Science.gov

Sample records for structural materials research

  1. Recent global trends in structural materials research

    NASA Astrophysics Data System (ADS)

    Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki

    2013-02-01

    Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural

  2. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  3. Structural biological materials: Overview of current research

    NASA Astrophysics Data System (ADS)

    Chen, P.-Y.; Lin, A. Y.-M.; Stokes, A. G.; Seki, Y.; Bodde, S. G.; McKittrick, J.; Meyers, M. A.

    2008-06-01

    Through specific biological examples this article illustrates the complex designs that have evolved in nature to address strength, toughness, and weight optimization. Current research is reviewed, and the structure of some shells, bones, antlers, crab exoskeletons, and avian feathers and beaks is described using the principles of materials science and engineering by correlating the structure with mechanical properties. In addition, the mechanisms of deformation and failure are discussed.

  4. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  5. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  6. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  7. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  8. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  9. Progress in materials and structures at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Lauver, R. W.; Halford, G. R.; Davies, R. L.

    1980-01-01

    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed.

  10. Research and Technology Advisory Committee on Materials and Structures: Report of meeting, February 1973

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The proceedings of a conference on Materials and Structures is presented. The subjects discussed are: (1) basic materials research: (2) fracture control: (3) aerospace vehicle dynamics and control: and (4) tramp elements in fuels and alloys.

  11. Structural materials research for lighter-than-air systems

    NASA Technical Reports Server (NTRS)

    Alley, V. L., Jr.; Mchatton, A. D.

    1975-01-01

    Inflatable systems have widespread applications in military, government, and industrial sectors. Improvements in inflatable materials have followed each salient advancement in textiles. The new organic fiber, Kevlar, is a recent and most significant advancement that justified reexamination of old and new inflatable materials' applications. A fertile frontier exists in integrating Kevlar with various other material combinations, in optimization of geometric features, and in selection of thermomechanical characteristics' compatibility with the environment. Expectations regarding Kevlar have been justified by the performance of two experimental materials. Styrene-butadiene-styrene block copolymers appear promising as a constituent adhesive for low temperature applications. Biaxial testing for both strength and material elastic properties is a technology area needing greater awareness and technology growth along with improved facilities. Because of dramatic materials' advancements, inflatable systems appear to be moving toward an increased position in tomorrow's aerospace industry.

  12. Materials and structures

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.

    1988-01-01

    Information on materials and structures for use in space is given in viewgraph form. Information is given on the Materials and Structures Division of NASA's Office of Aeronautics and Space Technology. The Division's space research and development budget is given. Further information is given on space materials and structures, space environmental effects, radiation effects, high temperature materials research, metal matrix composites, SiC fiber reinforced titanium alloys, structural dynamics, and control of flexible structures.

  13. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  14. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  15. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  16. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  17. A Place for Materials Science: University of Pennsylvania's Laboratory for Research on the Structure of Matter

    NASA Astrophysics Data System (ADS)

    Shields, Brittany

    2013-03-01

    The University of Pennsylvania's Laboratory for Research on the Structure of Matter (LRSM) opened its doors in 1965. Constructed to house cutting-edge research on Materials Science, the LRSM building was designed to foster interdisciplinary research among physicists, chemists and metallurgical engineers. Each of the five floors of the new building included a central facility, including a high magnetic field center, an analytical chemistry research center and an electron microscopy center. While primarily funded by the Department of Defense's Advanced Research Projects Agency, the LRSM also was also partly sponsored by industry. The LRSM received funding from Philadelphia Electric Company, General Electric Company, and IBM, among others. In this paper, I will study how the building was designed to encourage interdisciplinary collaboration, while also becoming a place of intersection among academic, private, and governmental interests. This project is a collaboration with Hyungsub Choi.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  19. Structures research

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias; Mcginley, Williams; Shen, Ji-Yao

    1992-01-01

    The main objective of the structures group is to provide quality aerospace research with the Center for Aerospace Research - A NASA Center for Excellence at North Carolina Agricultural and Technical State University. The group includes dedicated faculty and students who have a proven record in the area of structures, in particular space structures. The participating faculty developed accurate mathematical models and effective computational algorithms to characterize the flexibility parameters of joint dominated beam-truss structures. Both experimental and theoretical modelling has been applied to the dynamic mode shapes and mode frequencies for a large truss system. During the past few months, the above procedures has been applied to the hypersonic transport plane model. The plane structure has been modeled as a lumped mass system by Doctor Abu-Saba while Doctor Shen applied the transfer matrix method with a piecewise continuous Timoshenko tapered beam model. Results from both procedures compare favorably with those obtained using the finite element method. These two methods are more compact and require less computer time than the finite element method. The group intends to perform experiments on structural systems including the hypersonic plane model to verify the results from the theoretical models.

  20. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  2. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  3. Materials research at CMAM

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  4. Materials research at CMAM

    SciTech Connect

    Zucchiatti, Alessandro

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  5. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites

  6. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  7. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1983-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  8. Lightweight Materials & Structures

    NASA Video Gallery

    The Lightweight Materials and Structures (LMS) project will mature high-payoff structures and materials technologies that have direct application to NASA’s future space exploration needs.One of the...

  9. Research In Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1989-01-01

    Report reviews current research in thermoelectric materials with view towards development of materials of greater energy-conversion efficiency. Emphasis on effort to understand and manipulate microstructure to increase thermoelectric figure of merit, Z. Thermoelectric properties of three broad categories of materials discussed. First category includes alloys of group IV elements like silicon and germanium. Second category is rare-earth chalcogenides. Third category includes narrow-band semiconductors, especially boron carbides.

  10. Materials and structures

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-01-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  11. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    High temperature thermoplastic polyimide polymers are incorporated in engineering structures in the form of matrix materials in advanced fiber composites and adhesives in bonded joints. Developing analytical tools to predict long term performance and screen for final materials selection for polymers is the impetus for intensive studies at NASA and major industry based airframe developers. These fiber-reinforced polymeric composites (FRPCs) combine high strength with lightweight. In addition, they offer corrosion and fatigue resistance, a reduction in parts count, and new possibilities for control through aeroelastic tailoring and "smart" structures containing fully-integrated sensors and actuators. However, large-scale acceptance and use of polymer composites has historically been extremely slow. Reasons for this include a lack of familiarity of designers with the materials; the need for new tooling and new inspection and repair infrastructures; and high raw materials and fabrication costs.

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  14. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  15. Interdisciplinary research and development on the effects of the nature and properties of ceramic materials in the design of advanced structural components

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.

  16. Materials and innovations for large blade structures : research opportunities in wind energy technology.

    SciTech Connect

    Ashwill, Thomas D.

    2009-05-01

    The significant growth in wind turbine installations in the past few years has fueled new scenarios that envision even larger expansion of U.S. wind electricity generation from the current 1.5% to 20% by 2030. Such goals are achievable and would reduce carbon dioxide emissions and energy dependency on foreign sources. In conjunction with such growth are the enhanced opportunities for manufacturers, developers, and researchers to participate in this renewable energy sector. Ongoing research activities at the National Renewable Energy Laboratory and Sandia National Laboratories will continue to contribute to these opportunities. This paper focuses on describing the current research efforts at Sandia's wind energy department, which are primarily aimed at developing large rotors that are lighter, more reliable and produce more energy.

  17. Cryogenic structural materials for superconducting magnets

    SciTech Connect

    Dalder, E.N.C.; Morris, J.W. Jr.

    1985-02-22

    This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

  18. Structural aspects of metal-organic framework-based energy materials research at Diamond

    PubMed Central

    Allan, David R.; Blake, Alexander J.; Schröder, Martin; Tang, Chiu C.; Yang, Sihai

    2015-01-01

    Large-scale central facilities such as Diamond Light Source fulfil an increasingly pivotal role in many large-scale scientific research programmes. We illustrate these developments by reference to energy-centred projects at the University of Nottingham, the progress of which depends crucially on access to these facilities. Continuing access to beamtime has now become a major priority for those who direct such programmes. PMID:25624515

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  20. Advanced desiccant materials research

    NASA Astrophysics Data System (ADS)

    Czanderna, A. W.; Thomas, T. M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  1. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  3. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  4. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  5. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  6. Materials Science Research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1995-01-01

    Microgravity materials processing experiments provide an opportunity to perform scientific research in an environment which allows one to observe various phenomena without the masking effects of gravity-driven convective flows, buoyancy, or contaminating influences of walled containers. Even for the most experienced scientists, it is still difficult to predict beforehand, whether or not microgravity experimentation can be successfully performed in space and achieve solutions to problems which are not attainable in 1 g. Consequently, experimentation in ground based facilities which are capable of simulating, in somewhat lesser time frames and to a lesser degree of microgravity, provides a unique low-cost approach to determine the feasibility of continuing research in a particular experiment. The utilization of these facilities in developing the full requirements for a space experiment does present a very cost-effective approach to microgravity experimentation. The Drop Tube Facility at Marshall Space Flight Center (MSFC) provides an excellent test bed for containerless processing experiments such as described here. These facilities have demonstrated for a number of years the capability to develop insight into space experiments involving containerless processing, rapid solidification, and wetting phenomena through the use of lower-cost ground facilities. Once sufficient data has been obtained, then a space-based experiment can be better defined.

  7. Materials and structures technology

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Glasgow, T. K.; Halford, G. R.; Levine, S. R.

    1979-01-01

    Materials and structures performance limitations, particularly for the hot section of the engine in which these limitations limit the life of components, are considered. Failure modes for components such as blades, vanes, and combustors and how they are affected by the environment for such components are discussed. Methods used to improve the materials used for such components are: (1) application of directional structures to turbine components for high strength at high temperatures; (2) improved coatings to increase oxidation and corrosion resistance; (3) increase strength and stiffness with reduced weight by applying higher specific properties of composite materials; and (4) cost effective processing such as near net shape powder methods applied to disks. Life prediction techniques developed to predict component life accurately in advance of service and progress in improving the intermediate and cold section components of turbine engines are covered.

  8. Electronics materials research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  10. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  11. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  12. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  13. Concrete Materials and Structures

    SciTech Connect

    Wilby, C.B.

