameters obtained from our fitted models are, in general, in good agreement with our initial study using radially limited (R ≲ 10 arcsec) profiles, and are used here to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius Rb and the spheroid luminosity L such that Rb ∝ L1.13±0.13, and with the supermassive black hole mass MBH such that R_b∝ M_BH^{0.83 ± 0.21}. This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass in equal proportion, i.e. MBH ∝ L. In addition, we observe a linear relation R_b∝ R_e^{0.98 ± 0.15} for the core-Sérsic elliptical galaxies - where Re is the galaxies' effective half-light radii - which is collectively consistent with the approximately linear, bright-end of the curved L-Re relation. Finally, we measure accurate stellar mass deficits Mdef that are in general 0.5-4 MBH, and we identify two galaxies (NGC 1399, NGC 5061) that, due to their high Mdef/MBH ratio, may have experienced oscillatory core-passage by a (gravitational radiation)-kicked black hole. The galaxy scaling relations and stellar mass deficits favour core-Sérsic galaxy formation through a few `dry' major merger events involving supermassive black holes such that M_def ∝ M_BH^{3.70 ± 0.76}, for MBH ≳ 2 × 108 M⊙.

  16. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    PubMed

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe 2 O 3 /APTS (3-aminopropyltrimethoxysilane) NPs and γFe 2 O 3 /DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe 2 O 3 /APTS NPs, but not negative charged γFe 2 O 3 /DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe 2 O 3 /APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe 2 O 3 /DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  17. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    NASA Astrophysics Data System (ADS)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  18. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers.

    PubMed

    Liu, Xiao Bin; Li, Jing; Yang, Zhu L

    2018-01-01

    A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. We established the first core collection of F. velutipes , containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei's expected heterozygosity, the number of observed heterozygosity, and Shannon's information index) of the core collection showed no significant differences from the entire collection ( p  > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding.

  19. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    PubMed

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  20. Utilization of Exocellular Mannan from Rhodotorula glutinis as an Immunoreactive Antigen in Diagnosis of Leptospirosis

    PubMed Central

    Matsuo, Kouki; Isogai, Emiko; Araki, Yoshio

    2000-01-01

    Previously, Rhodotorula glutinis was reported to produce a large amount of exocellular mannan, having a repeating unit of →3)-d-Manp-(1→4)-d-Manp-(1→. Recently, we found that antigenic polysaccharides of Leptospira biflexa serovar patoc strain Patoc I have the same repeating unit and cross-react with antisera raised against extended strains of other leptospires (K. Matsuo, E. Isogai, and Y. Araki, Carbohydr. Res., in press). This structural identity and the difficulty of producing and isolating antigens led us to confirm the usefulness of Rhodotorula mannan as an immunoreactive antigen in a serological diagnosis of leptospirosis. In the present investigation, we confirmed the structural identity of an exocellular mannan isolated from R. glutinis AHU 3479 and tried to use it as an immunoreactive antigen in a serological diagnosis of leptospirosis. From its chemical analysis and 1H- and 13C-labeled nuclear magnetic resonance spectrometry, the Rhodotorula mannan was confirmed to consist of the same disaccharide units. Furthermore, such a preparation was shown to immunoreact to various sera from patients suffering with leptospirosis as well as to most rabbit antiserum preparations obtained from immunization with various strains of pathogenic leptospires. Therefore, the Rhodotorula mannan preparation is useful as an immunoreactive antigen in the serological diagnosis for leptospirosis. PMID:11015396