Science.gov

Sample records for structure activity relationships

  1. Ecological Structure Activity Relationships

    EPA Science Inventory

    Ecological Structure Activity Relationships, v1.00a, February 2009
    ECOSAR (Ecological Structure Activity Relationships) is a personal computer software program that is used to estimate the toxicity of chemicals used in industry and discharged into water. The program predicts...

  2. Structure-activity relationships and drug allergy.

    PubMed

    Hasdenteufel, Frederic; Luyasu, Samuel; Hougardy, Nicolas; Fisher, Malcolm; Boisbrun, Michel; Mertes, Paul-Michel; Kanny, Gisele

    2012-02-01

    Structure-activity relationships (SARs) refer to the relation between chemical structure and pharmacologic activity for a series of compounds. Since the pioneering work of Crum-Brown and Fraser in 1868, they have been increasingly used in the pharmaceutical, chemical and cosmetic industries, especially for drug and chemical design purposes. Structure-activity relationships may be based on various techniques, ranging from considerations of similarity or diversity of molecules to mathematical relationships linking chemical structures to measured activities, the latter being referred to as quantitative SAR or QSAR. This review aims at briefly reviewing the history of SARs and highlighting their interest in delayed and immediate drug allergy using selected examples from the literature. Studies of SAR are commonly conducted in the area of contact dermatitis, a delayed hypersensitivity reaction, to determine the allergenic potential of a given compound without animal testing. In immediate, immunoglobulin E-mediated drug hypersensitivity, this kind of approach remains rather confidential. It has been mainly applied to neuromuscular blocking drugs (muscle relaxants) and betalactam antibiotics (penicillins, cephalosporins). This review shows that SARs can prove useful to (i) predict the allergenic potential of a chemical or a drug, (ii) help identify putative antigenic determinants for each patient or small group of patients sharing the same cross-reactivity pattern, and (iii) predict the likelihood of adverse reactions to related molecules and select safe alternatives. PMID:22299766

  3. Structure-Activity Relationships and Drug Allergy.

    PubMed

    Hasdenteufel, Frédéric; Luyasu, Samuel; Hougardy, Nicolas; Fisher, Malcolm; Boisbrun, Michel; Mertes, Paul-Michel; Kanny, Gisèle

    2012-01-25

    Structure-activity relationships (SARs) refer to the relation between chemical structure and pharmacologic activity for a series of compounds. Since the pioneering work of Crum-Brown and Fraser in 1868, they have been increasingly used in the pharmaceutical, chemical and cosmetic industries, especially for drug and chemical design purposes. Structure-activity relationships may be based on various techniques, ranging from considerations of similarity or diversity of molecules to mathematical relationships linking chemical structures to measured activities, the latter being referred to as quantitative SAR or QSAR. This review aims at briefly reviewing the history of SARs and highlighting their interest in delayed and immediate drug allergy using selected examples from the literature. Studies of SAR are commonly conducted in the area of contact dermatitis, a delayed hypersensitivity reaction, to determine the allergenic potential of a given compound without animal testing. In immediate, immunoglobulin E-mediated drug hypersensitivity, this kind of approach remains rather confidential. It has been mainly applied to neuromuscular blocking drugs (muscle relaxants) and betalactam antibiotics (penicillins, cephalosporins). This review shows that SARs can prove useful to (i) predict the allergenic potential of a chemical or a drug, (ii) help identify putative antigenic determinants for each patient or small group of patients sharing the same cross-reactivity pattern, and (iii) predict the likelihood of adverse reactions to related molecules and select safe alternatives. PMID:22283609

  4. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here. PMID:26265354

  5. Structure-activity relationships of anthocyanidin glycosylation.

    PubMed

    Zhao, Chang Ling; Chen, Zhong Jian; Bai, Xue Song; Ding, Can; Long, Ting Ju; Wei, Fu Gang; Miao, Kang Ru

    2014-08-01

    This paper summarizes the main achievements about the structure-activity relationships of anthocyanidin glycosylation. Anthocyanidin glycosylation is the essential step of anthocyanin biosynthesis and also the prerequisite of the further modifications of anthocyanins, which is jointly characterized by the glycosylation site, the type and number of the glycosyl as well as the glycosidic bond type. It generally enhances the stability, results in the hypsochromic effect and blueing, decreases the bioavailability and anticancer activity, and decreases, increases, or does not change the antioxidant activity of the anthocyanidins or anthocyanins, which is synergetically determined by the glycosylation site and the type and number of the glycosyl. Thereinto, in nature, the blue hues caused by the glycosylation may also be reinforced by the formation of the anthocyanic vacuolar inclusions. This review could provide a reference for the research of the structure-optimizing and function-exploiting of anthocyanins. PMID:24792223

  6. Structure-activity relationships of estrogens.

    PubMed Central

    Jordan, V C; Mittal, S; Gosden, B; Koch, R; Lieberman, M E

    1985-01-01

    The last 50 years has seen an exponential rise in the published reports about estrogen action. The model to describe the early events in the mechanism of action of estrogens via the estrogen receptor is updated in this paper to incorporate some of the recent data on the subcellular localization of the receptor. New evidence suggests that the receptor is a nuclear protein, so it appears that estrogens must first diffuse into the nuclear compartment to initiate estrogen action via the receptor complex. This review traces the development of potent estrogenic compounds by the study of their structure-activity relationships. Studies of structure-activity relationships in vivo using Allen Doisy or 3-day uterine weight tests can provide much valuable information, but the assays suffer from the complex problems of pharmacokinetics and metabolic transformation. Studies in vitro using primary cultures of rat pituitary or uterine cells to assay the ability of a compound to induce prolactin synthesis or progesterone receptor synthesis, respectively, can provide essential information about the structural requirements for a compound to produce estrogenic effects. Nevertheless, it should be pointed out that studies in vivo are required to determine whether a compound is metabolically activated to an estrogen. Estrogen receptor binding models are presented to describe the changes in a molecule that will predict high affinity for the ligand and agonist, partial agonist and antagonist properties of the ligand-receptor complex. Most estrogenic pesticides and phytoestrogens comform to the predictions of the estrogen receptor binding model. PMID:3905383

  7. Cationic phospholipids: structure?transfection activity relationships

    SciTech Connect

    Koynova, Rumiana; Tenchov, Boris

    2010-01-18

    Synthetic cationic lipids are presently the most widely used non-viral gene carriers. Examined here is a particularly attractive cationic lipid class, triester phosphatidylcholines (PCs) exhibiting low toxicities and good transfection efficiency. Similarly to other cationic lipids, they form stable complexes (lipoplexes) with the polyanionic nucleic acids. A summary of studies on a set of {approx}30 cationic PCs reveals the existence of a strong, systematic dependence of their transfection efficiency on the lipid hydrocarbon chain structure: transfection activity increases with increase of chain unsaturation from 0 to 2 double bonds per lipid and decreases with increase of chain length in the range {approx}30-50 total number of chain carbon atoms. Maximum transfection was observed for ethyl phosphate PCs (EPCs) with monounsaturated 14:1 chains (total of 2 double bonds and 30 chain carbon atoms). Lipid phase behavior is known to depend strongly on the chain molecular structure and the above relationships thus substantiate a view that cationic PC phase propensities are an important determinant of their activity. Indeed, X-ray structural studies show that the rate of DNA release from lipoplexes as well as transfection activity well correlate with non-lamellar phase progressions observed in cationic PC mixtures with membrane lipids. These findings appear to be of considerable interest because, according to current views, key processes in lipid-mediated transfection such as lipoplex disassembly and DNA release within the cells are believed to take place upon cationic lipid mixing with cellular lipids.

  8. THE PRACTICE OF STRUCTURE ACTIVITY RELATIONSHIPS (SAR) IN TOXICOLOGY

    EPA Science Inventory

    Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issue...

  9. Structure activity relationships of selected naphthalene derivatives

    SciTech Connect

    Schultz, T.W.; Dumont, J.N.; Sankey, F.D.; Schmoyer, R.L. Jr.

    1983-01-01

    Twenty-two derivatives of naphthalene were assayed under an acute static regime with biological activity being monitored as population growth of Tetrahymena pyriformis. Activity varied over one log unit. Substituent constant structure-activity analyses revealed the model, log BR = 0.282Ha + 0.352..pi.. + 0.692F + 0.334/sup 1/X/sub sub//sup v/ - 0.326R + 0.027, to be best and to account for 85% of the variation in log BR (BR, biological response; Ha, hydrogen acceptance; ..pi.., hydrophobic substituent constant; F, polar electronic substituent constant, /sup 1/X/sub sub//sup v/, substituent molar connectivity index; R, resonance electronic substituent constant). The Ha and ..pi.. parameters are the most important, accounting for 71% of the log BR variability. 21 references, 1 figure, 7 tables.

  10. DEVELOPMENT OF STRUCTURE ACTIVITY RELATIONSHIPS FOR ASSESSING ECOLOGICAL RISKS

    EPA Science Inventory

    In the field of environmental toxicology, structure activity relationships (SARs) have developed as scientifically-credible tools for predicting the effects of chemicals when little or no empirical data are available.

  11. Antiproliferative and Structure Activity Relationships of Amaryllidaceae Alkaloids.

    PubMed

    Cedrón, Juan C; Ravelo, Ángel G; León, Leticia G; Padrón, José M; Estévez-Braun, Ana

    2015-01-01

    The antiproliferative activity of a set of seven natural Amaryllidaceae alkaloids and 32 derivatives against four cancer cell lines (A2780, SW1573, T47-D and WiDr) was determined. The best antiproliferative activities were achieved with alkaloids derived from pancracine (2), haemanthamine (6) and haemantidine (7). For each skeleton, some structure-activity relationships were outlined. PMID:26263960

  12. Biaryl cannabinoid mimetics--synthesis and structure-activity relationship.

    PubMed

    Worm, Karin; Zhou, Q Jean; Stabley, Gabriel J; DeHaven, Robert N; Dolle, Roland E

    2007-07-01

    Synthesis, in vitro biological evaluation, and structure-activity relationships of a biaryl cannabinoid mimetic 2 are reported. Variations in the substitution pattern yielded a number of agonists with low nanomolar affinity. Replacing the phenol group by a methyl morpholino acetate group led to compound 28, a 500-fold selective CB(2) receptor agonist. PMID:17507224

  13. Structure-molluscicidal activity relationships of acylphloroglucinols from ferns.

    PubMed

    Socolsky, Cecilia; Borkosky, Susana; Bardón, Alicia

    2011-03-01

    The molluscicidal activity of 12 phloroglucinol derivatives previously isolated from Elaphoglossum piloselloides, E. gayanum, E. yungense, and E. lindbergii, as well as 3 known acylphloroglucinols, now reported from an Argentine collection of Dryopteris wallichiana, was evaluated against the schistosomiasis vector snail Biomphalaria peregrina. Molluscicidal effects were analyzed and compared with those previously observed for 4 acylphloroglucinols from E. piloselloides and their corresponding peracetylated derivatives, in order to draw structure-activity relationships. The most active compounds were the prenylated desaspidins elaphogayanin B and elaphopilosins A and B (LD50 = 1.90, 2.90, and 0.94 ppm, respectively), together with the only evaluated prenylated para-aspidin, elaphopilosin C (LD50 = 2.15 ppm). Quantitative structure-activity relationships (QSAR) were studied by means of a semiempirical method (PM3) for the 24 natural phloroglucinol derivatives included in this paper. The descriptor molecular volume was found to have good correlation with the observed molluscicidal activity (r2 = 0.77). The derived equation can be considered useful to predict the molluscicidal activity of bi and tricyclic acylphloroglucinols. The QSAR analysis showed that there is an optimum volume for high activity, probably related to the size of a receptor's active site. Bigger molecules display lower activity. PMID:21485280

  14. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii. PMID:26410195

  15. (Quantitative structure-activity relationships in environmental toxicology)

    SciTech Connect

    Turner, J.E.

    1990-10-04

    The traveler attended the Fourth International Workshop on QSAR (Quantitative Structure-Activity Relationships) in Environmental Toxicology. He was an author or co-author on one platform and two poster presentations. The subject of the workshop offers a framework for analyzing and predicting the fate of chemical pollutants in organisms and the environment. QSAR is highly relevant to the ORNL program on the physicochemical characterization of chemical pollutants for health protection.

  16. Structure-activity relationship of crustacean peptide hormones.

    PubMed

    Katayama, Hidekazu

    2016-04-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed. PMID:26624010

  17. Piperine and Derivatives: Trends in Structure-Activity Relationships.

    PubMed

    Singh, Inder Pal; Choudhary, Alka

    2015-01-01

    Piperine is the main constituent of pepper, a commonly used kitchen spice and has been reported to possess various pharmacological activities. The structural features, an aromatic ring with a methylenedioxy bridge, a conjugated dienone system and a piperidine ring constituting an amide bond, possessed by the molecule have been considered important for the molecule to exhibit an array of bioactivities. Several modifications of above structural units have affected the biological properties of piperine, either enhancing or in some cases completely abolishing the activity. The present review emphasizes on the synthetic aspects of piperine along with the structure-activity relationships of its derivatives so as to rationalize the discovery of newer piperine based molecules. PMID:25915609

  18. Penoxsulam--structure-activity relationships of triazolopyrimidine sulfonamides.

    PubMed

    Johnson, Timothy C; Martin, Timothy P; Mann, Richard K; Pobanz, Mark A

    2009-06-15

    The discovery of the sulfonamide herbicides, which inhibit the enzyme acetolactate synthase (ALS), has resulted in many investigations to exploit their herbicidal activity. One area which proved particularly productive was the N-aryltriazolo[1,5-c]pyrimidine sulfonamides, providing three commercial herbicides, cloransulam-methyl, diclosulam and florasulam. Additional structure-activity investigations by reversing the sulfonamide linkage resulted in the discovery of triazolopyrimidine sulfonamides with cereal crop selectivity and high levels of grass and broadleaf weed control. Research efforts to exploit these high levels of weed activity ultimately led to the discovery of penoxsulam, a new herbicide developed for grass, sedge and broadleaf weed control in rice. Synthetic efforts and structure-activity relationships leading to the discovery of penoxsulam will be discussed. PMID:19464188

  19. Structure-activity relationship for the oxadiazole class of antibiotics.

    PubMed

    Spink, Edward; Ding, Derong; Peng, Zhihong; Boudreau, Marc A; Leemans, Erika; Lastochkin, Elena; Song, Wei; Lichtenwalter, Katerina; O'Daniel, Peter I; Testero, Sebastian A; Pi, Hualiang; Schroeder, Valerie A; Wolter, William R; Antunes, Nuno T; Suckow, Mark A; Vakulenko, Sergei; Chang, Mayland; Mobashery, Shahriar

    2015-02-12

    The structure-activity relationship (SAR) for the newly discovered oxadiazole class of antibiotics is described with evaluation of 120 derivatives of the lead structure. This class of antibiotics was discovered by in silico docking and scoring against the crystal structure of a penicillin-binding protein. They impair cell-wall biosynthesis and exhibit activities against the Gram-positive bacterium Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant and linezolid-resistant S. aureus. 5-(1H-Indol-5-yl)-3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole (antibiotic 75b) was efficacious in a mouse model of MRSA infection, exhibiting a long half-life, a high volume of distribution, and low clearance. This antibiotic is bactericidal and is orally bioavailable in mice. This class of antibiotics holds great promise in recourse against infections by MRSA. PMID:25590813

  20. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  1. Structure–Activity Relationship Studies of Pyrrolone Antimalarial Agents

    PubMed Central

    Murugesan, Dinakaran; Kaiser, Marcel; White, Karen L; Norval, Suzanne; Riley, Jennifer; Wyatt, Paul G; Charman, Susan A; Read, Kevin D; Yeates, Clive; Gilbert, Ian H

    2013-01-01

    Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure–activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine-and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival. PMID:23918316

  2. Synthesis and Structural Activity Relationship Study of Antitubercular Carboxamides

    PubMed Central

    Ugwu, D. I.; Ezema, B. E.; Eze, F. U.; Ugwuja, D. I.

    2014-01-01

    The unusual structure and chemical composition of the mycobacterial cell wall, the tedious duration of therapy, and resistance developed by the microorganism have made the recurrence of the disease multidrug resistance and extensive or extreme drug resistance. The prevalence of tuberculosis in synergy with HIV/AIDS epidemic augments the risk of developing the disease by 100-fold. The need to synthesize new drugs that will shorten the total duration of effective treatment and/or significantly reduce the dosage taken under DOTS supervision, improve on the treatment of multidrug-resistant tuberculosis which defies the treatment with isoniazid and rifampicin, and provide effective treatment for latent TB infections which is essential for eliminating tuberculosis prompted this review. In this review, we considered the synthesis and structure activity relationship study of carboxamide derivatives with antitubercular potential. PMID:25610646

  3. Structure activity relationships: their function in biological prediction

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Quantitative structure activity relationships provide a means of ranking or predicting biological effects based on chemical structure. For each compound used to formulate a structure activity model two kinds of quantitative information are required: (1) biological activity and (2) molecular properties. Molecular properties are of three types: (1) molecular shape, (2) physiochemical parameters, and (3) abstract quantitations of molecular structure. Currently the two best descriptors are the hydrophobic parameter, log 1-octanol/water partition coefficient (log P), and the /sup 1/X/sup v/(one-chi-v) molecular connectivity index. Biological responses can be divided into three main categories: (1) non-specific effects due to membrane perturbation, (2) non-specific effects due to interaction with functional groups of proteins, and (3) specific effects due to interaction with receptors. Twenty-six synthetic fossil fuel-related nitrogen-containing aromatic compounds were examined to determine the quantitative correlation between log P and /sup 1/X/sup v/ and population growth impairment of Tetrahymena pyriformis. Nitro-containing compounds are the most active, followed by amino-containing compounds and azaarenes. Within each analog series activity increases with alkyl substitution and ring addition. The planar model log BR = 0.5564 log P + 0.3000 /sup 1/X/sup v/ -2.0138 was determined using mono-nitrogen substituted compounds. Attempts to extrapolate this model to dinitrogen-containing molecules were, for the most part, unsuccessful because of a change in mode of action from membrane perturbation to uncoupling of oxidative phosphoralation.

  4. Autotaxin Structure Activity Relationships Revealed through Lysophosphatidylcholine Analogs

    PubMed Central

    North, E. Jeffrey; Osborne, Daniel A.; Bridson, Peter K.; Baker, Daniel L.; Parrill, Abby L.

    2009-01-01

    Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization. PMID:19345587

  5. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  6. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (?300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  7. Capsaicin and its analogues: structure-activity relationship study.

    PubMed

    Huang, X-F; Xue, J-Y; Jiang, A-Q; Zhu, H-L

    2013-01-01

    Capsaicin, the main ingredient responsible for the hot pungent taste of chilli peppers, is an alkaloid found in the Capsicum family. Capsaicin was traditionally used for muscular pain, headaches, to improve circulation and for its gastrointestinal protective effects. It was also commonly added to herbal formulations because it acts as a catalyst for other herbs and aids in their absorption. In addition, capsaicin and other capsaicinoid compounds showed strong evidence of having promising potential in the fight against many types of cancer. The mechanism of action of capsaicin has been extensively studied over the past decade. It has been established that capsaicin binds to the transient receptor potential vanilloid 1 receptor which was expressed predominantly by sensory neurons. And many analogues of capsaicin have been synthesized and evaluated for diverse bioactivities. In this review, we will attempt to summarize the biology and structure-activity relationship of capsaicinoids. PMID:23627937

  8. Interpretable correlation descriptors for quantitative structure-activity relationships

    PubMed Central

    2009-01-01

    Background The topological maximum cross correlation (TMACC) descriptors are alignment-independent 2D descriptors for the derivation of QSARs. TMACC descriptors are generated using atomic properties determined by molecular topology. Previous validation (J Chem Inf Model 2007, 47: 626-634) of the TMACC descriptor suggests it is competitive with the current state of the art. Results Here, we illustrate the interpretability of the TMACC descriptors, through the analysis of the QSARs of inhibitors of angiotensin converting enzyme (ACE) and dihydrofolate reductase (DHFR). In the case of the ACE inhibitors, the TMACC interpretation shows features specific to C-domain inhibition, which have not been explicitly identified in previous QSAR studies. Conclusions The TMACC interpretation can provide new insight into the structure-activity relationships studied. Freely available, open source software for generating the TMACC descriptors can be downloaded from http://comp.chem.nottingham.ac.uk. PMID:20151000

  9. Quantitative structure-activity relationship studies of mushroom tyrosinase inhibitors.

    PubMed

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA (q2 = 0.855, r2 = 0.978) and CoMSIA (q2 = 0.841, r2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett sigma), hydrophobic (pi), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable (I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that pi, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe that the QSAR models built here provide important information necessary for the design of novel tyrosinase inhibitors. PMID:18256890

  10. Structure-Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase.

    PubMed

    Asthana, Shailendra; Zucca, Paolo; Vargiu, Attilio V; Sanjust, Enrico; Ruggerone, Paolo; Rescigno, Antonio

    2015-08-19

    The structure-activity relationships of four hydroxycoumarins, two with the hydroxyl group on the aromatic ring of the molecule and two with the hydroxyl group replacing hydrogen of the pyrone ring, and their interactions with mushroom tyrosinase were studied. These compounds displayed different behaviors upon action of the enzyme. The two compounds, ar-hydroxylated 6-hydroxycoumarin and 7-hydroxycoumarin, were both weak substrates of the enzyme. Interestingly, in both cases, the product of the catalysis was the 6,7-hydroxycoumarin, although 5,6- and 7,8-isomers could also theoretically be formed. Additionally, both were able to reduce the formation of dopachrome when tyrosinase acted on its typical substrate, L-tyrosine. Although none of the compounds that contained a hydroxyl group on the pyrone ring were substrates of tyrosinase, the 3-hydroxycoumarin was a potent inhibitor of the enzyme, and the 4-hydroxycoumarin was not an inhibitor. These results were compared with those obtained by in silico molecular docking predictions to obtain potentially useful information for the synthesis of new coumarin-based inhibitors that resemble the structure of the 3-hydroxycoumarin. PMID:26263396

  11. Resveratrol and resveratrol analogues--structure-activity relationship.

    PubMed

    Szekeres, Thomas; Fritzer-Szekeres, Monika; Saiko, Philipp; Jäger, Walter

    2010-06-01

    Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a compound found in wine and is held responsible for a number of beneficial effects of red wine. Besides the prevention of heart disease and significant anti-inflammatory effects, resveratrol might inhibit tumor cell growth and even play a role in the aging process. We here describe the structure-activity relationship of resveratrol and analogues of resveratrol regarding the free radical scavenging and antitumor effects of this exciting natural compound. In addition, we have synthesized a number of analogues of resveratrol with the aim to further improve the beneficial effects of resveratrol. Our studies were based on the analysis of structural properties, which were responsible for the most important effects of this compound. Striking in vivo effects can be observed with hexahydroxystilbene (M8), the most effective synthetic analogue of resveratrol. We could show that M8 inhibits tumor as well as metastasis growth of human melanoma in two different animal models, alone and in combination with dacarbacine. PMID:20232118

  12. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  13. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e

  14. Structure activity relationship of synaptic and junctional neurotransmission

    PubMed Central

    Goyal, Raj K; Chaudhury, Arun

    2013-01-01

    Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140

  15. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives.

    PubMed

    Sahu, Pramod K; Sahu, Praveen K; Sahu, Puran L; Agarwal, Dau D

    2016-02-15

    Series of curcumin derivatives/analogues were designed and efficient method for synthesis thereof is described. All the synthesized compounds have been screened for their cytotoxicity and evaluated their antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines Hep-G2, HCT-116 and QG-56 by MTT assay method. Structure activity relationship has revealed that particularly, compound 3c, (IC50 value 6.25?M) has shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 4H-pyrimido[2,1-b]benzothiazole derivatives (2e and 2f), pyrazoles (3a, 3b, 3c and 3d) benzylidenes (4d) exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. PMID:26810315

  16. Structure-anticonvulsant activity relationships of cannabidiol analogs.

    PubMed

    Martin, A R; Consroe, P; Kane, V V; Shah, V; Singh, V; Lander, N; Mechoulam, R; Srebnik, M

    1987-01-01

    Cannabidiol (CBD) exhibits anticonvulsant activity in experimental animals and in man. As part of a structure-activity study, analogs were prepared wherein the terpene unit, the aryl unit, and/or the side chain were modified. Thus, several pinenyl and carenyl derivatives, aryl ethers and acetates, and a variety of 1",1"-dialkylhexyl and 1",1"-dialkylheptyl analogs were synthesized. The compounds were evaluated for anti-convulsant activity in seizure susceptible (AGS) rats and for neurotoxicity in the rat rotorod (ROT) test. Comparisons of stereoisomers of CBD and several analogs revealed a general lack of stereoselectivity for anticonvulsant and other CNS properties of this class of compounds. PMID:3125480

  17. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer

    PubMed Central

    Lee, Juneyoung

    2008-01-01

    To develop novel antibiotic peptides useful as therapeutic drugs, the enantiomeric analogue of pleurocidin (Ple), which is a well known 25-mer antimicrobial peptide, was designed for proteolytic resistance by D-amino acids substitution. The proteolytic resistance was confirmed by using HPLC after the digestion with various proteases. To investigate the antibiotic effect of L- and D-Ple, the antibacterial activity and hemolytic effect were tested against human erythrocytes. The D-Ple showed a decreased antibacterial activity and a dramatically decreased hemolytic activity compared with L-Ple. The hemolytic effect of analogue was further confirmed by using calcein leakage measurement with liposome. To elucidate these results, the secondary structure of the peptides was investigated by using circular dichroism spectroscopy. The results revealed that D-Ple, as well as L-Ple, had typical ?-helical structures which were mirror images, with a different helicity. These results suggested that the discrepancy of the structure between the two peptides made their antibacterial activity distinct. PMID:18779649

  18. Structure-activity relationship (SAR) modelling of mosquito larvicides.

    PubMed

    Devillers, J; Doucet-Panaye, A; Doucet, J P

    2015-01-01

    An attempt was made to derive structure-activity models allowing the prediction of the larvicidal activity of structurally diverse chemicals against mosquitoes. A database of 188 chemicals with their activity on Aedes aegypti larvae was constituted from analysis of original publications. The activity values were expressed in log 1/IC50 (concentration required to produce 50% inhibition of larval development, mmol). All the chemicals were encoded by means of CODESSA and autocorrelation descriptors. Partial least squares analysis, classification and regression tree, random forest and boosting regression tree analyses, Kohonen self-organizing maps, linear artificial neural networks, three-layer perceptrons, radial basis function artificial neural networks and support vector machines with linear, polynomial, radial basis function and sigmoid kernels were tested as statistical tools. Because quantitative models did not give good results, a two-class model was designed. The three-layer perceptron significantly outperformed the other statistical approaches regardless of the threshold value used to split the data into active and inactive compounds. The most interesting configuration included eight autocorrelation descriptors as input neurons and four neurons in the hidden layer. This led to more than 96% of good predictions on both the training set and external test set of 88 and 100 chemicals, respectively. From the overall simulation results, new candidate molecules were proposed which will be shortly synthesized and tested. PMID:25864415

  19. Structure-Activity Relationships of Antitubercular Nitroimidazoles. II. Determinants of aerobic activity and quantitative structure-activity relationships

    PubMed Central

    Kim, Pilho; Kang, Sunhee; Boshoff, Helena I.; Jiricek, Jan; Collins, Margaret; Singh, Ramandeep; Manjunatha, Ujjini H.; Niyomrattanakit, Pornwaratt; Zhang, Liang; Goodwin, Michael; Dick, Thomas; Keller, Thomas H.; Dowd, Cynthia S.; Barry, Clifton E.

    2009-01-01

    The (S)-2-nitro-6-substituted 6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines have been extensively explored for their potential use as new antituberculars based on their excellent bactericidal properties on aerobic whole cells of Mycobacterium tuberculosis. An oxygen atom at the 2-position of the imidazole ring is required for aerobic activity. Here we show that substitution of this oxygen by either nitrogen or sulfur yielded equipotent analogs. Acylating the amino series, oxidizing the thioether, or replacing the ether oxygen with carbon significantly reduced the potency of the compounds. Replacement of the benzylic oxygen at the 6-position by nitrogen slightly improved potency and facilitated exploration of the SAR in the more soluble 6-amino series. Significant improvements in potency were realized by extending the linker region between the 6-(S) position and the terminal hydrophobic aromatic substituent. A simple 4-feature QSAR model was derived to rationalize MIC results in this series of bicyclic nitroimidazoles. PMID:19209893

  20. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  1. Structure-activity relationships of G protein-coupled receptors.

    PubMed

    Ulloa-Aguirre, A; Stanislaus, D; Janovick, J A; Conn, P M

    1999-01-01

    The primary function of cell-surface receptors is to discriminate the specific signaling molecule or ligand from a large array of chemically diverse extracellular substances and to activate an effector signaling cascade that triggers an intracellular response and eventually a biological effect. G protein-coupled cell-surface receptors (GPCRs) mediate their intracellular actions through the activation of guanine nucleotide-binding signal-transducing proteins (G proteins), which form a diverse family of regulatory GTPases that, in the GTP-bound state, bind and activate downstream membrane-localized effectors. Hundreds of GPCRs signal through one or more of these G proteins in response to a large variety of stimuli including photons, neurotransmitters, and hormones of variable molecular structure. The mechanisms by which these ligands provoke activation of the receptor/G-protein system are highly complex and multifactorial. Knowledge and mapping of the structural determinants and requirements for optimal GPCR function are of paramount importance, not only for a better and more detailed understanding of the molecular basis of ligand action and receptor function in normal and abnormal conditions, but also for a rational design of early diagnostic and therapeutic tools that may allow exogenous regulation of receptor and G protein function in disease processes. PMID:10714355

  2. COMPUTER-ASSISTED STUDIES OF MOLECULAR STRUCTURE-BIOLOGICAL ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Computer-assisted methods can be used to investigate the relationships between the molecular structures of compounds and their biological activity. A number of approaches have been reported in the literature, including correlations of activity with substituent constants, conforma...

  3. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-01-01

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents. PMID:25985362

  4. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABAA Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABAA receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABAA receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABAA receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  5. Isolation, sequencing, and structure-activity relationships of cyclotides.

    PubMed

    Ireland, David C; Clark, Richard J; Daly, Norelle L; Craik, David J

    2010-09-24

    Cyclotides are a topologically fascinating family of miniproteins discovered over the past decade that have expanded the diversity of plant-derived natural products. They are approximately 30 amino acids in size and occur in plants of the Violaceae, Rubiaceae, and Cucurbitaceae families. Despite their proteinaceous composition, cyclotides behave in much the same way as many nonpeptidic natural products in that they are resistant to degradation by enzymes or heat and can be extracted from plants using methanol. Their stability arises, in large part, due to their characteristic cyclic cystine knot (CCK) structural motif. Cystine knots are present in a variety of proteins of insect, plant, and animal origin, comprising a ring formed by two disulfide bonds and their connecting backbone segments that is threaded by a third disulfide bond. In cyclotides, the cystine knot is uniquely embedded within a head-to-tail cyclized peptide backbone, leading to the ultrastable CCK structural motif. Apart from the six absolutely conserved cysteine residues, the majority of amino acids in the six backbone loops of cyclotides are tolerant to variation. It has been predicted that the family might include up to 50,000 members; although, so far, sequences for only 140 have been reported. Cyclotides exhibit a variety of biological activities, including insecticidal, nematocidal, molluscicidal, antimicrobial, antibarnacle, anti-HIV, and antitumor activities. Due to their diverse activities and common structural core from which variable loops protrude, cyclotides can be thought of as combinatorial peptide templates capable of displaying a variety of amino acid sequences. They have thus attracted interest in drug design as well as in crop protection applications. PMID:20718473

  6. Cytotoxicity and structure activity relationships of phytosterol from Phyllanthus emblica.

    PubMed

    Qi, Wei-Yan; Li, Ya; Hua, Lei; Wang, Ke; Gao, Kun

    2013-01-01

    Fourteen sterols (1-14), including two new sterols, trihydroxysitosterol (2) and 5?,6?,7?-7?-acetoxysitosterol (3), were isolated from the branches and leaves of Phyllanthus emblica L. The isolated compounds and a structurally related sterol 15 from Aphanamixis grandifolia were screened for cytotoxicity in two tumor cell lines (HL-60 and SMMC-7721) and a non-tumor cell line (HL-7702) using RSB assay. Within the series of phytosterol derivatives tested, compound 15 was the most active, displaying potent cytotoxicity against HL-60 with IC(50) of 5.10?mol/L, and most of the active compounds showed selective cytotoxicity against tumor and non-tumor cell lines, especially compound 10 with a safety index of 4.42. PMID:23266735

  7. Structure-activity relationship of immunomodulating pectins from elderberries.

    PubMed

    Ho, Giang Thanh Thi; Ahmed, Abeeda; Zou, Yuan-Feng; Aslaksen, Torun; Wangensteen, Helle; Barsett, Hilde

    2015-07-10

    The berries of Sambucus nigra have traditionally been used and are still used to treat respiratory illnesses such as cold and flu in Europe, Asia and America. The aim of this paper was to elucidate the structures and the immunomodulating properties of the pectic polymers from elderberries. All the purified fractions obtained from 50% ethanol, 50°C water and 100°C water extracts showed potent dose-dependent complement fixating activity and macrophage stimulating activity. The isolated fractions consisted of long homogalacturonan regions, in addition to arabinogalactan-I and arabinogalactan-II probably linked to a rhamnogalacturonan backbone. Reduced bioactivity was observed after reduction of Araf residues and 1?3,6 Gal by weak acid hydrolysis. The rhamnogalacturonan region in SnBe50-I-S3-I and SnBe50-I-S3-II showed higher activity compared to the native polymer, SnBe50-S3, after enzymatic treatment with endo-?-d-(1?4)-polygalacturonase. These results indicated that elderberries contained immunomodulating polysaccharides, where the ramified regions express the activities observed. PMID:25857988

  8. Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships.