    1991-12-31

    Concrete Materials and Structures provides one of the most comprehensive treatments on the topic of concrete engineering. The author covers a gamut of concrete subjects ranging from concrete mix design, basic reinforced concrete theory, prestressed concrete, shell roofs, and two-way slabs-including a through presentation of Hillerborg`s strip method. Prior to Wilby`s book, the scope of these topics would require at least four separate books to cover. With this new book he has succeeded, quite remarkably, in condensing a fairly complete knowledge of concrete engineering into one single easy-to-carry volume.

  14. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  15. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A. (Editor); Gates, Thomas S. (Editor)

    1996-01-01

    Computational Materials aims to model and predict thermodynamic, mechanical, and transport properties of polymer matrix composites. This workshop, the second coordinated by NASA Langley, reports progress in measurements and modeling at a number of length scales: atomic, molecular, nano, and continuum. Assembled here are presentations on quantum calculations for force field development, molecular mechanics of interfaces, molecular weight effects on mechanical properties, molecular dynamics applied to poling of polymers for electrets, Monte Carlo simulation of aromatic thermoplastics, thermal pressure coefficients of liquids, ultrasonic elastic constants, group additivity predictions, bulk constitutive models, and viscoplasticity characterization.

  16. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  17. Radiation effects on structural materials

    SciTech Connect

    Ghoniem, N.M.

    1991-06-28

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support.

  18. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  19. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  20. Smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.

    1993-01-01

    Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.

  1. Materials Research in Microgravity 2012

    NASA Technical Reports Server (NTRS)

    Hyers, R. (Editor); Bojarevis, V. (Editor); Downey, J.; Henein, H. (Editor); Matson, D.; Seidel, A. (Editor); Voss, D. (Editor); SanSoucie, M. (Compiler)

    2012-01-01

    Reducing gravitational effects such as thermal and solutal buoyancy enables investigation of a large range of different phenomena in materials science. The Symposium on Materials Research in Microgravity involved 6 sessions composed of 39 presentations and 14 posters with contributions from more than 14 countries. The sessions concentrated on four different categories of topics related to ongoing reduced-gravity research. Highlights from this symposium will be featured in the September 2012 issue of JOM. The TMS Materials Processing and Manufacturing Division, Process Technology and Modeling Committee and Solidification Committee sponsored the symposium.

  2. West Virginia US Department of Energy experimental program to stimulate competitive research. Section 2: Human resource development; Section 3: Carbon-based structural materials research cluster; Section 3: Data parallel algorithms for scientific computing

    SciTech Connect

    Not Available

    1994-02-02

    This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of this cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.

  3. Chemistry and materials science research report

    SciTech Connect

    Not Available

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  4. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  5. Structural materials for space applications

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    1989-01-01

    The long-term performance of structural materials in the space environment is a key research activity within NASA. The primary concerns for materials in low Earth orbit (LEO) are atomic oxygen erosion and space debris impact. Atomic oxygen studies have included both laboratory exposures in atomic oxygen facilities and flight exposures using the Shuttle. Characterization of atomic oxygen interaction with materials has included surface recession rates, residual mechanical properties, optical property measurements, and surface analyses to establish chemical changes. The Long Duration Exposure Facility (LDEF) is scheduled to be retrieved in 1989 and is expected to provide a wealth of data on atomic oxygen erosion in space. Hypervelocity impact studies have been conducted to establish damage mechanisms and changes in mechanical properties. Samples from LDEF will be analyzed to determine the severity of space debris impact on coatings, films, and composites. Spacecraft placed in geosynchronous Earth orbit (GEO) will be subjected to high doses of ionizing radiation which for long term exposures will exceed the damage threshold of many polymeric materials. Radiation interaction with polymers can result in chain scission and/or cross-linking. The formation of low molecular weight products in the epoxy plasticize the matrix at elevated temperatures and embrittle the matrix at low temperatures. This affects both the matrix-dominated mechanical properties and the dimensional stability of the composite. Embrittlement of the matrix at low temperatures results in enhanced matrix microcracking during thermal cycling. Matrix microcracking changes the coefficient of thermal expansion (CTE) of composite laminates and produces permanent length changes. Residual stress calculations were performed to estimate the conditions necessary for microcrack development in unirradiated and irradiated composites. The effects of UV and electron exposure on the optical properties of transparent

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  7. Energy and environmental research emphasizing low-rank coal: Task 6.2. Joining of advanced structural materials

    SciTech Connect

    Nowok, J.W.; Hurley, J.P.

    1995-03-01

    Silicon carbide (SiC) is considered an attractive material for structural applications in fossil energy systems because of its corrosion and wear resistance, high thermoconductivity, and high temperature strength. These same properties make it difficult to sinter or join SiC. Conventional sintering techniques require applying pressure and heating to temperatures near 2000{degree}C, or the use of binders with lower melting temperatures, or pressureless sintering with the aid of carbon and boron to near full density about 2100{degree}C. The sintering temperature can be reduced to 1850{degree}--2000{degree}C if SiC is sintered with the addition of small quantities of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3} {plus} Y{sub 2}O{sub 3}. In addition, reaction sintering has been used by mixing Si and C with SiC powder and heating the mixture to 1400{degree}C to cause the Si and C to react and form SiC, which bonds the aggregate together. Work proposed for this year was to center on determining gas compositions that could be used to increase the sinterability of oxide binders and on using the binder and gas combinations to join bars of SiC, alumina, and mullite (3Al{sub 2}O{center_dot}2SiO{sub 2}). During the course of the year the focus was shifted to SiC joining alone, because it was felt that alumina and mullite are too prone to thermal shock for use in structural applications in fossil energy systems. Because of a thermal expansion mismatch between alumina and SiC, only SiC and mullite were investigated as joining aides for SiC. Therefore, the objectives of this work evolved into examining the sintering phenomena of SiC and mullite-derived binders at and below 1500{degree}C in various atmospheres and determining which conditions are suitable to form strong joints in monolithic SiC structures to be used at temperatures of 1000{degree}--1400{degree}C.

  8. Research Ethics. Cases and Materials.

    ERIC Educational Resources Information Center

    Penslar, Robin Levin, Ed.

    This book is a comprehensive resource of illustrative cases for classroom discussion of research ethics in the natural sciences, the behavioral sciences, and the humanities. The materials selected for inclusion are intended to speak to people in all disciplines, though the cases are drawn from biology, psychology, and history. They cover such…

  9. Structures and materials technology for hypersonic aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G., Jr.; Murrow, Harold N.; Card, Michael F.

    1990-01-01

    Major considerations in structural design of a transatmospheric aerospacecraft are discussed. The general direction of progress in structures and materials technology is indicated, and technical areas in structures and materials where further research and development is necessary are indicated. Various structural concepts under study and materials which appear to be most applicable are discussed. Structural design criteria are discussed with particular attention to the factor-of-safety approach and the probabilistic approach. Structural certification requirements for the aerospacecraft are discussed. The kinds of analyses and tests which would be required to certify the structural integrity, safety, and durability of the aerospacecraft are discussed, and the type of test facility needed to perform structural certification tests is identified.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  12. Hypersonic Materials and Structures

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2016-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  13. Radiation Effects on Spacecraft Structural Materials

    SciTech Connect

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-07-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  14. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    SciTech Connect

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture

  15. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: synthetic strategies, structural overview and functional applications.

    PubMed

    Zhao, Jun-Wei; Li, Yan-Zhou; Chen, Li-Juan; Yang, Guo-Yu

    2016-03-15

    With the rapid development of science and technology and the trend of multidisciplinary pervasion, POM-based TM-RE heterometallic chemistry (POM = polyoxometalate, TM = transition-metal, RE = rare-earth) has become one of the most rapidly growing and challengeable areas of inorganic chemistry due to the impressive structural diversities, various chemical compositions and potential applications of these materials in magnetism, optics, electrochemistry, electrocatalysis and materials science. Over the past several years, continuous interest and persisting efforts have been dedicated to the preparation and exploration of POM-based TM-RE heterometallic derived materials (PTRHDMs), which have led to more than two hundred PTRHDMs. In this review, we summarize the structural types of reported PTRHDMs together with synthetic strategies, structural motifs and relevant functional applications. The exciting array of this emerging research theme presages continuous growth and great vitality. In the last section, some prospects of this branch are also presented and possible guidance for future work is outlined. PMID:26894638

  16. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  17. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  18. Fire retardancy with structural materials

    NASA Technical Reports Server (NTRS)

    Gardner, R. E.

    1971-01-01

    Impregnating wood with chemicals to reduce or prevent combustion is discussed. Basic types of materials for fireproofing purposes and methods of applications are described. It is concluded that effective fireproofing materials have been developed and their application to wooden structures represents acceptable safety management procedures.

  19. Optimal lattice-structured materials

    DOE PAGESBeta

    Messner, Mark C.

    2016-07-09

    This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less

  20. LOW CYCLE FATIGUE OF COMPOSITE MATERIALS IN ARMY STRUCTURAL APPLICATIONS: A REVIEW OF LITERATURE AND RECOMMENDATIONS FOR RESEARCH

    EPA Science Inventory

    Low cycle fatigue (LCF) of laminate composite structures used in Army applications is assessed to identify the key physical phenomena occurring during LCF processes and to determine their main characteristics. Special attention is given to the LCF conditions inherent in Army stru...

  1. Smart materials and structures: what are they?

    NASA Astrophysics Data System (ADS)

    Spillman, W. B., Jr.; Sirkis, J. S.; Gardiner, P. T.

    1996-06-01

    There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and start of the art in other fields. In order to ascertain whether a consensus is emerging on a number of questions, the technical community was surveyed in a variety of ways including via the internet and by direct contact. The purpose of this survey was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed. Finally, a formal definition of the field of smart materials and structures is proposed.

  2. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  3. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  4. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  5. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  6. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  7. Adaptive structures: some materials and structural issues

    NASA Astrophysics Data System (ADS)

    Roberts, Donald; Lloyd, Peter A.; Hopgood, P.; Mahon, Steve W.; Bowles, A. R.

    2000-08-01

    The concept of using embedded or surface-bonded solid-state actuators to effect shape change in carbon fibre composite laminates continues to have technical merit and appeal. Conventional laminate design methods tend to lead to stiff structures, whilst it is easiest to impose a change of shape on a compliant structure. This presents a possible conflict of design and suggests that the useful performance of solid- state actuators will always be limited by the stiffness of the host laminate. One possible solution is to increase the in-plane work capacity of the actuators either by using improved materials such as phase change perovskites like PLZT or improved eletroding techniques such as inter-digitated electrodes (IDEs). In this study, the performance of several different actuator/laminate systems have been modelled to determine a baseline capability in pure bending. Four cases have been considered for different panel thicknesses and lay-up sequences. The materials performance and IDE design issues have also been addressed. Modelling indicates that even with conventional actuator materials, structural displacements can be produced which could provide useful shape change in applications such as missile roll control.

  8. Smart materials, structures, and mathematical issues; U. S. Army Research Office Workshop, Virginia Polytechnic Institute and State University, Blacksburg, Sept. 15, 16, 1988, Selected Papers

    SciTech Connect

    Rogers, C.A.

    1989-01-01

    Papers are presented on such topics as optical fiber sensors and signal processing for smart materials and structure applications; dynamic control concepts using shape memory alloy reinforced plates; piezoceramic devices and PVDF films as sensors and actuators for intelligent structures; and variable-geometry trusses. Consideration is also given to applications of smart materials in the area of vibration control, smart ceramics, tribopolymerization, ansd computational results for phase transitions in shape memory alloys.

  9. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  10. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  11. Structures and Materials Competency Vision and Purpose at NASA Langley

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.

    2004-01-01

    Vision: The revolutionary materials and structures technologies developed at NASA Langley Research Center meet the needs of the Aerospace Community and benefit the quality of life on Earth Purpose: Develop and deliver useable research and technology results to meet Agency program objectives and to enable the Agency to develop future aerospace materials and structures

  12. Method of binding structural material

    SciTech Connect

    Wagh, Arun S.; Antink, Allison L.

    2007-12-25

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  13. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W.; Bonzon, Lloyd L.

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  14. Structural adhesives for missile external protection material

    NASA Astrophysics Data System (ADS)

    Banta, F. L.; Garzolini, J. A.

    1981-07-01

    Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.

  15. The rheology of structured materials

    NASA Astrophysics Data System (ADS)

    Sun, Ning

    2000-10-01

    In this work, the rheological properties of structured materials are studied via both theoretical (continuum mechanics and molecular theory) and experimental approaches. Through continuum mechanics, a structural model, involving shear-induced structural breakdown and buildup, is extended to model biofluids. In particular, we study the cases of steady shear flow, hysteresis, yield stress, small amplitude oscillatory flow as well as non-linear viscoelasticity. Model predictions are successfully compared with experimental data on complex materials such as blood and a penicillin suspension. Next, modifications are introduced into the network model. A new formulation involving non-affine motion is proposed and its applications are presented. The major improvement is that a finite elongational viscosity is predicted for finite elongational rate, contrary to infinite elongational viscosities existing at some elongational rates predicted by most previous network models. Comparisons with experimental data on shear viscosity, primary normal stress coefficient and elongational viscosity are given, in terms of the same set of model parameters. Model predictions for the stress growth are also shown. The model is successfully tested with data on a polyisobutylene solution (S1), on a polystyrene solution and on a poly-alpha-methylstyrene solution. A further extension of the network model is related to the prediction of the stress jump phenomenon which is defined as the instantaneous gain or loss of stress on startup or cessation of a deformation. It is not predicted by most existing models. In this work, the internal viscosity idea used in the dumbbell model is incorporated into the transient network model. Via appropriate approximations, a closed form constitutive equation, which predicts a stress jump, is obtained. Successful comparisons with the available stress jump measurements are given. In addition, the model yields good quantitative predictions of the standard steady

  16. Research on new energetic materials

    SciTech Connect

    Miller, R.S.

    1996-07-01

    Fluorine and oxygen rich energetic crystals and polymers will provide a new approach to increasing composite propellant and explosive energy density and energy release rates. This class of energetic materials will be used to demonstrate that advances in computational chemistry and solid state physics can be used to begin to understand detonation and combustion processes. It is anticipated that fluorinated as well as the oxygenated combustion and detonation products will accelerate the rates of metal particle consumption in composite propellants and explosives. Enhanced and tailorable energy release rates and critical diameters of metallized composite explosives will provide new technological opportunities for both military and civilian applications. Environmentally friendly energetic materials are of great current interest to reduce life cycle waste and pollution as well as life cycle cost. Thermoplastic elastomers, which have reversible crosslinking mechanisms, are one of the required keys to the gate and pathway to achieving substantial waste and pollution reduction goals. The goal in this paper is to review progress in two emerging topics in energetic materials science. These emerging two areas are fluorine and oxygen rich energetic crystals and polymers and environmentally friendly energetic material classes. 33 refs., 12 figs.

  17. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  18. Probabilistic analysis of a materially nonlinear structure

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.

    1990-01-01

    A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.

  19. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  20. Research Update: ARTI Materials Compatibility and Lubricant Research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1993-10-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on chlorfluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC) refrigerant alternatives. During the first two years of this program, ARTI has subcontracted and managed sixteen research projects totaling over $4 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  1. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  2. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  3. Materials Properties Research at MSFC

    NASA Technical Reports Server (NTRS)

    Presson, Joan B.; Burdine, Robert (Technical Monitor)

    2002-01-01

    MSFC is currently planning, organizing and directing test coupon fabrication and subsequent CTE testing for two mirror materials of specific interest to the AMSD and NGST programs, Beryllium 0-30H (Be 0-30H) and Ultra Low Expansion glass (ULE). The ULE test coupons are being fabricated at MSFC from AMSD core residuals provided by Kodak, The Be 0-30H test coupons are being fabricated at Brush Wellman using residuals from the SBMD. Both sets of test coupons will be sent to a test vendor selected through the NASA competitive proposal process with the test results being provided by written report to MSFC by the end of the fiscal year. The test results will become model input data for the AMSD analysts, both MSFC and contractor, providing an enhancement to the historical CTE data currently available.

  4. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  5. Solar thermal materials research and development

    NASA Technical Reports Server (NTRS)

    Gupta, B. P.

    1981-01-01

    Objectives of the Materials Research and Development effort are examined. The behavior and interaction of different materials used in solar thermal technologies are studied so as to create a sound technical base for future system and component designs. Materials are developed to extend the application potential of systems by either making materials more reliable in difficult operating environments or by offering lower cost alternatives to presently used materials. Solar thermal systems designed for electric power, industrial process heat from low to high temperature, and fuels and chemicals applications are discussed.

  6. The electronic structure of hard materials

    NASA Astrophysics Data System (ADS)

    Winarski, Robert Paul

    This research dissertation involves an experimental as well as a theoretical examination of the electronic structure of hard materials. The materials that are presented in this dissertation cover a wide class of materials, consisting of transition metal borides, irradiated polymer films, theoretically predicted superhard semiconductors, doped intermetallic alloys, and transition metal carbides. The borides are traditionally used in high temperature, hard coating applications, such as rocket nozzle linings, extreme wear surfaces, and corrosion coatings. Measurements of the borides appear to show that the bonding in these hard materials is primarily between the boron atoms in these systems. Also of note are the remarkably short interatomic distances between the boron atoms and between the boron and metal atoms in these materials. Irradiated polymer films are being developed for electronic applications, in the hopes that circuits can be developed that can benefit from the high thermal stability, dielectric properties, and mechanical properties provided by these materials. C3N4 is a theoretically predicted superhard material, and some of the first soft x-ray emission measurements of well-characterized samples of this compound are discussed in this work. Intermetallic alloys, in particular Ni3Al, are rather hard, but brittle metallic alloys. It has been found that the addition of boron atoms, in rather low concentrations, can increase the ductility of these alloys, allowing them to be utilized in a wider variety of applications. Measurements of this system have examined a question regarding the positioning of the boron atoms in the structures of this alloy. Finally, the transition metal carbides are used extensively as coatings in industrial applications such as cutting and grinding tools, and polishing compounds. Measurements of these materials suggest that the high degree of covalency between the metal and carbon atoms is primarily responsible for the hardness of

  7. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.

    1973-01-01

    Research projects involving the development of ceramic materials are discussed. The following areas of research are reported: (1) refractory structural ceramics, (2) solid electrolyte ceramics, and (3) ceramic processing. The laboratory equipment used and the procedures followed for various development and evaluation techniques are described.

  8. Fatigue and fracture research in composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1982-01-01

    The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

  9. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field. PMID:23471316

  10. Adhesives in Building--Lamination of Structural Timber Beams, Bonding of Cementitious Materials, Bonding of Gypsum Drywall Construction. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Spring 1960).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The role of adhesives in building design is discussed. Three major areas are as follows--(1) lamination of structural timber beams, (2) bonding of cementitious materials, and (3) bonding of gypsum drywall construction. Topical coverage includes--(1) structural lamination today, (2) adhesives in use today, (3) new adhesives needed, (4) production…

  11. Granular Materials Research at NASA-Glenn

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Daidzic, Nihad; Green, Robert D.; Nakagawa, Masami; Nayagam, Vedha; Rame, Enrique; Wilkinson, Allen

    2002-01-01

    This paper presents viewgraphs of granular materials research at NASA-Glenn. The topics include: 1) Impulse dispersion of a tapered granular chain; 2) High Speed Digital Images of Tapered Chain Dynamics; 3) Impulse Dispersion; 4) Three Dimensional Granular Bed Experimental Setup; 5) Magnetic Resonance Imaging of Fluid Flow in Porous Media; and 6) Net Charge on Granular Materials (NCharG).

  12. Preparation of actinide-metal research materials

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Laboratory. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films. The actinide-metal processing capabilities of the IRML are continuing to be improved and applied to a wide variety of custom material preparations to meet the needs of the world-wide research community.

  13. Structural Materials for Innovative Nuclear Systems

    SciTech Connect

    Yvon, Pascal

    2011-07-01

    This series of slides deal with: the goals for advanced fission reactor systems; the requirements for structural materials; a focus on two important types of materials: ODS and CMC; a focus on materials under irradiation (multiscale modelling, experimental simulation, 'smart' experiments in materials testing reactors); some concluding remarks.