    PubMed

    Bohnert, Markus; Nützmann, Hans-Wilhelm; Schroeckh, Volker; Horn, Fabian; Dahse, Hans-Martin; Brakhage, Axel A; Hoffmeister, Dirk

    2014-09-01

    The fungal genus Armillaria is unique in that it is the only natural source of melleolide antibiotics, i.e., protoilludene alcohols esterified with orsellinic acid or its derivatives. This class of natural products is known to exert antimicrobial and cytotoxic effects. Here, we present a refined relationship between the structure and the antimicrobial activity of the melleolides. Using both agar diffusion and broth dilution assays, we identified the ?(2,4)-double bond of the protoilludene moiety as a key structural feature for antifungal activity against Aspergillus nidulans, Aspergillus flavus, and Penicillium notatum. These findings contrast former reports on cytotoxic activities and may indicate a different mode of action towards susceptible fungi. We also report the isolation and structure elucidation of five melleolides (6'-dechloroarnamial, 6'-chloromelleolide F, 10-hydroxy-5'-methoxy-6'-chloroarmillane, and 13-deoxyarmellides A and B), along with the finding that treatment with an antifungal melleolide impacts transcription of A. nidulans natural product genes. PMID:24906293

  9. Structure-activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus).

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Kim, Eunae; Park, Hye-Mi; Kim, Young-Joon; Park, Il-Kwon

    2010-02-10

    Nematicidal activity of aliphatic compounds was tested to determine a structure-activity relationship. There was a significant difference in nematicidal activity among functional groups. In a test with alkanols and 2E-alkenols, compounds with C(8)-C(11) chain length showed 100% nematicidal activity against pine wood nematode, Bursaphelenchus xylophilus , at 0.5 mg/mL concentration. C(6)-C(10) 2E-alkenals exhibited >95% nematicidal activity, but the other compounds with C(11)-C(14) chain length showed weak activity. Nematicidal activity of alkyl acetates with C(7)-C(11) chain length was strong. Compounds belonging to hydrocarbons, alkanals, and alkanoic acetates showed weak activity at 0.5 mg/mL concentration. Nematicidal activity of active compounds was determined at lower concentrations. At 0.25 mg/mL concentration, whole compounds except C(8) alkanol, C(8) 2E-alkenol, and C(7) alkanoic acid showed >80% nematicidal activity. C(9)-C(11) alkanols, C(10)-C(11) 2E-alkenols, C(8)-C(9) 2E-alkenals, and C(9)-C(10) alkanoic acids showed >80% nematicidal activity at 0.125 mg/mL concentration. Only C(11) alkanol exhibited strong nematicidal activity at 0.0625 mg/mL concentration, the lowest concentration that was tested. PMID:20055406

  10. Structure-Activity Relationships for the Antifungal Activity of Selective Estrogen Receptor Antagonists Related to Tamoxifen

    PubMed Central

    Butts, Arielle; Martin, Jennifer A.; DiDone, Louis; Bradley, Erin K.; Mutz, Mitchell; Krysan, Damian J.

    2015-01-01

    Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold. PMID:26016941

  11. Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity.

    PubMed

    Gurfinkel, D M; Rao, A V

    2003-01-01

    Soyasaponins are bioactive compounds found in many legumes. Although crude soyasaponins have been shown to have anti-colon carcinogenic activity, there have been no structure-activity studies. In this study, therefore, purified soyasaponins and soyasapogenins were tested for their ability to suppress the growth of HT-29 colon cancer cells, as determined by the WST-1 assay, over a concentration range of 0-50 ppm. Soyasaponin I and III, soyasapogenol B monoglucuronide, soyasapogenol B, soyasaponin A1, soyasaponin A2, and soyasapogenol A were evaluated. Also tested were mixtures comprising acetylated group A soyasaponins, deacetylated group A soyasaponins, and group B soyasaponins. The most potent compounds were the aglycones soyasapogenol A and B, which showed almost complete suppression of cell growth. The glycosidic soyasaponins by comparison were largely inactive. Soyasaponin A(1), A(2), and I, group B and deacetylated and acetylated group A fractions had no effect on cell growth. Soyasaponin III and soyasapogenol B monoglucuronide were marginally bioactive. These results suggested that the bioactivity of soyasaponins increased with increased lipophilicity. Results from in vitro fermentation suggested that colonic microflora readily hydrolyzed the soyasaponins to aglycones. These observations suggest that the soyasaponins may be an important dietary chemopreventive agent against colon cancer, after alteration by microflora. PMID:14769534

  12. Structure-activity relationships of antioxidant activity in vitro about flavonoids isolated from Pyrethrum tatsienense

    PubMed Central

    Lin, Chao-Zhan; Zhu, Chen-Chen; Hu, Min; Wu, Ai-Zhi; Bairu, Zeren-Dawa; Kangsa, Suolang-Qimei

    2014-01-01

    Aim: Antioxidant activity is one of the important indexes for estimating medicinal value for the traditional Chinese medicine. The aim of this study is to investigate the antioxidant activity of 11 flavonoids mainly revealing luteolin as mother nucleus isolated from Pyrethrum tatsienense. Materials and Methods: The antioxidant activity of 11 flavonoids was measured in vitro using the classical 1,1-diphenyl-2-picrylhydrazyl removal method. The percentages of scavenging activity of 11 flavonoids were analyzed by taking the choice of a-tocopherol as positive drugs, and the scavenging activity was plotted against the sample concentration to obtain the IC50 values. Results: Ten flavonoids containing phenolic hydroxyl groups have different levels of antioxidant activity. Antioxidant activity mainly depends on the numbers and the substitutional positions of phenolic hydroxyls in B ring. When C-3', 4' positions in B ring of flavonoids are replaced by hydroxyl groups, the antioxidant activity improved remarkably. Phenolic hydroxyl groups in A ring contribute some to antioxidant activity because of the electrophilic effect of C ring, and the numbers and substitutional positions of methoxyl and glycosyl have a little effect on the antioxidant activity. Conclusion: Structure-activity relationships of antioxidant activity about flavonoids isolated from P. tatsienense are concluded, which will be beneficial to deep understanding the pharmacological functions of this Tibetan medicine in vivo from the point of antioxidation. PMID:26401360

  13. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies.

    PubMed

    Tasdemir, Deniz; Kaiser, Marcel; Brun, Reto; Yardley, Vanessa; Schmidt, Thomas J; Tosun, Fatma; Rüedi, Peter

    2006-04-01

    Trypanosomiasis and leishmaniasis are important parasitic diseases affecting millions of people in Africa, Asia, and South America. In a previous study, we identified several flavonoid glycosides as antiprotozoal principles from a Turkish plant. Here we surveyed a large set of flavonoid aglycones and glycosides, as well as a panel of other related compounds of phenolic and phenylpropanoid nature, for their in vitro activities against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani. The cytotoxicities of more than 100 compounds for mammalian L6 cells were also assessed and compared to their antiparasitic activities. Several compounds were investigated in vivo for their antileishmanial and antitrypanosomal efficacies in mouse models. Overall, the best in vitro trypanocidal activity for T. brucei rhodesiense was exerted by 7,8-dihydroxyflavone (50% inhibitory concentration [IC50], 68 ng/ml), followed by 3-hydroxyflavone, rhamnetin, and 7,8,3',4'-tetrahydroxyflavone (IC50s, 0.5 microg/ml) and catechol (IC50, 0.8 microg/ml). The activity against T. cruzi was moderate, and only chrysin dimethylether and 3-hydroxydaidzein had IC50s less than 5.0 microg/ml. The majority of the metabolites tested possessed remarkable leishmanicidal potential. Fisetin, 3-hydroxyflavone, luteolin, and quercetin were the most potent, giving IC50s of 0.6, 0.7, 0.8, and 1.0 microg/ml, respectively. 7,8-Dihydroxyflavone and quercetin appeared to ameliorate parasitic infections in mouse models. Generally, the test compounds lacked cytotoxicity in vitro and in vivo. By screening a large number of flavonoids and analogues, we were able to establish some general trends with respect to the structure-activity relationship, but it was not possible to draw clear and detailed quantitative structure-activity relationships for any of the bioactivities by two different approaches. However, our results can help in directing the rational design of 7,8-dihydroxyflavone and quercetin derivatives as potent and effective antiprotozoal agents. PMID:16569852

  14. Structure-activity relationship of celecoxib and rofecoxib for the membrane permeabilizing activity.

    PubMed

    Yamakawa, Naoki; Suzuki, Koichiro; Yamashita, Yasunobu; Katsu, Takashi; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi; Mizushima, Tohru

    2014-04-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory effect by inhibiting cyclooxygenase activity. We previously suggested that in addition to cyclooxygenase-inhibition at the gastric mucosa, NSAID-induced gastric mucosal cell death is required for the formation of NSAID-induced gastric lesions in vivo. We showed that celecoxib exhibited the most potent membrane permeabilizing activity among the NSAIDs tested. In contrast, we have found that the NSAID rofecoxib has very weak membrane permeabilizing activity. To understand the membrane permeabilizing activity of coxibs in terms of their structure-activity relationship, we separated the structures of celecoxib and rofecoxib into three parts, synthesized hybrid compounds by substitution of each of the parts, and examined the membrane permeabilizing activities of these hybrids. The results suggest that the sulfonamidophenyl subgroup of celecoxib or the methanesulfonylphenyl subgroup of rofecoxib is important for their potent or weak membrane permeabilizing activity, respectively. These findings provide important information for design and synthesis of new coxibs with lower membrane permeabilizing activity. PMID:24650702

  15. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  16. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  17. Structure-activity relationships of dengue antiviral polycyclic quinones.

    PubMed

    Laurent, Dominique; Baumann, Francine; Benoit, Anne Gaelle; Mortelecqe, Alain; Nitatpattana, Narong; Desvignes, Isabelle; Debitus, Cécile; Laille, Manola; Gonzalez, Jean-Paul; Chungue, Eliane

    2005-07-01

    The virucidal and antiviral photoactivities of three compounds, hypericin, tetrabromohypericin and gymnochrome B, were evaluated against dengue viruses. All the three products were active, and both the virucidal and antiviral activities were enhanced by light. Gymnochrome B was more potent than hypericin and tetrabromohypericin. The presence of the side chains on the hypericin core of gymnochromes appears to be beneficial for both virucidal and antiviral activities. This enhanced activity is likely to be linked to a complementary mechanism independent of photoactivation. PMID:16295543

  18. ESTIMATION OF ELECTRON AFFINITY BASED ON STRUCTURE ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Electron affinity for a wide range of organic molecules was calculated from molecular structure using the chemical reactivity models developed in SPARC. hese models are based on fundamental chemical structure theory applied to the prediction of chemical reactivities for organic m...

  19. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent. PMID:17542610

  20. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies

    PubMed Central

    Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña

    2012-01-01

    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345

  1. Structure-activity relationships of 44 halogenated compounds for iodotyrosine deiodinase-inhibitory activity.

    PubMed

    Shimizu, Ryo; Yamaguchi, Masafumi; Uramaru, Naoto; Kuroki, Hiroaki; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi

    2013-12-01

    The aim of this study was to investigate the possible influence of halogenated compounds on thyroid hormone metabolism via inhibition of iodotyrosine deiodinase (IYD) activity. The structure-activity relationships of 44 halogenated compounds for IYD-inhibitory activity were examined in vitro using microsomes of HEK-293 T cells expressing recombinant human IYD. The compounds examined were 17 polychlorinated biphenyls (PCBs), 15 polybrominated diphenyl ethers (PBDEs), two agrichemicals, five antiparasitics, two pharmaceuticals and three food colorants. Among them, 25 halogenated phenolic compounds inhibited IYD activity at the concentration of 1×10(-4)M or 6×10(-4)M. Rose bengal was the most potent inhibitor, followed by erythrosine B, phloxine B, benzbromarone, 4'-hydroxy-2,2',4-tribromodiphenyl ether, 4-hydroxy-2,3',3,4'-tetrabromodiphenyl ether, 4-hydroxy-2',3,4',5,6'-pentachlorobiphenyl, 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether, triclosan, and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. However, among PCBs and PBDEs without a hydroxyl group, including their methoxylated metabolites, none inhibited IYD activity. These results suggest that halogenated compounds may disturb thyroid hormone homeostasis via inhibition of IYD, and that the structural requirements for IYD-inhibitory activity include halogen atom and hydroxyl group substitution on a phenyl ring. PMID:24012475

  2. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  3. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  4. The cytotoxic activities of cardiac glycosides from Streptocaulon juventas and the structure-activity relationships.

    PubMed

    Xue, Rui; Han, Na; Ye, Chun; Wang, Lihui; Yang, Jingyu; Wang, Yu; Yin, Jun

    2014-10-01

    A series of cardiac glycosides were isolated and identified from the anti-tumor fraction of the root of Streptocaulon juventas in previous studies. In the present research, the cytotoxic activities of the 43 cardiac glycosides on three cell lines, human lung A549 adenocarcinoma cell, large cell lung cancer NCI-H460 cell and normal human fetal lung fibroblast MRC-5 cell, were evaluated in vitro. Most of the tested compounds showed potent inhibitory activities toward the three cell lines. Then, the structure-activity relationships were discussed in detail. It was indicated that hydroxyl and acetyl groups at C-16 increased the activity, whereas hydroxyl group at C-1 and C-5 can both increase and decrease the activity. Two glucosyl groups which were connected by C1'?C6' showed better inhibitory activity against cancer cell lines, while the C1'?C4' connection showed stronger inhibitory activity against the normal cell line. Also, this is the first report that the activities of these compounds exhibited different variation trends between A549 and NCI-H460 cell lines, which indicated that these compounds could selectively inhibit the cell growth. The results would lay a foundation for further research on new anti-tumor drug development. PMID:25128424

  5. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis.

    PubMed

    Ali, Hussein M; Almagribi, Wafaa; Al-Rashidi, Mona N

    2016-03-01

    Eight anthocyanidins, seven anthocyanins and two synthesized 4'-hydroxy flavyliums were examined as hydrogen donors to DPPH, ABTS and hydroxyl radicals, and as electron donors in the FRAP assay. Most compounds gave better activities than trolox and catechol. A structure-activity relationship (SAR) study showed that, in the absence of the 3-OH group, radicals of the 4, 5 or 7-OH groups can only be stabilized by resonance through pyrylium oxygen, while 3-OH group improved hydrogen atom donation because of the stabilization by anthocyanidin semiquinone-like resonance. Electron donation was also enhanced by the 3-OH group. Both anthocyanidins and their respective anthocyanins showed similar trends and close activities. Different types of sugar unit bonded to the 3-OH group or counter ion had minor effect on activities. The catechol structure improved both hydrogen and electron donation. Compounds lacking the catechol structure had a decreasing order of H-atom and electron donation (Mv>Pn>Pg>Ap>4'-OH-flavylium) consistent with the decreasing number of their hydroxyl and/or methoxy groups. PMID:26471682

  6. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    PubMed Central

    de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.

    2013-01-01

    The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 ?g/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

  7. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru; Itakura, Yuki; Batubara, Irmanida

    2015-07-01

    Ugonin J, K, and L, which are luteolin derivatives, were isolated from Helminthostachys zeylanica roots by a series of chromatographic separations of a 50% ethanol/water extract. They were identified using nuclear magnetic resonance (NMR), ultraviolet (UV) spectra, and ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS). In this study, the intra and extracellular melanogenic activity of the ugonins were determined using B16 melanoma cells. The results showed that ugonin J at 12.5, 25, and 50?M reduced extracellular melanin contents to 75, 16, and 14%, respectively, compared to the control. This indicates that ugonin J showed a stronger activity than arbutin, used as the positive control. Moreover, ugonin K showed a more potent inhibition with 19, 8, and 9% extracellular melanin reduction at the same concentrations, than that shown by ugonin J. In contrast, ugonin L did not inhibit intra- or extracellular melanogenic activity. Furthermore, in order to investigate the structure-activity relationships of the ugonins, the intra- and extracellular melanogenic activity of luteolin, methylluteolin, quercetin, eriodictyol, apigenin, and chrysin were determined. Consequently, it was suggested that the catechol and flavone skeleton of ugonin K is essential for the extracellular melanogenic inhibitory activity, and the low polarity substituent groups on the A ring of ugonin K may increase the activity. PMID:25979512

  8. Structure-activity relationship investigations of leishmanicidal N-benzylcytisine derivatives.

    PubMed

    Turabekova, Malakhat A; Vinogradova, Valentina I; Werbovetz, Karl A; Capers, Jeffrey; Rasulev, Bakhtiyor F; Levkovich, Mikhail G; Rakhimov, Shukhrat B; Abdullaev, Nasrulla D

    2011-07-01

    In vitro leishmanicidal activity of 16 N-benzylcytisine derivatives has been evaluated using Leishmania donovani axenic amastigotes. In general, halogen (bromo-, chloro-) derivatives appeared to be more toxic against parasites than their parent compounds. Quantum-chemical calculations helped to recognize certain patterns in the structure of frontier orbitals related to bioactivity of compounds. Thus, the presence of halogen atom is shown to have a significant effect on both distribution and the energy of LUMOs thereby on potent activity that was also confirmed by Quantitative-Structure Activity Relationship (QSAR) analysis. Experimentally and theoretically observed structure-cytotoxicity relationships are described. PMID:21457471

  9. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  10. Antipoliovirus structure-activity relationships of some aporphine alkaloids.

    PubMed

    Boustie, J; Stigliani, J L; Montanha, J; Amoros, M; Payard, M; Girre, L

    1998-04-01

    A series of 18 aporphinoids have been tested in vitro against human poliovirus. The aporphines (+)-glaucine fumarate (1), (+)-N-methyllaurotetanine (4), (+)-isoboldine (7), and (-)-nuciferine, HCl (10) were found to be active with selectivity indices > 14. The nature of the 1, 2-substituents of the isoquinoline moiety appeared to be critical for antipoliovirus activity. An SAR study demonstrated the importance of a methoxyl group at C-2 on the tetrahydroisoquinoline ring for the induction of antipoliovirus activity. Molecular modeling of some compounds in this series revealed the close similarities between the three-dimensional conformational features of the inactive 1,2-substituted derivatives (+)-boldine (6) and (+)-laurolitsine (5) with derivatives containing the 1,2-(methylenedioxy) moiety, which were generally found to be inactive as exemplified by (+)-cassythicine (9). PMID:9584402

  11. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected. PMID:25466709

  12. Structure–activity relationships for ?-calcitonin gene-related peptide

    PubMed Central

    Watkins, Harriet A; Rathbone, Dan L; Barwell, James; Hay, Debbie L; Poyner, David R

    2013-01-01

    Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential ?-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1–7); an ?-helix (residues 8–18), a region incorporating a ?-bend (residues 19–26) and the C-terminal portion (residues 27–37), that is characterized by bends between residues 28–30 and 33–34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an ?-helix. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23186257

  13. Structure-Activity Relationship of Chlorotoxin-Like Peptides.

    PubMed

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A B; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-01-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na⁺, K⁺, Ca⁺, Cl(-), etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  14. Structure-Activity Relationship of Chlorotoxin-Like Peptides

    PubMed Central

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A. B.; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-01-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na+, K+, Ca+, Cl−, etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  15. Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines.

    PubMed

    Cauchon, Nicole; Tian, Hongjian; Langlois, Réjean; La Madeleine, Carole; Martin, Stephane; Ali, Hasrat; Hunting, Darel; van Lier, Johan E

    2005-01-01

    To identify optimal features of metalated sulfophthalocyanine dyes for their use as photosensitizers in the photodynamic therapy of cancer, we synthesized a series of alkynyl-substituted trisulfonated phthalocyanines and compared their amphiphilic properties to a number of parameters related to their photodynamic potency. Varying the length of the substituted alkynyl side-chain modulates the hydrophobic/hydrophilic properties of the dyes providing a linear relationship between their n-octanol/water partition coefficients and retention times on reversed-phase HPLC. Aggregate formation of the dyes in aqueous solution increased with increasing hydrophobicity while monomer formation was favored by the addition of serum proteins or organic solvent. Trisulfonated zinc phthalocyanines bearing hexynyl and nonynyl substituents exhibited high cellular uptake with strong localization at the mitochondrial membranes, which coincided with effective photocytotoxicity toward EMT-6 murine mammary tumor cells. Further increase in the length of the alkynyl chains (dodecynyl, hexadecynyl) did not improve their phototoxicity, likely resulting from extensive aggregation of the dyes in aqueous medium and reduced cell uptake. Aggregation was evident from shifts in the electronic spectra and reduced capacity to generate singlet oxygen. When monomerized through the addition of Cremophor EL all sulfonated zinc phthalocyanines gave similar singlet oxygen yields. Accordingly, differences in the tendency of the dyes to aggregate do not appear to be a determining factor in their photodynamic potency. Our results confirm that the latter in particular relates to their amphiphilic properties, which facilitate cell uptake and intracellular localization at photosensitive sites such as the mitochondria. Combined, these factors play a significant role in the overall photodynamic potency of the dyes. PMID:15656578

  16. Structure-activity relationship of immunostimulatory effects of phthalates

    PubMed Central

    Larsen, Søren T; Nielsen, Gunnar D

    2008-01-01

    Background Some chemicals, including some phthalate plasticizers, have been shown to have an adjuvant effect in mice. However, an adjuvant effect, defined as an inherent ability to stimulate the humoral immune response, was only observed after exposure to a limited number of the phthalates. An adjuvant effect may be due to the structure or physicochemical characteristics of the molecule. The scope of this study was to investigate which molecular characteristics that determine the observed adjuvant effect of the most widely used phthalate plasticizer, the di-(2-ethylhexyl) phthalate (DEHP), which is documented as having a strong adjuvant effect. To do so, a series of nine lipophilic compounds with structural and physicochemical relations to DEHP were investigated. Results Adjuvant effect of phthalates and related compounds were restricted to the IgG1 antibody formation. No effect was seen on IgE. It appears that lipophilicity plays a crucial role, but lipophilicity does not per se cause an adjuvant effect. In addition to lipophilicity, a phthalate must also possess specific stereochemical characteristics in order for it to have adjuvant effect. Conclusion The adjuvant effect of phthalates are highly influenced by both stereochemical and physico-chemical properties. This knowledge may be used in the rational development of plasticizers without adjuvant effect as well as in the design of new immunological adjuvants. PMID:18976460

  17. Quantitative structure-activity relationships of phenolic compounds causing apoptosis.

    PubMed

    Hansch, Corwin; Bonavida, Benjamin; Jazirehi, Ali R; Cohen, J John; Milliron, Cheri; Kurup, Alka

    2003-02-20

    A study of a variety of phenolic compounds (simple phenols, estradiol, bisphenol A, diethylstilbesterol) on their action on L1210 leukemia cells led to the formulation of the following QSAR for apoptosis:log 1/C=-3.16 Clog P+2.77 CMR-3.76n=11, r(2)=0.939, s=0.630, q(2)=0.892C is the molar concentration causing 25% apoptosis, Clog P is the calculated octanol/water partition coefficient and CMR is the calculated molecular refractivity. Our results imply the significance of characterization of the phenolic compounds with apoptotic activity and the development of new agents for cancer therapy. PMID:12538027

  18. Strong Nonadditivity as a Key Structure–Activity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts

    PubMed Central

    2015-01-01

    Nonadditivity in protein–ligand affinity data represents highly instructive structure–activity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (??pKi and ??pIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools. PMID:25760829

  19. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  20. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group. PMID:24824737

  1. Synthesis and structure-activity relationships of 2-pyrazinylcarboxamidobenzoates and beta-ionylideneacetamidobenzoates with retinoidal activity.

    PubMed

    Jones, P; Villeneuve, G B; Fei, C; DeMarte, J; Haggarty, A J; Nwe, K T; Martin, D A; Lebuis, A M; Finkelstein, J M; Gour-Salin, B J; Chan, T H; Leyland-Jones, B R

    1998-07-30

    The structure-activity relationships of two series of novel retinoids (2-pyrazinylcarboxamidobenzoates and beta-ionylideneacetamidobenzoates) have been investigated by evaluating their ability to induce differentiation in both human promyelocytic leukemia (HL60) cells and mouse embryonal carcinoma (P19) cells. The most active compound (ED50 = 8.3 x 10(-9) M) of the 2-pyrazinylcarboxamidobenzoates is 4-[2-(5,6,7,8-tetrahydro-5,5,8, 8-tetramethylquinoxalyl)carboxamido]benzoic acid (9u), while the most active analogue of the beta-ionylideneacetamidobenzoates is 4-[3-methyl-5-(2',6',6'-trimethyl-1'-cyclohexen-1'-yl)-(2E, 4E)-pentadienamido]benzoic acid (10a, ED50 = 3.2 x 10(-8) M). Our studies identify an absolute requirement for the carboxylic acid moiety on the aromatic ring to be para relative to the amide linkage for activity. Benzoate substitutions in the ortho position relative to the terminal carboxylate (9d,k,r) are well-tolerated; however, a methoxy substituent meta relative to the terminal carboxylate gives rise to only weakly active analogues (9x). Conformational studies (NMR, X-ray crystallography) of the 2-pyrazinylcarboxamidobenzoates indicate that the preferred conformation exhibits a trans-amide bond and an internal hydrogen bond between the quinoxaline N1 and HN amide which locks the torsional angle between C2 and CO in the s-trans conformation. N-Methylation (9y) results in loss of activity. Studies indicate that there is now a cis-amide bond present which redirects the carboxylate toward the pharmacophoric gem-dimethyl groups. The distance between the gem-dimethyl group and the terminal carboxylate appears to be too short to activate the retinoid receptor. N-Methylation in the beta-ionylideneacetamidobenzoate series (10c) also results in the formation of a cis-amide bond and loss of activity. PMID:9685246

  2. STRUCTURE-ACTIVITY RELATIONSHIPS FOR SCREENING ORGANIC CHEMICALS FOR POTENTIAL ECOTOXICITY EFFECTS

    EPA Science Inventory

    The paper presents structure-activity relationships (QSAR) for estimating the bioconcentration factor and acute toxicity of some classes of industrial chemicals using only the n-octanol/water partition coefficient (Log P) which is derived from chemical structure. The bioconcentra...

  3. Synthesis of Ureido-Muraymycidine Derivatives for Structure Activity Relationship Studies of Muraymycins

    PubMed Central

    Aleiwi, Bilal A.; Schneider, Christopher M.

    2012-01-01

    One of the key constituents of the muraymycins is the 6-membered cyclic guanidine, (2S,3S)-muraymycidine (or epi-capreomycidine). In order to diversify the structure of the oligo-peptide moiety of the muraymycins for thorough structure activity relationship studies, we have developed a highly stereoselective synthesis of ureido-muraymycidine derivatives with the lactone 4a. PMID:22458337

  4. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  5. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  6. Synthesis, antitumor activity and structure-activity relationships of a series of Ru(II) complexes.

    PubMed

    Liu, Jie; Zheng, Wenjie; Shi, Shuo; Tan, Caiping; Chen, Jincan; Zheng, Kangcheng; Ji, Liangnian

    2008-02-01

    A series of octahedral Ru(II) polypyridyl complexes, [Ru(phen)(2)L](2+) (L=R-PIP and PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by elementary analysis, (1)H NMR and ES-MS, as well as UV-visible spectra and emission spectra. The antitumor activities of these complexes and their corresponding ligands were investigated against mouse leukemia L1210 cells, human oral epidermoid carcinoma KB cells, human promyelocytic leukemia cells (HL-60) and Bel-7402 liver cancer cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. It was found that the complexes [Ru(phen)(2)L](2+) (L=R-PIP) exert rather potent activities against all of these cell lines, especially for the KB cells (IC(50)=4.7+/-1.3 microM). The binding affinities of these Ru(II) complexes to CT-DNA (calf thymus DNA), as well as the DNA-unwinding properties on supercoiled pBR322 DNA were also investigated. The results showed that these Ru(II) polypyridyl complexes not only had an excellent DNA-binding property but also possessed a highly effective DNA-photocleavage ability. The structure-activity relationships and antitumor mechanism were also carefully discussed. PMID:17825915

  7. Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides

    PubMed Central

    Mojsoska, Biljana; Zuckermann, Ronald N.

    2015-01-01

    The constant emergence of new bacterial strains that resist the effectiveness of marketed antimicrobials has led to an urgent demand for and intensive research on new classes of compounds to combat bacterial infections. Antimicrobial peptoids comprise one group of potential candidates for antimicrobial drug development. The present study highlights a library of 22 cationic amphipathic peptoids designed to target bacteria. All the peptoids share an overall net charge of +4 and are 8 to 9 residues long; however, the hydrophobicity and charge distribution along the abiotic backbone varied, thus allowing an examination of the structure-activity relationship within the library. In addition, the toxicity profiles of all peptoids were assessed in human red blood cells (hRBCs) and HeLa cells, revealing the low toxicity exerted by the majority of the peptoids. The structural optimization also identified two peptoid candidates, 3 and 4, with high selectivity ratios of 4 to 32 and 8 to 64, respectively, and a concentration-dependent bactericidal mode of action against Gram-negative Escherichia coli. PMID:25941221

  8. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships.

    PubMed

    Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K

    2006-06-01

    The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity. PMID:17054018

  9. Macrolide-Based Microtubule-Stabilizing Agents - Chemistry and Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Pfeiffer, B.; Kuzniewski, C. N.; Wullschleger, C.; Altmann, K.-H.

    This article provides an overview on the chemistry and structure-activity relationships of macrolide-based microtubule-stabilizing agents. The primary focus will be on the total synthesis or examples thereof, but a brief summary of the current state of knowledge on the structure-activity relationships of epothilones, laulimalide, dictyostatin, and peloruside A will also be given. This macrolide class of compounds, over the last decade, has become the subject of growing interest due to their ability to inhibit human cancer cell proliferation through a taxol-like mechanism of action.

  10. Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity

    PubMed Central

    Tyssen, David; Henderson, Scott A.; Johnson, Adam; Sterjovski, Jasminka; Moore, Katie; La, Jennifer; Zanin, Mark; Sonza, Secondo; Karellas, Peter; Giannis, Michael P.; Krippner, Guy; Wesselingh, Steve; McCarthy, Tom; Gorry, Paul R.; Ramsland, Paul A.; Cone, Richard; Paull, Jeremy R. A.; Lewis, Gareth R.; Tachedjian, Gilda

    2010-01-01

    Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides. PMID:20808791

  11. Structure-activity relationships (SAR) and structure-kinetic relationships (SKR) of bicyclic heteroaromatic acetic acids as potent CRTh2 antagonists II: lead optimization.

    PubMed

    Alonso, Juan Antonio; Andrés, Miriam; Bravo, Mónica; Calbet, Marta; Eastwood, Paul R; Eichhorn, Peter; Esteve, Cristina; Ferrer, Manel; Gómez, Elena; González, Jacob; Mir, Marta; Moreno, Imma; Petit, Silvia; Roberts, Richard S; Sevilla, Sara; Vidal, Bernat; Vidal, Laura; Vilaseca, Pere; Zanuy, Miriam

    2014-11-01

    Extensive structure-activity relationship (SAR) and structure-kinetic relationship (SKR) studies in the bicyclic heteroaromatic series of CRTh2 antagonists led to the identification of several molecules that possessed both excellent binding and cellular potencies along with long receptor residence times. A small substituent in the bicyclic core provided an order of magnitude jump in dissociation half-lives. Selected optimized compounds demonstrated suitable pharmacokinetic profiles. PMID:25437505

  12. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    PubMed

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed. PMID:20526854

  13. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives.

    PubMed

    Yang, Chun; Zhi, Xiaoyan; Xu, Hui

    2016-01-01

    Honokiol and magnolol (an isomer of honokiol) are small-molecule polyphenols isolated from the barks of Magnolia officinalis, which have been widely used in traditional Chinese and Japanese medicines. In the last decade, a variety of biological properties of honokiol and magnolol (e.g., anti-oxidativity, antitumor activity, anti-depressant activity, anti-inflammatory activity, neuroprotective activity, anti-diabetic activity, antiviral activity, and antimicrobial activity) have been reported. Meanwhile, certain mechanisms of action of some biological activities were also investigated. Moreover, many analogs of honokiol and magnolol were prepared by structural modification or total synthesis, and some exhibited very potent pharmacological activities with improved water solubility. Therefore, the present review will provide a systematic coverage on recent developments of honokiol and magnolol derivatives in regard to semisynthesis, total synthesis, and structure-activity relationships from 2000 up to now. PMID:26586125

  14. Structure-Activity Relationship for Thiohydantoin Androgen Receptor Antagonists for Castration-Resistant Prostate Cancer (CRPC)

    PubMed Central

    Jung, Michael E.; Ouk, Samedy; Yoo, Dongwon; Sawyers, Charles L.; Chen, Charlie; Tran, Chris; Wongvipat, John

    2011-01-01

    A structure-activity relationship study was carried out on a series of thiohydantoins and their analogues 14 which led to the discovery of 92 (MDV3100) as the clinical candidate for the treatment of hormone refractory prostate cancer. PMID:20218717

  15. DEVELOPMENT OF QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR PREDICTING BIODEGRADATION KINETICS

    EPA Science Inventory

    Results have been presented on the development of a structure-activity relationship for biodegradation using a group contribution approach. sing this approach, reported results of the kinetic rate constant agree within 20% with the predicted values. dditional compound studies are...

  16. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    PubMed Central

    Zhang, Jun; Li, Chunxia; Yu, Guangli; Guan, Huashi

    2014-01-01

    Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined. PMID:24945415

  17. STRUCTURE-ACTIVITY RELATIONSHIPS AND ESTIMATION TECHNIQUES FOR BIODEGRADATION OF XENOBIOTICS

    EPA Science Inventory

    The Current status of structure-activity relationships for the biodegradation of xenobiotics is reviewed. esults are presented of a pilot study on biodegradation Constants obtained from Computer databases. ew analyses for a relatively large number of anilines and phenols are pres...

  18. DETERMINING THE STRUCTURE-ACTIVITY RELATIONSHIPS OF AMINOBIPHENYL AND BENZIDINE ANALOGS

    EPA Science Inventory

    Determining the structure-activity relationships of aminobiphenyl and benzidine analogues

    Benzidine is a confirmed human carcinogen causing bladder and other types of cancer in humans and animals. Many of the benzidine and related aminobiphenyl compounds are mutagenic in t...

  19. STRUCTURE-ACTIVITY RELATIONSHIPS (SARS) AMONG MUTAGENS AND CARCINOGENS: A REVIEW

    EPA Science Inventory

    The review is an introduction to methods for evaluating structure-activity relationships (SARs), and, in particular, to those methods that have been applied to study mutagenicity and carcinogenicity. A brief history and some background material on the earliest attempts to correla...

  20. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  1. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  2. Structure-activity relationships for G2 checkpoint inhibition by caffeine analogs

    PubMed Central

    Jiang, Xiuxian; Lim, Lynette Y.; Daly, John W.; Li, An Hu; Jacobson, Kenneth A.; Roberge, Michel

    2016-01-01

    Caffeine inhibits the G2 checkpoint activated by DNA damage and enhances the toxicity of DNA-damaging agents towards p53-defective cancer cells. The relationship between structure and G2 checkpoint inhibition was determined for 56 caffeine analogs. Replacement of the methyl group at position 3 or 7 resulted in loss of activity, while replacement at position 1 by ethyl or propyl increased activity slightly. 8-Substituted caffeines retained activity, but were relatively insoluble. The structure-activity profile did not resemble those for other known pharmacological activities of caffeine. The active analogs also potentiated the killing of p53-defective cells by ionizing radiation, but none was as effective as caffeine. PMID:10762633

  3. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    PubMed Central

    Jäntschi, Lorentz; Bolboacǎ, Sorana-Daniela

    2007-01-01

    The aim of the paper is to present the results obtained by utilization of an original approach called Molecular Descriptors Family on Structure-Property (MDF-SPR) and Structure-Activity Relationships (MDF-SAR) applied on classes of chemical compounds and its usefulness as precursors of models elaboration of new compounds with better properties and/or activities and low production costs. The MDF-SPR/MDF-SAR methodology integrates the complex information obtained from compound’s structure in unitary efficient models in order to explain properties/activities. The methodology has been applied on a number of thirty sets of chemical compounds. The best subsets of molecular descriptors family members able to estimate and predict property/activity of interest were identified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR models were validated through internal and/or external validation methods. The estimation and prediction abilities of the MDF-SPR/MDF-SAR models were compared with previous reported models by applying of correlated correlation analysis, which revealed that the MDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodology opens a new pathway in understanding the relationships between compound’s structure and property/activity, in property/activity prediction, and in discovery, investigation and characterization of new chemical compounds, more competitive as costs and property/activity, being a method less expensive comparative with experimental methods.

  4. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  5. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    PubMed Central

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-01-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2′-dihydroxy-3′,4′-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products. PMID:26350974

  6. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship.

    PubMed

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-01-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2'-dihydroxy-3',4'-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products. PMID:26350974

  7. Inhibitors of the Interaction of Thyroid Hormone Receptor and Coactivators: Preliminary Structure–Activity Relationships

    PubMed Central

    Arnold, Leggy A.; Kosinski, Aaron; Estébanez-Perpiñá, Eva; Guy, R. Kiplin

    2008-01-01

    The modulation of gene regulation by blocking the interaction between the thyroid receptor (TR) and obligate coregulators (CoRs) has been reported recently with discovery of the lead compound 3-(dimethylamino)-1-(4-hexylphenyl)propan-1-one). Herein we report studies aimed at optimization of this initial hit to determine the basic parameters of the structure–activity relationships (SAR) and clarify the mechanism of action. These studies provided new insights, showing that activity and TR? isoform selectivity is highly correlated with the structural composition of these covalent inhibitors. PMID:17918822

  8. The structure-activity relationships of the antiviral chemotherapeutic activity of isatin ?-thiosemicarbazone

    PubMed Central

    Bauer, D. J.; Sadler, P. W.

    1960-01-01

    As part of an investigation devoted to the development of new antiviral agents a compound of established antiviral activity has been subjected to systematic structural modification. The structure-activity data so obtained have been used in the design of new compounds, some of which are described. The compound chosen was isatin ?-thiosemicarbazone, which has high activity against neurovaccinia infection in mice, and a 4-point parallel-line assay of in vivo chemotherapeutic activity has been developed, which has enabled the activity of the derivatives to be determined against isatin ?-thiosemicarbazone as a standard. The overall dimensions of the isatin ?-thiosemicarbazone molecule appear to be nearly maximal for the retention of high activity, as all substituents in the aromatic ring decrease the activity irrespective of their nature or position. The projection of the -CS.NH2 group in relation to the ring nitrogen was found to be critical, as the ?-thiosemicarbazone was inactive. A number of modifications of the side-chain were investigated:all led to reduction or loss of antiviral activity. The antiviral activity showed a positive correlation with chloroform solubility over a considerable range. The most active compound encountered was 1-ethylisatin ?-thiosemicarbazone, with an activity of 286 (isatin ?-thiosemicarbazone?100). Isatin ?-thiosemicarbazone showed no activity against 15 other viruses, and 20 related compounds showed on activity against ectromelia. PMID:13797622

  9. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  10. Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals.

    PubMed

    Hickey, David P; Schiedler, David A; Matanovic, Ivana; Doan, Phuong Vy; Atanassov, Plamen; Minteer, Shelley D; Sigman, Matthew S

    2015-12-30

    Stable nitroxyl radical-containing compounds, such as 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and its derivatives, are capable of electrocatalytically oxidizing a wide range of alcohols under mild and environmentally friendly conditions. Herein, we examine the structure-function relationships that determine the catalytic activity of a diverse range of water-soluble nitroxyl radical compounds. A strong correlation is described between the difference in the electrochemical oxidation potentials of a compound and its electrocatalytic activity. Additionally, we construct a simple computational model that is able to accurately predict the electrochemical potential and catalytic activity of a wide range of nitroxyl radical derivatives. PMID:26635089

  11. Relationship between structure of phenothiazine analogues and their activity on platelet calcium fluxes.

    PubMed Central

    Enouf, J.; Lévy-Toledano, S.

    1984-01-01

    Phenothiazine analogues have been tested for their effect on calcium uptake into platelet membrane vesicles and on ionophore-induced platelet activation, both phenomena being Ca2+-dependent. Both calcium uptake into membrane vesicles and ionophore-induced platelet activation were inhibited by the drugs. Evidence for two inhibitors as potent as chlorpromazine and trifluoperazine was found. These drugs are apparently competitive inhibitors of calcium uptake. A structure-activity relationship has been established. The data suggest that the phenothiazines are able to inhibit calmodulin-insensitive calcium uptake of platelet membrane vesicles and that therefore they cannot be assumed to be selective inhibitors of calmodulin interactions under all circumstances. PMID:6697061

  12. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase.

    PubMed

    Chupak, Louis S; Zheng, Xiaofan; Hu, Shuanghua; Huang, Yazhong; Ding, Min; Lewis, Martin A; Westphal, Ryan S; Blat, Yuval; McClure, Andrea; Gentles, Robert G

    2016-04-01

    N-Benzylic-substituted glycine sulfonamides that reversibly inhibit diacylglycerol (DAG) lipases are reported. Detailed herein are the structure activity relationships, profiling characteristics and physico-chemical properties for the first reported series of DAG lipase (DAGL) inhibitors that function without covalent attachment to the enzyme. Highly potent examples are presented that represent valuable tool compounds for studying DAGL inhibition and constitute important leads for future medicinal chemistry efforts. PMID:26917221

  13. Structure-activity relationship of 39 analogs of laetispicine with antidepressant properties.

    PubMed

    Xie, Hui; Liu, Juan; Yu, Min; Wang, Yong; Yao, Chunyan; Yao, Shuyi; Jin, Di; Hu, Dingyu; Wang, Yanlin; Shen, Jingkang; Pan, Shengli

    2013-01-01

    The natural product Laetispicine ( N -isobutyl-(3,4-methylendioxyphenyl)-2E, 4E, 9E-undecatrienoamide), was isolated from the Piper laetispicum C. DC and screened, for its antidepressant activity and antinociceptive effects. Structure-functional activities of five natural products indicated that biological activity is dependent on double bonds present within the benzene ring and a conjugated double bond located at positions 2-3 and 4-5 in the molecular structure. To further understand the structural-activity relationship of Laetispicine as a new potent and safe antidepressant, the structural-activity relationship of 39 analogs of Laetispicine were synthetized and tested in forced swimming tests in mice whilst also in protective effects against glutamate or H 2 O 2 induced apoptosis in PC12 cells. The results show that the compound 30 - N -isobutyl-11-(4-chlorophenyl) undeca-2E,4E,9E-trienamide exhibited the same activity as the parental compound Laetispicine, and furthermore, the effective dose of this compound is lower than Laetispicine. Therefore, the compound 30 might be a potentially useful therapy in the treatment of depression. For structure, the conjugated double bonds located at 2-3, 4-5 and isolated double bonds from benzene ring are necessary for the antidepressant activities no matter the different length of carbon chain; the isobutyl connected with acylamino also are necessary; and the benzodioxole moiety is replaceable, the halogen atom in phenyl ring at the para-position could enhance this kind of activity. PMID:24228607

  14. Structure-activity relationships of the N-methylcarbamate series in Salmonella typhimurium.

    PubMed

    Narbonne, J F; Cassand, P; Alzieu, P; Grolier, P; Mrlina, G; Calmon, J P

    1987-05-01

    Aromatic hydrocarbons of low molecular weight, hydroxy and N-methylcarbamate derivatives were tested for mutagenicity by the reversion of histidine-dependent Salmonella typhimurium TA98 and TA1535 in the presence of a rat-liver 9000 X g supernatant fraction. The presence of 2 or 3 aromatic rings resulted in a weak increase in revertants. Hydroxylation and carbamylation of aromatic rings increased the mutagenic activity of these aromatic compounds. In order to evaluate the structure-activity relationship, the specific molecular connectivity indices were calculated. A significant inverse relationship exists between mutagenicity and zero- and second-order specific molecular connectivity indices. Only compounds with second-order specific molecular connectivity indices lower than 0.300 increased mutagenic activity. PMID:3553926

  15. Buspirone analogues. 2. Structure-activity relationships of aromatic imide derivatives.

    PubMed

    New, J S; Yevich, J P; Eison, M S; Taylor, D P; Eison, A S; Riblet, L A; VanderMaelen, C P; Temple, D L

    1986-08-01

    Several analogues of the novel anxiolytic buspirone were synthesized and evaluated in vivo for tranquilizing activity and their ability to reverse neuroleptic-induced catalepsy. The in vitro binding affinities of these compounds were also examined for both the alpha 1 and dopamine D2 receptor systems. The general structure-activity relationships of this series highlight compounds 17, 21, and 32 as having anticonflict activity. Each of these structures contains the 1-(2-pyrimidinyl)piperazine moiety linked by a tetramethylene chain to a variable cyclic imide moiety. Compound 32 (4,4-dimethyl-1-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,6- piperidinedione) was found to be equipotent with buspirone in its anxiolytic activity and was therefore selected for extensive preclinical characterization. The pharmacology of buspirone and 32 is contrasted, and the potent serotonin agonist properties of 32 are discussed with reference to its potential contribution to the anxioselective mechanism of this compound. PMID:2874226

  16. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship.

    PubMed

    Mateos, Raquel; Madrona, Andrés; Pereira-Caro, Gema; Domínguez, Vanessa; Cert, Rosa M A; Parrado, Juan; Sarriá, Beatriz; Bravo, Laura; Espartero, José Luis

    2015-04-15

    Isochroman-derivatives of the natural olive oil phenol hydroxytyrosol (HT) have been synthesised via Oxa-Pictet-Spengler reaction in high yields. Lipophilicity and antioxidant activity were determined to establish the structure-activity relationship of isochromans compared to HT, BHT and ?-tocopherol. Antioxidant capacity was tested in two different media: bulk oils, using the Rancimat test, and brain homogenates, by measuring malondialdehyde (MDA) levels as a lipoperoxidation biomarker. In addition, other antioxidant assays (FRAP, ABTS and ORAC) were carried out. Rancimat and MDA results show that antioxidant activity was related with lipophilicity, directly in brain homogenates and inversely in the oils, in agreement with the polar paradox. Free o-diphenolic groups positively determined the activity in the oils, whereas reducing and radical-scavenging activities were related to the number of free hydroxyl moieties. BHT and ?-tocopherol showed lower antioxidant activity than isochromans and HT. We conclude that HT-isochromans present significant potential as bioactive compounds. PMID:25466028

  17. Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Song, Ping; Wang, Ying; Pan, Jing; Xu, Weilin; Zhuang, Lin

    2015-12-01

    A sustainable Iron (Fe), Nitrogen (N) co-doped high performance Fe-Nx/C electrocatalyst for oxygen reduction reaction (ORR) is synthesized simply based on nitric acid oxidation of cheap carbon black. The obtained optimal nonprecious metal electrocatalyst shows high ORR performance in both alkaline and acidic conditions and possesses appreciable performance/price ratio due to its low cost. Furthermore, the structure-activity relationship of different active sites on Fe-Nx/C is revealed systematically: Fe-N4/2-C > Fe4-N-C > N-C >> Fe4-C ≥ C, from both experimental and theoretical points of view.

  18. Structure–Activity Relationship Studies of the Tricyclic Indoline Resistance-Modifying Agent

    PubMed Central

    2015-01-01

    Previously we discovered a tricyclic indoline, N-[2-(6-bromo-4-methylidene-2,3,4,4a,9,9a-hexahydro-1H-carbazol-4a-yl)ethyl]-4-chlorobenzene-1-sulfonamide (1, Of1), from bioinspired synthesis of a highly diverse polycyclic indoline alkaloid library, that selectively resensitizes methicillin-resistant Staphylococcus aureus strains to ?-lactam antibiotics. Herein, we report a thorough structure–activity relationship investigation of 1, which identified regions of 1 that tolerate modifications without compromising activity and afforded the discovery of a more potent analogue with reduced mammalian toxicity. PMID:24694192

  19. Structure-activity relationship studies of the tricyclic indoline resistance-modifying agent.

    PubMed

    Chang, Le; Podoll, Jessica D; Wang, Wei; Walls, Shane; O'Rourke, Courtney P; Wang, Xiang

    2014-05-01

    Previously we discovered a tricyclic indoline, N-[2-(6-bromo-4-methylidene-2,3,4,4a,9,9a-hexahydro-1H-carbazol-4a-yl)ethyl]-4-chlorobenzene-1-sulfonamide (1, Of1), from bioinspired synthesis of a highly diverse polycyclic indoline alkaloid library, that selectively resensitizes methicillin-resistant Staphylococcus aureus strains to ?-lactam antibiotics. Herein, we report a thorough structure-activity relationship investigation of 1, which identified regions of 1 that tolerate modifications without compromising activity and afforded the discovery of a more potent analogue with reduced mammalian toxicity. PMID:24694192

  20. Use of selected toxicology information resources in assessing relationships between chemical structure and biological activity

    SciTech Connect

    Wassom, J.S.

    1985-09-01

    This paper addresses the subject of the use of the selected toxicology information resources in assessing relationships between chemical structure and specific end points. To assist the researcher in how to access the primary literature of genetic toxicology, teratogenesis, and carcinogenesis, three specific specialized information centers are discussed - Environmental Mutagen Information Center, Environmental Teratology Information Center, and Environmental Carcinogenesis Information Center. Also included are descriptions of information resources that contain evaluated (peer-reviewed) biological research results. The US Environmental Protection Agency Genetic Toxicology Program, the International Agency for Research on Cancer Monographs, and the Toxicology Data Bank are the best sources currently available to obtain peer-reviewed results for compounds tested for genotoxicity, carcinogenicity, and other toxicological end points. The value of published information lies in its use. It has become evident that most information cannot be accepted at face value for interpretation and analysis when subjected to stringent quality evaluation criteria. This deficit can be corrected by rigid editorship and the cognizance of authors. Increased interest in alternative methods to in vivo animal testing will be exemplified by use of short-term bioassays and in structure-activity relationship studies. With respect to this latter area, it must be remembered that mechanically (computer generated) derived data cannot substitute, at least at this stage, for data obtained from actual animal testing. The future of structure-activity relationship studies will rest only in their use as a predictive tool.

  1. Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides.

    PubMed Central

    Coats, J R

    1990-01-01

    The mechanisms and sites of action of organochlorine (DDT-types and chlorinated alicyclics) and synthetic pyrethroid insecticides are presented with discussion of symptoms, physiological effects, and selectivity. The structural requirements for toxicity are assessed, and structure-activity relationships are considered for each subclass. Lipophilicity is important for all the groups because it facilitates delivery of these neurotoxicants to the site of action in the nerve. Steric factors including molecular volume, shape, and isomeric configuration greatly influence toxicity. Electronic parameters also have been demonstrated to affect biological activity in some of the groups of insecticides, e.g., Hammett's sigma and Taft's sigma * as indicators of electronegativity. New synthetic pyrethroids continue to be developed, with varied structures and different physicochemical and biological properties. PMID:2176589

  2. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3?.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3? were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3? ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3? inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSS? leading to the identification of key molecular features that contribute to a high GSK3? inhibitory activity. PMID:24081608

  3. Quantitative structure-activity relationship of catechol derivatives inhibiting 5-lipoxygenase.

    PubMed

    Naito, Y; Sugiura, M; Yamaura, Y; Fukaya, C; Yokoyama, K; Nakagawa, Y; Ikeda, T; Senda, M; Fujita, T

    1991-07-01

    Various catechol derivatives (beta-substituted 3,4-dihydroxystyrenes, 1-substituted 3,4-dihydroxybenzenes, and 6-substituted 2,3-dihydroxynaphthalenes) were synthesized and their inhibition of 5-lipoxygenase was assayed. Their structure-activity relationships were examined quantitatively with substituent and structural parameters and regression analysis. The variations in the inhibitory activity were explained in bilinear hydrophobic parameter (log P) terms, and steric (molecular thickness) and electronic (proton nuclear magnetic resonance (1H-NMR) chemical shift of the proton adjacent to the catechol group) parameter terms. The hydrophobicity of the inhibitor molecule was important, and the optimum value of logP was about 4.3-4.6, beyond which inhibition did not increase further. A lower electron density of the aromatic ring containing the catechol group and the greater thickness of the lipophilic side chains were unfavorable to the activity. The results added a physicochemical basis for the selection of candidate compounds for developmental studies. PMID:1777927

  4. Synthesis, evaluation and structure-activity relationship of new 3-carboxamide coumarins as FXIIa inhibitors.

    PubMed

    Bouckaert, Charlotte; Serra, Silvia; Rondelet, Grégoire; Dolušić, Eduard; Wouters, Johan; Dogné, Jean-Michel; Frédérick, Raphaël; Pochet, Lionel

    2016-03-01

    Inhibitors of the coagulation factor XIIa (FXIIa) are attractive to detail the roles of this protease in hemostasis and thrombosis, to suppress artifact due to contact pathway activation in blood coagulation assays, and they are promising as antithrombotic therapy. The 3-carboxamide coumarins have been previously described as small-molecular-weight FXIIa inhibitors. In this study, we report a structure-activity relationship (SAR) study around this scaffold with the aim to discover new selective FXIIa inhibitors with an improved physico-chemical profile. To better understand these SAR, docking experiments were undertaken. For this purpose, we built an original hybrid model of FXIIa. This model has the advantage to gather the best features from the recently published crystal structure of FXIIa in its zymogen form and a more classical homology model. Results with the hybrid model are encouraging as they help understanding the activity and selectivity of our best compounds. PMID:26827162

  5. Antioxidant properties of hydroxycinnamic acids: a review of structure- activity relationships.

    PubMed

    Razzaghi-Asl, N; Garrido, J; Khazraei, H; Borges, F; Firuzi, O

    2013-01-01

    Hydroxycinnamic acids (HCAs) are important phytochemicals possessing significant biological properties. Several investigators have studied in vitro antioxidant activity of HCAs in detail. In this review, we have gathered the studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules. Most of the reports indicated that the presence of an unsaturated bond on the side chain of HCAs is vital to their activity. The structural features that were reported to be of importance to the antioxidant activity were categorized as follows: modifications of the aromatic ring, which include alterations in the number and position of hydroxy groups and insertion of electron donating or withdrawing moieties as well as modifications of the carboxylic function that include esterification and amidation process. Furthermore, reports that have addressed the influence of physicochemical properties including redox potential, lipid solubility and dissociation constant on the antioxidant activity were also summarized. Finally, the pro-oxidant effect of HCAs in some test systems was addressed. Most of the investigations concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the presence of three hydroxy groups does not necessarily improve the activity. Optimization of the structure of molecular leads is an important task of modern medicinal chemistry and its accomplishment relies on the careful assessment of SARs. SAR studies on HCAs can identify the most successful antioxidants that could be useful for management of oxidative stress-related diseases. PMID:23834166

  6. Using a cloud electrification model to study relationships between lightning activity and cloud microphysical structure

    NASA Astrophysics Data System (ADS)

    Formenton, M.; Panegrossi, G.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Di Paola, F.; Betz, H.-D.; Price, C.; Yair, Y.

    2013-04-01

    In this study a one-dimensional numerical cloud electrification model, called the Explicit Microphysics Thunderstorm Model (EMTM), is used to find quantitative relationships between the simulated electrical activity and microphysical properties in convective clouds. The model, based on an explicit microphysics scheme coupled to an ice-ice noninductive electrification scheme, allows us to interpret the connection of cloud microphysical structure with charge density distribution within the cloud, and to study the full evolution of the lightning activity (intracloud and cloud-to-ground) in relation to different environmental conditions. Thus, we apply the model to a series of different case studies over continental Europe and the Mediterranean region. We first compare, for selected case studies, the simulated lightning activity with the data provided by the ground-based Lightning Detection Network (LINET) in order to verify the reliability of the model and its limitations, and to assess its ability to reproduce electrical activity consistent with the observations. Then, using all simulations, we find a correlation between some key microphysical properties and cloud electrification, and derive quantitative relationships relating simulated flash rates to minimum thresholds of graupel mass content and updrafts. Finally, we provide outlooks on the use of such relationships and comments on the future development of this study.

  7. Quantitative analysis of structure-activity relationships of tetrahydro-2H-isoindole cyclooxygenase-2 inhibitors.

    PubMed

    Khayrullina, V R; Gerchikov, A Ya; Lagunin, A A; Zarudii, F S

    2015-01-01

    Using the GUSAR program, structure-activity relationships on inhibition of cyclooxygenase-2 (COX-2) catalytic activity were quantitatively analyzed for twenty-six derivatives of 4,5,6,7-tetrahydro-2H-isoindole, 2,3-dihydro-1H-pyrrolyzine, and benzothiophene in the concentration range of 0.6-700 nmol/liter IC50 values. Six statistically significant consensus QSAR models for prediction of IC50 values were designed based on MNA- and QNA-descriptors and their combinations. These models demonstrated high accuracy in the prediction of IC50 values for structures of both training and test sets. Structural fragments of the COX-2 inhibitors capable of strengthening or weakening the desired property were determined using the same program. This information can be taken into consideration on molecular design of new COX-2 inhibitors. It was shown that in most cases, the influence of structural fragments on the inhibitory activity of the studied compounds revealed with the GUSAR program coincided with the results of expert evaluation of their effects based on known experimental data, and this can be used for optimization of structures to change the value of their biological activity. PMID:25754042

  8. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-01

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction. PMID:26766301

  9. Synthesis and structure-activity relationship of novel cinnamamide derivatives as antidepressant agents.

    PubMed

    Han, Min; Ma, Xiaohui; Jin, Yuanpeng; Zhou, Wangyi; Cao, Jing; Wang, Yahu; Zhou, Shuiping; Wang, Guocheng; Zhu, Yonghong

    2014-11-15

    Cinnamamide 3a, a leading compound with antidepressant-like activity, and its derivatives were synthesized and their antidepressant activity and structure-activity relationship were investigated. Most of the compounds with trifluoromethyl group in methylenedioxyphenyl moiety (3f, 4b-c and 6a-b) exhibited significant antidepressant activity, measured in terms of percentage decrease in immobility duration by tail suspension test. In addition, the dose-dependent antidepressant effect of the most potent compound 3f was subsequently confirmed in tail suspension test and forced swim test. The test results showed that 3f was equal to or more effective than the standard drug fluoxetine at a concentration of 10mg/kg. Furthermore, compound 3f did not show any central nervous system stimulant properties in the open-field test and the preliminary results were promising enough to warrant further detailed antidepressant research around this scaffold. PMID:25442321

  10. Exploration of the structure-activity relationship of 1,2,4-oxadiazole antibiotics.

    PubMed

    Ding, Derong; Boudreau, Marc A; Leemans, Erika; Spink, Edward; Yamaguchi, Takao; Testero, Sebastian A; O'Daniel, Peter I; Lastochkin, Elena; Chang, Mayland; Mobashery, Shahriar

    2015-11-01

    We have recently disclosed the discovery of the class of 1,2,4-oxadiazole antibiotics, which emerged from in silico docking and scoring efforts. This class of antibacterials exhibits Gram-positive activity, particularly against Staphylococcus aureus. We define the structure-activity relationship (SAR) of this class of antibiotics with the synthesis and evaluation of a series of 59 derivatives with variations in the C ring or C and D rings. A total of 17 compounds showed activity against S. aureus. Four derivatives were evaluated against a panel of 16 Gram-positive strains, inclusive of several methicillin-resistant S. aureus strains. These compounds are broadly active against Gram-positive bacteria. PMID:26144346

  11. Nonpeptidic Amphiphilic Xanthone Derivatives: Structure-Activity Relationship and Membrane-Targeting Properties.

    PubMed

    Koh, Jun-Jie; Zou, Hanxun; Lin, Shuimu; Lin, Huifen; Soh, Rui Ting; Lim, Fang Hui; Koh, Wee Luan; Li, Jianguo; Lakshminarayanan, Rajamani; Verma, Chandra; Tan, Donald T H; Cao, Derong; Beuerman, Roger W; Liu, Shouping

    2016-01-14

    We recently reported the bioinspired synthesis of a highly potent nonpeptidic xanthone, 2c (AM-0016), with potent antibacterial activity against MRSA. Herein, we report a thorough structure-activity relationship (SAR) analysis of a series of nonpeptidic amphiphilic xanthone derivatives in an attempt to identify more potent compounds with lower hemolytic activity and greater membrane selectivity. Forty-six amphiphilic xanthone derivatives were analyzed in this study and structurally classified into four groups based on spacer length, cationic moieties, lipophilic chains, and triarm functionalization. We evaluated and explored the effects of the structures on their membrane-targeting properties. The SAR analysis successfully identified 3a with potent MICs (1.56-3.125 ?/mL) and lower hemolytic activity (80.2 ?g/mL for 3a versus 19.7 ?g/mL for 2c). Compound 3a displayed a membrane selectivity of 25.7-50.4. Thus, 3a with improved HC50 value and promising selectivity could be used as a lead compound for further structural optimization for the treatment of MRSA infection. PMID:26681070

  12. In Vivo Structure-Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase

    PubMed Central

    Korotchenko, Vasiliy N.; Saydmohammed, Manush; Vollmer, Laura L.; Bakan, Ahmet; Sheetz, Kyle; Debiec, Karl T.; Greene, Kristina A.; Agliori, Christine S.; Bahar, Ivet; Day, Billy W.; Vogt, Andreas; Tsang, Michael

    2014-01-01

    Dual specificity phosphatase 6 (DUSP6) functions as a feedback attenuator of Fibroblast Growth Factor signaling during development. In vitro high throughput chemical screening attempts to discover DUSP6 inhibitors have yielded limited success. Yet, in vivo whole organism screens using zebrafish identified 1 (BCI) as an allosteric inhibitor of DUSP6. Here we designed and synthesized a panel of analogs to define structure-activity relationship (SAR) of DUSP6 inhibition. In vivo, high-content analysis in transgenic zebrafish coupled with cell-based chemical complementation assays identified structural features of the 1 pharmacophore that were essential for biological activity. In vitro assays of DUSP hyperactivation corroborated the results from in vivo and cellular SAR. The results reinforce the notion that DUSPs are druggable through allosteric mechanisms, and illustrate the utility of zebrafish as a model organism for in vivo SAR analyses. PMID:24909879

  13. Structure-activity relationship study of beta-carboline derivatives as haspin kinase inhibitors

    PubMed Central

    Cuny, Gregory D.; Ulyanova, Natalia P.; Patnaik, Debasis; Liu, Ji-Feng; Lin, Xiangjie; Auerbach, Ken; Ray, Soumya S.; Xian, Jun; Glicksman, Marcie A.; Stein, Ross L.; Higgins, Jonathan M.G.

    2012-01-01

    Haspin is a serine/threonine kinase that phosphorylates Thr-3 of histone H3 in mitosis that has emerged as a possible cancer therapeutic target. High throughput screening of approximately 140,000 compounds identified the beta-carbolines harmine and harmol as moderately potent haspin kinase inhibitors. Based on information obtained from a structure-activity relationship study previously conducted for an acridine series of haspin inhibitors in conjunction with in silico docking using a recently disclosed crystal structure of the kinase, harmine analogs were designed that resulted in significantly increased haspin kinase inhibitory potency. The harmine derivatives also demonstrated less activity towards DYRK2 compared to the acridine series. In vitro mouse liver microsome stability and kinase profiling of a representative member of the harmine series (42, LDN-211898) are also presented. PMID:22335895

  14. Structure-Antifungal Activity Relationships of Polyene Antibiotics of the Amphotericin B Group

    PubMed Central

    Tevyashova, Anna N.; Olsufyeva, Evgenia N.; Solovieva, Svetlana E.; Printsevskaya, Svetlana S.; Reznikova, Marina I.; Trenin, Aleksei S.; Galatenko, Olga A.; Treshalin, Ivan D.; Pereverzeva, Eleonora R.; Mirchink, Elena P.; Isakova, Elena B.; Zotchev, Sergey B.

    2013-01-01

    A comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics and in vitro antifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10. Antibiotics with OH groups at both C-7 and C-9 had the lowest activity. The replacement of the C-16 carboxyl with methyl group did not significantly affect the in vitro antifungal activity of antibiotics without modifications at the amino group of mycosamine. In contrast, the activity of the N-modified derivatives was modulated both by the presence of CH3 or COOH group in the position C-16 and by the structure of the modifying substituent. The most active compounds were tested in vivo to determine the maximum tolerated doses and antifungal activity on the model of candidosis sepsis in leukopenic mice (cyclophosphamide-induced). Study of our library of semisynthetic polyene antibiotics led to the discovery of compounds, namely, N-(l-lysyl)-BSG005 (compound 3n) and, especially, l-glutamate of 2-(N,N-dimethylamino)ethyl amide of S44HP (compound 2j), with high antifungal activity that were comparable in in vitro and in vivo tests to AMB and that have better toxicological properties. PMID:23716057

  15. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    EPA Science Inventory

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  16. Quantitative structure-activity relationship for prediction of the toxicity of polybrominated diphenyl ether (PBDE) congeners.

    PubMed

    Wang, Yawei; Zhao, Chunyan; Ma, Weiping; Liu, Hanxia; Wang, Thanh; Jiang, Guibin

    2006-07-01

    Levels of Polybrominated diphenyl ether (PBDEs) are increasing in the environment due to their use as flame retardants. The similarities of structure to polychlorinated biphenyl (PCB) congeners suggest that they may share similar toxicological properties, such as hepatic enzyme induction. In this work, quantitative structure-activity relationship (QSAR) models were constructed based on 406 descriptors for the logarithm of toxicology index (aryl hydrocarbon receptor relative binding affinities, AhR, I) of 18 PBDE congeners. The method used for building model is the Heuristic method, which is included in comprehensive descriptors for structural and statistical analysis (CODESSA) software. The best regression model involved four descriptors, which were related to the conformational changes, atomic reactivity, molecular electrostatic field, and non-uniformity of mass distribution in a molecule of PBDEs, etc. The high square of the correlation coefficient R(2)(0.903) showed the model was satisfactory. PMID:16406101

  17. Quantitative structure-activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates.

    PubMed

    Petrescu, Alina-Maria; Putz, Mihai V; Ilia, Gheorghe

    2015-11-01

    In this paper the structure-toxicity relationship studies were performed for a series of 60 phosphonates. The toxicity of the compounds was determined by two ways: by quantifying the measured toxicity values, Mlog(1/MRIC50) collected by literature, for rodents species; second by using EcoSAR software version 1.11, for calculating the toxicity for fish species, considered as dependent variables and they were related to structural features obtained by molecular and quantum mechanics calculations. The QSAR/QEcoSAR was validated by multiple linear regression (MLR), although the purpose of this work was not to validate the model proposed, but rather to test the influence of structural parameters of the proposed model QSAR/QEcoSAR. The obtained models showed that the toxicity of phosphonates was influenced by steric and molecular geometry which cause inhibition of cholinesterase activity. PMID:26462182

  18. Structure-Activity Relationship Studies of Cyclopropenimines as Enantioselective Brønsted Base Catalysts

    PubMed Central

    Bandar, Jeffrey S.; Barthelme, Alexandre P.; Mazori, Alon Y.; Lambert, Tristan H.

    2015-01-01

    We recently demonstrated that chiral cyclopropenimines are viable Brønsted base catalysts in enantioselective Michael and Mannich reactions. Herein, we describe a series of structure-activity relationship studies that provide an enhanced understanding of the effectiveness of certain cyclopropenimines as enantioselective Brønsted base catalysts. These studies underscore the crucial importance of dicyclohexylamino substituents in mediating both reaction rate and enantioselectivity. In addition, an unusual catalyst CH···O interaction, which provides both ground state and transition state organization, is discussed. Cyclopropenimine stability studies have led to the identification of new catalysts with greatly improved stability. Finally, additional demonstrations of substrate scope and current limitations are provided herein. PMID:26504512

  19. Structure-activity relationship of a novel class of naphthyl amide KATP channel openers.

    PubMed

    Turner, Sean C; Carroll, William A; White, Tammie K; Brune, Michael E; Buckner, Steven A; Gopalakrishnan, Murali; Fabiyi, Adebola; Coghlan, Michael J; Scott, Victoria E; Castle, Neil A; Daza, Anthony V; Milicic, Ivan; Sullivan, James P

    2003-05-19

    We have discovered a novel series of N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl] amides that are potent openers of K(ATP) channels and investigated structure-activity relationships (SAR) around the 1,2-disubstituted naphthyl core. A-151892, a prototype compound of this series, was found to be a potent and efficacious potassium channel opener in vitro in transfected Kir6.2/SUR2B cells and pig bladder strips. Additionally, A-151892 was found to selectively inhibit unstable bladder contractions in vivo in an obstructed rat model of myogenic bladder function PMID:12729655

  20. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis. PMID:24287985

  1. Substrate Structure-Activity Relationships Guide Rational Engineering of Modular Polyketide Synthase Ketoreductases

    PubMed Central

    Bailey, Constance B.; Pasman, Marjolein E.; Keatinge-Clay, Adrian T.

    2015-01-01

    Modular polyketide synthase ketoreductases can set two chiral centers through a single reduction. To probe the basis of stereocontrol, a structure-activity relationship study was performed with three ?-methyl, ?-ketothioester substrates and four ketoreductases. Since interactions with the ?-ketoacyl moiety were found to be most critical, residues implicated in contacting this moiety were mutated. Two mutations were sufficient to completely reverse the stereoselectivity of the model ketoreductase EryKR1, converting it from an enzyme that generates (2S,3R)-products into one that yields (2S,3S)-products. PMID:26568113

  2. A Receptor-Grounded Approach to Teaching Nonsteroidal Antiinflammatory Drug Chemistry and Structure-Activity Relationships

    PubMed Central

    2009-01-01

    Objective To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. Design Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. Assessment Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. Conclusion Student performance on NSAID-focused quizzes and examinations documented the success of this approach. PMID:20221336

  3. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed. PMID:26522948

  4. Isoxazole analogues bind the System xc? Transporter: Structure-activity Relationship and Pharmacophore Model

    PubMed Central

    Patel, Sarjubhai A.; Rajale, Trideep; O’Brien, Erin; Burkhart, David J.; Nelson, Jared K.; Twamley, Brendan; Blumenfeld, Alex; Szabon-Watola, Monika I.; Gerdes, John M.; Bridges, Richard J.; Natale, Nicholas R.