  14. Integrated Thermal Structures and Materials Overview

    NASA Technical Reports Server (NTRS)

    Jensen, Brian

    2000-01-01

    The accomplishments of the project this viewgraph presentation summarizes (integrated thermal structures and materials) include the following: (1) Langley Research Center prepared five resins with Tgs as high as 625 F, less than 1% volatiles, moderate toughness, and low melt viscosity and sent to Boeing or Lockheed Martin; (2) Glenn Research Center prepared four resins with Tgs as high as 700 F, less than 10% volatiles, and low melt viscosity and sent to Boeing; (3) Boeing successfully fabricated 2'x2'x36 ply composites by resin infusion of stitched preforms from all NASA supplied resins; and (4) Lockheed Martin successfully fabricated 13"x14"x16 ply composites by resin transfer molding from all NASA supplied resins.

  15. Materials Research With Neutrons at NIST

    PubMed Central

    Cappelletti, R. L.; Glinka, C. J.; Krueger, S.; Lindstrom, R. A.; Lynn, J. W.; Prask, H. J.; Prince, E.; Rush, J. J.; Rowe, J. M.; Satija, S. K.; Toby, B. H.; Tsai, A.; Udovic, T. J.

    2001-01-01

    The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation’s measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments. PMID:27500021

  16. Material Selection for Cryogenic Support Structures

    NASA Astrophysics Data System (ADS)

    Kramer, Erik; Kellaris, Nicholas; Daal, Miguel; Sadoulet, Bernard; Golwala, Sunil; Hollister, Matthew

    2014-09-01

    Design specifications for the support structures of low temperature instrumentation often call for low thermal conductivity between temperature stages, high stiffness, and specific load bearing capabilities. While overall geometric design plays an important role in both overall stiffness and heat conduction between stages, material selection can affect a structure's properties significantly. In this contribution, we suggest and compare several alternative materials to the current standard materials for building cryogenic support structures.

  17. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  18. Research update: Materials compatibility and lubricant research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1994-04-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on CFC and HCFC refrigerant alternatives. This work has been supported by a grant from the US Department of Energy, Office of Building Technology, with co-funding from the Air-Conditioning and Refrigeration Technology Institute (ARI). During the first two and one-half years of this program, ARTI has subcontracted and managed twenty-one research projects totaling over $5.2 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  19. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  20. Materials research institute annual report FY98

    SciTech Connect

    Radousky, H

    1999-11-02

    The Materials Research Institute (MRI) is the newest of the University/LLNL Institutes and began operating in March 1997. The MRI is one of five Institutes reporting to the LLNL University Relations Program (URP), all of which have as their primary goal to facilitate university interactions at LLNL. This report covers the period from the opening of the MRI through the end of FY98 (September 30, 1998). The purpose of this report is to emphasize both the science that has been accomplished, as well as the LLNL and university people who were involved. The MRI is concentrating on projects, which highlight and utilize the Laboratory's unique facilities and expertise. Our goal is to enable the best university research to enhance Laboratory programs in the area of cutting-edge materials science. The MRI is focusing on three primary areas of materials research: Biomaterials (organic/inorganic interfaces, biomemetic processes, materials with improved biological response, DNA materials science); Electro/Optical Materials (laser materials and nonlinear optical materials, semiconductor devices, nanostructured materials); and Metals/Organics (equation of state of metals, synthesis of unique materials, high explosives/polymers). In particular we are supporting projects that will enable the MRI to begin to make a distinctive name for itself within the scientific community and will develop techniques applicable to LLNL's core mission. This report is organized along the lines of these three topic areas. A fundamental goal of the MRI is to nucleate discussion and interaction between Lab and university researchers, and among Lab researchers from different LLNL Directorates. This is accomplished through our weekly seminar series, special seminar series such as Biomaterials and Applications of High Pressure Science, conferences and workshops, our extensive visitors program and MRI lunches. We are especially pleased to have housed five graduate students who are performing their thesis

  1. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  2. Composite fuselage shell structures research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  3. Materials and structures/ACEE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Light weight composites made from graphite fibers, glass, or man made materials held in an epoxy matrix, and their application to airframe design are reviewed. The Aircraft Energy Efficiency program is discussed. Characteristics of composites, acceptable risks, building parts and confidence, and aeroelastic tailoring are considered.

  4. Managing Training Materials with Structured Text Design.

    ERIC Educational Resources Information Center

    Streit, Les D.; And Others

    1986-01-01

    Describes characteristics of structured text design; benefits of its use in training; benefits for developers of training materials and steps in preparing training materials. A case study illustrating how the structured text design process solved the sales training needs of the Mercedes-Benz Truck Company is presented. (MBR)

  5. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  6. HSCT materials and structures: An MDC perspective

    NASA Technical Reports Server (NTRS)

    Sutton, Jay O.

    1992-01-01

    The key High Speed Civil Transport (HSCT) features which control the materials selection are discussed. Materials are selected based on weight and production economics. The top-down and bottoms-up approaches to material selection are compared for the Mach 2.4 study baseline aircraft. The key materials and structures related tasks which remain to be accomplished prior to proceeding with the building of the HSCT aircraft are examined.

  7. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  8. Mapping the Structure of Heterogeneous Materials

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Cohen, N. S.; Hernan, M. A.

    1986-01-01

    Image-processing microdensitometer/Fourier analyzer yields statistics of subcomponent distribution. Nondestructive method for studying structure heterogeneous materials uses energy-dispersive X-ray analysis in scanning electron microscope. Scanning microdensitometer/Fourier analyzer (SMFA) is applied to SEM images to obtain statistics about sample structure. Method originally developed for studying effect on combustion of fine structure of composite solid propellants.

  9. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  10. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  11. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  12. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  16. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  17. Material and Virtual Workspaces in Physics Research

    NASA Astrophysics Data System (ADS)

    Wickman, Chad; Haas, Christina; Palffy-Muhoray, Peter

    2009-03-01

    A growing body of research has examined the potential for computer-based tools to improve the quality and scope of physics education. Yet, few studies have investigated how experienced scientists deploy those tools in the conduct and communication of their work. Based on a study of text production in liquid crystal physics, I will discuss how specific applications, like LabVIEW, mediate the practice of experimental research. Findings suggest that experimentation involves a complex negotiation of material and virtual constraints and that, as a result, a concept of scientific literacy must account for the processes through which scientists visualize, display, and characterize their objects of study symbolically and textually. This approach, in examining the relationship between the material and virtual in a modern scientific workplace, ultimately offers insight into education that prepares students to undertake and communicate research in dynamic, multimedia laboratory environments.

  18. Space structures concepts and materials

    NASA Technical Reports Server (NTRS)

    Nowitzky, A. M.; Supan, E. C.

    1988-01-01

    An extension is preseted of the evaluation of graphite/aluminum metal matrix composites (MMC) for space structures application. A tubular DWG graphite/aluminum truss assembly was fabricated having the structural integrity and thermal stability needed for space application. DWG is a proprietary thin ply continuous graphite reinforced aluminum composite. The truss end fittings were constructed using the discontinuous ceramic particulate reinforced MMC DWAl 20 (trademark). Thermal stability was incorporated in the truss by utilizing high stiffness, negative coefficient of thermal expansion (CTE) P100 graphite fibers in a 6061 aluminum matrix, crossplied to provide minimized CTE in the assembled truss. Tube CTE was designed to be slightly negative to offset the effects of the end fitting and sleeve, CTE values of which are approx. 1/2 that of aluminum. In the design of the truss configuration, the CTE contribution of each component was evaluated to establish the component dimension and layup configuration required to provide a net zero CTE in the subassemblies which would then translate to a zero CTE for the entire truss bay produced.

  19. Workshop on Scaling Effects in Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E. (Compiler)

    1994-01-01

    This document contains presentations and abstracts from the Workshop on Scaling Effects in Composite Materials and Structures jointly sponsored by NASA Langley Research Center, Virginia Tech, and the Institute for Mechanics and Materials at the University of California, San Diego, and held at NASA Langley on November 15-16, 1993. Workshop attendees represented NASA, other government research labs, the aircraft/rotorcraft industry, and academia. The workshop objectives were to assess the state-of-technology in scaling effects in composite materials and to provide guidelines for future research.

  20. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  1. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  2. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.

    1976-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.

  3. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  4. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  5. Revolutionary opportunities for materials and structures study

    SciTech Connect

    Schweiger, F.A.

    1987-02-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  6. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  7. Materials research and applications at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1987-01-01

    The facilities and instruments of the Lewis Research Center specialized for materials research are discussed. The main objectives of the Center are to provide R & D relevant to main propulsion plants and auxiliary power systems for aeronautics, space, and energy conversion applications. The Center is concerned with microstructure-property relations and their effect on processing; intermetallic compounds and high temperature metal matrix composites; ceramics with improved reliability for use in heat engines; polymer matrix composites for aerospace applcations; understanding the high temperature corrosive attack in the hostile environments of aircraft, rockets, and other heat engines; high temperature lubrication and wear; and microgravity materials research. The various types of schemes and techniques, provided by the Center, for analyzing data are described.

  8. NASA Materials Research for Extreme Conditions

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.

  9. Material issues for lunar/Martian structures

    NASA Technical Reports Server (NTRS)

    Radford, Donald W.; Sadeh, Willy Z.; Cheng, Boyle C.

    1991-01-01

    Development of structures in the lunar/Martian environment depends upon the use of the most appropriate materials. Advanced composite materials are apparently the best candidates for use in structures on planetary surfaces and in space in view of their unique properties, tailorability and light weight. The physical and mechanical properties of advanced composite materials as related to their use in lunar/Martian structures are reviewed. Polymer matrix composites are recommended as the best materials in the first exploration stages of a lunar/Martian base. Increased use of ceramic and metal matrix composites is expected in the more advanced exploration stages. The pressing need for the development of tailored radiation shielding composite materials is discussed.