    2009-01-01

    Analogues of amino methylisoxazole propionic acid (AMPA), were prepared from a common intermediate 12, including lipophilic analogues using lateral metalation and electrophilic quenching, and were evaluated at System xc?. Both the 5-naphthylethyl-(16) and 5-naphthylmethoxymethyl-(17) analogues adopt an E-conformation in the solid state, yet while the former has robust binding at System xc?, the latter is virtually devoid of activity. The most potent analogues were amino acid naphthyl-ACPA 7g, and hydrazone carboxylic acid, 11e Y=Y?=3,5-(CF3)2, which both inhibited glutamate up-take by the System xc? transporter with comparable potency to the endogenous substrate cystine, whereas in contrast the closed isoxazolo[3,4-d] pyridazinones 13 have significantly lower activity. A preliminary pharmacophore model has been constructed to provide insight into the analogue structure-activity relationships. PMID:19932968

  5. Design, synthesis and structure-activity relationship of novel diphenylamine derivatives.

    PubMed

    Li, Huichao; Guan, Aiying; Huang, Guang; Liu, Chang-Ling; Li, Zhinian; Xie, Yong; Lan, Jie

    2016-02-01

    Diphenylamine derivatives have been reported with good fungicidal, insecticidal, acaricidal, rodenticidal and/or herbicidal activities. To find new lead compound of this kind, a series of novel diphenylamine derivatives were designed and synthesized by the approach of Intermediate Derivatization Methods. All compounds were identified by (1)H NMR and elemental analysis. Bioassays demonstrated that some compounds substituted at 2,4,6-positions or 2,4,5-positions of phenyl ring B exhibited excellent fungicidal activities. The optimal compounds P30 and P33 showed 80% and 85% control respectively against cucumber downy mildew at 12.5mgL(-1), both 100% control against rice blast at 0.3mgL(-1) and both 100% control against cucumber gray mold at 0.9mgL(-1). The relationship between structure and fungicidal activities was discussed as well. PMID:26432603

  6. Structure-Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase.

    PubMed

    Sosi?, Izidor; Anderluh, Marko; Sova, Matej; Gobec, Martina; Mlinari? Raš?an, Irena; Derouaux, Adeline; Amoroso, Ana; Terrak, Mohammed; Breukink, Eefjan; Gobec, Stanislav

    2015-12-24

    Penicillin-binding proteins represent well-established, validated, and still very promising targets for the design and development of new antibacterial agents. The transglycosylase domain of penicillin-binding proteins is especially important, as it catalyzes polymerization of glycan chains, using the peptidoglycan precursor lipid II as a substrate. On the basis of the previous discovery of a noncovalent small-molecule inhibitor of transglycosylase activity, we systematically explored the structure-activity relationships of these tryptamine-based inhibitors. The main aim was to reduce the nonspecific cytotoxic properties of the initial hit compound and concurrently to retain the mode of its inhibition. A focused library of tryptamine-based compounds was synthesized, characterized, and evaluated biochemically. The results presented here show the successful reduction of the nonspecific cytotoxicity, and the retention of the inhibition of transglycosylase enzymatic activity, as well as the ability of these compounds to bind to lipid II and to have antibacterial actions. PMID:26588190

  7. 7-Azetidinylquinolones as antibacterial agents. Synthesis and structure-activity relationships.

    PubMed

    Frigola, J; Parés, J; Corbera, J; Vañó, D; Mercè, R; Torrens, A; Más, J; Valentí, E

    1993-04-01

    A series of novel antibacterial quinolones and naphthyridones has been prepared which contain 7-azetidinyl substituents in place of the usual piperazine or aminopyrrolidine groups. These azetidinyl derivatives were evaluated for in vitro activity by determining minimum inhibitory concentrations against a variety of bacteria. In vivo efficacy in the mouse infection model and blood levels in the mouse were determined for several compounds. The influence on the structure-activity relationships of varying substituents in the azetidine ring and at position 8 (CH, CF, CCl, N) and N-1 (ethyl, fluoroethyl, cyclopropyl, tert-butyl, 4-fluorophenyl, and 2,4-difluorophenyl) was also studied. Compounds with outstandingly broad-spectrum activity, particularly against Gram-positive organisms, improved in vivo efficacy, and high blood levels were identified in this work. 7-Azetidinyl-8-chloroquinolones were considered as warranting further development. PMID:8464033

  8. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.

    PubMed

    Winkler, David A; Mombelli, Enrico; Pietroiusti, Antonio; Tran, Lang; Worth, Andrew; Fadeel, Bengt; McCall, Maxine J

    2013-11-01

    The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and societal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting the innovative properties of nanostructures resulting in their large-scale production. Many consumer products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their (eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human health and the environment. In this context, the application of the structure-toxicity paradigm to nanomaterials represents a promising approach. Indeed, according to this paradigm, it is possible to predict toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for which toxicological endpoints have been previously measured. These structure-toxicity relationships can be quantitative or qualitative in nature and they can predict toxicological effects directly from the physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal testing. The purpose of this review is to provide a summary of recent key advances in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required to accelerate the use of quantitative structure-activity relationship (QSAR) methods, and to provide a roadmap for future research needed to achieve QSAR models useful for regulatory purposes. PMID:23165187

  9. Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents.

    PubMed

    Milelli, Andrea; Tumiatti, Vincenzo; Micco, Marialuisa; Rosini, Michela; Zuccari, Guendalina; Raffaghello, Lizzia; Bianchi, Giovanna; Pistoia, Vito; Fernando Díaz, J; Pera, Benet; Trigili, Chiara; Barasoain, Isabel; Musetti, Caterina; Toniolo, Marianna; Sissi, Claudia; Alcaro, Stefano; Moraca, Federica; Zini, Maddalena; Stefanelli, Claudio; Minarini, Anna

    2012-11-01

    Novel 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) derivatives were synthesized and evaluated for their antiproliferative activity on a wide number of different tumor cell lines. The prototypes of the present series were derivatives 1 and 2 characterized by interesting biological profiles as anticancer agents. The present investigation expands on the study of structure-activity relationships of prototypes 1 and 2, namely, the influence of the different substituents of the phenyl rings on the biological activity. Derivatives 3-22, characterized by a different substituent on the aromatic rings and/or a different chain length varying from two to three carbon units, were synthesized and evaluated for their cytostatic and cytotoxic activities. The most interesting compound was 20, characterized by a linker of three methylene units and a 2,3,4-trimethoxy substituent on the two aromatic rings. It displayed antiproliferative activity in the submicromolar range, especially against some different cell lines, the ability to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Its theoretical recognition against duplex and quadruplex DNA structures have been compared to experimental thermodynamic measurements and by molecular modeling investigation leading to putative binding modes. Taken together these findings contribute to define this compound as potential Multitarget-Directed Ligands interacting simultaneously with different biological targets. PMID:22819507

  10. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Andolfi, Anna; Zonno, Maria Chiara; Boari, Angela; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Ash, Gavin; Evidente, Antonio

    2013-10-01

    Phomentrioloxin is a phytotoxic geranylcyclohexenetriol produced in liquid culture by Phomopsis sp. (teleomorph: Diaporthe gulyae), a potential mycoherbicide proposed for the control of the annual weed Carthamus lanatus. In this study, seven derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on nonhost weedy and agrarian plants, fungi, Gram+ and Gram- bacteria, and on brine shrimp larvae. The results provide insights into an investigation of the structural requirements for activity. The hydroxy groups at C-2 and C-4 appeared to be important features for the phytotoxicity, as well as an unchanged cyclohexentriol ring. A role seemed also to be played by the unsaturations of the geranyl side chain. These findings could be useful for understanding the mechanisms of action of new natural products, for identifying the active sites, and possibly in devising new herbicides of natural origin. PMID:24083323

  11. Fundamental Structure-Activity Relationships of Titanium Dioxide-Based Photocatalysts

    NASA Astrophysics Data System (ADS)

    Roberts, Charles A.

    Heterogeneous photocatalysis has been identified as a means of using renewable solar energy to produce the sustainable, non-carbon fuel H 2 and a variety of useful chemical intermediates. Currently, however, heterogeneous photocatalytic reactions are too inefficient to be industrially relevant and a deeper understanding of the effect of fundamental photocatalytic material properties on photoactivity is needed to further enhance the yields of desired products. In the general field of heterogeneous catalysis, structure-activity relationships aid in the rational design of improved catalysts and this ideology was applied to photocatalytic reactions over TiO2 based photocatalysts and model supported TiO2/SiO2 catalysts in this study. The model supported TiO2/SiO2 catalysts contain well-defined TiOx nanodomain structures that vary in domain size and electronic structure and greatly facilitate the determination of structure-photoactivity relationships. These catalysts were used in reactor studies during photocatalytic water splitting and cyclohexane photo-oxidation, and were monitored for production of H2 and cyclohexanone, respectively. It was found that for both reactions the trend in photoactivity for the TiOx nanodomains proceeded as: pure TiO2 (anatase) (24 nm) > TiO2 (anatase) nanoparticles (4--11 nm) > polymeric surface TiO5 (˜1 nm) > surface isolated TiO4 (˜0.4 nm). Photoluminescence (PL) spectroscopy was employed to yield insight into how exciton generation and recombination are related to TiOx domain size and, thus, to the photoactivity of the examined reactions. Transient PL decay studies determined that the larger bulk structure found in TiO 2 (anatase) nanoparticles (NPs) acts as a reservoir for excitons exhibiting slow recombination kinetics, which have an increased opportunity to participate in photochemistry at the surface active sites. The reactions were also studied using in situ attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) to observe the formation of adsorbed intermediates and products. For cyclohexane photo-oxidation, cyclohexanone intermediates and products were identified and the high photoactivity of the unsupported TiO2 (anatase) NPs was attributed to improved product desorption characteristics. The identification of intermediates during water splitting is made difficult by the extremely high absorption of infrared wavelengths by H2O. ATR-FTIR and Raman spectroscopy measurements were performed during photocatalytic splitting of water in an attempt to confirm the surface reaction intermediates currently identified in the literature and evidence for both superoxide (O2-) and peroxide (O2 2-) adsorbed species were found by ATR-FTIR, but no surface Ti-OOH was detected by Raman. Finally, alternate Ti-containing structures, titanate and TiO2 (anatase) nanotubes, were characterized with Raman spectroscopy and screened for their photocatalytic activity. Depending on the photo-reaction (4-chlorophenol decomposition or water splitting), thermal treatment to form the anatase phase in the nanotubular structure is a benefit to photoactivity due to the increased crystallinity. For water splitting, however, the structure-activity relationship found for supported TiO 2/SiO2 holds, and the presence of a larger bulk structure yields the best H2 production photoactivity. The structure-photoactivity relationship in this dissertation exists for two different photo-reactions and is expected to be a beneficial aid to future studies on the rational design of new and novel photocatalysts.

  12. Aminothiazoles as Potent and Selective Sirt2 Inhibitors: A Structure-Activity Relationship Study.

    PubMed

    Schiedel, Matthias; Rumpf, Tobias; Karaman, Berin; Lehotzky, Attila; Oláh, Judit; Gerhardt, Stefan; Ovádi, Judit; Sippl, Wolfgang; Einsle, Oliver; Jung, Manfred

    2016-02-25

    Sirtuins are NAD(+)-dependent protein deacylases that cleave off acetyl but also other acyl groups from the ?-amino group of lysines in histones and other substrate proteins. Dysregulation of human Sirt2 (hSirt2) activity has been associated with the pathogenesis of cancer, inflammation, and neurodegeneration, which makes the modulation of hSirt2 activity a promising strategy for pharmaceutical intervention. The sirtuin rearranging ligands (SirReals) have recently been discovered by us as highly potent and isotype-selective hSirt2 inhibitors. Here, we present a well-defined structure-activity relationship study, which rationalizes the unique features of the SirReals and probes the limits of modifications on this scaffold regarding inhibitor potency. Moreover, we present a crystal structure of hSirt2 in complex with an optimized SirReal derivative that exhibits an improved in vitro activity. Lastly, we show cellular hyperacetylation of the hSirt2 targeted tubulin caused by our improved lead structure. PMID:26696402

  13. A Combined Quantitative Structure-Activity Relationship Research of Quinolinone Derivatives as Androgen Receptor Antagonists.

    PubMed

    Wang, Yuwei; Bai, Fang; Cao, Hong; Li, Jiazhong; Liu, Huanxiang; Gramatica, Paola

    2015-01-01

    Antiandrogens bicalutamide, flutamide and enzalutamide etc. have been used in clinical trials to treat prostate cancer by binding to and antagonizing androgen receptor (AR). Although initially effective, the drug resistance problem will emerge eventually, which results in a high medical need for novel AR antagonist exploitation. Here in this work, to facilitate the rational design of novel AR antagonists, we studied the structure-activity relationships of a series of 2-quinolinone derivatives and investigated the structural requirements for their antiandrogenic activities. Different modeling methods, including 2D MLR, 3D CoMFA and CoMSIA, were implemented to evolve QSAR models. All these models, thoroughly validated, demonstrated satisfactory results especially for the good predictive abilities. The contour maps from 3D CoMFA and CoMSIA models provide visualized explanation of key structural characteristics relevant to the antiandrogenic activities, which is summarized to a position-specific conclusion at the end. The obtained results from this research are practically useful for rational design and screening of promising chemicals with high antiandrogenic activities. PMID:26320943

  14. Structure-activity relationship studies on cholecystokinin: Analogues with partial agonist activity

    SciTech Connect

    Galas, M.C.; Lignon, M.F.; Rodriguez, M.; Mendre, C.; Fulcrand, P.; Laur, J.; Martinez, J. )

    1988-02-01

    In the present study, hepta- and octapeptide analogues of the C-terminal part of cholecystokinin, modified on the C-terminal phenylalanine residue, were synthesized. CCK analogues were prepared in which the peptide bond between aspartic acid and phenylalanine had or had not been modified and were lacking the C-terminal primary amide function. These CCK derivatives were able to cause full stimulation of amylase release from rat pancreatic acini but without a decrease in amylase release at supramaximal concentrations. There was a close relationship between the abilities of these derivatives to stimulate amylase release and their abilities to inhibit binding of {sup 125}I-BH-CCK-9 to CCK receptors on rat and guinea pig pancreatic acini. These CCK analogues were also able to recognize the guinea pig brain CCK receptors, some of them being particularly potent. The findings indicate that the aromatic ring of phenylalanine is important for the binding to brain and pancreatic CCK receptors, whereas the C-terminal primary amide function is not essential for the binding to pancreatic CCK receptors but is crucial for biological activity of rat pancreatic acini.

  15. Localized heuristic inverse quantitative structure activity relationship with bulk descriptors using numerical gradients.

    PubMed

    Stålring, Jonna; Almeida, Pedro R; Carlsson, Lars; Helgee Ahlberg, Ernst; Hasselgren, Catrin; Boyer, Scott

    2013-08-26

    State-of-the-art quantitative structure-activity relationship (QSAR) models are often based on nonlinear machine learning algorithms, which are difficult to interpret. From a pharmaceutical perspective, QSARs are used to enhance the chemical design process. Ultimately, they should not only provide a prediction but also contribute to a mechanistic understanding and guide modifications to the chemical structure, promoting compounds with desirable biological activity profiles. Global ranking of descriptor importance and inverse QSAR have been used for these purposes. This paper introduces localized heuristic inverse QSAR, which provides an assessment of the relative ability of the descriptors to influence the biological response in an area localized around the predicted compound. The method is based on numerical gradients with parameters optimized using data sets sampled from analytical functions. The heuristic character of the method reduces the computational requirements and makes it applicable not only to fragment based methods but also to QSARs based on bulk descriptors. The application of the method is illustrated on congeneric QSAR data sets, and it is shown that the predicted influential descriptors can be used to guide structural modifications that affect the biological response in the desired direction. The method is implemented into the AZOrange Open Source QSAR package. The current implementation of localized heuristic inverse QSAR is a step toward a generally applicable method for elucidating the structure activity relationship specifically for a congeneric region of chemical space when using QSARs based on bulk properties. Consequently, this method could contribute to accelerating the chemical design process in pharmaceutical projects, as well as provide information that could enhance the mechanistic understanding for individual scaffolds. PMID:23845139

  16. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance. PMID:23701000

  17. Quantitative structure--activity relationship (QSAR) studies on non steroidal anti-inflammatory drugs (NSAIDs).

    PubMed

    Hadjipavlou-Litina, D

    2000-04-01

    Different chemical structures have been found to possess different anti-inflammatory activities. Inflammation is a normal and essential response to any noxious stimulus which threatens the host and may vary from a localized response to a more generalized one. In view of the complexity and multitude of biochemical factors involved in inflammatory events, few general correlations of chemical structures and physicochemical properties with biological activities would be expected. Nevertheless some general features seem to be commonly associated with a large number of active drugs. However, these main features are not sufficient, but they could reflect certain physicochemical requirements for in vivo efficacy. QSAR is a useful means for maximizing the potency of a new lead compound. In the lead optimization phase of the synthetic project various QSAR procedures with the aid of computer-technology have been proposed. Among them, the classical Hansch approach has been widely used leading to quite a few successful examples. In the QSAR approaches, the prescription to optimise the lead structure is inferred from mathematical equations correlating variations in the potency of a certain biological activity with physicochemical and structural descriptors among congeneric molecules. The QSAR procedures are based on physical organic concepts and involve calculational operations. In the last years, quantum-chemical descriptors have been used in QSAR studies, because of the large physical information content encoded in many of the descriptors. Several anti-inflammatory receptor site models have been proposed. Since inflammation is a complex phenomenon involving interrelationships between humoral and cellular reactions through a number of inflammatory mediators, there is not much evidence on QSAR studies. Several QSAR studies have been reported obtaining only partial results. It was found that substituents which contribute to the high lipophilicity, were favourable to the activity. Substituents of short length (H, CH3) have also a favourable effect. Satisfactory relationships between the in vivo activities and deprotonation energies, the HOMO energies and lipophilicities were found. PMID:10702615

  18. Further Studies on Structure-Cardiac Activity Relationships of Diterpenoid Alkaloids.

    PubMed

    Zhang, Zhong-Tang; Jian, Xi-Xian; Ding, Jia-Yu; Deng, Hong-Ying; Chao, Ruo-Bing; Chen, Qiao-Hong; Chen, Dong-Lin; Wang, Feng-Peng

    2015-12-01

    The cardiac effect of thirty-eight diterpenoid alkaloids was evaluated on the isolated bullfrog heart model. Among them, twelve compounds exhibited appreciable cardiac activity, with compounds 3 and 35 being more active than the reference drug lanatoside. The structure-cardiac activity relationships of the diterpenoid alkaloids were summarized based on our present and previous studies [2]: i) 1?-OMe or 1?-OH, 8-OH, 14-OH, and NH (or NMe) are key structural features important for the cardiac effect of the aconitine-type C19-diterpenoid alkaloids without any esters. C18-diterpenoid alkaloids, lycoctonine-type C19-diterpenoid alkaloids, and the veatchine- and denudatine-type C20-diterpenoid alkaloids did not show any cardiac activity; ii) the presence of 3?-OH is beneficial to the cardiac activity; iii) the effect on the cardiac action of 6?-OMe, 13-OH, 15?-OH, and 16-demethoxy or a double bond between C-15 and C-16 depends on the substituent pattern on the nitrogen atom. PMID:26882669

  19. Structure-Activity Relationships in Toll-like Receptor-2 agonistic Diacylthioglycerol Lipopeptides

    PubMed Central

    Wu, Wenyan; Li, Rongti; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Kimbrell, Matthew R.; Amolins, Michael W.; Ukani, Rehman; Datta, Apurba; David, Sunil A.

    2010-01-01

    The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity. PMID:20302301

  20. A categorical structure-activity relationship analysis of GPR119 ligands

    PubMed Central

    Kumar, Pritesh; Carrasquer, Carl A.; Carter, Arren; Song, Zhao-Hui; Cunningham, Albert R.

    2016-01-01

    The categorical structure-activity relationship (cat-SAR) expert system has been successfully used in the analysis of chemical compounds that cause toxicity. Herein we describe the use of this fragment-based approach to model ligands for the G protein-coupled receptor 119 (GPR119). Using compounds that are known GPR119 agonists and compounds that we have confirmed experimentally that are not GPR119 agonists, four distinct cat-SAR models were developed. Using a leave-one out validation routine, the best GPR119 model had an overall concordance of 99 %, a sensitivity of 99 %, and a specificity of 100 %. Our findings from the in-depth fragment analysis of several known GPR119 agonists were consistent with previously reported GPR119 structure-activity relationship (SAR) analyses. Overall, while our results indicate that we have developed a highly predictive cat-SAR model that can be potentially used to rapidly screen for prospective GPR119 ligands the applicability domain must be taken into consideration. Moreover, our study demonstrates for the first time, that the cat-SAR expert system can be used to model G protein-coupled receptor ligands, many of which are important therapeutic agents. PMID:25401513

  1. FISH ACUTE TOXICITY SYNDROMES: APPLICATION TO THE DEVELOPMENT OF MECHANISM-SPECIFIC QSARS (QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS)

    EPA Science Inventory

    Predictive models based on quantitative structure activity relationships (QSARs), are used as rapid screening tools to identify potentially hazardous chemicals. Several QSARs are now available that predict the acute toxicity of narcotic-industrial chemicals. Predictions for compo...

  2. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  3. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity. PMID:26484597

  4. Bioisosterism of urea-based GCPII inhibitors: Synthesis and structure?activity relationship studies

    SciTech Connect

    Wang, Haofan; Byun, Youngjoo; Barinka, Cyril; Pullambhatla, Mrudula; Bhang, Hyo-eun C.; Fox, James J.; Lubkowski, Jacek; Mease, Ronnie C.; Pomper, Martin G.

    2010-10-28

    We report a strategy based on bioisosterism to improve the physicochemical properties of existing hydrophilic, urea-based GCPII inhibitors. Comprehensive structure-activity relationship studies of the P1{prime} site of ZJ-43- and DCIBzL-based compounds identified several glutamate-free inhibitors with K{sub i} values below 20 nM. Among them, compound 32d (K{sub i} = 11 nM) exhibited selective uptake in GCPII-expressing tumors by SPECT-CT imaging in mice. A novel conformational change of amino acids in the S1{prime} pharmacophore pocket was observed in the X-ray crystal structure of GCPII complexed with 32d.

  5. Structure–Activity Relationships and Molecular Modeling of Sphingosine Kinase Inhibitors

    PubMed Central

    2013-01-01

    The design, synthesis, and evaluation of the potency of new isoform-selective inhibitors of sphingosine kinases 1 and 2 (SK1 and SK2), the enzyme that catalyzes the phosphorylation of d-erythro-sphingosine to produce the key signaling lipid, sphingosine 1-phosphate, are described. Recently, we reported that 1-(4-octylphenethyl)piperidin-4-ol (RB-005) is a selective inhibitor of SK1. Here we report the synthesis of 43 new analogues of RB-005, in which the lipophilic tail, polar headgroup, and linker region were modified to extend the structure–activity relationship profile for this lead compound, which we explain using modeling studies with the recently published crystal structure of SK1. We provide a basis for the key residues targeted by our profiled series and provide further evidence for the ability to discriminate between the two isoforms using pharmacological intervention. PMID:24164513

  6. Development of quantitative structure activity relationships for the binding affinity of methoxypyridinium cations for human acetylcholinesterase.

    PubMed

    Morrill, Jason A; Topczewski, Joseph J; Lodge, Alexander M; Yasapala, Nilanthi; Quinn, Daniel M

    2015-11-01

    Among the most toxic substances known are the organophosphorus (OP) compounds used as pesticides and chemical warfare agents. Owing to their high toxicity there is a number of efforts underway to develop effective therapies for OP agent exposure. To date all therapies in use treat inhibited acetylcholinesterase (AChE), but are ineffective for the treatment of inhibited AChE, which has undergone a subsequent hydrolysis process, referred to as aging. Toward developing a therapy for treating victims of OP intoxication in the aged state we have developed Quantitative Structure-Activity Relationships (QSARs) based on the AM1 semiempirical quantum mechanical method using the program, CODESSA (COmprehensive Descriptors for Structural and Statistical Analysis). Using this methodology we obtained a multiple correlation QSAR equation which gave R(2)=0.9359 for a random training set of 38 ligands and R(2)=0.9236 for prediction on a random test set of 9 ligands. PMID:26454505

  7. Defensive sesquiterpenes from Senecio candidans and S. magellanicus, and their structure-activity relationships.

    PubMed

    Reina, Matías; Santana, Omar; Domínguez, Dulce M; Villarroel, Luis; Fajardo, Víctor; Rodríguez, Matías L; González-Coloma, Azucena

    2012-03-01

    Eleven eremophilanolides, 1-3 and 6-13, and two eremophilanes, 24 and 25, were isolated from Senecio candidans and S. magellanicus from the Magallanes Region (Chile). Compounds 2, 3, 9, and 10 have not been previously reported as natural products. Their structures were established by NMR spectroscopic analysis and chemical transformations. The X-ray analysis of compounds 11, 13, and 17 were also performed. Different semisynthetic analogs from eremophilanolide 11 were generated to carry out a structure-activity relationship study. Their possible plant defensive role was tested against herbivorous insects (Spodoptera littoralis, Rhopalosiphum padi, and Myzus persicae) and plants (Lactuca sativa). Additionally, their effects on insect (Sf9) and mammalian (CHO) cell lines were tested. PMID:22422530

  8. Pyrazole derivatives as photosynthetic electron transport inhibitors: new leads and structure-activity relationship.

    PubMed

    Vicentini, Chiara B; Guccione, Salvatore; Giurato, Laura; Ciaccio, Rebecca; Mares, Donatella; Forlani, Giuseppe

    2005-05-18

    Four series of new pyrazoles, namely, 5 4-carboxypyrazolo-3-tert-butylcarboxamide and 6 4-carboxypyrazolo-3-cyclopropylcarboxamide derivatives and 10 pyrazolo[3,4-d][1,3]thiazine-4-one and 9 pyrazolo[3,4-d][1,3]thiazine-4-thione derivatives, were synthesized and screened as potential inhibitors of photosynthetic electron transport. The structures were confirmed by 1H NMR, elemental, and IR analyses. Their biological activity was evaluated in vitro as the ability to interfere with the light-driven reduction of ferricyanide by isolated spinach chloroplasts. Only a few compounds exhibited excellent inhibitory properties in the micromolar range, comparable to those of commercial herbicides sharing the same target, such as diuron, lenacil, and hexazinone. Nevertheless, most of the remaining molecules exerted a remarkable inhibition in the millimolar range. Combined with previous results on 6 pyrazolo[1,5-a][1,3,5]triazine-2,4-dione and 4 pyrazolo[1,5-c][1,3,5]thiadiazine-2-one derivatives, these data allowed a comprehensive analysis of structure-activity relationship. Molecular modeling studies were undertaken to rationalize the structural determinants of activity in terms of shape, size, and molecular fields. Results suggested that the inhibitory potential of these compounds is associated mainly with their electrostatic properties. PMID:15884806

  9. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    PubMed

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis. PMID:26776000

  10. Discovery and structure–activity relationship analysis of Staphylococcus aureus sortase A inhibitors

    PubMed Central

    Suree, Nuttee; Yi, Sung Wook; Thieu, William; Marohn, Melanie; Damoiseaux, Robert; Chan, Albert; Jung, Michael E.; Clubb, Robert T.

    2010-01-01

    Methicillin resistant Staphylococcus aureus (MRSA) is a major health problem that has created a pressing need for new antibiotics. Compounds that inhibit the S. aureus SrtA sortase may function as potent anti-infective agents as this enzyme attaches virulence factors to the cell wall. Using high-throughput screening, we have identified several compounds that inhibit the enzymatic activity of the SrtA. A structure– activity relationship (SAR) analysis led to the identification of several pyridazinone and pyrazolethione analogs that inhibit SrtA with IC50 values in the sub-micromolar range. Many of these molecules also inhibit the sortase enzyme from Bacillus anthracis suggesting that they may be generalized sortase inhibitors. PMID:19781950

  11. Structure-activity relationships of furazano[3,4-b]pyrazines as mitochondrial uncouplers.

    PubMed

    Kenwood, Brandon M; Calderone, Joseph A; Taddeo, Evan P; Hoehn, Kyle L; Santos, Webster L

    2015-11-01

    Chemical mitochondrial uncouplers are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. These uncouplers have potential for the treatment of diseases such as obesity, Parkinson's disease, and aging. We have previously identified a novel mitochondrial protonophore, named BAM15, which stimulates mitochondrial respiration across a broad dosing range compared to carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Herein, we report our investigations on the structure-activity relationship profile of BAM15. Our studies demonstrate the importance of the furazan, pyrazine, and aniline rings as well as pKa in maintaining its effective protonophore activity. PMID:26119501

  12. Structure Activity Relationships of ?v Integrin Antagonists for Pulmonary Fibrosis by Variation in Aryl Substituents

    PubMed Central

    2014-01-01

    Antagonism of ?v?6 is emerging as a potential treatment of idiopathic pulmonary fibrosis based on strong target validation. Starting from an ?v?3 antagonist lead and through simple variation in the nature and position of the aryl substituent, the discovery of compounds with improved ?v?6 activity is described. The compounds also have physicochemical properties commensurate with oral bioavailability and are high quality starting points for a drug discovery program. Compounds 33S and 43E1 are pan ?v antagonists having ca. 100 nM potency against ?v?3, ?v?5, ?v?6, and ?v?8 in cell adhesion assays. Detailed structure activity relationships with these integrins are described which also reveal substituents providing partial selectivity (defined as at least a 0.7 log difference in pIC50 values between the integrins in question) for ?v?3 and ?v?5. PMID:25408832

  13. Quantitative structure-activity relationships of imidazolium oximes as nerve agent antidotes

    SciTech Connect

    Musallam, H.A.; Foye, W.O.; Hansch, C.; Harris, R.N.; Engle, R.R.

    1993-05-13

    Organophosphorus-containing pesticides and chemical warfare agents are potent inhibitors of synaptic acetylcholinesterase, a key regulator of cholinergic neurotransmission. These nerve agents have for many years constituted a serious threat to military personnel. These threats stimulated considerable efforts to develop effective medical countermeasures. Several potential drugs have been found recently which are capable of protecting animals from lethal levels of nerve agents. A recent U. S. Army Medical Research and Development Command drug development project synthesized a large number of imidazolium oximes. These compounds were found to possess strong antidotal activity against one of the most lethal nerve agents, soman. The Army's approach, like most conventional drug discovery approaches, depended primarily on the trial and error method. This research was carried out to determine if these potential nerve agent antidotes could have been discovered through the use of Quantitative Structure Activity-Relationships (QSAR) technique.

  14. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B.

    PubMed

    Harper, Jacquie L; Khalil, Iman M; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R

    2015-08-01

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds. PMID:26266415

  15. Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4.

    PubMed

    Zhang, Chongqian; Du, Chunmiao; Feng, Zhiwei; Zhu, Jingyu; Li, Youyong

    2015-02-01

    CXCR4 plays a crucial role as a co-receptor with CCR5 for HIV-1 anchoring to mammalian cell membrane and is implicated in cancer metastasis and inflammation. In the current work, we study the relationship of structure and activity of AMD11070 derivatives and other inhibitors of CXCR4 using HQSAR, docking and molecular dynamics (MD) simulations. We obtain an HQSAR model (q(2) = 0.779), and the HQSAR result illustrates that AMD11070 shows a high antiretroviral activity. As HQSAR only provides 2D information, we perform docking and MD to study the interaction of It1t, AMD3100, and AMD3465 with CXCR4. Our results illustrate that the binding are affected by two crucial residues Asp97 and Glu288. The butyl amine moiety of AMD11070 contributes to its high antiretroviral activity. Without a butyl amine moiety, (2,7a-Dihydro-1H-benzoimidazol-2-ylmethyl)-methyl-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (compound 5a) shows low antiretroviral activity. Our results provide structural details about the interactions between the inhibitors and CXCR4, which are useful for rational drug design of CXCR4. PMID:24923360

  16. Structure-activity relationships of retinoids in hamster tracheal organ culture.

    PubMed

    Newton, D L; Henderson, W R; Sporn, M B

    1980-10-01

    Structure-activity relationships are summarized for 87 retinoids, using reversal of keratinization in the hamster tracheal organ culture system to measure biological activity. Classes of compounds evaluated include all-trans-retinoic acid and its esters, ring-modified analogs of all-trans-retinoic acid and its esters, side-chain-modified analogs of all-trans-retinoic acid and its esters, analogs in which both ring and side chain have been modified, all-trans-retinol and derivatives, all-trans-retinyl amine derivatives, all-trans-retinal derivatives, all-trans-retinoic acid amides, 13-cis-retinoic acid and derivatives, and 5,6-epoxyretinoids. the activity of many synthetic amide derivatives of all-trans- or 13-cis-retinoic acid approaches that of the parent compounds. No metabolite of all-trans- or 13-cis-retinoic acid has yet been identified which has greater activity than the parent compounds in this assay. New synthetic derivatives with a gem-dimethyl group at position 4 in the cyclohexenyl ring and two aromatic rings in the side chain have activity equal to or greater than that of all-trans- or 13-cis-retinoic acid, with some activity detectable in the 10(-11) M range. PMID:6159964

  17. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    SciTech Connect

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  18. Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena

    Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study of Ni-based catalyst materials. Chapter V discusses the synthesis of tin-titanium oxide nanoparticles with tunable lattice constants. These materials could be used to make high-surface-area supports for thin layers of OER catalysts, which is important for maximizing catalyst surface area, minimizing the use of precious-metal catalysts, and optimizing 3D structure for enhanced mass/bubble transport. Finally, Chapter VI summarizes this work and outlines directions for future research.

  19. Synthesis, screening and quantitative structure-activity relationship (QSAR) studies of some glutamine analogues for possible anticancer activity.

    PubMed

    Srikanth, K; Kumar, Ch Anil; Ghosh, Balaram; Jha, Tarun

    2002-07-01

    We described the syntheses, biological activities and QSAR studies of 36 new 5-n-substituted-2-(substituted benzenesulphonyl) glutamines 6-41 with different substitutions. These compounds were designed as structural analogues of most reactive amino acid, 'glutamine' (GLN), especially in the tumor cells. They present the new basic lateral chains at R(5) position as well as different substitutions at 2', 3', 4', and 5' positions on the benzene ring. The synthesized compounds have been tested for antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice using percentage inhibition of tumor weight as inhibitory parameter. In order to elucidate the structural requirements for antitumor activity, quantitative structure-activity relationship (QSAR) studies have been performed using extra thermodynamic model of Hansch. QSAR equations showed that the electronic parameter (sigma) on the aromatic ring system, steric parameter (Es) and to some extent Sterimol length of the substituent (L) on the aliphatic side chain correlate significantly with the antitumor activity. Resonance factor occupies the major electronic contribution on the aromatic ring system to the activity. PMID:11983508

  20. The Effect of Nano Confinement on the C–H Activation and its Corresponding Structure-Activity Relationship

    PubMed Central

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-01-01

    The C–H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C–H activation occurring both on the inner and outer surfaces of the nano channel. The C–O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C–H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement. PMID:25428459

  1. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  2. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    SciTech Connect

    J Beierlein; N Karri; A Anderson

    2011-12-31

    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  3. Structure–Activity Relationships of a Novel Capsid Targeted Inhibitor of HIV-1 Replication

    PubMed Central

    2015-01-01

    Despite the considerable successes of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS, cumulative drug toxicities and the development of multidrug-resistant virus necessitate the search for new classes of antiretroviral agents with novel modes of action. The HIV-1 capsid (CA) protein has been structurally and functionally characterized as a druggable target. We have recently designed a novel small molecule inhibitor I-XW-053 using the hybrid structure based method to block the interface between CA N-terminal domains (NTD–NTD interface) with micromolar affinity. In an effort to optimize and improve the efficacy of I-XW-053, we have developed the structure activity relationship of I-XW-053 compound series using ligand efficiency methods. Fifty-six analogues of I-XW-053 were designed that could be subclassified into four different core domains based on their ligand efficiency values computed as the ratio of binding efficiency (BEI) and surface efficiency (SEI) indices. Compound 34 belonging to subcore-3 showed an 11-fold improvement over I-XW-053 in blocking HIV-1 replication in primary human peripheral blood mononuclear cells (PBMCs). Surface plasmon resonance experiments confirmed the binding of compound 34 to purified HIV-1 CA protein. Molecular docking studies on compound 34 and I-XW-053 to HIV-1 CA protein suggested that they both bind to NTD–NTD interface region but with different binding modes, which was further validated using site-directed mutagenesis studies. PMID:25302989

  4. Drug-receptor interaction-based quantitative structure-activity relationship of tetrahydroimidazodiazepinone

    NASA Astrophysics Data System (ADS)

    Sahu, V. K.; Khan, A. K. R.; Singh, R. K.; Singh, P. P.

    Log P, solvent-accessible surface area (SASA), total energy, bond length, and bond strain of the most favorable H-bond formed between drug and receptor; and quantum chemical descriptor ?E nm‡-based quantitative structure-activity relationship (QSAR) study of tetrahydroimidazodiazepinone derivatives have been done. For QSAR study, the 3D modeling and geometry optimization of all the derivatives and receptor's amino acid have been carried out on CAChe software by applying semiempirical method using MOPAC 2002. Softness Calculator using semiempirical PM3 methods has done the atomic softness of every atom of the derivatives and receptor's amino acids. The biological activities of tetrahydroimidazodiazepinone derivatives have been taken from the literature. The predicted values of biological activity with the help of multiple linear regression analysis are close to observed activity. The cross-validation coefficient and correlation coefficient also indicate that the QSAR model is valuable. Regression analysis shows that hydrophobic interaction is predominant and made major contribution, whereas hydrogen bonding and polar interactions help in proper orientation of the compound (or its functional groups) to make maximum interaction. With the help of these descriptors, prediction of the biological activity of new derivative is possible.

  5. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test

    SciTech Connect

    Schueuermann, G.; Somashekar, R.K.; Kristen, U.

    1996-10-01

    Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tube growth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolute sensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure-activity relationships using lipophilicity (log K{sub ow}), acidity (pK{sub a}), and quantum chemical parameters to model intrinsic acidity, solvation interactions, and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotic-type relationship is derived, which, however, shows marked differences in slope and intercept when compared to reference regression equations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action: oxidative uncoupling activity is associated with a pK{sub a} window from 3.8 to 8.5, and more acidic congeners with diortho-substitution show a transition from uncoupling to a narcotic mode of action with decreasing pK{sub a} and log K{sub ow}. Model calculations for phenol nucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds.

  6. Structure-activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids.

    PubMed

    Aoki, Shunji; Watanabe, Yasuo; Tanabe, Daiki; Arai, Masayoshi; Suna, Hideaki; Miyamoto, Katsushiro; Tsujibo, Hiroshi; Tsujikawa, Kazutake; Yamamoto, Hiroshi; Kobayashi, Motomasa

    2007-11-01

    Previously, bioassay-guided separation led us to isolate eleven novel steroidal alkaloids named cortistatins from the marine sponge Corticium simplex. These cortistatins were classified into three types based on the chemical structure of the side chain part, that is, isoquinoline, N-methyl piperidine or 3-methylpyridine units. From the structure-activity relationship study, the isoquinoline unit in the side chain was found to be crucial for the anti-angiogenic activity of cortistatins. Cortistatin A (1) showed cytostatic growth-inhibitory activity against human umbilical vein endothelial cells (HUVECs). Cortistatin A (1) also inhibited VEGF-induced migration of HUVECs and bFGF-induced tubular formation. Although cortistatin A (1) showed no effect on VEGF-induced phosphorylation of ERK1/2 and p38, which are one of the signaling pathways for migration and tubular formation, the phosphorylation of the unidentified 110kDa protein in HUVECs was inhibited by the treatment with cortistatin A. PMID:17765550

  7. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

    PubMed Central

    Zarghi, Afshin; Arfaei, Sara

    2011-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the undesired side effects arise from inhibition of COX-1 activity. Thus, it was though that more selective COX-2 inhibitors would have reduced side effects. Based upon a number of selective COX-2 inhibitors (rofecoxib, celecoxib, valdecoxibetc.) were developed as safer NSAIDs with improved gastric safety profile. However, the recent market removal of some COXIBs such as rofecoxib due to its adverse cardiovascular side effects clearly encourages the researchers to explore and evaluate alternative templates with COX-2 inhibitory activity. Recognition of new avenues for selective COX-2 inhibitors in cancer chemotherapy and neurological diseases such as Parkinson and Alzheimer’s diseases still continues to attract investigations on the development of COX-2 inhibitors. This review highlights the various structural classes of selective COX-2 inhibitors with special emphasis on their structure-activity relationships. PMID:24250402

  8. Structure-property relationship of quinuclidinium surfactants-Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical properties represents a good starting point for further biological research. PMID:26651596

  9. Metal toxicity in two rodent species and redox potential: Evaluation of quantitative structure-activity relationships

    SciTech Connect

    Lewis, D.F.V.; Dobrota, M.; Taylor, M.G.; Parke, D.V.

    1999-10-01

    A quantitative structure-activity relationship study of acute toxicity in the mouse and rat is described for the soluble salts of a relatively large number of metals (between 25 and 30 in total). Electrode potential is the major determinant of acute metal toxicity for an intraperitoneal dose in the mouse, whereas the addition of ionic radius and polarizability enables the inclusion of notable outliers in the original expression, such as beryllium and barium, thus giving a good correlation with toxicity for 27 metal compounds. These findings are rationalized on the basis of relative ease of ionization, electron affinity, and transport factors of the metals and their ions, thus being consistent with the hard and soft acids and bases properties of metals and their biological reactivities.

  10. Quantitative structure-activity relationships for prediction of removal efficiency in air-phase biofilters

    SciTech Connect

    Devinny, J.S.; Choi, D.S.; Webster, T.S.

    1997-12-31

    Quantitative structure-activity relationships were developed to describe the success of biofiltration for sixteen compounds present in wastewater treatment plant off gases. Combinations of one topological index and one measured compound characteristic were generally found to be effective. Average results for biofilters using GAC support medium were best predicted by the third order valence molecular connectivity index, {sup 3}{chi}{sup v}, with the octanol-water partition coefficient, K{sub ow}. Average results for compost biofilters were best described by the third order molecular connectivity index, {sup 3}{chi}, and K{sub ow}, as were combined averages for all biofilters. These results are consistent with simple biofilter models which assume treatment success in a well-operated biofilter is largely determined by the tendency of a compound to partition into the water phase and its inherent biodegradability.

  11. Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships.

    PubMed

    Hasegawa, K; Funatsu, K

    2000-01-01

    Quantitative structure-activity relationship (QSAR) studies based on chemometric techniques are reviewed. Partial least squares (PLS) is introduced as a novel robust method to replace classical methods such as multiple linear regression (MLR). Advantages of PLS compared to MLR are illustrated with typical applications. Genetic algorithm (GA) is a novel optimization technique which can be used as a search engine in variable selection. A novel hybrid approach comprising GA and PLS for variable selection developed in our group (GAPLS) is described. The more advanced method for comparative molecular field analysis (CoMFA) modeling called GA-based region selection (GARGS) is described as well. Applications of GAPLS and GARGS to QSAR and 3D-QSAR problems are shown with some representative examples. GA can be hybridized with nonlinear modeling methods such as artificial neural networks (ANN) for providing useful tools in chemometric and QSAR. PMID:10969871

  12. Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Stout, Adam M; Mutka, Sarah C; Richards, Jane P; Rosenthal, Gary J

    2012-03-15

    The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice. PMID:22342142

  13. Structure-Activity Relationships of Neplanocin A Analogues as S-Adenosylhomocysteine Hydrolase Inhibitors and Their Antiviral and Antitumor Activities.

    PubMed

    Chandra, Girish; Moon, Yang Won; Lee, Yoonji; Jang, Ji Yong; Song, Jayoung; Nayak, Akshata; Oh, Kawon; Mulamoottil, Varughese A; Sahu, Pramod K; Kim, Gyudong; Chang, Tong-Shin; Noh, Minsoo; Lee, Sang Kook; Choi, Sun; Jeong, Lak Shin

    2015-06-25

    On the basis of the potent inhibitory activity of neplanocin A (1) against S-adenosylhomocysteine (AdoHcy) hydrolase, we analyzed the comprehensive structure-activity relationships by modifying the adenine and carbasugar moiety of 1 to find the pharmacophore in the active site of the enzyme. The introduction of 7-deazaadenine instead of adenine eliminated the inhibitory activity against the AdoHcy hydrolase, while 3-deazaadenine maintained the inhibitory activity of the enzyme, indicating that N-7 is essential for its role as a hydrogen bonding acceptor. The substitution of hydrogen at the 6'-position with fluorine increased the inhibitory activity of the enzyme. The one-carbon homologation at the 5'-position generally decreased the inhibitory activity of the enzyme, indicating that steric repulsion exists. A molecular docking study also supported these experimental data. In this study, 6'-fluoroneplanocin A (2) was the most potent inhibitor of AdoHcy hydrolase (IC50 = 0.24 ?M). It showed a potent anti-VSV activity (EC50 = 0.43 ?M) and potent anticancer activity in all the human tumor cell lines tested. PMID:26010585

  14. Quantifying the fingerprint descriptor dependence of structure-activity relationship information on a large scale.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2013-09-23

    It is well-known that different molecular representations, e.g., graphs, numerical descriptors, fingerprints, or 3D models, change the numerical results of molecular similarity calculations. Because the assessment of structure-activity relationships (SARs) requires similarity and potency comparisons of active compounds, this representation dependence inevitably also affects SAR analysis. But to what extent? How exactly does SAR information change when alternative fingerprints are used as descriptors? What is the proportion of active compounds with substantial changes in SAR information induced by different fingerprints? To provide answers to these questions, we have quantified changes in SAR information across many different compound classes using six different fingerprints. SAR profiling was carried out on 128 target-based data sets comprising more than 60,000 compounds with high-confidence activity annotations. A numerical measure of SAR discontinuity was applied to assess SAR information on a per compound basis. For ~70% of all test compounds, changes in SAR characteristics were detected when different fingerprints were used as molecular representations. Moreover, the SAR phenotype of ~30% of the compounds changed, and distinct fingerprint-dependent local SAR environments were detected. The fingerprints we compared were found to generate SAR models that were essentially not comparable. Atom environment and pharmacophore fingerprints produced the largest differences in compound-associated SAR information. Taken together, the results of our systematic analysis reveal larger fingerprint-dependent changes in compound-associated SAR information than would have been anticipated. PMID:23968259

  15. Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships

    PubMed Central

    Zaman, Mehfuz; Toth, Istvan

    2013-01-01

    Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting). Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signaling via Toll-like receptor 2 (TLR2). Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this mini review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems. PMID:24130558

  16. Structure-activity relationship studies of flavonol analogues on pollen germination.

    PubMed

    Forbes, Alaina M; Meier, G Patrick; Haendiges, Stacey; Taylor, Loverine P

    2014-03-12

    Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance. PMID:24524670

  17. Structure-Activity Relationship of a U-Type Antimicrobial Microemulsion System

    PubMed Central

    Zhang, Hui; Taxipalati, Maierhaba; Yu, Liyi; Que, Fei; Feng, Fengqin

    2013-01-01

    The structure-activity relationship of a U-type antimicrobial microemulsion system containing glycerol monolaurate and ethanol at a 1?1 mass ratio as oil phase and Tween 20 as surfactant were investigated along a water dilution line at a ratio of 80?20 mass% surfactant/oil phase, based on a pseudo-ternary phase diagram. The differential scanning calorimetry results showed that in the region of up to 33% water, all water molecules are confined to the hydrophilic core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, and transforms into bicontinuous in the region of 33–39% water, and finally the microemulsion become o/w in the region of above 39% water. The microstructure characterization was confirmed by the dynamic light scattering measurements and freeze-fracture transmission electron microscope observation. The antimicrobial activity assay using kinetics of killing analysis demonstrated that the microemulsions in w/o regions exhibited relatively high antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the antimicrobial oil phase as the continuous phase, while the antimicrobial activity started to decrease when the microemulsions entered the bicontinuous region, and decreased rapidly as the water content increased in the o/w region, as a result of the dilution of antimicrobial oil droplets in the aqueous continuous phase. PMID:24204605

  18. Phytotoxicity of umbelliferone and its analogs: Structure-activity relationships and action mechanisms.

    PubMed

    Pan, Le; Li, Xiu-Zhuang; Yan, Zhi-Qiang; Guo, Hong-Ru; Qin, Bo

    2015-12-01

    Two coumarins, umbelliferone and daphnoretin, were isolated from roots of Stellera chamaejasme L; the former had been identified as one of the main allelochemicals in our previous studies. Both of them have the skeleton of 7-hydroxycoumarin, but showed different phytotoxic effects. Umbelliferone and its analogs were then prepared to investigate the structure-activity relationship of hydroxycoumarins and screened for phytotoxicity. The inhibitory effects varied observably in response to the coumarin derivatives, especially umbelliferone (1), 7-hydroxy-4-methylcoumarin (3) and coumarin (10) displayed strong inhibition of lettuce and two field weeds, Setaria viridis and Amaranthus retroflexus, and compounds 11 and 12 also exhibited phytotoxic activity with species specificity. The number and location of hydroxyl groups were importantly responsible for the phytotoxicity. A C7 hydroxyl group was considered to be a potentially active site and methyl substitution at the C4 position contributed significantly to the activity. The phytotoxic mechanism was briefly studied with umbelliferone by evaluating the reactive oxygen species (ROS) and chlorophylls level in lettuce seedlings. The results showed that umbelliferone induced the accumulation of ROS in the root tip and significantly decreased the chlorophyll content in the leaves. Thus, a ROS-mediated regulation pathway and the inhibition of photosynthesis were definitely involved in the phytotoxicity of umbelliferone. PMID:26509496

  19. The Structure Activity Relationship of Urea Derivatives as Anti-Tuberculosis Agents

    PubMed Central

    Brown, Joshua R.; North, Elton J.; Hurdle, Julian G.; Morisseau, Christophe; Scarborough, Jerrod S.; Sun, Dianqing; Korduláková, Jana; Scherman, Michael S.; Jones, Victoria; Grzegorzewicz, Anna; Crew, Rebecca M.; Jackson, Mary; McNeil, Michael R.; Lee, Richard E.

    2011-01-01

    The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolyase enzymes. The inhibitors also showed potent inhibition of humans soluble expoxide hydrolyase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolyase inhibition towards the M. tuberculosis enzymes. PMID:21840723

  20. Structure-activity relationship study of novel anticancer aspirin-based compounds

    PubMed Central

    JOSEPH, STANCY; NIE, TING; HUANG, LIQUN; ZHOU, HUI; ATMAKUR, KRISHNAIAH; GUPTA, RAMESH C.; JOHNSON, FRANCIS; RIGAS, BASIL

    2013-01-01

    We performed a structure-activity relationship (SAR) study of a novel aspirin (ASA) derivative, which shows strong anticancer activity in vitro and in vivo. A series of ASA-based benzyl esters (ABEs) were synthesized and their inhibitory activity against human colon (HT-29 and SW480) and pancreatic (BxPC-3 and MIA PaCa-2) cancer cell lines was evaluated. The ABEs that we studied largely comprise organic benzyl esters bearing an ASA or acyloxy group (X) at the meta or para position of the benzyl ring and one of four different leaving groups. The nature of the salicyloyl/acyloxy function, the leaving group, and the additional substituents affecting the electron density of the benzyl ring, all were influential determinants of the inhibitory activity on cancer cell growth for each ABE. Positional isomerism also played a significant role in this effect. The mechanism of action of these compounds appears consistent with the notion that they generate either a quinone methide or an m-oxybenzyl zwitterion (or an m-hydroxybenzyl cation), which then reacts with a nucleophile, mediating their biological effect. Our SAR study provides an insight into the biological properties of this novel class of compounds and underscores their potential as anticancer agents. PMID:21805049

  1. Structure–activity relationships for perfluoroalkane-induced in vitro interference with rat liver mitochondrial respiration?

    PubMed Central

    Wallace, K.B.; Kissling, G.E.; Melnick, R.L.; Blystone, C.R.

    2014-01-01

    Perfluorinated alkyl acids (PFAAs) represent a broad class of commercial products designed primarily for the coatings industry. However, detection of residues globally in a variety of species led to the discontinuation of production in the U.S. Although PFAAs cause activation of the PPAR? and CAR nuclear receptors, interference with mitochondrial bioenergetics has been implicated as an alternative mechanism of cytotoxicity. Although the mechanisms by which the eight carbon chain PFAAs interfere with mitochondrial bioenergetics are fairly well described, the activities of the more highly substituted or shorter chain PFAAs are far less well characterized. The current investigation was designed to explore structure–activity relationships by which PFAAs interfere with mitochondrial respiration in vitro. Freshly isolated rat liver mitochondria were incubated with one of 16 different PFAAs, including perfluorinated carboxylic, acetic, and sulfonic acids, sulfonamides and sulfamido acetates, and alcohols. The effect on mitochondrial respiration was measured at five concentrations and dose–response curves were generated to describe the effects on state 3 and 4 respiration and respiratory control. With the exception of PFOS, all PFAAs at sufficiently high concentrations (>20 ?M) stimulated state 4 and inhibited state 3 respiration. Stimulation of state 4 respiration was most pronounced for the carboxylic acids and the sulfonamides, which supports prior evidence that the perfluorinated carboxylic and acetic acids induce the mitochondrial permeability transition, whereas the sulfonamides are protonophoric uncouplers of oxidative phosphorylation. In both cases, potency increased with increasing carbon number, with a prominent inflection point between the six and eight carbon congeners. The results provide a foundation for classifying PFAAs according to specific modes of mitochondrial activity and, in combination with toxicokinetic considerations, establishing structure–activity-based boundaries for initial estimates of risk for noncancer endpoints for PFAAs for which minimal in vivo toxicity testing currently exists. PMID:23954199

  2. Quantitative structure-activity relationships and the prediction of MHC supermotifs.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-12-01

    The underlying assumption in quantitative structure-activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here--the additive method--is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A*0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data. PMID:15542370

  3. Adapted Transfer of Distance Measures for Quantitative Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Rückert, Ulrich; Girschick, Tobias; Buchwald, Fabian; Kramer, Stefan

    Quantitative structure-activity relationships (QSARs) are regression models relating chemical structure to biological activity. Such models allow to make predictions for toxicologically or pharmacologically relevant endpoints, which constitute the target outcomes of trials or experiments. The task is often tackled by instance-based methods (like k-nearest neighbors), which are all based on the notion of chemical (dis-)similarity. Our starting point is the observation by Raymond and Willett that the two big families of chemical distance measures, fingerprint-based and maximum common subgaph based measures, provide orthogonal information about chemical similarity. The paper presents a novel method for finding suitable combinations of them, called adapted transfer, which adapts a distance measure learned on another, related dataset to a given dataset. Adapted transfer thus combines distance learning and transfer learning in a novel manner. In a set of experiments, we compare adapted transfer with distance learning on the target dataset itself and inductive transfer without adaptations. In our experiments, we visualize the performance of the methods by learning curves (i.e., depending on training set size) and present a quantitative comparison for 10% and 100% of the maximum training set size.

  4. Spatial Configuration and Three-Dimensional Conformation Directed Design, Synthesis, Antiviral Activity, and Structure-Activity Relationships of Phenanthroindolizidine Analogues.

    PubMed

    Su, Bo; Cai, Chunlong; Deng, Meng; Wang, Qingmin

    2016-03-16

    Our recent investigation on the antiviral activities against tobacco mosaic virus (TMV) of phenanthroindolizidine alkaloid analogues preliminarily revealed that the basic skeleton and substitution pattern at the C13a position of the molecule, which are closely related to the spatial arrangement of the molecule, have great effects on the biological activity. To further study the in-depth influence of spatial configuration and three-dimensional (3D) conformation of the molecules on their anti-TMV activities and related structure-activity relationship (SAR), a series of D-ring opened derivatives 3, 4, 5a-5j, 6, and 7, chiral 13a- and/or 14-substituted phenanthroindolizidine analogues 10-12 and 18-20, and their enantiomers ent-10-ent-12 and ent-18-ent-20 were synthesized and evaluated for their anti-TMV activities. Bioassay results showed that most of the chiral phenanthroindolizidines displayed good to excellent in vivo anti-TMV activity. Among these compounds, ent-11 showed more potent activity than Ningnanmycin (one of the most successful commercial antiviral agents), thus emerging as a potential inhibitor of the plant virus. Further SARs were also discussed for the first time under the chiral scenario, demonstrating that both spatial configuration and 3D conformation of the molecules are crucial for keeping high anti-TMV activity. PMID:26923726

  5. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods. PMID:18767832

  6. Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of truncated and Ala-replacement analogs of the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica. The C-terminal hexapeptide proved to be the active core, the minimum sequence required to retain significant diureti...

  7. Structural and spectroscopic characterisation of C4 oxygenates relevant to structure/activity relationships of the hydrogenation of ?,?-unsaturated carbonyls

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Silverwood, Ian P.; Hamilton, Neil G.; Lennon, David

    2016-01-01

    In the present work, we have investigated the conformational isomerism and calculated the vibrational spectra of the C4 oxygenates: 3-butyne-2-one, 3-butene-2-one, 2-butanone and 2-butanol using density functional theory. The calculations are validated by comparison to structural data where available and new, experimental inelastic neutron scattering and infrared spectra of the compounds. We find that for 3-butene-2-one and 2-butanol the spectra show clear evidence for the presence of conformational isomerism and this is supported by the calculations. Complete vibrational assignments for all four molecules are provided and this provides the essential information needed to generate structure/activity relationships for the sequential catalytic hydrogenation of 3-butyne-2-one to 2-butanol.

  8. Synthesis and structure/antioxidant activity relationship of novel catecholic antioxidant structural analogues to hydroxytyrosol and its lipophilic esters.

    PubMed

    Bernini, Roberta; Crisante, Fernanda; Barontini, Maurizio; Tofani, Daniela; Balducci, Valentina; Gambacorta, Augusto

    2012-08-01

    A large panel of novel catecholic antioxidants and their fatty acid or methyl carbonate esters has been synthesized in satisfactory to good yields through a 2-iodoxybenzoic acid (IBX)-mediated aromatic hydroxylation as the key step. The new catechols are structural analogues of naturally occurring hydroxytyrosol (3,4-DHE). To evaluate structure/activity relationships, the antioxidant properties of all catecholic compounds were evaluated in vitro by ABTS assay and on whole cells by DCF fluorometric assay and compared with that of the corresponding already known hydroxytyrosyl derivatives. Results outline that all of the new catechols show antioxidant capacity in vitro higher than that of the corresponding hydroxytyrosyl derivatives. Less evident positive effects have been detected in whole cells experiments. Cytotoxicity experiments, using MTT assay, on a representative set of compounds evidenced no influence in cell survival. PMID:22780104

  9. Improved Quantitative Structure-Activity Relationship Models to Predict Antioxidant Activity of Flavonoids in Chemical, Enzymatic, and Cellular Systems

    PubMed Central

    Khlebnikov, Andrei I.; Schepetkin, Igor A.; Domina, Nina G.; Kirpotina, Liliya N.; Quinn, Mark T.

    2007-01-01

    Quantitative structure-activity relationship (QSAR) models are useful in understanding how chemical structure relates to the biological activity of natural and synthetic chemicals and for design of newer and better therapeutics. In the present study, 46 flavonoids and related polyphenols were evaluated for direct/indirect antioxidant activity in three different assay systems of increasing complexity (chemical, enzymatic, and intact phagocytes). Based on these data, two different QSAR models were developed using i) physicochemical and structural (PC&S) descriptors to generate multiparameter partial least squares (PLS) regression equations derived from optimized molecular structures of the tested compounds and ii) a partial 3D comparison of the 46 compounds with local fingerprints obtained from fragments of the molecules by the frontal polygon (FP) method. We obtained much higher QSAR correlation coefficients (r) for flavonoid end-point antioxidant activity in all 3 assay systems using the FP method (0.966, 0.948, and 0.965 for datasets in evaluated in the biochemical, enzymatic, and whole cells assay systems, respectively). Furthermore, high leave-one-out cross-validation coefficients (q2) of 0.907, 0.821, and 0.897 for these datasets, respectively, indicated enhanced predictive ability and robustness of the model. Using the FP method, structural fragments (submolecules) responsible for the end-point antioxidant activity in the three assay systems were also identified. To our knowledge, this is the first QSAR model derived for description of flavonoid direct/indirect antioxidant effects in a cellular system, and this model could form the basis for further drug development of flavonoid-like antioxidant compounds with therapeutic potential. PMID:17166721

  10. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.

    PubMed

    Khlebnikov, Andrei I; Schepetkin, Igor A; Domina, Nina G; Kirpotina, Liliya N; Quinn, Mark T

    2007-02-15

    Quantitative structure-activity relationship (QSAR) models are useful in understanding how chemical structure relates to the biological activity of natural and synthetic chemicals and for design of newer and better therapeutics. In the present study, 46 flavonoids and related polyphenols were evaluated for direct/indirect antioxidant activity in three different assay systems of increasing complexity (chemical, enzymatic, and intact phagocytes). Based on these data, two different QSAR models were developed using (i) physicochemical and structural (PC&S) descriptors to generate multiparameter partial least squares (PLS) regression equations derived from optimized molecular structures of the tested compounds and (ii) a partial 3D comparison of the 46 compounds with local fingerprints obtained from fragments of the molecules by the frontal polygon (FP) method. We obtained much higher QSAR correlation coefficients (r) for flavonoid end-point antioxidant activity in all three assay systems using the FP method (0.966, 0.948, and 0.965 for datasets evaluated in the biochemical, enzymatic, and whole cell assay systems, respectively). Furthermore, high leave-one-out cross-validation coefficients (q2) of 0.907, 0.821, and 0.897 for these datasets, respectively, indicated enhanced predictive ability and robustness of the model. Using the FP method, structural fragments (submolecules) responsible for the end-point antioxidant activity in the three assay systems were also identified. To our knowledge, this is the first QSAR model derived for description of flavonoid direct/indirect antioxidant effects in a cellular system, and this model could form the basis for further drug development of flavonoid-like antioxidant compounds with therapeutic potential. PMID:17166721

  11. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75?mA?cm(-2) . PMID:25958795

  12. Comprehensive Analysis of Structure-Activity Relationships of ?-Ketoheterocycles as sn-1-Diacylglycerol Lipase ? Inhibitors.

    PubMed

    Janssen, Freek J; Baggelaar, Marc P; Hummel, Jessica J A; Overkleeft, Herman S; Cravatt, Benjamin F; Boger, Dale L; van der Stelt, Mario

    2015-12-24

    Diacylglycerol lipase ? (DAGL?) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGL? inhibitors are required to study the physiological role of 2-AG. Previously, we identified the ?-ketoheterocycles as potent and highly selective DAGL? inhibitors. Here, we present the first comprehensive structure-activity relationship study of ?-ketoheterocycles as DAGL? inhibitors. Our findings indicate that the active site of DAGL? is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGL? homology model. Altogether, our results may guide the design of future DAGL? inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders. PMID:26584396

  13. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship.

    PubMed

    Sheng, Ji-Yang; Chen, Tong-Tong; Tan, Xiao-Juan; Chen, Ting; Jia, Ai-Qun

    2015-11-15

    Stilbenoids, known an important phytoalexins in plants, were renowned for their beneficial effects on cardiovascular, neurological and hepatic systems. In the present study, quorum sensing inhibition activity of ten stilbenoids were tested using Chromobacterium violaceum CV026 as the bio-indicator strain and the structure-activity relationship was also investigated. Among them, resveratrol (1), piceatannol (2) and oxyresveratrol (3) showed potential anti-QS activities. At the sub-MIC concentrations, 1-3 demonstrated a statistically significant reduction of violacein in C. violaceum CV026 in a concentration dependent manner. Furthermore, the effects of 1-3 on QS regulated virulence factors in Pseudomonas aeruginosa PAO1 were also evaluated. Our results showed that the stilbenoids 1-3 can markedly decreased the production of pyocyanin and swarming motility of P. aeruginosa PAO1. Further transcriptome analyses showed that 1-3 suppressed the expression of QS-induced genes: lasR, lasI, rhlR and rhlI. PMID:26453007

  14. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors.

    PubMed

    Singh, Anamika; Kast, Johannes; Dirain, Marvin L S; Huang, Huisuo; Haskell-Luevano, Carrie

    2016-02-17

    The melanocortin system is involved in the regulation of several complex physiological functions. In particular, the melanocortin-3 and -4 receptors (MC3R/MC4R) have been demonstrated to regulate body weight, energy homeostasis, and feeding behavior. Synthetic and endogenous melanocortin agonists have been shown to be anorexigenic in rodent models. Herein, we report synthesis and structure-activity relationship (SAR) studies of 27 nonpeptide small molecule ligands based on an unsymmetrical substituted urea core. Three templates containing key residues from the lead compounds, showing diversity at three positions (R(1), R(2), R(3)), were designed and synthesized. The syntheses were optimized for efficient microwave-assisted chemistry that significantly reduced total syntheses time compared to a previously reported room temperature method. The pharmacological characterization of the compounds on the mouse melanocortin receptors identified compounds 1 and 12 with full agonist activity at the mMC4R, but no activity was observed at the mMC3R when tested up to 100 ?M concentrations. The SAR identified compounds possessing aliphatic or saturated cyclic amines at the R(1) position, bulky aromatic groups at the R(2) position, and benzyl group at the R(3) position resulted in mMC4R selectivity over the mMC3R. The small molecule template and SAR knowledge from this series may be helpful in further design of MC3R/MC4R selective small molecule ligands. PMID:26645732

  15. Molecular-orbital analysis of the electronic structure and determination of quantitative structure-activity and structure-toxicity relationships for water-soluble ionol derivatives

    SciTech Connect

    Bushelev, S.N.

    1985-08-01

    In this paper the authors attempt to establish a quantitative relationship between experimental data on antitumor activity and the toxicity of ionol and its derivatives on the one hand, and on the other hand the electronic structure parameters of the compounds obtained as a result of the quantum chemical calculation.

  16. Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity.

    PubMed

    André, Sonia; Washington, Shannon K; Darby, Emily; Vega, Marvin M; Filip, Ari D; Ash, Nathaniel S; Muzikar, Katy A; Piesse, Christophe; Foulon, Thierry; O'Leary, Daniel J; Ladram, Ali

    2015-10-16

    Short antimicrobial peptides represent attractive compounds for the development of new antibiotic agents. Previously, we identified an ultrashort hydrophobic and phenylalanine-rich peptide, called temporin-SHf, representing the smallest natural amphibian antimicrobial peptide known to date. Here, we report on the first structure-activity relationship study of this peptide. A series of temporin-SHf derivatives containing insertion of a basic arginine residue as well as residues containing neutral hydrophilic (serine and ?-hydroxymethylserine) and hydrophobic (?-methyl phenylalanine and p-(t)butyl phenylalanine) groups were designed to improve the antimicrobial activity, and their ?-helical structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. Three compounds were found to display higher antimicrobial activity with the ability to disrupt (permeabilization/depolarization) the bacterial membrane while retaining the nontoxic character of the parent peptide toward rat erythrocytes and human cells (THP-1 derived macrophages and HEK-293). Antimicrobial assays were carried out to explore the influence of serum and physiological salt concentration on peptide activity. Analogs containing d-amino acid residues were also tested. Our study revealed that [p-(t)BuF(2), R(5)]SHf is an attractive ultrashort candidate that is highly potent (bactericidal) against Gram-positive bacteria (including multidrug resistant S. aureus) and against a wider range of clinically interesting Gram-negative bacteria than temporin-SHf, and also active at physiological salt concentrations and in 30% serum. PMID:26181487

  17. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides.

    PubMed

    Lal, Jaggi; Gupta, Sushil K; Thavaselvam, D; Agarwal, Dau D

    2013-06-01

    Five series of curcumin derivatives with sulfonamides 3a-3e, 4a-4e, 5a-5e, 6a-6e and 7a-7e have been synthesized and evaluated for in vitro antibacterial activity against selected medically important gram-(+) and gram-(-) bacterial species viz. Staphylococcus aureus, Bacillus cereus, Salmonella typhi, Pseudomonas aeruginosa and Escherichia coli, and antifungal activity against few pathogenic fungal species viz. Aspergillus niger, Aspergillus flavus, Trichoderma viride and Curvularia lunata. The cytotoxicity has been determined by measuring IC50 values against human cell lines HeLa, Hep G-2, QG-56 and HCT-116. Among the compounds screened, 3a-3e showed the most potent biological activity against tested bacteria and fungi. Compounds 3a-3e displayed higher cytotoxicity than curcumin. The curcumin derivatives were also evaluated for in vivo anti-inflammatory activity. In contrast, the compounds 6a-6e and 7a-7e showed dramatically decrease in biological activity. PMID:23685942

  18. Genotoxicity of the hydroquinone metabolite of ochratoxin A: structure-activity relationships for covalent DNA adduction.