  10. Producing and optimizing novel materials and structures

    NASA Astrophysics Data System (ADS)

    Ashrafi, Mahdi

    2011-12-01

    A series of detailed experimental and finite element investigations were carried out to study the response of selected objects which are currently utilized for load carrying. These investigations were later applied to optimize the mechanical performance of the studied structures and materials. First, a number of experiments and detailed finite element simulations were carried out to study the response and failure of single lap joints with non-flat interface under uniaxial tension. The adherents were made from fiber reinforced epoxy composite and the custom-made mold allowed the fibers to follow the profile of the bonded joint interface. The experiments showed that the interface shape has significant effect on the mechanical behavior and strength of the bonded joints. Finite element simulations were performed to estimate the distribution of shear and peeling stresses along the bonded joints and the results were linked to the experimental investigations. Additional parametric calculations were also carried out to highlight the role of interface shape on the distribution of stresses, and inherently the overall strength and behavior of the bonded joints. In addition, the role of a central void on the distribution of the stresses in a bonded joint with flat and non-flat sinusoidal interfaces was investigated. The second topic concerns Wood Plastic Composites (WPC) which are widely used in the industry due to its durability, low cost, and anti-moisture properties in comparison with the natural wood. In this research, we have produced flout shaped WPC samples using African black wood powder and Phenolic resin in a hot compression molding set-up. Initial WPC composites were produced by systematically changing the wood volume fraction. Based on these results the optimum temperature, pressure and wood volume fraction for developing WPC in a form of a flute is developed. A series of experimental procedures were performed to improve mechanical properties of WPC samples by

  11. European Fusion Materials Research Program - Recent Results and Future Strategy

    SciTech Connect

    Diegele, E.; Andreani, R.; Laesser, R.; Schaaf, B. van der

    2005-05-15

    The paper reviews the objectives and the status of the current EU long-term materials program. It highlights recent results, discusses some of the key issues and major existing problems to be resolved and presents an outlook on the R and D planned for the next few years. The main objectives of the Materials Development program are the development and qualification of reduced activation structural materials for the Test Blanket Modules (TBMs) in ITER and of low activation structural materials resistant to high fluence neutron irradiation for in-vessel components such as breeding blanket, divertor and first wall in DEMO. The EU strategy assumes: (i) ITER operation starting in 2015 with DEMO relevant Test Blanket Modules to be installed from day one of operation, (ii) IFMIF operation in 2017 and (iii) DEMO final design activities in 2022 to 2025. The EU candidate structural material EUROFER for TBMs has to be fully code qualified for licensing well before 2015. In parallel, research on materials for operation at higher temperatures is conducted following a logical sequence, by supplementing EUROFER with the oxide dispersion strengthened ferritic steels and, thereafter, with fibre-reinforced Silicon Carbide (SiC{sub f}/SiC). Complementary, tungsten alloys are developed as structural material for high temperature applications such as gas-cooled divertors.

  12. Plastics as structural materials for aircraft

    NASA Technical Reports Server (NTRS)

    Kline, G M

    1937-01-01

    The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.

  13. HITEMP Material and Structural Optimization Technology Transfer

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.; Arnold, Steve (Technical Monitor)

    2001-01-01

    The feasibility of adding viscoelasticity and the Generalized Method of Cells (GMC) for micromechanical viscoelastic behavior into the commercial HyperSizer structural analysis and optimization code was investigated. The viscoelasticity methodology was developed in four steps. First, a simplified algorithm was devised to test the iterative time stepping method for simple one-dimensional multiple ply structures. Second, GMC code was made into a callable subroutine and incorporated into the one-dimensional code to test the accuracy and usability of the code. Third, the viscoelastic time-stepping and iterative scheme was incorporated into HyperSizer for homogeneous, isotropic viscoelastic materials. Finally, the GMC was included in a version of HyperSizer. MS Windows executable files implementing each of these steps is delivered with this report, as well as source code. The findings of this research are that both viscoelasticity and GMC are feasible and valuable additions to HyperSizer and that the door is open for more advanced nonlinear capability, such as viscoplasticity.

  14. Aeroservoelastic and structural dynamics research on smart structures conducted at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Rivas McGowan, Anna-Maria; Wilkie, W. K.; Moses, Robert W.; Lake, Renee C.; Pinkerton Florance, Jennifer L.; Weiseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-06-01

    An overview of smart structures research currently underway a the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally validated finite element and aeroservoelastic modeling techniques; conducting bench experimental test to assess feasibility and understand system trade-offs; and conducting large-scale wind-tunnel of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  15. NASA/USAF research in structural dynamics

    NASA Technical Reports Server (NTRS)

    Pinson, L. D.; Amos, A. K.

    1983-01-01

    Research in the structural dynamics of large space structures is discussed. The problems of structural response are emphasized. Dynamic modeling, structural members, finite element techniques, axial loads, and vibration tests are among the topics discussed.

  16. Materials and structures for stretchable energy storage and conversion devices.

    PubMed

    Xie, Keyu; Wei, Bingqing

    2014-06-11

    Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. PMID:24643976

  17. Nuclear Industry Support Services by the Buffalo Materials Research Center

    SciTech Connect

    Henry, L.G. )

    1993-01-01

    The Buffalo Materials Research Center (BMRC) is located on the campus of the State University of New York at Buffalo, Principal facilities within BMRC include a 2-MW PULSTAR, low-enrichment reactor, an electron accelerator, and irradiated materials remote testing facilities. The reactor and the materials testing facilities have been utilized extensively in support of the power reactor community since 1961. This paper briefly highlights the nature and scope of this service. The BMRC is operated for the university by Buffalo Materials Research, Inc., a private for-profit company, which is a subsidiary of Materials Engineering Associates, Inc. (MEA), a Maryland-based materials testing company. A primary mission of MEA has been research on the effects of neutron irradiation on reactor structural materials, including those used for pressure vessel and piping systems. The combined resources of MEA and BMRC have played a pivotal role in the assessment of reactor pressure vessel safety both in the United States and abroad and in the development of new radiation-resistant steels.

  18. Bone as a structural material: how good is it?

    PubMed

    Taylor, David

    2008-01-01

    As a structural material, bone is not very good; compared to engineering materials such as metal alloys and fibre composites, its mechanical properties are mediocre. In fact, the really amazing thing about bone is that it is able to achieve even these mediocre properties with the ingredients available: hydroxyapatite, collagen and water. Drawing on previous research, and some simple fracture mechanics calculations, we can see how bone optimises the use of these materials in a composite structure which has important features at two different scales: the nanometre scale and the hundred-micron scale. PMID:18431853

  19. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  20. Novel energy materials through structural search

    NASA Astrophysics Data System (ADS)

    Amsler, Maximilian; Goedecker, Stefan; Wolverton, Chris

    Sophisticated structure prediction methods have been developed and become essential tools when designing new materials with desired properties. Their successful applications to many systems at various conditions and the increasing amount of available computational power have strongly contributed to their popularity. The Minima Hopping Method (MHM) is a powerful tool to find low energy structures given only the chemical composition of a system and allows the prediction of structures at any boundary condition. Recently, not only the thermodynamic ground states, but also metastable phases accessible through various synthesis methods have drawn considerable interest for energy applications. We present the discovery of novel energy materials, ranging from low-density silicon allotropes with improved absorption in the visible to thermoelectric materials, by optimizing the MHM to imitate synthesis pathways.

  1. Dynamic and structural control utilizing smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogers, C. A.; Robertshaw, H. H.

    1989-01-01

    An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.

  2. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  3. Structural and magnetic characterization of actinide materials

    SciTech Connect

    Cort, B.; Allen, T.H.; Lawson, A.C.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors have successfully used neutron scattering techniques to investigate physicochemical properties of elements, compounds, and alloys of the light actinides. The focus of this work is to extend the fundamental research capability and to address questions of practical importance to stockpile integrity and long-term storage of nuclear material. Specific subject areas are developing neutron diffraction techniques for smaller actinide samples; modeling of inelastic scattering data for actinide metal hydrides; characterizing actinide oxide structures; and investigating aging effects in actinides. These studies utilize neutron scattering supported by equilibrium studies, kinetics, and x-ray diffraction. Major accomplishments include (1) development of encapsulation techniques for small actinide samples and neutron diffraction studies of AmD{sub 2.4} and PuO{sub 2.3}; (2) refinement of lattice dynamics model to elucidate hydrogen-hydrogen and hydrogen-metal interactions in rare-earth and actinide hydrides; (3) kinetic studies with PuO{sub 2} indicating that the recombination reaction is faster than radiolytic decomposition of adsorbed water but a chemical reaction produces H{sub 2}; (4) PVT studies of the reaction between PuO{sub 2} and water demonstrate that PuO{sub 2+x} and H{sub 2} form and that PuO{sub 2} is not the thermodynamically stable form of the oxide in air; and (5) model calculations of helium in growth in aged plutonium predicting bubble formation only at grain boundaries at room temperature. The work performed in this project has application to fundamental properties of actinides, aging, and long-term storage of plutonium.

  4. Materials dispersion and biodynamics project research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology

  5. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  6. Layer like porous materials with hierarchical structure.

    PubMed

    Roth, Wieslaw J; Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Eliášová, Pavla

    2016-06-13

    Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks. PMID:26489452

  7. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  8. Repair material properties for effective structural application

    SciTech Connect

    Mangat, P.S.; Limbachiya, M.C.

    1997-04-01

    Strength and engineering properties of three generic repair materials which are likely to influence long-term performance of repaired concrete structures were studied. Measured properties include strength, stiffness, shrinkage and creep deformations, together with the complete compressive stress-strain characteristics including post-cracking behavior. The repair materials considered in this investigation are commercially available and widely used. These included a high performance non-shrinkable concrete, a mineral based cementitious material with no additives or coarse aggregate size particles, and a cementitious mortar containing styrene acrylic copolymer with fiber additives. Performance comparisons are also made between these materials and plain concrete mixes of similar strength and stiffness, suitable for repair applications. The results show that shrinkage of the repair materials was significantly greater than the shrinkage of normal concrete. Moreover, the shrinkage of those modified with a polymer admixture was found to be very sensitive to the relative humidity of the exposure compared to normal concrete. The post-peak strain capacity of the material modified with a polymer admixture was markedly improved leading to a more pronounced falling branch of stress-strain curve. The ultimate stress level (at a maximum load) of specially formulated repair materials varies significantly, the lowest ultimate stress being recorded for the porous mineral-based material. The inclusion of aggregates improves the mechanical properties and dimensional stability of repair materials.

  9. Thermochromic Materials Research for Optical Switching

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Jorgenson, G. V.; Lin, R. J.