    PubMed

    Tozlovanu, Mariana; Faucet-Marquis, Virginie; Pfohl-Leszkowicz, Annie; Manderville, Richard A

    2006-09-01

    Ochratoxin A (OTA) is a mycotoxin that shows potent nephrotoxicity and renal carcinogenicity in rodents. One hypothesis for OTA-induced tumor formation is based on its genotoxic properties that are promoted by oxidative metabolism. Like other chlorinated phenols, OTA undergoes an oxidative dechlorination process to generate a quinone (OTQ)/hydroquinone (OTHQ) redox couple that may play a role in OTA-mediated genotoxicity. To determine whether the OTQ/OTHQ redox couple of OTA contributes to genotoxicity, the DNA adduction properties, as evidenced by the (32)P-postlabeling technique, of the hydroquinone analogue (OTHQ) have been compared to OTA in the absence and presence of metabolic activation (pig kidney microsomes) and within human bronchial epithelial (WI26) and human kidney (HK2) cells. Our experiments show that OTHQ generates DNA adduct spots in the absence of metabolic activation. These adducts are ascribed to covalent DNA adduction by OTQ generated through autoxidation of the hydroquinone precursor, OTHQ. Although OTA does not interact with DNA in the absence of metabolism, the OTQ-mediated DNA adduct spots noted with OTHQ are also observed with OTA following treatment with pig kidney microsomes and NADPH, suggesting that OTA undergoes oxidative activation to OTQ by cytochrome P450 or enzymes with peroxidase activity. Comparison of DNA adduction by OTHQ and OTA in human cell lines shows that OTQ-mediated adduct spots form in a dose- and time-dependent manner. The adduct spots form at a faster rate with OTHQ, which is consistent with more facile generation of OTQ from its hydroquinone precursor. These results establish structure-activity relationships for OTA-mediated DNA adduction and provide new evidence for the potential role of the OTQ/OTHQ redox couple in OTA-induced genotoxicity. PMID:16978030

  19. Structure-activity relationship of trifluoromethyl-containing metallocenes: electrochemistry, lipophilicity, cytotoxicity, and ROS production.

    PubMed

    Maschke, Marcus; Alborzinia, Hamed; Lieb, Max; Wölfl, Stefan; Metzler-Nolte, Nils

    2014-06-01

    We report the synthesis of trifluoromethylated metallocenes (M=Fe, Ru) and related metal-free compounds for comparison of their biological properties with the aim to establish structure-activity relationships toward the anti-proliferative activity of this compound class. All new compounds were comprehensively characterized by NMR spectroscopy ((1) H, (13) C, (19) F), mass spectrometry, IR spectroscopy, and elemental analysis. A single-crystal X-ray structure was obtained on the Ru derivative, 1-(1-hydroxy-1-hexafluoromethylethyl)ruthenocene (3). The cytotoxicity of all compounds was tested on MCF-7, HT-29, and PT-45 cells, and IC50 values as low as 12 ?M were observed. Both the metallocene moiety and the hydroxy function are crucial for cytotoxicity. In addition, the activity decreased sharply even if only one trifluoromethyl group was replaced with a methyl group. Electrochemical investigations by cyclic voltammetry revealed that all CF3 -containing compounds are harder to oxidize than the unsubstituted metallocenes. Moreover, log?P determination by RP-HPLC showed the fluorinated derivatives to have higher lipophilicity, with log?P values up to 4.6. At the same time, the generation of reactive oxygen species (ROS) in Jurkat cells by these compounds was investigated by flow cytometry. Strong ROS production was shown exclusively for the bis-CF3 derivative 1-(1-hydroxy-1-hexafluoromethylethyl)ferrocene (1) after 6 and 24 h. Also on the Jurkat cell line, only compound 1 strongly induces necrosis after 24 and 48 h, as shown by annexin V/propidium iodide staining. No induction of apoptosis was observed. We propose that compound 1 is more efficiently incorporated into cancer cells relative to all other derivatives, causing significant induction of oxidative stress within the cell, which ultimately leads to cell death. PMID:24838930

  20. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein

    PubMed Central

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-01-01

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. PMID:26227971

  1. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein.

    PubMed

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-10-15

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. PMID:26227971

  2. The effects and mechanism of flavonoid-rePON1 interactions. Structure-activity relationship study.

    PubMed

    Atrahimovich, Dana; Vaya, Jacob; Khatib, Soliman

    2013-06-01

    Flavonoids are plant phenolic secondary metabolites that are widely distributed in the human diet. These antioxidants have received much attention because of their neuroprotective, cardioprotective, and chemopreventive actions. While a major focus has been on the flavonoids' antioxidant properties, there is an emerging view that many of the potential health benefits of flavonoids and their in vivo metabolites are due to modulatory actions in cells through direct interactions with proteins, and not necessarily due to their antioxidant function. This view relies on the observations that flavonoids are present in the circulation at very low concentrations, which are not sufficient to exert effective antioxidant effects. The enzyme paraoxonase 1 (PON1) is associated with high-density lipoprotein (HDL), and is responsible for many of HDLs' antiatherogenic properties. We previously showed that the flavonoid glabridin binds to rePON1 and affects the enzyme's 3D structure. This interaction protects the enzyme from inhibition by an atherogenic component of the human carotid plaque. Here, we broadened our study to an investigation of the structure-activity relationships (SARs) of 12 flavonoids from different subclasses with rePON1 using Trp-fluorescence quenching, modeling calculations and Cu(2+)-induced low-density lipoprotein (LDL) oxidation methods. Our findings emphasize the 'protein-binding' mechanism by which flavonoids exert their beneficial biological role toward rePON1. Flavonoids' capacity to interact with the enzyme's rePON1 hydrophobic groove mostly dictates their pro/antioxidant behavior. PMID:23623675

  3. Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity.

    PubMed

    Roy, Kunal; Das, Rudra Narayan; Popelier, Paul L A

    2014-10-01

    Water solubility of ionic liquids (ILs) allows their dispersion into aquatic systems and raises concerns on their pollutant potential. Again, lipophilicity can contribute to the toxicity of ILs due to increased ability of the compounds to cross lipoidal bio-membranes. In the present work, we have performed statistical model development for toxicity of a set of ionic liquids to Daphnia magna, a widely accepted model organism for toxicity testing, using computed lipophilicity, atom-type fragment, quantum topological molecular similarity (QTMS) and extended topochemical atom (ETA) descriptors. The models have been developed and validated in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for quantitative structure-activity relationships (QSARs). The best partial least squares (PLS) model outperforms the previously reported multiple linear regression (MLR) model in statistical quality and predictive ability (R(2)=0.955, Q(2)=0.917, Rpred(2)=0.848). In this work, the ETA descriptors show importance of branching and aromaticity while the QTMS descriptor ellipticity efficiently shows which compounds are influential in the data set, with reference to the model. While obvious importance of lipophilicity is evident from the models, the best model clearly shows the importance of aromaticity suggesting that more lipophilic ILs with less toxicity may be designed by avoiding aromaticity, nitrogen atoms and increasing branching in the cationic structure. The developed quantitative models are in consonance with the recent hypothesis of importance of aromaticity for toxicity of ILs. PMID:25048897

  4. Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs.

    PubMed

    Rawal, R K; Murugesan, V; Katti, S B

    2012-01-01

    In addition to the nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs) and integrase inhibitors (INIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs) have contributed significantly in the treatment of HIV-1 infections. More than 60 structurally different classes of compounds have been identified as NNRTIs, which are specifically inhibiting HIV-1 reverse transcriptase (RT). Five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine and rilpivirine) have been approved by US Food and Drug Administration (FDA) for clinical use. The NNRTIs bind with a specific 'pocket' site of HIV-1 RT (allosteric site) that is closely associated with the NRTI binding site. Due to mutations of the amino acid residues surrounding the NNRTI-binding site, NNRTIs are notorious for rapidly eliciting resistance. Though, the emergence of resistant HIV strains can be circumvented if the NNRTIs are used either alone or in combination with NRTIs (AZT, 3TC, ddI, ddC, TVD or d4T) and PIs (Indinavir, nelfinavir, saquinavir, ritonavir and lopinavir etc.) as shown by both a decrease in plasma HIV-1 RNA levels and increased CD4 T-cells. Here we are going to discuss recent advances in structure activity relationship studies on nevirapine, delavirdine, efavirenz, etravirine, rilpivirine and 4-thiazolidinones (privileged scaffold) HIV-1 NNRTIs. PMID:22998569

  5. Tyrosinase inhibitory effect of benzoic acid derivatives and their structure-activity relationships.

    PubMed

    Khan, Sher Bahadar; Hassan Khan, Mahmud Tareq; Jang, Eui Sung; Akhtar, Kalsoom; Seo, Jongchul; Han, Haksoo

    2010-12-01

    A series of benzoic acid derivatives 1-10 have been synthesised by two different methods. Compounds 1-6 were synthesised by a facile procedure for esterification using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent, methylene chloride as a solvent system and dimethylaminopyridine (DMAP). While 7-10 were synthesised by converting benzoic acid into benzoyl chloride by treating with thionyl chloride in the presence of benzene and performing a further reaction with amine in dried benzene. The structures of all the synthesised derivatives of benzoic acid (1-10) were assigned on the basis of extensive NMR studies. All of them showed inhibitory potential against tyrosinase. Among them, compound 7 was found to be the most potent (1.09 μM) when compared with the standard tyrosinase inhibitors of kojic acid (16.67 μM) and L-mimosine (3.68 μM). Finally in this paper, we have discussed the structure-activity relationships of the synthesised molecules. PMID:20476840

  6. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.

    PubMed

    Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard

    2015-11-17

    The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes. PMID:26451961

  7. Structure-activity relationship of flavonoids active against lard oil oxidation based on quantum chemical analysis.

    PubMed

    Yang, Ji-Guo; Liu, Ben-Guo; Liang, Gui-Zhao; Ning, Zheng-Xiang

    2009-01-01

    In this study, the antioxidant activities of 15 flavonoids against lard oil oxidation were determined by using the Rancimat test. Quercetin, dihydromyricetin, luteolin and kaempferol showed the strongest antioxidant activity, with protection factor values (PF) of 11.50, 11.29, 4.24 and 2.49, respectively. The role of conjugated hydroxyl groups of the B and C ring is discussed. By using the following descriptors: DeltaH(f) (the difference in heat of formation between flavonoids and their free radicals resulted after hydrogen atom donation) and H(BC) (the number of conjugated hydroxyl groups of the B and C ring), the result obtained in the antioxidant Rancimat test could be successfully explained. PMID:19104485

  8. Structure-Activity Relationship in the Auxin Activity of Mono-Substituted Phenylacetic Acids 1

    PubMed Central

    Muir, Robert M.; Fujita, Toshio; Hansch, Corwin

    1967-01-01

    The analysis of substituent constants for the lipophilic and electronic factors in the auxin activity of substituted phenylacetic acids in elongation of coleoptile segments shows that these factors parallel those for the phenoxyacetic acids but assign reactivity in growth promotion to the meta position of phenylacetic acid. The inhibitory effects with supra-optimal concentrations are highly dependent on the lipophilic character of the molecules. PMID:6080870

  9. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies.

    PubMed

    Lourenço, André Luiz; Saito, Max Seidy; Dorneles, Luís Eduardo Gomes; Viana, Gil Mendes; Sathler, Plínio Cunha; Aguiar, Lúcia Cruz de Sequeira; de Pádula, Marcelo; Domingos, Thaisa Francielle Souza; Fraga, Aline Guerra Manssour; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Castro, Helena Carla; Cabral, Lucio Mendes

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations. PMID:25903367

  10. Structure-activity relationships in the peptide antibiotic nisin: antibacterial activity of fragments of nisin.

    PubMed

    Chan, W C; Leyland, M; Clark, J; Dodd, H M; Lian, L Y; Gasson, M J; Bycroft, B W; Roberts, G C

    1996-07-22

    The post-translationally modified peptide antibiotic nisin has been cleaved by a number of proteases and the fragments produced purified, characterised chemically, and assayed for activity in inhibiting the growth of Lactococcus lactis MG1614 and Micrococcus luteus NCDO8166. These results provide information on the importance of different parts of the nisin molecule for its growth-inhibition activity. Removal of the C-terminal five residues leads to approximately a 10-fold decrease in potency, while removal of a further nine residues, encompassing two of the lanthionine rings, leads to a 100-fold decrease. There are some differences between analogous fragments of nisin and subtilin, suggesting possible subtle differences in mode of action. Cleavage within, or removal of, lanthionine ring C essentially abolishes the activity of nisin. The fragment nisin1-12 is inactive itself, and specifically antagonises the growth-inhibitory action of nisin. These results are discussed in terms of current models for the mechanism of action of nisin. PMID:8706842

  11. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies.

    PubMed

    Migliore, Marco; Habrant, Damien; Sasso, Oscar; Albani, Clara; Bertozzi, Sine Mandrup; Armirotti, Andrea; Piomelli, Daniele; Scarpelli, Rita

    2016-02-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) exert their pharmacological effects by inhibiting cyclooxygenase (COX)-1 and COX-2. Though widely prescribed for pain and inflammation, these agents have limited utility in chronic diseases due to serious mechanism-based adverse events such as gastrointestinal damage. Concomitant blockade of fatty acid amide hydrolase (FAAH) enhances the therapeutic effects of the NSAIDs while attenuating their propensity to cause gastrointestinal injury. This favorable interaction is attributed to the accumulation of protective FAAH substrates, such as the endocannabinoid anandamide, and suggests that agents simultaneously targeting COX and FAAH might provide an innovative strategy to combat pain and inflammation with reduced side effects. Here, we describe the rational design and structure-active relationship (SAR) properties of the first class of potent multitarget FAAH-COX inhibitors. A focused SAR exploration around the prototype 10r (ARN2508) led to the identification of achiral (18b) as well as racemic (29a-c and 29e) analogs. Absolute configurational assignment and pharmacological evaluation of single enantiomers of 10r are also presented. (S)-(+)-10r is the first highly potent and selective chiral inhibitor of FAAH-COX with marked in vivo activity, and represents a promising lead to discover novel analgesics and anti-inflammatory drugs. PMID:26774927

  12. Structure-activity relationships of suramin and pyridoxal-5'-phosphate derivatives as P2 receptor antagonists.

    PubMed

    Lambrecht, Günter; Braun, Kirsten; Damer, MiSusannechelle; Ganso, Matthias; Hildebrandt, Caren; Ullmann, Heiko; Kassack, Matthias U; Nickel, Peter

    2002-01-01

    Extracellular adenine and uracil 5'-nucleotides are important signalling molecules that exert a great variety of effects in numerous tissues and cell types through the activation of P2 receptors. In the past eight years, an extended series of P2 receptors (P2X(17), ionotropic subunits; P2Y(1,2,4,6,11,12), metabotropic receptors) has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2 receptor subtypes to the diverse physiological responses mediated by the pharmacological phenotypes of native P2 receptors. Unfortunately, subtype-selective P2 ligands, especially potent and selective antagonists, have been only slowly forthcoming, and this acts as a considerable impediment to progress. However, a number of new P2 receptor antagonists have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2 receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2 receptors and their ligands. It then focuses on structure-activity relationships of PPADS and suramin analogues and will finish with a brief discussion of some related therapeutic possibilities. PMID:12369951

  13. Design, synthesis, and structure-activity relationship studies of a potent PACE4 inhibitor.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Desjardins, Roxane; Beauchemin, Sophie; Prahl, Adam; Lammek, Bernard; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2014-01-01

    PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through detailed structure-activity relationship studies. A variety of ML-peptide analogues modified at the P8-P5 positions with leucine isomers (Nle, DLeu, and DNle) or substituted at the P1 position with arginine mimetics were tested for their inhibitory activity, specificity, stability, and antiproliferative effect. By incorporating d isomers at the P8 position or a decarboxylated arginine mimetic, we obtained analogues with an improved stability profile and excellent antiproliferative properties. The DLeu or DNle residue also has improved specificity toward PACE4, whereas specificity was reduced for a peptide modified with the arginine mimetic, such as 4-amidinobenzylamide. PMID:24350995

  14. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport.

    PubMed

    Kralova, Katarina; Perina, Milan; Waisser, Karel; Jampilek, Josef

    2015-01-01

    Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by sixty-one ring-substituted N-benzylsalicylamides was investigated. The inhibitory potency of the compounds expressed by IC50 value varied from 2.0 to 425.3 ?mol/L. Several evaluated compounds can be considered as effective PET inhibitors; these include N-(3,4- dichlorobenzyl)-2-hydroxy-5-nitrobenzamide (IC50 = 2.0 ?mol/L), 3,5-dibromo-N-(3,4-dichlorobenzyl)-2-hydroxybenzamide (IC50 = 2.3 ?mol/L) and 3,5-dibromo-N-(4-chlorobenzyl)-2-hydroxybenzamide (IC50 = 2.6 ?mol/L) with activity comparable with that of the standard Diuron (IC50 = 1.9 ?mol/L). The PET inhibiting activity increased approximately linearly with increasing lipophilicity of the compounds as well as with the increasing sum of Hammett ? constants of the substituents on the acyl fragment (R(1) = H, 5-OCH3, 5-CH3, 5-Cl, 5-Br, 5-NO2, 4-OCH3, 4-Cl, 3,5-Cl and 3,5-Br) and the benzylamide fragment (R(2) = H, 4-OCH3, 4-CH3, 4-F, 4-Cl and 3,4-Cl). Based on the evaluated structure-PET inhibiting activity relationships (QSAR) it was confirmed that the inhibitory activity of the compounds depends on lipophilicity (log P or distributive parameters ?; (1) and ?(2)of individual substituents) and electronic properties of the substituents on the acyl (?(1)) and the benzylamide fragments (?(2)), the contribution of ?(1) being more significant than that of ?(2). PMID:25134428

  15. The nematocidal activity and the structure-activity relationships of stilbenes.

    PubMed

    Kohno, Tukasa; Togashi, Katsumi; Fukamiya, Narihiko

    2007-06-01

    The pinewood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is the causative agent of the pine wilt disease which has been devastating forests of Pinus densiflora Sieb.et Zucc. and P. thunbergii Parl. in Japan. To prevent the pine wilt disease, the development of nematocidal compound is required. Twenty-one synthesized stilbenes (1)-(20), (23), salicylic acid (21), and phenylsalicilate (22) were examined for their nematocidal activity against an isolate of B. xylophilus (T-4). Among the tested compounds, two fluorinated stilbenes (15) and (13), were found to be most potent compounds against T-4, demonstrating 99% and 98% lethality at 10 ppm concentration. The LD50 values of compounds 15 and 13 were 3 ppm, respectively. PMID:17613818

  16. Structure-Activity Relationships, Pharmacokinetics, and in Vivo Activity of CYP11B2 and CYP11B1 Inhibitors.

    PubMed

    Papillon, Julien P N; Adams, Christopher M; Hu, Qi-Ying; Lou, Changgang; Singh, Alok K; Zhang, Chun; Carvalho, Jose; Rajan, Srinivan; Amaral, Adam; Beil, Michael E; Fu, Fumin; Gangl, Eric; Hu, Chii-Whei; Jeng, Arco Y; LaSala, Daniel; Liang, Guiqing; Logman, Michael; Maniara, Wieslawa M; Rigel, Dean F; Smith, Sherri A; Ksander, Gary M

    2015-06-11

    CYP11B2, the aldosterone synthase, and CYP11B1, the cortisol synthase, are two highly homologous enzymes implicated in a range of cardiovascular and metabolic diseases. We have previously reported the discovery of LCI699, a dual CYP11B2 and CYP11B1 inhibitor that has provided clinical validation for the lowering of plasma aldosterone as a viable approach to modulate blood pressure in humans, as well normalization of urinary cortisol in Cushing's disease patients. We now report novel series of aldosterone synthase inhibitors with single-digit nanomolar cellular potency and excellent physicochemical properties. Structure-activity relationships and optimization of their oral bioavailability are presented. An illustration of the impact of the age of preclinical models on pharmacokinetic properties is also highlighted. Similar biochemical potency was generally observed against CYP11B2 and CYP11B1, although emerging structure-selectivity relationships were noted leading to more CYP11B1-selective analogs. PMID:25953419

  17. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Sharma, Manmohan; Bedi, P M S; Dhar, K L

    2014-04-22

    A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids. PMID:24685980

  18. In-situ Environmental TEM Studies For Developing Structure-Activity Relationship in Supported Metal Catalyst

    NASA Astrophysics Data System (ADS)

    Chenna, Santhosh

    In-situ environmental transmission electron microscopy (ETEM) is a powerful tool for following the evolution of supported metal nanoparticles under different reacting gas conditions at elevated temperatures. The ability to observe the events in real time under reacting gas conditions can provide significant information on the fundamental processes taking place in catalytic materials, from which the performance of the catalyst can be understood. The first part of this dissertation presents the application of in-situ ETEM studies in developing structure-activity relationship in supported metal nanoparticles. In-situ ETEM studies on nanostructures in parallel with ex-situ reactor studies of conversions and selectivities were performed for partial oxidation of methane (POM) to syngas (CO+H2) on Ni/SiO2, Ru/SiO2 and NiRu/SiO2 catalysts. During POM, the gas composition varies along the catalyst bed with increasing temperature. It is important to consider these variations in gas composition in order to design experiments for in-situ ETEM. In-situ ETEM experiments were performed under three different reacting gas conditions. First in the presence of H2, this represents the state of the fresh catalyst for the catalytic reaction. Later in the presence of CH4 and O2 in 2:1 ratio, this is the composition of the reacting gases for the POM reaction and this composition acts as an oxidizing environment. Finally in the presence of CH4, this is the reducing gas. Oxidation and reduction behavior of Ni, Ru and NiRu nanoparticles were followed in an in-situ ETEM under reacting gas conditions and the observations were correlated with the performance of the catalyst for POM. The later part of the dissertation presents a technique for determining the gas compositional analysis inside the in-situ ETEM using electron energy-loss spectroscopy. Techniques were developed to identify the gas composition using both inner-shell and low-loss spectroscopy of EELS. Using EELS, an "operando TEM" technique was successfully developed for detecting the gas phase catalysis inside the ETEM. Overall this research demonstrates the importance of in-situ ETEM studies in understanding the structure-activity relationship in supported-metal catalysts for heterogeneous catalysis application.

  19. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity

    PubMed Central

    Ardah, Mustafa T.; Paleologou, Katerina E.; Lv, Guohua; Abul Khair, Salema B.; Kazim, Abdulla S.; Minhas, Saeed T.; Al-Tel, Taleb H.; Al-Hayani, Abdulmonem A.; Haque, Mohammed E.; Eliezer, David; El-Agnaf, Omar M. A.

    2014-01-01

    The aggregation of α-synuclein (α-syn) is considered the key pathogenic event in many neurological disorders such as Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy, giving rise to a whole category of neurodegenerative diseases known as synucleinopathies. Although the molecular basis of α-syn toxicity has not been precisely elucidated, a great deal of effort has been put into identifying compounds that could inhibit or even reverse the aggregation process. Previous reports indicated that many phenolic compounds are potent inhibitors of α-syn aggregation. The aim of the present study was to assess the anti-aggregating effect of gallic acid (GA) (3,4,5-trihydroxybenzoic acid), a benzoic acid derivative that belongs to a group of phenolic compounds known as phenolic acids. By employing an array of biophysical and biochemical techniques and a cell-viability assay, GA was shown not only to inhibit α-syn fibrillation and toxicity but also to disaggregate preformed α-syn amyloid fibrils. Interestingly, GA was found to bind to soluble, non-toxic oligomers with no β-sheet content, and to stabilize their structure. The binding of GA to the oligomers may represent a potential mechanism of action. Additionally, by using structure activity relationship data obtained from fourteen structurally similar benzoic acid derivatives, it was determined that the inhibition of α-syn fibrillation by GA is related to the number of hydroxyl moieties and their position on the phenyl ring. GA may represent the starting point for designing new molecules that could be used for the treatment of PD and related disorders. PMID:25140150

  20. Structure-activity Relationships of Peptidomimetics that Inhibit PPI of HER2-HER3

    PubMed Central

    Kanthala, Shanthi; Gauthier, Ted; Satyanarayanajois, Seetharama

    2014-01-01

    Human epidermal growth factor receptor-2 (HER2) is a tyrosine kinase family protein receptor that is known to undergo heterodimerization with other members of the family of epidermal growth factor receptors (EGFR) for cell signaling. Overexpression of HER2 and deregulation of signaling has implications in breast, ovarian, and lung cancers. We have designed several peptidomimetics to block the HER2-mediated dimerization, resulting in antiproliferative activity for cancer cells. In the present work we have investigated the structure-activity relationships of peptidomimetic analogs of compound 5. Compound 5 was conformationally constrained by N- and C-terminal modification and cyclization as well as by substitution with D-amino acids at the N-and C-termini. Among the compounds studied in this work, a peptidomimetic compound 21 with D-amino acid substitution and its N- and C-termini capped with acetyl and amide functional groups and a reversed sequence compared to that of compound 5 exhibited better antiproliferative activity in HER2-overexpressed breast, ovarian, and lung cancer cell lines. Compound 21 was further evaluated for its protein-protein interaction (PPI) inhibition ability using enzyme fragment complementation (EFC) assay, proximity ligation assay (PLA), and Western blot analysis. Results suggested that compound 21 is able to block HER2:HER3 interaction and inhibit phosphorylation of the kinase domain of HER2. The mode of binding of compound 21 to HER2 protein was modeled using a docking method. Compound 21 seems to bind to domain IV of HER2 near the PPI site of EGFR:HER2 and HER:HER3 and inhibit PPI. PMID:24222531

  1. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  2. Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution.

    PubMed

    Gombar, Vijay K; Hall, Stephen D

    2013-04-22

    Reliable prediction of two fundamental human pharmacokinetic (PK) parameters, systemic clearance (CL) and apparent volume of distribution (Vd), determine the size and frequency of drug dosing and are at the heart of drug discovery and development. Traditionally, estimated CL and Vd are derived from preclinical in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) measurements. In this paper, we report quantitative structure-activity relationship (QSAR) models for prediction of systemic CL and steady-state Vd (Vdss) from intravenous (iv) dosing in humans. These QSAR models avoid uncertainty associated with preclinical-to-clinical extrapolation and require two-dimensional structure drawing as the sole input. The clean, uniform training sets for these models were derived from the compilation published by Obach et al. (Drug Metab. Disp. 2008, 36, 1385-1405). Models for CL and Vdss were developed using both a support vector regression (SVR) method and a multiple linear regression (MLR) method. The SVR models employ a minimum of 2048-bit fingerprints developed in-house as structure quantifiers. The MLR models, on the other hand, are based on information-rich electro-topological states of two-atom fragments as descriptors and afford reverse QSAR (RQSAR) analysis to help model-guided, in silico modulation of structures for desired CL and Vdss. The capability of the models to predict iv CL and Vdss with acceptable accuracy was established by randomly splitting data into training and test sets. On average, for both CL and Vdss, 75% of test compounds were predicted within 2.5-fold of the value observed and 90% of test compounds were within 5.0-fold of the value observed. The performance of the final models developed from 525 compounds for CL and 569 compounds for Vdss was evaluated on an external set of 56 compounds. The predictions were either better or comparable to those predicted by other in silico models reported in the literature. To demonstrate the practical application of the RQSAR approach, the structure of vildagliptin, a high-CL and a high-Vdss compound, is modified based on the atomic contributions to its predicted CL and Vdss to propose compounds with lower CL and lower Vdss. PMID:23451981

  3. Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity.

    PubMed

    Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh

    2015-11-15

    Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. PMID:26432036

  4. COMPUTER-ASSISTED STRUCTURE ACTIVITY RELATIONSHIPS OF NITROGENOUS CYCLIC COMPOUNDS TESTED IN SALMONELLA ASSAYS FOR MUTAGENICITY

    EPA Science Inventory

    Study of the relationship between mutagenicity and molecular structure for a data set of nitrogenous cyclic compounds is reported. A computerized SAR system (ADAPT) was utilized to classify a data set of 114 nitrogenous cyclic compounds with 19 molecular descriptors. All of the d...

  5. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu S.; Soni, Shivani; Chin, Kenneth T.; Chaudhuri, Padmaparna; Muto, Katherine W.; Berkowitz, Julia; Handlogten, Michael W.; Alves, Nathan J.; Bilgicer, Basar; Dinulescu, Daniela M.; Mashelkar, Raghunath A.; Sengupta, Shiladitya

    2010-01-01

    Cisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation. We engineered a novel polymer, glucosamine-functionalized polyisobutylene-maleic acid, where platinum (Pt) can be complexed to the monomeric units using a monocarboxylato and an O ? Pt coordinate bond. We show that at a unique platinum to polymer ratio, this complex self-assembles into a nanoparticle, which releases cisplatin in a pH-dependent manner. The nanoparticles are rapidly internalized into the endolysosomal compartment of cancer cells, and exhibit an IC50 (4.25 ± 0.16 ?M) comparable to that of free cisplatin (3.87 ± 0.37 ?M), and superior to carboplatin (14.75 ± 0.38 ?M). The nanoparticles exhibited significantly improved antitumor efficacy in terms of tumor growth delay in breast and lung cancers and tumor regression in a K-rasLSL/+/Ptenfl/fl ovarian cancer model. Furthermore, the nanoparticle treatment resulted in reduced systemic and nephrotoxicity, validated by decreased biodistribution of platinum to the kidney as quantified using inductively coupled plasma spectroscopy. Given the universal need for a better platinate, we anticipate this coupling of nanotechnology and structure-activity relationship to rationally reengineer cisplatin could have a major impact globally in the clinical treatment of cancer. PMID:20616005

  6. Structure–Activity Relationships of ?-Keto Oxazole Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Hardouin, Christophe; Kelso, Michael J.; Romero, F. Anthony; Rayl, Thomas J.; Leung, Donmienne; Hwang, Inkyu; Cravatt, Benjamin F.; Boger, Dale L.

    2008-01-01

    A systematic study of the structure–activity relationships (SAR) of 2b (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed targeting the C2 acyl side chain. A series of aryl replacements or substituents for the terminal phenyl group provided effective inhibitors (e.g., 5c, aryl = 1-napthyl, Ki = 2.6 nM) with 5hh (aryl = 3-Cl-Ph, Ki = 900 pM) being 5-fold more potent than 2b. Conformationally-restricted C2 side chains were examined and many provided exceptionally potent inhibitors of which 11j (ethylbiphenyl side chain) was established to be a 750 pM inhibitor. A systematic series of heteroatoms (O, NMe, S), electron-withdrawing groups (SO, SO2), and amides positioned within and hydroxyl substitutions on the linking side chain were investigated which typically led to a loss in potency. The most tolerant positions provided effective inhibitors (12p, 6-position S, Ki = 3 nM or 13d, 2-position OH, Ki = 8 nM) comparable in potency to 2b. Proteomic-wide screening of selected inhibitors from the systematic series of >100 candidates prepared revealed that they are selective for FAAH over all other mammalian serine proteases. PMID:17559203

  7. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents.

    PubMed

    Levet, A; Bordes, C; Clément, Y; Mignon, P; Chermette, H; Marote, P; Cren-Olivé, C; Lantéri, P

    2013-10-01

    REACH regulation requires ecotoxicological data to characterize industrial chemicals. To limit in vivo testing, Quantitative Structure-Activity Relationships (QSARs) are advocated to predict toxicity of a molecule. In this context, the topic of this work was to develop a reliable QSAR explaining the experimental acute toxicity of organic solvents for fish trophic level. Toxicity was expressed as log(LC50), the concentration in mmol.L(-1) producing the 50% death of fish. The 141 chemically heterogeneous solvents of the dataset were described by physico-chemical descriptors and quantum theoretical parameters calculated via Density Functional Theory. The best subsets of solvent descriptors for LC50 prediction were chosen both through the Kubinyi function associated with Enhanced Replacement Method and a stepwise forward multiple linear regressions. The 4-parameters selected in the model were the octanol-water partition coefficient, LUMO energy, dielectric constant and surface tension. The predictive power and robustness of the QSAR developed were assessed by internal and external validations. Several techniques for training sets selection were evaluated: a random selection, a LC50-based selection, a balanced selection in terms of toxic and non-toxic solvents, a solvent profile-based selection with a space filling technique and a D-optimality onions-based selection. A comparison with fish LC50 predicted by ECOSAR model validated for neutral organics confirmed the interest of the QSAR developed for the prediction of organic solvent aquatic toxicity regardless of the mechanism of toxic action involved. PMID:23866172

  8. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors.

    PubMed

    Sharma, Sahil; Singh, Jagjeet; Ojha, Ritu; Singh, Harbinder; Kaur, Manpreet; Bedi, P M S; Nepali, Kunal

    2016-04-13

    Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors. PMID:26907156

  9. Quantitative structure-activity relationships for the toxicity of nitrobenzenes to Tetrahymena thermophila.

    PubMed

    Xu, Jing-Bo; Jing, Ti-Song; Pauli, W; Berger, S

    2002-01-01

    In this study IGC50 (50% inhibitory growth concentration) values of 26 nitrobenzenes were determined for population growth endpoint of Tetrahymena thermophila. The toxicity order of the observed compounds has been found as follows: dinitro compounds > mono-nitro compounds; dichloronitrobenzenes > monochloronitrobenzenes; and meta-substituted nitrobenzenes > ortho-/para-substituted nitrobenzenes (NT, NPh, NAnis) except for the dinitrobenzenes and nitroanilines (DNB, NAn). Quantitative structure activity relationships (QSARs) were developed using log of the inverse of the IGC50 (logIGC50(-1)) in mole liter as the dependent variable and six molecular descriptors--logP, 1X(V), I, K alpha, sigma sigma- and E(LUMO) as the independent variables. Through multiplicate regression analysis, one best equation was obtained: log IGC50(-1) = 2.93 + 0.830sigma sigma- + 0.350I, n = 26, r = 0.923, r2 = 0.852, s = 0.265, f = 66.4 The equation was used to estimate IGC50 for seven analogues. PMID:12046656

  10. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fisheri

    SciTech Connect

    Schultz, T.W.; Cronin, M.T.D.

    1997-02-01

    Acute toxicity values of 16 organic compounds thought to elicit their response via the weak acid respiratory uncoupling mechanism of toxic action were secured from the literature. Regression analysis of toxicities revealed that a measured 5-min V. fisheri potency value can be used as a surrogate for the 30-min value. Regression analysis of toxicity versus hydrophobicity, measured as the 1-octanol/water partition coefficient (log K{sub ow}), was used to formulate a quantitative structure-activity relationship (QSAR). The equation log pT{sub 30}{sup {minus}1} = 0.489(log K{sub ow}) + 0.126 was found to be a highly predictive model. This V. fisheri QSAR is statistically similar to QSARs generated from weak acid uncoupler potency data for Pimephales promelas survivability and Tetrahymena pyriformis population growth impairment. This work, therefore, suggests that the weak acid respiratory uncoupling mechanism of toxic action is present in V. fisheri, and as such is not restricted to mitochondria-containing organisms.