    1987-02-01

    Reactive-ion-beam-sputtering (RIBS) is used to deposit doped vanadium dioxide (V1-xMxO2), where M is a dopant that lowers the transition temperature (Tt) from that of stoichiometric V02. The objective is to synthesize a material that will passively switch between a heat-transmitting-and a heat-reflecting-state at specific design temperatures in the human comfort range. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below Tt. Then by analyzing the deposited films via EDAX, correlations between film composition and passive solar switching performance are made. Also concepts for synthesizing suitable crystallites of such materials are described. These crystallites could act as switchable pigments for throchromic solar paint. The overall long range goals of this research are to develop these materials for: (1) thin film application to building glazings and (2) pigments for opaque wall coatings. The glazings will transmit and the walls will absorb solar energy when the V1-xMxO2 temperature (T) is low (TTt, both glazings and walls will reflect the solar infrared.

  10. The use of containerless processing in researching reactive materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Krishnan, Shankar; Nordine, Paul C.

    1991-01-01

    It has recently become possible to perform containerless, high-temperature liquid-phase processing of many nonvolatile materials without resort to orbital microgravity, thereby facilitating the conduct of materials research in conjunction with noncontact diagnostic instruments. The melt-levitation techniques are electromagnetic, aerodynamic, acoustic, aeroacoustic, and electrostatic; nonorbital microgravity conditions are obtainable aboard NASA's KC-135 aircraft on parabolic flight paths, as well as in drop tubes and towers. Applications encompass the purification of metals and the creation of nonequilibrium and metastable structures. Process control and property measurements include optical pyrometry and emissivity, laser polarimetry, and drop calorimetry.

  11. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  12. Hierarchically structured materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

  13. Hierarchically structured materials for lithium batteries.

    PubMed

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-25

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg(-1)), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. PMID:24067410

  14. Nondestructive evaluation of critical composite material structural elements

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Lesko, John J.; Weyers, R.

    1996-11-01

    A small span bridge that has suffered corrosive deterioration of a number of the steel structural members is in the process of being rehabilitated with glass and carbon fiber reinforced, pultruded polymer structural beams. As part of a comprehensive research program to develop methods for modeling long term durability of the composite material, nondestructive evaluation if being used to provide a preliminary assessment of the initial condition of the beams as well as to monitor the deterioration of the beams during service.

  15. Optical fiber sensors for materials and structures characterization

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Claus, R. O.

    1991-01-01

    The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.

  16. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  17. Current research in composite structures at NASA's Langley Research Center

    NASA Technical Reports Server (NTRS)

    Card, Michael F.; Starnes, James H., Jr.

    1988-01-01

    Research on the mechanics of composite structures at NASA's Langley Research Center is discussed. The advantages and limitations of special purpose and general purpose analysis tools used in research are reviewed. Future directions in computational structural mechanics are described to address analysis short-comings. Research results on the buckling and postbuckling of unstiffened and stiffened composite structures are presented. Recent investigations of the mechanics of failure in compression and shear are reviewed. Preliminary studies of the dynamic response of composite structures due to impacts encountered during crash-landings are presented. Needs for future research are discussed.

  18. Content Structure in Science Instructional Materials and Knowledge Structure in Students' Memories.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    The research reported in this paper concerns the design of instructional materials that represent the content structure of a science discipline and the development of methods of probing and representing the knowledge structure in a student's memory. The science discipline selected for the study was geology. Specifically, the conceptual structures…

  19. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  20. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  1. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2012-10-09

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  2. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  3. Thermochromic Materials Research For Optical Switching Films

    NASA Astrophysics Data System (ADS)

    Jorgenson, G. V.; Lee, J. C.

    1985-12-01

    A dual-ion-beam-sputtering (DIBS) deposition system is used to deposit doped vanadium dioxide (V1-xMx02), where M is a dopant that decreases the transition temperature (Tt) from that of stoichiometric V02. The objective is to synthesize a material that will passively switch between a heat- transmitting-and a heat-reflecting-state at specific design temperatures. The technique is reactive ion beam sputtering of vanadium and a dopant (separate beams) in a well controlled atmosphere of Ar with a partial pressure of O2. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below Tt. The longer range goals of this research are to develop the material for: (1) thin film application to building glazings and (2) pigments for opaque wall coatings. The glazings will transmit and the walls will absorb solar energy when the V1-xMxO2 temperature (T) is low (TTt, both glazings and walls will reflect the solar infrared.

  4. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  5. Structural materials: understanding atomic scale microstructures

    SciTech Connect

    Marquis, E A; Miller, Michael K; Blavette, D; Ringer, S. P.; Sudbrack, C; Smith, G.D.W.

    2009-01-01

    With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

  6. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  7. Materials and structures for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.

    1988-01-01

    Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.

  8. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  9. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  10. Materials for adaptive structural acoustic control, volume 1

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-04-01

    This report documents work carried out in the Materials Research Laboratory of the Pennsylvania State University over the first year of a new ONR sponsored University Research Initiative (URI) entitled Materials for Adaptive Structural Acoustic Control. For this report the activities have been grouped under the following topic headings: (1) General Summary Papers; (2) Materials Studies; (3) Composite Sensors; (4) Actuator Studies; (5) Integration Issues; (6) Processing Studies; and (7) Thin Film Ferroelectrics. In material studies important advances have been made in the understanding of the evaluation of relaxor behavior in the PLZT's and of the order disorder behavior in lead scandium tantalate:lead titanate solid solutions and of the Morphotropic Phase Boundary in this system.

  11. A review of the compatibility of structural materials with oxygen

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Hust, J. G.

    1974-01-01

    Consideration of the problem of ignition and combustion of structural materials, particularly metals, which may come in contact with oxygen during its production, transport, and use. Following a review of the historical development of compatibility problems and research, a detailed account is given of compatibility testing methods aimed at detecting probable ignition sources, such as mechanical impact, electric sparks or flashes, heat, sound waves, abrasion, and surface fractures. A summary is presented of the ignition and combustion research reported in the literature, dwelling particularly on papers concerning oxygen-related accidents and the compatibility of metals with high-pressure oxygen. The relative oxygen compatibility of a number of common materials is discussed, including that of nickel and copper alloys, stainless steels, aluminum alloys, and titanium alloys. Finally, an effort is made to pinpoint research areas which would enhance understanding of the compatibility of bulk materials.

  12. Critical parameters of superconducting materials and structures

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Sterne, P.A.; Dykes, J.W.; Mosley, W.D.; Chaiken, A.; Ralls, K.; Radousky, H.

    1995-02-01

    We report here the completion of a one year project to investigate the synthesis, electronic structure, defect structure, and physical transport properties of high temperature superconducting oxide materials. During the course of this project we produced some of the finest samples of single crystal detwinned YBa{sub 2}Cu{sub 3}O{sub 7}, and stoichiometrically perfect (Ba,K)BiO{sub 3}. We deduced the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 7}, (La,Sr){sub 2}CuO{sub 4}, and (Ba,K)BiO{sub 3} through the recording of the electron momentum density in these materials as measured by positron annihilation spectroscopy and angle resolved photoemission. We also performed extensive studies on Pr substituted (Y,Pr)Ba{sub 2}Cu{sub 3}O{sub 7} so as to further understand the origin of the electron pairing leading to superconductivity.

  13. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  14. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R; Zwicker, A

    2010-11-17

    materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  15. Structures and Materials Working Group report

    NASA Technical Reports Server (NTRS)

    Torczyner, Robert; Hanks, Brantley R.

    1986-01-01

    The appropriateness of the selection of four issues (advanced materials development, analysis/design methods, tests of large flexible structures, and structural concepts) was evaluated. A cross-check of the issues and their relationship to the technology drivers is presented. Although all of the issues addressed numerous drivers, the advanced materials development issue impacts six out of the seven drivers and is considered to be the most crucial. The advanced materials technology development and the advanced design/analysis methods development were determined to be enabling technologies with the testing issues and development of structural concepts considered to be of great importance, although not enabling technologies. In addition, and of more general interest and criticality, the need for a Government/Industry commitment which does not now exist, was established. This commitment would call for the establishment of the required infrastructure to facilitate the development of the capabilities highlighted through the availability of resources and testbed facilities, including a national testbed in space to be in place in ten years.

  16. Response of structural materials to radiation environments

    SciTech Connect

    Czajkowski, C.J.

    1997-12-01

    An evaluation of proton and neutron damage to aluminum, stainless steel, nickel alloys, and various aluminum alloys has been performed. The proton studies were conducted at energies of 200 MeV, 800 MeV, and 23.5 GeV. The proton studies consisted of evaluation and characterization of proton-irradiated window/target materials from accelerators and comparison to nonirradiated archival materials. The materials evaluated for the proton irradiations included 99.9999 wt% aluminum, 1100 aluminum, 5052 aluminum, 304 stainless steel, and inconel 718. The neutron damage research centered on 6061 T-6 aluminum which was obtained from a control-rod follower from the Brookhaven National Laboratory`s (BNL) High Flux Beam Reactor (HFBR). This material had received thermal neutron fluence up to {approximately}4 {times} 10{sup 23} n/cm{sup 2}. The possible effects of thermal-to-fast neutron flux ratios are discussed. The increases in tensile strength in the proton-irradiated materials is shown to be the result of atomic displacements. These displacements cause interstitials and vacancies which aggregate into defect clusters which result in radiation hardening of the materials. Production of gas (helium) in the grain boundaries of proton irradiated 99.9999 wt% aluminum is also discussed. The major factor contributing to the mechanical-property changes in the neutron-irradiated 6061 T-6 aluminum is the production of transmutation products formed by interactions of the aluminum with thermal neutrons. The metallurgical and mechanical-property evaluations for the research consisted of electron microscopy (both scanning and transmission), tensile testing, and microhardness testing.

  17. Materials for adaptive structural acoustic control, volume 2

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-04-01

    This report documents work carried out in the Materials Research Laboratory of the Pennsylvania State University over the first year of a new ONR sponsored University Research Initiative (URI) entitled Materials for Adaptive Structural Acoustic Control. For this report the activities have been grouped under the following topic headings: (1) General Summary Papers; (2) Materials Studies; (3) Composite Sensors; (4) Actuator Studies; (5) Integration Issues; (6) Processing Studies; (7) Thin Film Ferroelectrics. In material studies important advances have been made in the understanding of the evaluation of relaxor behavior in the PLZT's and of the order disorder behavior in lead scandium tantalate:lead titanate solid solutions and of the Morphotropic Phase Boundary in this system. For both composite sensors and actuators we have continued to explore and exploit the remarkable versatility of the flextensional moonie type structure. Finite element (FEA) calculations have given a clear picture of the lower order resonant modes and permitted the evaluation of various end cap metals, cap geometries and load conditions. In actuator studies multilayer structures have been combined with flextensional moonie endcaps to yield high displacement (50 micrometers) compact structures. Electrically controlled shape memory has been demonstrated in lead zirconate stannate titanate compositions, and used for controlling a simple latching relay.