  11. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona. PMID:25961528

  12. Deep neural nets as a method for quantitative structure-activity relationships.

    PubMed

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable. PMID:25635324

  13. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer. PMID:26773437

  14. [Rough sets theory in the analysis of structure-activity relationships of quaternary quinolinium- and isoquinolinium compounds].

    PubMed

    Krysinski, J

    1991-11-01

    Relationship between chemical structure and antimicrobial activity of 72 quaternary quinolinium and isoquinolinium compounds is analyzed using the theory of rough sets. The compounds are described by 11 attributes concerning structure and are divided into 3 classes of activity. The description builds up on information system. Using the rough sets approach a smallest set of attributes significant for a high quality of classification has been found. A decision algorithm has been driven from the information system showing up important relations between structure and activity. This may be helpful in supporting decisions concerning synthesis of new antimicrobial compounds. PMID:1804057

  15. Structure-activity relationship studies toward the discovery of selective apelin receptor agonists.

    PubMed

    Margathe, Jean-François; Iturrioz, Xavier; Alvear-Perez, Rodrigo; Marsol, Claire; Riché, Stéphanie; Chabane, Hadjila; Tounsi, Nassera; Kuhry, Maxime; Heissler, Denis; Hibert, Marcel; Llorens-Cortes, Catherine; Bonnet, Dominique

    2014-04-10

    Apelin is the endogenous ligand for the previously orphaned G protein-coupled receptor APJ. Apelin and its receptor are widely distributed in the brain, heart, and vasculature, and are emerging as an important regulator of body fluid homeostasis and cardiovascular functions. To further progress in the pharmacology and the physiological role of the apelin receptor, the development of small, bioavailable agonists and antagonists of the apelin receptor, is crucial. In this context, E339-3D6 (1) was described as the first nonpeptidic apelin receptor agonist. We show here that 1 is actually a mixture of polymethylated species, and we describe an alternative and versatile solid-phase approach that allows access to highly pure 27, the major component of 1. This approach was also applied to prepare a series of derivatives in order to identify the crucial structural determinants required for the ligand to maintain its affinity for the apelin receptor as well as its capacity to promote apelin receptor signaling and internalization. The study of the structure-activity relationships led to the identification of ligands 19, 21, and 38, which display an increased affinity compared to that of 27. The latter and 19 behave as full agonists with regard to cAMP production and apelin receptor internalization, whereas 21 is a biased agonist toward cAMP production. Interestingly, the three ligands display a much higher stability in mouse plasma (T1/2 > 10 h) than the endogenous apelin-17 peptide 2 (T1/2 < 4 min). PMID:24625069

  16. Actinomycin Analogues Containing Pipecolic Acid: Relationship of Structure to Biological Activity

    PubMed Central

    Formica, Joseph V.; Shatkin, Aaron J.; Katz, Edward

    1968-01-01

    Streptomyces antibioticus synthesizes a mixture of actinomycins which differ at the “imino acid” site of the peptide chains. In the presence of exogenous pipecolic acid, several new actinomycins were synthesized and 70% of the proline in the antibiotic mixture was replaced by the analogue. Three new antibiotics (designated Pip 1α, Pip 1β, and Pip 2) were isolated from culture filtrates, purified, and crystallized. The molar ratio of pipecolic acid to proline was: Pip 1α, 1:0; Pip 1β, 1:1; Pip 2, 2:0. These compounds inhibited the growth and cell division of gram-positive, but not gram-negative, bacteria. The relative inhibitory activity against bacteria, Escherichia coli deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase in vitro, and RNA synthesis in Bacillus subtilis and mouse L-929 cells was: actinomycin IV = Pip 1β > Pip 2 > Pip 1α. Protein synthesis in B. subtilis was less affected, and DNA synthesis was inhibited only at higher concentrations of antibiotic tested. In L cells, DNA formation was reduced less than RNA synthesis, whereas protein synthesis was not blocked under the experimental conditions employed. Kinetic studies with B. subtilis revealed that RNA synthesis was inhibited rapidly followed by an inhibition of protein synthesis. All four antibiotics markedly inhibited the replication of vaccinia virus and reovirus in tissue culture cells, but the production of poliovirus was resistant to the antibiotics. These actinomycins bind to DNA, resulting in an elevation of its Tm and a decrease in the peak extinction of the actinomycins. The mode of action, as well as the structure-activity relationships among the actinomycins, are discussed relative to a previously proposed model of binding. PMID:4174667

  17. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    SciTech Connect

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish). Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.

  18. A cytotoxic principle of Tamarindus indica, di-n-butyl malate and the structure-activity relationship of its analogues.

    PubMed

    Kobayashi, A; Adenan, M I; Kajiyama, S; Kanzaki, H; Kawazu, K

    1996-01-01

    Bioassay-guided fractionation of the methanolic extract of Tamarindus indica fruits led to the isolation of L-(-)-di-n-butyl malate which exhibited a pronounced cytotoxic activity against sea urchin embryo cells. In order to study structure-activity relationships, close-structure relatives of di-n-butyl malate were synthesized using D-(+)- and L-(-)-malic acid as starting materials, and their cytotoxic activities were examined for the sea urchin embryo assay. L-(-)-Di-n-pentyl malate was the most effective inhibitor to the development of the fertilized eggs. Significant inhibitory activity was not seen in the esters of D-(-)-isomer. PMID:8639230

  19. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships.

    PubMed

    Morais, Thiago R; da Costa-Silva, Thais A; Tempone, Andre G; Borborema, Samanta Etel T; Scotti, Marcus T; de Sousa, Raquel Maria F; Araujo, Ana Carolina C; de Oliveira, Alberto; de Morais, Sérgio Antônio L; Sartorelli, Patricia; Lago, João Henrique G

    2014-01-01

    Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees. PMID:24802987

  20. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model.

    PubMed

    Franke, R; Gruska, A; Giuliani, A; Benigni, R

    2001-09-01

    The aromatic amines are widely used industrial chemicals and can be found in tobacco smoke as well as in products generated during cooking. In a previous study, we established quantitative structure-activity relationship (QSAR) models linking the carcinogenic potency of non-heterocyclic carcinogenic aromatic amines to a series of molecular determinants. We also found that QSAR models for carcinogenic potency were inadequate in describing the difference between carcinogenic and non-carcinogenic amines [Benigni,R., Giuliani,A., Franke,R. and Gruska,A. (2000) CHEM: Rev., 100, 3697-3714]. In this paper, we derived specific QSAR models for separating active from inactive amines. It appeared that hydrophobicity (as measured by the octanol/water partition coefficient, logP) played a major role in modulating the potency of the carcinogens, whereas mainly electronic (reactivity) and steric characteristics separated the carcinogens from the non-carcinogens. Interestingly, a similar pattern was previously demonstrated by us regarding their mutagenic activity [Benigni,R., Passerini,L., Gallo,G., Giorgi,F. and Cotta-Ramusino,M. (1998) ENVIRON: Mol. Mutagen., 32, 75-83]. Based on the QSAR models found, the molecular determinants of the mechanisms of action of aromatic amines are discussed in detail. The QSAR models obtained can be used directly for estimating the carcinogenicity of other non-heterocyclic aromatic amines for which experimental data are not available. With the QSARs in Benigni et al. (2000) and the present results, a two-step prediction of carcinogenicity of aromatic amines is possible: (i) step 1, yes/no activity from the discriminant functions; and (ii) step 2, if the answer from step 1 is yes then prediction of the degree of potency from the equations in Benigni et al. (2000). Thus, QSAR models can contribute to the following: the direct synthesis of safer chemicals; the estimation of the risk posed by amines present in the environment; setting priorities for further experimentation, thus also reducing the use of experimental animals. Whereas the quality of in vivo experimental data is often questioned, the robustness and interpretability of the present results strongly support the reliability of the rodent carcinogenicity assay. PMID:11532881

  1. Structural Elucidation and Structure-Anti-inflammatory Activity Relationships of Cembranoids from Cultured Soft Corals Sinularia sandensis and Sinularia flexibilis.

    PubMed

    Tsai, Tsung-Chang; Chen, Hsueh-Yu; Sheu, Jyh-Horng; Chiang, Michael Y; Wen, Zhi-Hong; Dai, Chang-Feng; Su, Jui-Hsin

    2015-08-19

    New cembranoids 4-carbomethoxyl-10-epigyrosanoldie E (1), 7-acetylsinumaximol B (2), diepoxycembrene B (6), dihydromanaarenolide I (8), and isosinulaflexiolide K (9), along with 11 known related metabolites, were isolated from cultured soft corals Sinularia sandensis and Sinularia flexibilis. The structures were elucidated by means of infrared, mass spectrometry, and nuclear magnetic resonance techniques, and the absolute configurations of 1, 4, 9, and 15 were further confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of these coral metabolites and comparison with known analogues showed that one hypothesis (that cembrane diterpenes possessing an absolute configuration of an isopropyl group at C1 obtained from Alcyonacean soft corals belong to the ? series, whereas analogues isolated from Gorgonacean corals belong to the ? series) is not applicable for a small number of cembranoids. An in vitro anti-inflammatory study using LPS-stimulated macrophage-like cell line RAW 264.7 revealed that compounds 9-14 significantly suppressed the accumulation of pro-inflammatory proteins, iNOS and COX-2. Structure-activity relationship analysis indicated that cembrane-type compounds with one seven-membered lactone moiety at C-1 are potential anti-inflammatory agents. This is the first culture system in the world that has successfully been used to farm S. sandensis. PMID:26260702

  2. Three dimensional quantitative structure-activity relationships of sulfonamides binding monoclonal antibody by comparative molecular field analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs, binding a monoclonal antibody (MabSMR) produced against sulfamerazine was carried out by comparative molecular field analysis (CoMFA). The affinities of MabSMR, expressed as Log10IC50, for 17 ...

  3. Synthesis and structure-activity relationships of 8-azabicyclo[3.2.1]octane benzylamine NK1 antagonists.

    PubMed

    Thomson, Christopher G; Carlson, Emma; Chicchi, Gary G; Kulagowski, Janusz J; Kurtz, Marc M; Swain, Christopher J; Tsao, Kwei-Lan C; Wheeldon, Alan

    2006-02-15

    A series of 8-azabicyclo[3.2.1]octane amine hNK1 antagonists has been investigated and structure-activity relationships of the benzylamine and 6-exo substituents described. Acidic substituents at C6 give a series of high affinity compounds for hNK1 with selectivity over the hERG channel. PMID:16307878

  4. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  5. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants.

    PubMed

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  6. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  7. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    PubMed

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint. PMID:25541751

  8. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    NASA Astrophysics Data System (ADS)

    ?wis?ocka, Renata; Piekut, Jolanta; Lewandowski, W?odzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  9. Novel Inhibitors of Influenza Virus Fusion: Structure-Activity Relationship and Interaction with the Viral Hemagglutinin?

    PubMed Central

    Vanderlinden, Evelien; Gökta?, Fusun; Cesur, Zafer; Froeyen, Matheus; Reed, Mark L.; Russell, Charles J.; Cesur, Nesrin; Naesens, Lieve

    2010-01-01

    A new class of N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide inhibitors of influenza virus hemagglutinin (HA)-mediated membrane fusion that has a narrow and defined structure-activity relationship was identified. In Madin-Darby canine kidney (MDCK) cells infected with different strains of human influenza virus A/H3N2, the lead compound, 4c, displayed a 50% effective concentration of 3 to 23 ?M and an antiviral selectivity index of 10. No activity was observed for A/H1N1, A/H5N1, A/H7N2, and B viruses. The activity of 4c was reduced considerably when added 30 min or later postinfection, indicating that 4c inhibits an early step in virus replication. 4c and its congeners inhibited influenza A/H3N2 virus-induced erythrocyte hemolysis at low pH. 4c-resistant virus mutants, selected in MDCK cells, contained either a single D112N change in the HA2 subunit of the viral HA or a combination of three substitutions, i.e., R220S (in HA1) and E57K (in HA2) and an A-T substitution at position 43 or 96 of HA2. The mutants showed efficiency for receptor binding and replication similar to that of wild-type virus yet displayed an increased pH of erythrocyte hemolysis. In polykaryon assays with cells expressing single-mutant HA proteins, the E57K, A96T, and D112N mutations resulted in 4c resistance, and the HA proteins containing R220S, A96T, and D112N mutations displayed an increased fusion pH. Molecular modeling identified a binding cavity for 4c involving arginine-54 and glutamic acid-57 in the HA2 subunit. Our studies with the new fusion inhibitor 4c confirm the importance of this HA region in the development of influenza virus fusion inhibitors. PMID:20181685

  10. Structure-Activity Relationship of Oligomeric Flavan-3-ols: Importance of the Upper-Unit B-ring Hydroxyl Groups in the Dimeric Structure for Strong Activities.

    PubMed

    Hamada, Yoshitomo; Takano, Syota; Ayano, Yoshihiro; Tokunaga, Masahiro; Koashi, Takahiro; Okamoto, Syuhei; Doi, Syoma; Ishida, Masahiko; Kawasaki, Takashi; Hamada, Masahiro; Nakajima, Noriyuki; Saito, Akiko

    2015-01-01

    Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks) and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate the importance of the upper-unit of 4-8 condensed dimeric flavan-3-ols for antimicrobial activity against Saccharomyces cerevisiae (S. cerevisiae) and cervical epithelioid carcinoma cell line HeLa S3 proliferation inhibitory activity. To clarify the important constituent unit of proanthocyanidin, we synthesized four dimeric compounds, (-)-epigallocatechin-[4,8]-(+)-catechin, (-)-epigallocatechin-[4,8]-(-)-epigallocatechin, (-)-epigallocatechin-[4,8]-(-)-epigallocatechin-3-O-gallate, and (+)-catechin-[4,8]-(-)-epigallocatechin and performed structure-activity relationship (SAR) studies. In addition to antimicrobial activity against S. cerevisiae and proliferation inhibitory activity on HeLa S3 cells, the correlation of 2,2-diphenyl-l-picrylhydrazyl radical scavenging activity with the number of phenolic hydroxyl groups was low. On the basis of the results of our SAR studies, we concluded that B-ring hydroxyl groups of the upper-unit of the dimer are crucially important for strong and effective activity. PMID:26501251

  11. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  12. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.

    PubMed

    Lee, Yunho; von Gunten, Urs

    2012-12-01

    Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure-activity relationships or QSARs) are often found between the k-values for an oxidation reaction of closely related compounds (i.e. having a common organic functional group) and substituent descriptor variables such as Hammett or Taft sigma constants. In this study, we developed QSARs for the oxidation of organic and some inorganic compounds and organic micropollutants transformation during oxidative water treatment. A number of 18 QSARs were developed based on overall 412 k-values for the reaction of chlorine, chlorine dioxide, ferrate, and ozone with organic compounds containing electron-rich moieties such as phenols, anilines, olefins, and amines. On average, 303 out of 412 (74%) k-values were predicted by these QSARs within a factor of 1/3-3 compared to the measured values. For HO(·) reactions, some principles and estimation methods of k-values (e.g. the Group Contribution Method) are discussed. The developed QSARs and the Group Contribution Method could be used to predict the k-values for various emerging organic micropollutants. As a demonstration, 39 out of 45 (87%) predicted k-values were found within a factor 1/3-3 compared to the measured values for the selected emerging micropollutants. Finally, it is discussed how the uncertainty in the predicted k-values using the QSARs affects the accuracy of prediction for micropollutant elimination during oxidative water treatment. PMID:22939392

  13. Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk.

    PubMed

    Muhammad, Faqir; Awais, Mian Muhammad; Akhtar, Masood; Anwar, Muhammad Irfan

    2013-01-01

    The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality. PMID:23369514

  14. Application of quantitative structure--activity relationships for assessing the aquatic toxicity of phthalate esters.

    PubMed

    Parkerton, T F; Konkel, W J

    2000-01-01

    Phthalate esters (PEs) are an important class of industrial chemicals for which an extensive aquatic toxicity database is available. The objectives of this study were to use these data to develop quantitative structure-activity relationships (QSARs) that describe aquatic toxicity for different freshwater and marine species, gain insights into toxicity mechanisms, and calculate PE water quality criteria using statistical extrapolation procedures. Results for low-molecular-weight PEs with log Kow<6 indicate that toxicity data conform to a simple log Kow-dependent QSAR. Fish were found to be more sensitive than algae while invertebrates spanned a wide range in toxicological response. Freshwater and marine species demonstrated a similar distribution of sensitivities. Comparison of species-dependent QSARs supports the hypothesis that biotransformation plays an important role in explaining toxicity differences observed between species. Estimated critical body residues (CBRs) for parent PE in fish were in the range reported for other polar organic chemicals while CBRs for parent PE plus associated metabolites were in the range reported for nonpolar narcotics (i.e., baseline toxicity) suggesting a possible putative role of PE metabolites. Depending on extrapolation procedure and assumptions, predicted no-effect concentrations (PNECs) for dimethyl, diethyl, dibutyl, and butybenzyl phthalate ranged from 3109 to 4780, 865 to 1173, 43 to 62, and 38 to 60 microg l(-1), respectively. PNECs derived using this approach provide a transparent technical basis to support aquatic risk assessment for low-molecular-weight PEs. Results for high-molecular-weight PEs (log Kow>6) indicate that these chemicals are not acutely or chronically toxic to freshwater or marine organisms due to the combined role of low water solubility and limited bioconcentration potential which precludes attainment of internal concentrations that are required to elicit adverse effects. It is concluded that attempts to establish aquatic PNECs for high-molecular-weight PEs are not scientifically defensible. PMID:10677269

  15. Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk

    PubMed Central

    2013-01-01

    The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality. PMID:23369514

  16. Structure-activity relationship for two lipoxygenase inhibitors and their potential for inducing nephrotic syndrome.

    PubMed

    Morley, T J; Evans, G O; Goodwin, D A; Read, N G; Hodgson, S T; Hawksworth, G M

    1997-10-01

    In a study of structure-activity relationship with drug-induced nephropathy two lipoxygenase inhibitors, the N-hydroxyurea derivative 70C ((E)-N-{3-[3-(4-fluorophenoxy) phenyl]-1-(R, S)-methylprop-2-enyl}-N-hydroxyurea) and the N-hydroxamic acid analogue 360C ((E)-N-{3-[3-(4-fluorophenoxy) phenyl]-1-(R, S)-methylprop-2-enyl}-N-hydroxamic acid), were administered to rats. 70C and 360C were dosed to female Wistar rats at 100 mg/kg po daily for 7 days. Another group of rats was given a single intravenous bolus dose of puromycin aminonucleoside (PAN) at 100 mg/kg. Urine samples were collected from all groups during the study and plasma samples were collected after 7 days. Kidneys were excised and fixed for examination by electron microscopy. 70C- and PAN-treated groups both showed early changes in the glomeruli, in which the visceral cells appeared enlarged and showed varying degrees of foot process loss. This foot process loss was associated with decreases in total plasma protein and albumin and increases in the plasma cholesterol, triglycerides, creatinine, and urea were recorded. Marked proteinuria was observed in both the 70C and PAN groups. The foot process loss together with increased proteinuria, hypoalbuminemia, hypercholesterolemia, and lipemia are all characteristic of the human condition, Minimal Change Nephrotic Syndrome. All the biochemical and morphological investigations showed that 360C-treated rats were similar to the control group, suggesting that the hydroxyurea moiety of 70C is responsible, either directly or indirectly, for the induction of the nephrotic syndrome seen in rats. PMID:9344898

  17. Quantitative structure-activity relationships for organophosphates binding to trypsin and chymotrypsin.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Gearhart, Jeffery M

    2011-01-01

    Organophosphate (OP) nerve agents such as sarin, soman, tabun, and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) do not react solely with acetylcholinesterase (AChE). Evidence suggests that cholinergic-independent pathways over a wide range are also targeted, including serine proteases. These proteases comprise nearly one-third of all known proteases and play major roles in synaptic plasticity, learning, memory, neuroprotection, wound healing, cell signaling, inflammation, blood coagulation, and protein processing. Inhibition of these proteases by OP was found to exert a wide range of noncholinergic effects depending on the type of OP, the dose, and the duration of exposure. Consequently, in order to understand these differences, in silico biologically based dose-response and quantitative structure-activity relationship (QSAR) methodologies need to be integrated. Here, QSAR were used to predict OP bimolecular rate constants for trypsin and ?-chymotrypsin. A heuristic regression of over 500 topological/constitutional, geometric, thermodynamic, electrostatic, and quantum mechanical descriptors, using the software Ampac 8.0 and Codessa 2.51 (SemiChem, Inc., Shawnee, KS), was developed to obtain statistically verified equations for the models. General models, using all data subsets, resulted in R(2) values of .94 and .92 and leave-one-out Q(2) values of 0.9 and 0.87 for trypsin and ?-chymotrypsin. To validate the general model, training sets were split into independent subsets for test set evaluation. A y-randomization procedure, used to estimate chance correlation, was performed 10,000 times, resulting in mean R(2) values of .24 and .3 for trypsin and ?-chymotrypsin. The results show that these models are highly predictive and capable of delineating the complex mechanism of action between OP and serine proteases, and ultimately, by applying this approach to other OP enzyme reactions such as AChE, facilitate the development of biologically based dose-response models. PMID:21120745

  18. Synthesis, Biological Evaluation and Structure-Activity Relationships of Dithiolethiones as Inducers of Cytoprotective Phase 2 Enzymes

    PubMed Central

    Munday, Rex; Zhang, Yuesheng; Paonessa, Joseph D.; Munday, Christine M.; Wilkins, Alistair L.; Babu, Jacob

    2010-01-01

    Dithiolethiones are a family of promising cancer chemopreventive agents, and induction of Phase 2 enzymes is key to their chemopreventive activities. Two dithiolethiones have been evaluated in humans for cancer prevention. While some chemopreventive activities were detected in several human studies, potential side effects are a concern. Herein, we report structure-activity relationships of 25 dithiolethiones. Several compounds show exceedingly potent and bladder specific activity in Phase 2 enzyme induction. Structural features responsible for such activity, as well as those inhibiting the activity, are discussed. Moreover, the compounds activate and depend on Nrf2 for their inductive activities. Nrf2 is a major transcriptional stimulator of cytoprotective genes and is critical for cancer prevention. Thus, several new dithiolethiones that are highly promising for bladder cancer prevention have been identified. Because the compounds act specifically in the bladder, the likelihood of potential systemic toxicity may be low. PMID:20481594

  19. Benzopyrans as selective estrogen receptor beta agonists (SERBAs). Part 2: structure-activity relationship studies on the benzopyran scaffold.

    PubMed

    Richardson, Timothy I; Norman, Bryan H; Lugar, Charles W; Jones, Scott A; Wang, Yong; Durbin, Jim D; Krishnan, Venkatesh; Dodge, Jeffrey A

    2007-07-01

    Benzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER subtypes alpha and beta in opposite orientations. Here we describe structure-activity relationship studies that led to the discovery of bezopyran 5b. X-ray crystal structures of 5b and a non-selective analog 5c in ERalpha help explain the observed selectivity of the benzopyran platform. PMID:17485205

  20. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action.

    PubMed

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-?B and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure-activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  1. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity.

    PubMed

    Blaazer, Antoni R; Lange, Jos H M; van der Neut, Martina A W; Mulder, Arie; den Boon, Femke S; Werkman, Taco R; Kruse, Chris G; Wadman, Wytse J

    2011-10-01

    The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB(1)) and cannabinoid 2 (CB(2)) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl substituent in 11-16. Furthermore, the 3-carbonyl tether was replaced with a carboxamide linker in 17-20 and the azaindole (pyrrolopyridine) nucleus was designed as indole bioisostere with improved physicochemical properties in 21-25. Through these SAR efforts, several high affinity CB(1)/CB(2) dual cannabinoid receptor ligands were identified. Indole-3-carboxamide 17 displayed single-digit nanomolar affinity and ~80 fold selectivity for CB(1) over the CB(2) receptor. The azaindoles displayed substantially improved physicochemical properties (lipophilicity; aqueous solubility). Azaindole 21 elicited potent cannabinoid activity. Cannabinoid receptor agonists 17 and 21 potently modulated excitatory synaptic transmission in an acute rat brain slice model of cannabinoid receptor-modulated neurotransmission. PMID:21885167

  2. Relationship between primary structure and activity in exorphins and endogenous opioid peptides.

    PubMed

    Bakalkin Gya; Demuth, H U; Nyberg, F

    1992-09-21

    We have found a correlation between the certain characteristics of primary structure and biologic activity in exorphins and endogenous opioid peptide family. The characteristics of primary structure are the content of certain segment pairs as well as the density of their arrangement in a peptide. These segment pairs represent basic elements of the regulatory peptide primary structure pattern, which was found recently [Dokl. Akad. Nauk USSR 289 (1986) 721-724; Int. J. Peptide Prot. Res. 38 (1991) 505-510]. PMID:1526277

  3. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  4. [Discussion on correlation between preparation, in vivo conversion process and potential structure-activity relationship of ginsenoside].

    PubMed

    Jin, Xin; Zhang, Zhen-Hai; Sun, E; Liu, Qi-Yuan; Jia, Xiao-Bin

    2013-02-01

    Ginseng is one of traditional Chinese medicines widely used worldwide according to the theory that "food and medicine share the same origin". Its main active ingredients are believed to be ginsenoside. In the past decades, studies on their chemical structure and pharmacological activity have made significant progress. So far, however, there is not a specific describtion on ginseng preparation and in vivo conversion process as well as an explanation on why rare ginsenoside can enhance anticancer activity. Therefore, this essay first describes the diversity of ginsenoside contained in ginseng, including natural ginsenoside, special ginsenoside generated from preparation and bioconversion processes. Subsequently, it summarizes the preparation and in vitro conversion processes, and discusses the potential structure-activity relationship between rare ginsenoside and its pharmacological activity. The study on the correlation between these chemical changes and their pharmacological activity help bring forth new ideas to the enhancement of anticancer activity of ginsenoside, and facilitate the development of new anticancer drugs. PMID:23667999

  5. Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: design, synthesis, and biological and structure-activity relationship studies.

    PubMed

    Gemma, Sandra; Campiani, Giuseppe; Butini, Stefania; Kukreja, Gagan; Coccone, Salvatore Sanna; Joshi, Bhupendra P; Persico, Marco; Nacci, Vito; Fiorini, Isabella; Novellino, Ettore; Fattorusso, Ernesto; Taglialatela-Scafati, Orazio; Savini, Luisa; Taramelli, Donatella; Basilico, Nicoletta; Parapini, Silvia; Morace, Giulia; Yardley, Vanessa; Croft, Simon; Coletta, Massimiliano; Marini, Stefano; Fattorusso, Caterina

    2008-03-13

    We describe herein the design, synthesis, biological evaluation, and structure-activity relationship (SAR) studies of an innovative class of antimalarial agents based on a polyaromatic pharmacophore structurally related to clotrimazole and easy to synthesize by low-cost synthetic procedures. SAR studies delineated a number of structural features able to modulate the in vitro and in vivo antimalarial activity. A selected set of antimalarials was further biologically investigated and displayed low in vitro toxicity on a panel of human and murine cell lines. In vitro, the novel compounds proved to be selective for free heme, as demonstrated in the beta-hematin inhibitory activity assay, and did not show inhibitory activity against 14-alpha-lanosterol demethylase (a fungal P450 cytochrome). Compounds 2, 4e, and 4n exhibited in vivo activity against P. chabaudi after oral administration and thus represent promising antimalarial agents for further preclinical development. PMID:18278860

  6. Quantitative structure activities relationships of some 2-mercaptoimidazoles as CCR2 inhibitors using genetic algorithm-artificial neural networks

    PubMed Central

    Saghaie, L; Shahlaei, M; Fassihi, A

    2013-01-01

    Quantitative relationships between structures of twenty six of 2-mercaptoimidazoles as C-C chemokine receptor type 2 (CCR2) inhibitors were assessed. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of genetic algorithm multivariate linear regression (GA-MLR) and genetic algorithm (GA-ANN). The results showed that, the pIC50 values calculated by GA-ANN are in good agreement with the experimental data, and the performance of the artificial neural networks regression model is superior to the multivariate linear regression-based (MLR) model. With respect to the obtained results, it can be deduced that there is a non-linear relationship between the pIC50 s and the calculated structural descriptors of the 2-mercaptoimidazoles. The obtained models were able to describe about 78% and 93% of the variance in the experimental activity of molecules in training set, respectively. The study provided a novel and effective approach for predicting biological activities of 2-mercaptoimidazole derivatives as CCR2 inhibitors and disclosed that combined genetic algorithm and GA-ANN can be used as a powerful chemometric tools for quantitative structure activity relationship (QSAR) studies. PMID:24019819

  7. Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum.

    PubMed

    Peng, Qiang; Liu, Hang; Lei, Hongjie; Wang, Xiaoqin

    2016-03-01

    An immunologically active arabinogalactan (LRGP3) was selectively degraded by acetolysis, mild acid hydrolysis and enzymatic digestion. After exo-?-l-arabinofuranosidase digestion, 56% of the arabinosyl chains were released. The resistant product (LRGP3-AF) had markedly increased complement fixating activities. The acid hydrolysis product (LRGP3-T) contained (1?3)-linked (17.6%), (1?6)-linked (23.1%), (1?3,6)-linked (30.1%) and terminal (29.2%) galactosyl residues, and its complement fixating activity was lower than that of LRGP3-AF. The side chains (Oligo-S) consisted of arabinose, galactose, and rhamnose in the molar ratios 16.8:1.4:1.0. The complement fixating activity of Oligo-S was weak, but Oligo-S had potent macrophage stimulation activity. Degradation of arabinosyl residues in LRGP3 decreased the macrophage stimulation activity, but the galactan backbone still expressed partial activity. The results demonstrated that the galactan backbone of the polymer might be essential for the expression of complement fixating activity and the arabinosyl side chains could be more responsible for the macrophage activation activity. There may be several structurally different active sites involved in the immunological activity of LRGP3. PMID:26471597

  8. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  9. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells.

    PubMed

    Perucca, Paola; Savio, Monica; Cazzalini, Ornella; Mocchi, Roberto; Maccario, Cristina; Sommatis, Sabrina; Ferraro, Daniela; Pizzala, Roberto; Pretali, Luca; Fasani, Elisa; Albini, Angelo; Stivala, Lucia Anna

    2014-11-01

    The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O? partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue. PMID:25105482

  10. Quantitative structure-activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents.

    PubMed

    Papa, E; Luini, M; Gramatica, P

    2009-10-01

    Fragrance materials are used as ingredients in many consumer and personal care products. The wide and daily use of these substances, as well as their mainly uncontrolled discharge through domestic sewage, make fragrance materials both potential indoor and outdoor air pollutants which are also connected to possible toxic effects on humans (asthma, allergies, headaches). Unfortunately, little is known about the environmental fate and toxicity of these substances. However, the use of alternative, predictive approaches, such as quantitative structure-activity relationships (QSARs), can help in filling the data gap and in the characterization of the environmental and toxicological profile of these substances. In the proposed study, ordinary least squares regression-based QSAR models were developed for three toxicological endpoints: mouse oral LD(50), inhibition of NADH-oxidase (EC(50) NADH-Ox) and the effect on mitochondrial membrane potential (EC(50) DeltaPsim). Theoretical molecular descriptors were calculated by using DRAGON software, and the best QSAR models were developed according to the principles defined by the Organization for Economic Co-operation and Development. PMID:20024809

  11. Determination of the Biological Activity and Structure Activity Relationships of Drugs Based on the Highly Cytotoxic Duocarmycins and CC-1065

    PubMed Central

    Tietze, Lutz F.; Krewer, Birgit; von Hof, J. Marian; Frauendorf, Holm; Schuberth, Ingrid

    2009-01-01

    The natural antibiotics CC?1065 and the duocarmycins are highly cytotoxic compounds which however are not suitable for cancer therapy due to their general toxicity. We have developed glycosidic prodrugs of seco-analogues of these antibiotics for a selective cancer therapy using conjugates of glycohydrolases and tumour-selective monoclonal antibodies for the liberation of the drugs from the prodrugs predominantly at the tumour site. For the determination of structure activity relationships of the different seco-drugs, experiments addressing their interaction with synthetic DNA were performed. Using electro­spray mass spectrometry and high performance liquid chromatography, the experiments revealed a correlation of the stability of these drugs with their cytotoxicity in cell culture investigations. Furthermore, it was shown that the drugs bind to AT-rich regions of double-stranded DNA and the more cytotoxic drugs induce DNA fragmentation at room temperature in several of the selected DNA double-strands. Finally, an explanation for the very high cytotoxicity of CC-1065, the duocarmycins and analogous drugs is given. PMID:22069536

  12. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: Identification, functional expression, and structure-activity relationships of ligand analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone biosynthesis activating neuropeptide (PBAN) promotes synthesis and release of sex pheromones in moths. We have identified and functionally expressed a PBAN receptor from Heliothis virescens (HevPBANR) and elucidated structure-activity relationships of PBAN analogs. Screening of a larval C...

  13. Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides.

    PubMed

    De Zoysa, Gayan Heruka; Cameron, Alan James; Hegde, Veena V; Raghothama, Srinivasarao; Sarojini, Vijayalekshmi

    2015-01-22

    We report on the first chemical syntheses and structure-activity analyses of the cyclic lipopeptide battacin which revealed that conjugation of a shorter fatty acid, 4-methyl-hexanoic acid, and linearization of the peptide sequence improves antibacterial activity and reduces hemolysis of mouse blood cells. This surprising finding of higher potency in linear lipopeptides than their cyclic counterparts is economically beneficial. This novel lipopeptide was membrane lytic and exhibited antibiofilm activity against Pseudomonas aeruginosa, Staphylococcus aureus, and, for the first time, Pseudomonas syringe pv. actinidiae. The peptide was unstructured in aqueous buffer and dimyristoylphosphatidylcholine-polymerized diacetylene vesicles, with 12% helicity induced in 50% v/v of trifluoroethanol. Our results indicate that a well-defined secondary structure is not essential for the observed antibacterial activity of this novel lipopeptide. A truncated pentapeptide conjugated to 4-methyl hexanoic acid, having similar potency against Gram negative and Gram positive pathogens was identified through alanine scanning. PMID:25495219

  14. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.