  18. Materials for adaptive structural acoustic control, volume 3

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-04-01

    This report documents work carried out in the Materials Research Laboratory of the Pennsylvania State University over the first year of a new ONR sponsored University Research Initiative (URI) entitled Materials for Adaptive Structural Acoustic Control. For this report the activities have been grouped under the following topic headings: (1) General Summary Papers; (2) Materials Studies; (3) Composite Sensors; (4) Actuator Studies; (5) Integration Issues; (6) Processing Studies; and (7) Thin Film Ferroelectrics. In material studies important advances have been made in the understanding of the evaluation of relaxor behavior in the PLZT's and of the order-disorder behavior in lead scandium tantalate:lead titanate solid solutions and of the Morphotropic Phase Boundary in this system. For both composite sensors and actuators, we have continued to explore and exploit the remarkable versatility of the flextensional moonie type structure. Finite element (FEA) calculations have given a clear picture of the lower order resonant modes and permitted the evaluation of various end cap metals, cap geometries, and load conditions. In actuator studies multilayer structures have been combined with flextensional moonie endcaps to yield high displacement (50 micrometers) compact structures. Electrically controlled shape memory has been demonstrated in lead zirconate stannate titanate compositions, and used for controlling a simple latching relay.

  19. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  20. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  1. New smart materials to address issues of structural health monitoring.

    SciTech Connect

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  2. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  3. Bioinspired materials: from low to high dimensional structure.

    PubMed

    Zhao, Ning; Wang, Zhen; Cai, Chao; Shen, Heng; Liang, Feiyue; Wang, Dong; Wang, Chunyan; Zhu, Tang; Guo, Jing; Wang, Yongxin; Liu, Xiaofang; Duan, Chunting; Wang, Hao; Mao, Yunzeng; Jia, Xin; Dong, Haixia; Zhang, Xiaoli; Xu, Jian

    2014-11-01

    The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given. PMID:25212698

  4. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  5. James C. McGroddy Prize for New Materials Lecture: New Superconductors and other Research in New Materials

    NASA Astrophysics Data System (ADS)

    Cava, Robert

    2012-02-01

    Superconductors and other electronic materials can often display subtle relationships between their structural characteristics and their electronic properties. Though the primary interest in these relationships is within the condensed matter physics community, often at their foundation are the concepts of bonding and structure familiar to inorganic and solid state chemists. Thus a hybridized view, combining physics and chemistry, is one way of approaching the discovery and characterization of new materials. In this talk I will describe some of our research in this context and comment on some broader aspects of interdisciplinary research in new materials.

  6. Nuclear Structure Research at Richmond

    SciTech Connect

    Beausang, Cornelius W.

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  7. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  8. Research in Structures and Dynamics, 1984

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)

    1984-01-01

    A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.

  9. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  10. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  11. Light thermal structures and materials for high speed flight

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1992-01-01

    Over the last twenty years, unified viscoplastic constitutive models have evolved to meet this need. These constitutive models provide a means for representing a material's response from the elastic through the plastic range including strain-rate dependent plastic flow, creep, and stress relaxation. Rate-dependent plasticity effects are known to be important at elevated temperatures. The purpose of this paper is to describe computational and experimental research programs underway at the Light Thermal Structures Center focused on the investigation of the response of structures and materials to local heating. In the first part of the paper, finite element thermoviscoplastic analysis is highlighted. In the second part of the paper, the thermal-structures experimental program is outlined.

  12. Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank

    2012-01-01

    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.

  13. MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES

    SciTech Connect

    D. M. PARKIN; L. CHEN; ET AL

    2000-09-01

    We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution. Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.

  14. Solubility of Structurally Complicated Materials: II. Bone

    NASA Astrophysics Data System (ADS)

    Horvath, Ari L.

    2006-12-01

    Bone is a structurally complex material, formed of both organic and inorganic chemicals. The organic compounds constitute mostly collagen and other proteins. The inorganic or bone mineral components constitute predominantly calcium, phosphate, carbonate, and a host of minor ingredients. The mineralized bone is composed of crystals which are closely associated with a protein of which collagen is an acidic polysaccharide material. This association is very close and the protein integrates into the crystalline structure. The mineralization involves the deposition of relatively insoluble crystals on an organic framework. The solubility process takes place when the outermost ions in the crystal lattice breakaway from the surface and become separated from the crystal. This is characteristic for ions dissolving in water or aqueous solutions at the specified temperature. The magnitude of solubility is temperature and pH dependent. Bone is sparingly soluble in most solvents. Enamel is less soluble than bone and fluoroapatite is the least soluble of all apatites in acid buffers. Collagen is less soluble in neutral salt solution than in dilute acid solutions at ambient temperatures. The solubility of collagens in solvents gradually decreases with increasing age of the bone samples.

  15. Foam core materials for structural sandwich panels

    SciTech Connect

    Huang Jongshin.

    1991-01-01

    The author first investigates the creep of polymer foam cores. Models for the creep of linear and nonlinear viscoelastic polymer foams are proposed. Experimental results for the creep of a rigid polyurethane foam are compared to the mode; agreement is good. The results indicate that creep can limit the design of building panels with polymer foam cores. Next, he studies the potential of using ceramic foams as a core material in building panels. Ceramic foams have a high stiffness, high creep resistance, low cost, and are incombustible. Ceramic foams, however, have a low fracture toughness and tensile strength. Assuming that the variability of cell wall modulus of rupture follows a Weibull distribution, there is a cell size effect on both the fracture toughness and tensile strength. Both the tensile strength and fracture toughness of ceramic foams can be improved by controlling the cell size. Since cell wall deformation of cellular materials is primarily by bending, the mechanical properties of cellular materials may be improved by making cell walls into sandwich structures. Hollow-sphere composites are made by introducing thin-walled hollow spheres into a matrix.

  16. Materials research and beam line operation utilizing NSLS. Progress report

    SciTech Connect

    Liedl, G.L.

    1993-06-01

    MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in ``user friendly`` aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year all 232 operational days were fully utilized. Beam line tests coupled with MATRIX members combined to use 284 days. General user demand for use of the beam line continues to be strong and four groups were provided 48 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1992 the MATRIX group published six articles. To date, for 1993 the same group has published, submitted, or has in preparation nine articles. Recent research milestones include: the first quantitative structural information on the as-quenched and early stages of decomposition of supersaturated Al-Li alloys; the first quantitative diffuse scattering measurements on a complex system (Co substitute for Cu YBCO superconductor); demonstration of capabilities of a new UHV surface diffraction chamber with in-situ characterization and temperature control (30-1300K); feasibility of phasing structure factors in a quasicrystal using multiple Bragg scattering.

  17. Suggestions for Structuring a Research Article

    ERIC Educational Resources Information Center

    Klein, James D.; Reiser, Robert A.

    2014-01-01

    Researchers often experience difficulty as they attempt to prepare journal articles that describe their work. The purpose of this article is to provide researchers in the field of education with a series of suggestions as to how to clearly structure each section of a research manuscript that they intend to submit for publication in a scholarly…

  18. Research into Practice: How Research Appears in Pronunciation Teaching Materials

    ERIC Educational Resources Information Center

    Levis, John M.

    2016-01-01

    Research into pronunciation has often disregarded its potential to inform pedagogy. This is due partly to the historical development of pronunciation teaching and research, but its effect is that there is often a mismatch between research and teaching. This paper looks at four areas in which the (mis)match is imperfect but in which a greater…

  19. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  20. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  1. Materials and neutronic research at the Low Energy Neutron Source

    NASA Astrophysics Data System (ADS)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  2. Welcome to the 2014 volume of Smart Materials and Structures

    NASA Astrophysics Data System (ADS)

    Garcia, Ephrahim

    2014-01-01

    Welcome to Smart Materials and Structures (SMS). Smart materials and structures are comprised of structural matter that responds to a stimulus. These materials can be controlled or have properties that can be altered in a prescribed manner. Smart materials generate non-traditional forms of transduction. We are all familiar with common forms of transduction, electromechanical motors. Lorenz's forces utilize permanent and variable magnets, controlled by current, to generate magnetically generated forces that oppose each other. Utilizing this simple principal we have advanced the industrial revolution of the 19th Century by the creation of the servo-mechanism. Controlled velocity and position generation systems that have automated manufacturing, our machines and the very environs in which we dwell. Smart materials often rely on a variety of new and different methods of transduction. Piezoelectric, magnetostrictive, electrostrictive, and phase-change materials, such as shape memory alloys, are among the most common smart materials. Other approaches such as polymer actuators that rely on complex three-dimensional chemical-based composites are also emerging. The trinity of engineering research is analysis, simulation and experimentation. To perform analyses we must understand the physical phenomena at hand in order to develop a mathematical model for the problem. These models form the basis of simulation and complex computational modeling of a system. It is from these models that we begin to expand our understanding about what is possible, ultimately developing simulation-based tools that verify new designs and insights. Experimentation offers the opportunity to verify our analyses and simulations in addition to providing the 'proof of the pudding' so to speak. But it is our ability to simulate that guides us and our expectations, predicting the behavior of what we may see in the lab or in a prototype. Experimentation ultimately provides the feedback to our modeling

  3. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  4. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  5. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  6. Abrasive wear of advanced structural materials

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Young

    Wear of advanced structural materials, namely composites and ceramics, in abrasion has been examined in the present study. A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of reinforcement is estimated by modeling three primary wear mechanisms, specifically plowing, cracking at the matrix/reinforcement interface or in the reinforcement, and particle removal. Critical variables describing the role of the reinforcement, such as the relative size, fracture toughness, and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on-drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy-matrix composite material. In addition, the effects of post heat-treatment on the wear behavior of toughened silicon carbide (ABC-SiC) are investigated by characterizing the role of the microstructures introduced during the post annealing processes. When the annealing temperature is above 1300°C, an aluminum rich secondary phase (nano-precipitate) forms and grows inside the SiC grains. This toughened silicon carbide (ABC-SiC), annealed at temperatures ranging from 0 to 1600°C, is subjected to two- and three-body abrasions with different sizes of abrasives (3˜70 mum). The test results exhibit that the effect of nano-precipitates on wear resistance of post-annealed ABC-SiC is restricted to the abrasion with fine abrasives (3 mum), since nano-precipitates, in the range from 4 nm at 1300°C to 25 nm at 1600°C, are comparable in dimension

  7. Structural studies on ferroelectric and ferrodistortive materials

    NASA Astrophysics Data System (ADS)

    Zou, Mingqin

    The structure of the piezoelectric material 0.68PbMg1/3Nb 2/3O3-0.32PbTiO3 have been studied by single crystal, powder x-ray diffraction techniques over the temperature range from 25°C to 200°C. The existence of twinned structures or coexistence of rhombohedral and tetragonal phases has been shown by the peak distortion of Bragg reflections. Superlattice structure was observed for all experimental PMN-PT crystals. Refinement results showed that the 2 x 2 x 2 superlattice resulted from anti-parallel displacement of oxygen in the adjacent conventional perovskite unit cells. No cation displacement in the paraelectric phase and little in the ferroelectric phase were shown by the refinement results. This unique feature associated with the ferroelectric mechanism of the material was explained by comparison with PbMg1/3Nb2/3O3. The crystals were extensively characterized by using powder x-ray diffraction, Laue back-reflection and electron backscatter diffraction (EBSD) techniques. The detailed orientation information such as misorientation of grains, location of grain boundaries and the orientation distribution was obtained from the automatic orientation mapping with the EBSD technique. The uniform orientation was confirmed for crystals with a "cellular-like" structure. A crystal growth model, the two-dimensional layer mechanism, was proposed by orientation analysis. Based on the model, some important comments were made on orientation problems under general growth conditions. The ferrodistortive phase transitions of tertramethylphosphonium tetrabromozincate [P(CH3)4]2ZnBr4 and tertramethylphosphonium tetraiodonzincate [P(CH3)4]2ZnI4 were thoroughly studied by a single crystal x-ray diffraction technique. An order parameter analysis by application of Landau theory showed that the two compounds undergo first-order phase transitions near a tricritical Lifshitz point. Transitions for both compounds appear to be first order, but with the iodo salt the transition is nearly

  8. Materials Compatibility and Lubricants Research (MCLR) Program

    SciTech Connect

    Szymurski, S.R.

    1994-12-01

    Objective is to accelerate phaseout of CFC refrigerants. Since its start in 1991, the MCLR program has initiated twenty-five research projects and the ARTI Refrigerant Database. The MCLR program is now entering its final phase. This phase will include over a dozen new research projects which will be completed in the next two years. This presentation highlights accomplishments of the MCLR program and outlines new projects to be conducted in the final phase.

  9. Boundary film for structural ceramic materials

    SciTech Connect

    Ajayi, O.O.; Erdemir, A.; Hsieh, J.H.; Erck, R.A.; Fenske, G.R.; Nichols, F.A.

    1992-05-01

    Structural ceramic materials, like metals, will require lubrication if they are to be used extensively for tribological applications. The use of thin soft metallic coatings (specifically Ag) as a boundary film during mineral oil lubrication of silicon nitride (Si{sub 3}N{sub 4}) and zirconia (ZrO{sub 2}) ceramic materials was investigated in this study. With a pin-on-flat contact configuration in reciprocating sliding, the steady friction coefficient was reduced by a factor of 2 (0.14 {minus}0.16 vs. 0.06--0.07) when the flats were coated with Ag. Also, with Ag coatings the wear of pins was reduced to an unmeasurable level, whereas, in the absence of Ag coatings specific wear rates of {approx}2 {times} 10{sup {minus}9} -- 4 {times} 10{sup {minus}8} mm{sup 3}/Nm and {approx}7 {times} 10{sup {minus}8} -- 2 {times} 10{sup {minus}7} mm{sup 3}/Nm were measured for Si{sub 3}N{sub 4} and ZrO{sub 2} pins respectively. In addition to preventing direct contact between pins and flats, thereby reducing wear, the Ag coatings also act as a solid lubricant, help dissipate flash heating, and accelerate modification of the {lambda} ratio.

  10. Boundary film for structural ceramic materials

    SciTech Connect

    Ajayi, O.O.; Erdemir, A.; Hsieh, J.H.; Erck, R.A.; Fenske, G.R.; Nichols, F.A.

    1992-05-01

    Structural ceramic materials, like metals, will require lubrication if they are to be used extensively for tribological applications. The use of thin soft metallic coatings (specifically Ag) as a boundary film during mineral oil lubrication of silicon nitride (Si[sub 3]N[sub 4]) and zirconia (ZrO[sub 2]) ceramic materials was investigated in this study. With a pin-on-flat contact configuration in reciprocating sliding, the steady friction coefficient was reduced by a factor of 2 (0.14 [minus]0.16 vs. 0.06--0.07) when the flats were coated with Ag. Also, with Ag coatings the wear of pins was reduced to an unmeasurable level, whereas, in the absence of Ag coatings specific wear rates of [approx]2 [times] 10[sup [minus]9] -- 4 [times] 10[sup [minus]8] mm[sup 3]/Nm and [approx]7 [times] 10[sup [minus]8] -- 2 [times] 10[sup [minus]7] mm[sup 3]/Nm were measured for Si[sub 3]N[sub 4] and ZrO[sub 2] pins respectively. In addition to preventing direct contact between pins and flats, thereby reducing wear, the Ag coatings also act as a solid lubricant, help dissipate flash heating, and accelerate modification of the [lambda] ratio.

  11. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  12. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  13. Structures and Materials Experimental Facilities and Capabilities Catalog

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)

    2000-01-01

    The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.

  14. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  15. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  16. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  17. Ceramic matrix composites -- Advanced high-temperature structural materials

    SciTech Connect

    Lowden, R.A.; Ferber, M.K.; Hellmann, J.R.; Chawla, K.K.; DiPietro, S.G.

    1995-10-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy`s Office of Industrial Technology`s Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base.

  18. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  19. Program of Research in Structures and Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  1. Future opportunities for photovoltaic materials and device research

    SciTech Connect

    Deb, S.K. )

    1994-06-30

    The semiconductor material science and associated device technologies have entered into a new era, almost a revolutionary period. The use of sophisticated computation techniques has given theoreticians the predictive power for novel materials architecture; the experimentalists have the ability to grow materials and devices under carefully controlled conditions and manipulate materials on an atomic scale; and the powerful analytical tools have enabled us to gain insight on the surface, interface, and bulk properties of materials and devices with a high degree of precision. These have opened up some opportunities for doing some very exciting materials and device research in the area of semiconductor materials, in general, and photovoltaic (PV) materials and devices, in particular. In this brief review, a global view of semiconductor materials for PV applications will be taken and an attempt will be made to identify future research opportunities.

  2. Aircraft structures research at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duberg, John E

    1955-01-01

    A review is made of the test techniques that have been developed and used by the NACA for experimental research in aircraft structures at elevated temperatures. Some experimental results are presented. Remarks are included on the problem of model scaling for testing of structures at high temperatures. (author)

  3. Structural Equation Modeling in Rehabilitation Counseling Research

    ERIC Educational Resources Information Center

    Chan, Fong; Lee, Gloria K.; Lee, Eun-Jeong; Kubota, Coleen; Allen, Chase A.

    2007-01-01

    Structural equation modeling (SEM) has become increasingly popular in counseling, psychology, and rehabilitation research. The purpose of this article is to provide an overview of the basic concepts and applications of SEM in rehabilitation counseling research using the AMOS statistical software program.

  4. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  5. Strategic Research Directions in Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G.; Semmes, Ed; Cook, Beth; Wargo, Michael J.; Marzwell, Neville

    2003-01-01

    The next challenge of space exploration is the development of the capabilities for long-term missions beyond low earth orbit. NASA s scientific advisory groups and internal mission studies have identified several fundamental issues which require substantial advancements in new technology if these goals are to be accomplished. Crews must be protected from the severe radiation environment beyond the earth s magnetic field. Chemical propulsion must be replaced by systems that require less mass and are more efficient. The overall launch complement must be reduced by developing repair and fabrication techniques which utilize or recycle available materials.

  6. Structure and local structure of perovskite based materials

    NASA Astrophysics Data System (ADS)

    Rossell Abrodos, Marta Dacil

    Perovskites, with general formula ABX3, where A and B are cations and X is an anion, form a very important class of inorganic crystals whose physical properties are extensively used in many technological applications. The basic, so-called aristotype structure, consists of an infinite array of corner-linked anion octahedra, with the A cations in the spaces between the octahedra and a B cation at the center of each octahedron. Interesting physical properties are often related to the flexibility of the perovskite structure to deform or to form non-stoichiometric compositions. In this thesis, four perovskite-related systems are studied. Transmission electron microscopy (TEM) is of prime interest to analyze the influence of the structure and microstructure on the physical properties of these systems. (1) The anion-deficient Sr4Fe6O12+delta (delta < 1) derivatives. These materials are mixed conducting oxides with high oxygen and electronic conductivity. A complete characterization of the structure of these anion-deficient compounds is deduced from electron diffraction and high-resolution TEM. The presence of anion vacancies in the Sr4Fe6O12+delta (delta < 1) structure is suggested to have an influence on the transport properties. (2) The CaRMnSnO6 (R = La, Pr, Nd, Sm-Dy) double perovskites. A random distribution of the Ca and R cations over the A positions and Mn and Sn cations over the B positions is found. Due to a random distribution of the Mn 3+ and Sn4+ cations, a spin glass behavior was found for CaLaMnSnO6. (3) The K3AlF6 elpasolite-type (or ordered double perovskite) structure. This compound is of high technological importance since it is a basic component of the melts for low temperature electrolysis in aluminum smelting. A sequence of phase transitions at different temperatures in K3AlF6 along with the data on unit cell dimensions and space symmetry of three major polymorphs is reported. (4) Ca 2Fe2O5 brownmillerite-type thin films deposited on three different

  7. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  8. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  9. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  10. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.