    PubMed

    Banfi, Stefano; Caruso, Enrico; Buccafurni, Loredana; Murano, Roberto; Monti, Elena; Gariboldi, Marzia; Papa, Ester; Gramatica, Paola

    2006-06-01

    The synthesis of a panel of seven nonsymmetric 5,10,15,20-tetraarylporphyrins, 13 symmetric and nonsymmetric 5,15-diarylporphyrins, and one 5,15-diarylchlorin is described. In vitro photodynamic activities on HCT116 human colon adenocarcinoma cells were evaluated by standard cytotoxicity assays. A predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, of a series of 34 tetrapyrrolic photosensitizers (PSs), including the 24 compounds synthesized in this work, was developed to describe the relationship between structural features and photodynamic activity. The present study demonstrates that structural features significantly influence the photodynamic activity of tetrapyrrolic derivatives: diaryl compounds were more active with respect to the tetraarylporphyrins, and among the diaryl derivatives, hydroxy-substituted compounds were more effective than the corresponding methoxy-substituted ones. Furthermore, three monoarylporphyrins, isolated as byproducts during diarylporphyrin synthesis, were considered for both photodynamic and QSAR studies; surprisingly they were found to be particularly active photosensitizers. PMID:16722648

  15. Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium.

    PubMed

    El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa

    2012-03-01

    Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (?) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (?) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives. PMID:21695505

  16. Synthesis, antioxidant activity and structure-activity relationships for a new series of 2-(N-acylaminoethyl)indoles with melatonin-like cytoprotective activity.

    PubMed

    Spadoni, Gilberto; Diamantini, Giuseppe; Bedini, Annalida; Tarzia, Giorgio; Vacondio, Federica; Silva, Claudia; Rivara, Mirko; Mor, Marco; Plazzi, Pier Vincenzo; Zusso, Morena; Franceschini, Davide; Giusti, Pietro

    2006-04-01

    5-Methoxy-2-(N-acetylaminoethyl)indole (5d), a melatonin analogue derived from the transposition of the acetylaminoethyl side chain from C3 to C2 of the indole nucleus, had been previously characterized as a low affinity antagonist at MT1 and MT2 membrane receptors; this molecule is endowed with good in vitro antioxidant and cytoprotective potency in rat cerebellar cell cultures, comparable to or better than those of melatonin. In order to further investigate the role of structure-antioxidant activity relationships in cytoprotection, the structure of 5d was systematically modulated to design a new series of compounds. The 5-methoxy group was replaced by substituents with different electronic and lipophilic properties and it was moved to a different position on the indole ring. Other modifications of the lead structure involved the methylation of the indole nitrogen or its replacement by a sulfur atom. The side chain was also modified either increasing its lipophilicity or introducing an ionisable acid group. The antioxidant activity of this set of compounds was evaluated by the ABTS and conjugated dienes (CD) assays, while their cytoprotection was evaluated against kainate-induced cytotoxicity in cultured cerebellar neurons. In both antioxidant assays, the shift of the 5-methoxy group to the 4-position of the indole nucleus led to the most active radical scavenger (9), more potent than the parent compound and melatonin in the antioxidant tests, but much less effective as a cytoprotectant. Sharp structure-activity relationships were registered for cytoprotection, where the maintenance of the 5-alkoxy-2-(N-acylaminoethyl)indole scaffold appeared as the key feature to confer both antioxidant and cytoprotective activity to the structure. Some derivatives of the set, however, together with the most potent 5d, maintained a significant antioxidant and cytoprotective effect and could be employed as tools for in vivo pharmacological investigations on neuroprotective efficacy of melatonin-related indoles. PMID:16499563

  17. Three-dimensional quantitative structure-activity relationship of melatonin receptor ligands: a comparative molecular field analysis study.

    PubMed

    Sicsic, S; Serraz, I; Andrieux, J; Brémont, B; Mathé-Allainmat, M; Poncet, A; Shen, S; Langlois, M

    1997-02-28

    A three-dimensional quantitative structure-activity relationship using the comparative molecular field analysis (CoMFA) paradigm applied to 57 melatonin receptor ligands belonging to diverse structural families was performed. The compounds studied which have been synthesized previously and reported to be active at chicken brain melatonin receptors were divided into a training set of 48 molecules and a test set of 9 molecules. As most of these compounds have a highly flexible ethylamido side chain, the alignments were based on the most sterically constrained molecule which contains a tricyclic phenalene structure. This tricyclic compound can adopt an axial and an equatorial conformation. Two different molecular superpositions representing possible positioning within the receptor site have been suggested previously. CoMFA was tentatively used to discriminate between alternate hypothetical biologically active conformation and between possible positionings. The best 3D quantitative structure-activity relationship model found yields significant cross-validated, conventional, and predictive r2 values equal to 0.798, 0.967, and 0.76, respectively, along with an average absolute error of prediction of 0.25 log units. These results suggest that the active conformation of the most flexible molecules including melatonin is in a folded form if we consider the spatial position of the ethylamido side chain relative to the aromatic ring. PMID:9057860

  18. Structure-activity relationship of bufotoxins and related compounds for the inhibition of Na+, K+ -adenosine triphosphatase.

    PubMed

    Shimada, K; Ohishi, K; Fukunaga, H; Ro, J S; Nambara, T

    1985-12-01

    Forty kinds of bufotoxins and related compounds were tested for inhibition of Na+, K+ -adenosine triphosphatase from guinea pig heart, and the structure-activity relationship has been discussed. The inhibitory activities of bufotoxins were dependent upon the dicarboxylic acid and amino acid components. The compounds having both the arginine and suberic acid moieties showed the higher inhibitory activities. The sulfates and glucuronides of cardiac steroids exhibited much less potency than the parent genins. The mode of inhibition was determined by means of the Dixon and Lineweaver-Burk plots. PMID:3009774

  19. In vitro inhibition effect and structure-activity relationships of some saccharin derivatives on erythrocyte carbonic anhydrase I and II.

    PubMed

    Sonmez, Fatih; Bilen, Cigdem; Sumersan, Sinem; Gencer, Nahit; Isik, Semra; Arslan, Oktay; Kucukislamoglu, Mustafa

    2014-02-01

    In this study, in vitro inhibitory effects of some saccharin derivatives on purified carbonic anhydrase I and II were investigated using CO2 as a substrate. The results showed that all compounds inhibited the hCA I and hCA II enzyme activities. Among the compounds, 6-(p-tolylthiourenyl) saccharin (6m) was found to be the most active one for hCA I activity (IC50=13.67 ?M) and 6-(m-methoxyphenylurenyl) saccharin (6b) was found to be the most active one for hCA II activity (IC50=6.54 ?M). Structure-activity relationships (SARs) study showed that, generally, thiourea derivatives (6l--v) inhibited more hCA I and hCA II than urea derivatives (6a-k). All compounds (excluding 6c and 6r) have higher inhibitory activity on hCA II than on hCA I. PMID:23339426

  20. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS

    EPA Science Inventory

    The demonstrated ability of a variety of structurally diverse chemicals to bind to the estrogen receptor has raised the concern that chemicals in the environment may be causing adverse effects through interference with nuclear receptor pathways. Many structure-activity relationsh...

  1. Dynamic structural and functional relationships in recombinant plasminogen activator inhibitor-1 (rPAI-1).

    PubMed

    Vaughan, D E; Declerck, P J; Reilly, T M; Park, K; Collen, D; Fasman, G D

    1993-10-01

    The conformational characteristics of active, latent, and denatured recombinant plasminogen activator inhibitor-1 (rPAI-1) were compared using UV spectroscopy, spectrofluorimetry and circular dichroism (CD) techniques. The UV absorbance wavelength maxima in all preparations approximated 280 nm, while the extinction coefficients of active and latent rPAI-1 differed by up to 60%. When incubated at 37 degrees C, the A280 of latent rPAI-1 was quite stable while the A280 of active rPAI-1 spontaneously increased, eventually approximating that of latent rPAI-1. Alkali difference spectroscopy yielded markedly divergent titration patterns for active and latent rPAI-1, suggesting that the tyrosine residues present in active and latent rPAI-1 differ in terms of solvent exposure. At an excitation wavelength of 280 nm, active rPAI-1 exhibited the greatest relative fluorescence quantum yield. The relative fluorescence of latent and denatured rPAI-1 were less than that of active PAI-1, and the emission maxima of both species were slightly red-shifted in comparison to that of active rPAI-1, suggesting that at least one of the four tryptophan residues present in rPAI-1 is less exposed to the aqueous environment in the active form of the molecule. In contrast, the derived secondary structures based on CD of active and latent rPAI-1 were nearly identical, with both moieties exhibiting approx. 40% alpha-helix and 15% beta-sheet. Taken together, these spectroscopic data provide evidence supporting the hypothesis that active and latent PAI-1 differ in terms of their tertiary conformation and aromatic residue exposure, while their secondary structures appear generally comparable. Furthermore, denaturant-induced reactivation of latent rPAI-1 produces a partially active rPAI-1 with spectroscopic properties similar to that of latent rPAI-1, suggesting that denatured rPAI-1 more closely resembles the latent rPAI-1 conformation after refolding. The spontaneous spectroscopic changes observed in rPAI-1 may reflect conformational transitions that are critical to the regulation of endogenous PAI-1 activity. PMID:8399383

  2. Structure-Activity Relationship Studies and Biological Characterization of Human NAD+-dependent 15-Hydroxyprostaglandin Dehydrogenase Inhibitors

    PubMed Central

    Duveau, Damien Y.; Yasgar, Adam; Wang, Yuhong; Hu, Xin; Kouznetsova, Jennifer; Brimacombe, Kyle R.; Jadhav, Ajit; Simeonov, Anton; Thomas, Craig J.; Maloney, David J.

    2014-01-01

    The structure-activity relationship (SAR) study of two chemotypes identified as inhibitors of the human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (HPGD, 15-PGDH) was conducted. Top compounds from both series displayed potent inhibition (IC50 <50 nM), demonstrate excellent selectivity towards HPGD and potently induce PGE2 production in A549 lung cancer and LNCaP prostate cancer cells. PMID:24360556

  3. Selective CB2 receptor agonists. Part 2: Structure-activity relationship studies and optimization of proline-based compounds.

    PubMed

    Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S

    2015-02-01

    Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia. PMID:25556092

  4. Screening structural-functional relationships of neuropharmacologically active organic compounds at the nicotinic acetylcholine receptor.

    PubMed

    Barrantes, G E; Ortells, M O; Barrantes, F J

    1997-03-01

    The mechanisms of action and pharmacological effects on the nicotinic cholinoceptor of a large database of organic compounds were analyzed using a new computational procedure. This procedure is a screening method based on comparison of the molecular structures (shape and charge) of the putative active organic compounds. The resulting predictions can be used as an exploratory tool in the design of experiments aimed at testing the effects of several compounds on a target macromolecule. Unlike a conventional database search for structural similarities, the present method is able to circumscribe objectively the results to the most statistically significant molecules. PMID:9175605

  5. Computational identification of RNA functional determinants by three-dimensional quantitative structure–activity relationships

    PubMed Central

    Blanchet, Marc-Frédérick; St-Onge, Karine; Lisi, Véronique; Robitaille, Julie; Hamel, Sylvie; Major, François

    2014-01-01

    Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin–ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data. PMID:25200082

  6. Computational identification of RNA functional determinants by three-dimensional quantitative structure-activity relationships.

    PubMed

    Blanchet, Marc-Frédérick; St-Onge, Karine; Lisi, Véronique; Robitaille, Julie; Hamel, Sylvie; Major, François

    2014-01-01

    Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin-ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data. PMID:25200082

  7. Synthesis and structure--activity relationships of selected tricyclic oxime O-ethers as potential anticholinergic agents.

    PubMed

    Prabhu, V A; Brown, R G; Delgado, J N

    1981-05-01

    Selected isomeric and nonisomeric oxime O-ether derivatives of thioxanthone oxime were synthesized and evaluated for anticholinergic activity. The oxime O-ethers were prepared via O-alkylation of the oximate anion with appropriate aminoaklyl halides. Separation and isolation of the structural isomers were accomplished through dry-column chromatography. The racemic alpha-methyl isomer was resolved via formation of tartrate diastereomers, which were subsequently isolated. All synthesized compounds exhibited significant antimuscarinic activity. A comparison of the antimuscarinic activities of these compounds revealed that the racemic alpha-methyl isomer was the most potent and that the racemic beta-methyl isomer was the least potent. Structure-activity relationships among the oxime O-ether derivatives synthesized are discussed. PMID:7241364

  8. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  9. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model.

    PubMed

    Gozzo, A; Lesieur, D; Duriez, P; Fruchart, J C; Teissier, E

    1999-06-01

    Despite an increasing number of publications concerning the antioxidant activity of melatonin, little is known about the structural features responsible for this kind of activity. To understand the role played by the different elements of melatonin structure in its antioxidant activity, we have designed and tested several compounds related to this molecule in the low-density lipoprotein peroxidation model. We present here the results of this study in terms of structure-activity relationships focusing on the influence of the acetamidoethyl side chain, the methoxy group, and the indole heterocycle. In this model, we found that changing the acyl residue generally resulted in more active products. We obtained particularly good results with the nonanoyl derivative which showed a level of activity comparable to that of phenols despite lacking a phenolic function. The presence of a methoxy group in position 5 generally had a beneficial influence on the activity, but when located in position 6, the effects were various. The substitution of a hydroxy for the methoxy group led to phenolic compounds endowed with very high antioxidant activity. Replacing the amide with a ketone function did not affect the activity while replacement with an amine group in some cases resulted in prooxidant compounds. Finally, we compared the efficacy of different aromatic rings. The indole heterocycle proved to be better than benzofurane and naphthalene rings. PMID:10401620

  10. Design, Synthesis and Structure-Activity Relationship Optimization of Lycorine Derivatives for HCV Inhibition

    PubMed Central

    Chen, Duozhi; Cai, Jieyun; Cheng, Junjun; Jing, Chenxu; Yin, Junlin; Jiang, Jiandong; Peng, Zonggen; Hao, Xiaojiang

    2015-01-01

    Lycorine is reported to be a multifunctional compound. We previously showed that lycorine is an HCV inhibitor with strong activity. Further research on the antivirus mechanism indicated that lycorine does not affect the enzymes that are indispensable to HCV replication but suppresses the expression of Hsc70 in the host cell to limit HCV replication. However, due to the cytotoxicity and apoptosis induction of lycorine, lycorine is unsafe to be a anti-HCV agent for clinical application. As a result of increasing interest, its structure was optimized for the first time and a novel series of lycorine derivatives was synthesized, all of which lost their cytotoxicity to different degrees. Structure-activity analysis of these compounds revealed that disubstitution on the free hydroxyl groups at C1 and C2 and/or degradation of the benzodioxole group would markedly reduce the cytotoxicity. Furthermore, an α, β-unsaturated ketone would improve the HCV inhibitory activity of lycorine. The C3-C4 double bond is crucial to the anti-HCV activity because hydrogenation of this double bond clearly weakened HCV inhibition. PMID:26443922

  11. Design, Synthesis and Structure-Activity Relationship Optimization of Lycorine Derivatives for HCV Inhibition.

    PubMed

    Chen, Duozhi; Cai, Jieyun; Cheng, Junjun; Jing, Chenxu; Yin, Junlin; Jiang, Jiandong; Peng, Zonggen; Hao, Xiaojiang

    2015-01-01

    Lycorine is reported to be a multifunctional compound. We previously showed that lycorine is an HCV inhibitor with strong activity. Further research on the antivirus mechanism indicated that lycorine does not affect the enzymes that are indispensable to HCV replication but suppresses the expression of Hsc70 in the host cell to limit HCV replication. However, due to the cytotoxicity and apoptosis induction of lycorine, lycorine is unsafe to be a anti-HCV agent for clinical application. As a result of increasing interest, its structure was optimized for the first time and a novel series of lycorine derivatives was synthesized, all of which lost their cytotoxicity to different degrees. Structure-activity analysis of these compounds revealed that disubstitution on the free hydroxyl groups at C1 and C2 and/or degradation of the benzodioxole group would markedly reduce the cytotoxicity. Furthermore, an ?, ?-unsaturated ketone would improve the HCV inhibitory activity of lycorine. The C3-C4 double bond is crucial to the anti-HCV activity because hydrogenation of this double bond clearly weakened HCV inhibition. PMID:26443922

  12. Structure-activity relationship and comparative docking studies for cycloguanil analogs as PfDHFR-TS inhibitors.

    PubMed

    Sivaprakasam, Prasanna; Tosso, Perrer N; Doerksen, Robert J

    2009-07-01

    Drug resistance acquired by Plasmodium falciparum (Pf) is a major problem in the treatment and control of malaria. One of the major examples of drug resistance is that caused by mutations in the active site of dihydrofolate reductase (DHFR) of Pf (PfDHFR-TS). A double mutation, A16V+S108T, is specific for resistance to the marketed drug cycloguanil. In this study, we used 58 cycloguanil (2,4-diamino-1,6-dihydro-1,3,5-triazine) derivatives to explore the relationship between various physicochemical properties and reported binding affinity data on wild-type and mutant-type A16V+S108T. Using the Hansch 2D-quantitative structure-activity relationship method, we obtained a parabolic relationship of hydrophobicity of substituents at the N1-phenyl ring with the wild-type binding affinity data. Hydrophobicity being a key property for wild-type binding affinity data, we found steric factors to be crucial for A16V+S108T mutant resistance. We investigated FlexX, GOLD, Glide and Molegro virtual docking programs and 13 different scoring functions on 10 of the cycloguanil derivatives to evaluate which program was best for reproducing the experimental binding mode and correlating the docking scores with the reported binding affinity data. We identified GOLD, using its GoldScore fitness function, as the most accurate docking program for predicting binding affinity data of cycloguanil derivatives to DHFR and Molegro virtual docker, with its template docking algorithm and MolDock [GRID] scoring function, as most accurate for reproducing the experimental binding mode of a reference ligand that is structurally similar to the cycloguanil derivatives studied. We also report an interaction index which best describes the structure-activity relationships exhibited by these analogs in terms of PfDHFR-TS active site interactions. PMID:19588935

  13. Synthesis and structure-activity relationship of Huprine derivatives as human acetylcholinesterase inhibitors.

    PubMed

    Ronco, Cyril; Sorin, Geoffroy; Nachon, Florian; Foucault, Richard; Jean, Ludovic; Romieu, Anthony; Renard, Pierre-Yves

    2009-07-01

    New series of Huprine (12-amino-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolines) derivatives have been synthesized and their inhibiting activities toward recombinant human acetylcholinesterase (rh-AChE) are reported. We have synthesized two series of Huprine analogues; in the first one, the benzene ring of the quinoline moiety has been replaced by different heterocycles or electron-withdrawing or electron-donating substituted phenyl group. The second one has been designed in order to evaluate the influence of modification at position 12 where different short linkers have been introduced on the Huprine X, Y skeletons. All these molecules have been prepared from ethyl- or methyl-bicyclo[3.3.1]non-6-en-3-one via Friedländer reaction involving selected o-aminocyano aromatic compounds. The synthesis of two heterodimers based on these Huprines has been also reported. Activities from moderate to same range than the most active Huprines X and Y taken as references have been obtained, the most potent analogue being about three times less active than parent Huprines X and Y. Topologic data have been inferred from molecular dockings and variations of activity between the different linkers suggest future structural modifications for activity improvement. PMID:19473849

  14. Evaluation and Structure-Activity Relationship Analysis of a New Series of Arylnaphthalene lignans as Potential Anti-Tumor Agents

    PubMed Central

    Luo, Jiaoyang; Hu, Yichen; Kong, Weijun; Yang, Meihua

    2014-01-01

    Arylnaphthalene lignan lactones have attracted considerable interest because of their anti-tumor and anti-hyperlipidimic activities. However, to our knowledge, few studies have explored the effects of these compounds on human leukemia cell lines. In this study, five arylnaphthalene lignans including 6?-hydroxy justicidin A (HJA), 6?-hydroxy justicidin B (HJB), justicidin B (JB), chinensinaphthol methyl ether (CME) and Taiwanin E methyl ether (TEME) were isolated from Justicia procumbens and their effects on the proliferation and apoptosis of the human leukemia K562 cell line were investigated then used to assess structure-activity relationships. To achieve these aims, cytotoxicity was assayed using the MTT assay, while intracellular SOD activity was detected using the SOD Activity Assay kit. Apoptosis was measured by both the using a cycle TEST PLUS DNA reagent kit as well as the FITC Annexin V apoptosis detection kit in combination with flow cytometry. Activation of caspase-mediated apoptosis was evaluated using a FITC active Caspase-3 apoptosis kit and flow cytometry. The results indicated that HJB, HJA and JB significantly inhibited the growth of K562 cells by decreasing both proliferation and SOD activity and inducing apoptosis. The sequence of anti-proliferative activity induced by the five tested arylnaphthalenes by decreasing strength was HJB > HJA > JB > CME > TEME. HJB, HJA and JB also decreased SOD activity and induced apoptosis in a dose-dependent manner. Activation of caspase-3 further indicated that HJB, HJA and JB induced caspase-dependent intrinsic and/or extrinsic apoptosis pathways. Together, these assays suggest that arylnaphthalene lignans derived from Justicia procumbens induce apoptosis to varying degrees, through a caspase-dependent pathway in human leukemia K562 cells. Furthermore, analysis of structure-activity relationships suggest that hydroxyl substitution at C-1 and C-6? significantly increased the antiproliferative activity of arylnaphthalene lignans while a methoxyl at C-1 significantly decreased the effect. PMID:24675875

  15. Structure–activity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase

    PubMed Central

    Mao, Jialin; Eoh, Hyungjin; He, Rong; Wang, Yuehong; Wan, Baojie; Franzblau, Scott G.; Crick, Dean C.; Kozikowski, Alan P.

    2016-01-01

    We report on a target-based approach to identify possible Mycobacterium tuberculosis DXS inhibitors from the structure of a known transketolase inhibitor. A small focused library of analogs was assembled in order to begin elucidating some meaningful structure–activity relationships of 3-(4-chloro-phenyl)-5-benzyl-4H-pyrazolo[1,5-a]pyrimidin-7-one. Ultimately we found that 2-methyl-3-(4-fluorophenyl)-5-(4-meth-oxy-phenyl)-4H-pyrazolo[1,5-a]pyrimidin-7-one, although still weak, was able to inhibit M. tuberculosis DXS with an IC50 of 10.6 ?M. PMID:18783951

  16. Cucurbitane glycosides derived from mogroside IIE: structure-taste relationships, antioxidant activity, and acute toxicity.

    PubMed

    Wang, Lei; Yang, Ziming; Lu, Fenglai; Liu, Jinglei; Song, Yunfei; Li, Dianpeng

    2014-01-01

    Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE could be converted into a sweet triterpenoid saponin mixture. The reactant concentration, temperature, pH and buffer system were studied. New saponins with the ?-glucose group were isolated from the resulting mixtures, and the structures of three components of the extract were determined. The structure-taste relationships of these derivatives were also studied together with those of the natural mogrosides. The number and stereoconfiguration of glucose groups present in the mogroside molecules were found to be the main factor to determine the sweet or bitter taste of a compound. The antioxidant and food safety properties were initially evaluated by their radical scavenging ability and via 7 day mice survival tests, respectively. The results showed that the sweet triterpenoid saponin mixture has the same favorable physiological and safety characteristics as the natural mogrosides. PMID:25140446

  17. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata.

    PubMed

    Ding, Guanghui; Li, Xue; Zhang, Fan; Chen, Jingwen; Huang, Liping; Qiao, Xianliang

    2009-10-01

    Four quantitative structure-activity relationships were developed for toxicity of selected photosynthesis (PHS) inhibitors and acetolactate synthase (ALS) inhibitors to Chlorella Vulgaris and Raphidocelis subcapitata using a mechanism-based approach. These models have good fitness and predictive ability. The potential of electron transfer, intermolecular interactions with weak electron-transfer, and intermolecular dispersive interactions between PHS inhibitors and the active site of action are key factors influencing the toxicity of these PHS inhibitors. Intermolecular weak electron-transfer interactions and intermolecular dispersive interactions mainly determine the toxicity of these ALS inhibitors. Sulfonyl is an important functional group governing the toxicity of ALS inhibitors investigated. PMID:19582361

  18. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline.

    PubMed

    Honeyman, Laura; Ismail, Mohamed; Nelson, Mark L; Bhatia, Beena; Bowser, Todd E; Chen, Jackson; Mechiche, Rachid; Ohemeng, Kwasi; Verma, Atul K; Cannon, E Pat; Macone, Ann; Tanaka, S Ken; Levy, Stuart

    2015-11-01

    A series of novel tetracycline derivatives were synthesized with the goal of creating new antibiotics that would be unaffected by the known tetracycline resistance mechanisms. New C-9-position derivatives of minocycline (the aminomethylcyclines [AMCs]) were tested for in vitro activity against Gram-positive strains containing known tetracycline resistance mechanisms of ribosomal protection (Tet M in Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae) and efflux (Tet K in S. aureus and Tet L in E. faecalis). A number of aminomethylcyclines with potent in vitro activity (MIC range of ≤0.06 to 2.0 μg/ml) were identified. These novel tetracyclines were more active against one or more of the resistant strains than the reference antibiotics tested (MIC range, 16 to 64 μg/ml). The AMC derivatives were active against bacteria resistant to tetracycline by both efflux and ribosomal protection mechanisms. This study identified the AMCs as a novel class of antibiotics evolved from tetracycline that exhibit potent activity in vitro against tetracycline-resistant Gram-positive bacteria, including pathogenic strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE). One derivative, 9-neopentylaminomethylminocycline (generic name omadacycline), was identified and is currently in human trials for acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). PMID:26349824

  19. Study of structure-activity relationship of enantiomeric, protonated and deprotonated forms of warfarin via vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Srivastava, Sunil Kumar; Swati, D.

    2013-09-01

    The structure-activity relationship of the anticoagulant drug warfarin were studied by studying two enantiomeric forms (S-form and R-form) of warfarin and its protonated as well as deprotonated structures in aqueous media using density functional theory (DFT). Theoretically computed Raman and IR spectra of all the computed structures were compared and their specific vibrational spectroscopic signatures were discussed. The percentage contributions of individual normal modes of warfarin, which provides direct evidence of the different molecular activity due to change in relative atomic position of atoms in molecule, were investigated through potential energy distribution (PED). The optimized energy and molecular electrostatic potential (MEP) maps show that the S-form of the drug molecules warfarin is energetically more stable than R-form and provides higher docking opportunity for the molecular binding with the receptors in the bio-systems.

  20. Study of structure-activity relationship of enantiomeric, protonated and deprotonated forms of warfarin via vibrational spectroscopy and DFT calculations.

    PubMed

    Mishra, Alok; Srivastava, Sunil Kumar; Swati, D

    2013-09-01

    The structure-activity relationship of the anticoagulant drug warfarin were studied by studying two enantiomeric forms (S-form and R-form) of warfarin and its protonated as well as deprotonated structures in aqueous media using density functional theory (DFT). Theoretically computed Raman and IR spectra of all the computed structures were compared and their specific vibrational spectroscopic signatures were discussed. The percentage contributions of individual normal modes of warfarin, which provides direct evidence of the different molecular activity due to change in relative atomic position of atoms in molecule, were investigated through potential energy distribution (PED). The optimized energy and molecular electrostatic potential (MEP) maps show that the S-form of the drug molecules warfarin is energetically more stable than R-form and provides higher docking opportunity for the molecular binding with the receptors in the bio-systems. PMID:23747386

  1. Discovery and preliminary structure-activity relationship analysis of 1,14-sperminediphenylacetamides as potent and selective antimalarial lead compounds.

    PubMed

    Liew, Lydia P P; Kaiser, Marcel; Copp, Brent R

    2013-01-15

    Screening of synthesized and isolated marine natural products for in vitro activity against four parasitic protozoa has identified the ascidian metabolite 1,14-sperminedihomovanillamide (orthidine F, 1) as being a non-toxic, moderate growth inhibitor of Plasmodium falciparum (IC(50) 0.89 μM). Preliminary structure-activity relationship investigation identified essentiality of the spermine polyamine core and the requirement for 1,14-disubstitution for potent activity. One analogue, 1,14-spermine-di-(2-hydroxyphenylacetamide) (3), exhibited two orders of magnitude increased anti-P. f activity (IC(50) 8.6 nM) with no detectable in vitro toxicity. The ease of synthesis of phenylacetamido-polyamines, coupled with potent nM levels of activity towards dual drug resistant strains of P. falciparum makes this compound class of interest in the development of new antimalarial therapeutics. PMID:23265884

  2. Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs.

    PubMed

    Scapecchi, Serena; Martini, Elisabetta; Manetti, Dina; Ghelardini, Carla; Martelli, Cecilia; Dei, Silvia; Galeotti, Nicoletta; Guandalini, Luca; Novella Romanelli, Maria; Teodori, Elisabetta

    2004-01-01

    Structure-activity relationships on two novel potent cognition enhancing drugs, unifiram (DM232, 1) and sunifiram (DM235, 2), are reported. Although none of the compounds synthesised reached the potency of the parent drugs, some fairly active compounds have been identified that may represent new leads to develop other cognition enhancing drugs. An interesting result of this research is the identification of two compounds (13 and 14) that are endowed with amnesing activity (the opposite of the activity of the original molecules) and are nearly equipotent to scopolamine. Moreover, two compounds of the series (5 and 6) were found endowed with analgesic activity on a rat model of neuropathic pain at the dose of 1 mg/kg. PMID:14697772

  3. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  4. Insights into Structure-Activity Relationships of Bacterial RNA Polymerase Inhibiting Corallopyronin Derivatives.

    PubMed

    Schäberle, Till F; Schmitz, Alexander; Zocher, Georg; Schiefer, Andrea; Kehraus, Stefan; Neu, Edith; Roth, Martin; Vassylyev, Dmitry G; Stehle, Thilo; Bierbaum, Gabriele; Hoerauf, Achim; Pfarr, Kenneth; König, Gabriele M

    2015-10-23

    The new compound precorallopyronin A is a stable precursor in the biosynthesis of the antibiotic corallopyronin A. This natural product was isolated from the producer strain Corallococcus coralloides B035. Together with various semisynthetically obtained corallopyronin A derivatives its antibacterial effects were evaluated. In combination with an X-ray crystallization model limitations of derivatization possibilities were revealed. The antibiotic potential of the novel precorallopyronin A is comparable to that of the structurally more complex corallopyronin A, which highlights that the additional chiral center is not essential for activity. PMID:26431157

  5. Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates.

    PubMed

    Yraola, Francesc; Zorzano, Antonio; Albericio, Fernando; Royo, Miriam

    2009-04-01

    Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) substrates show insulin-mimetic effects and are therefore potentially valuable molecules for the treatment of diabetes mellitus. Herein we review several structural and electronic aspects of SSAO arylalkylamine-based substrates. Two main modifications directly affect amine oxidase (AO) activity: 1) variation in ring substitution modulates the biological activity of the arylalkylamine ligand by converting a substrate into a substrate-like inhibitor, and 2) variation in the number of methylene units between the aromatic ring and the ammonium groups of the arylalkylamine substrates dramatically alters the oxidation rate between species. Furthermore, we review relevant information about mammalian SSAO/VAP-1 substrate selectivity and specificity over monoamine oxidases (MAOs). PMID:19266512

  6. Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5.

    PubMed

    Chan, W C; Dodd, H M; Horn, N; Maclean, K; Lian, L Y; Bycroft, B W; Gasson, M J; Roberts, G C

    1996-08-01

    A mutant of the peptide antibiotic nisin in which the dehydroalanine residue at position 5 has been replaced by an alanine has been produced and structurally characterized. It is shown to have activity very similar to that of wild-type nisin in inhibiting growth of Lactococcus lactis and Micrococcus luteus but is very much less active than nisin as an inhibitor of the outgrowth of spores of Bacillus subtilis. These observations, which parallel those of W. Liu and J. N. Hansen (Appl. Environ. Microbiol. 59:648-651, 1993) on the corresponding mutant of the related antibiotic subtilin, are discussed in terms of the mechanism(s) of action of these antibiotics. PMID:8702290

  7. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Mendoza, Guillermo F.; Konotchick, Talina; Lee, Raymond

    2009-09-01

    Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000 ind. m -2) and low biomass (0.1-1.07 g m -2), except for the South Su active site, which had higher density (3494 ind. m -2) and biomass (11.94 g m -2), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae ( Prionospio sp.) in active sediments, and tanaids and deposit-feeding nuculanoid bivalves in active and inactive sediments. At Middle Valley, hot mud sediments supported few animals (1011 ind m -2) and low biomass (1.34 g m -2), while active clam bed sediments supported a high-density (19,984 ind m -2), high-biomass (4.46 g m -2), low-diversity assemblage comprised of largely orbiniid and syllid polychaetes. Microbial mat sediments had the most diverse assemblage (mainly orbiniid, syllid, dorvilleid, and ampharetid polychaetes) with intermediate densities (8191 ind m -2) and high biomass (4.23 g m -2). Fauna at both Manus Basin active sites had heavy δ 13C signatures (-17‰ to -13‰) indicative of chemosynthetic, TCA-cycle microbes at the base of the food chain. In contrast, photosynthesis and sulfide oxidation appear to fuel most of the fauna at Manus Basin inactive sites (δ 13C=-29‰ to -20‰) and Middle Valley active clam beds and microbial mats (δ 13C=-36‰ to -20‰). The two hydrothermal regions, located at opposite ends of the Pacific Ocean, supported different habitats, sharing few taxa at the generic or family level, but both exhibited elevated infaunal density and high dominance at selected sites. Subsurface-deposit feeding and bacterivory were prevalent feeding modes. Both the Manus Basin and Middle Valley assemblages exhibit significant within-region heterogeneity, apparently conferred by variations in hydrothermal activity and associated biogenic habitats.

  8. Cellular Localization of Dieldrin and Structure–Activity Relationship of Dieldrin Analogues in Dopaminergic Cells

    PubMed Central

    Allen, Erin M. G.; Florang, Virginia R.; Davenport, Laurie L.; Jinsmaa, Yunden; Doorn, Jonathan A.

    2015-01-01

    The incidence of Parkinson’s disease (PD) correlates with environmental exposure to pesticides, such as the organochlorine insecticide, dieldrin. Previous studies found an increased concentration of the pesticide in the striatal region of the brains of PD patients and also that dieldrin adversely affects cellular processes associated with PD. These processes include mitochondrial function and reactive oxygen species production. However, the mechanism and specific cellular targets responsible for dieldrin-mediated cellular dysfunction and the structural components of dieldrin contributing to its toxicity (toxicophore) have not been fully defined. In order to identify the toxicophore of dieldrin, a structure–activity approach was used, with the toxicity profiles of numerous analogues of dieldrin (including aldrin, endrin, and cis-aldrin diol) assessed in PC6-3 cells. The MTT and lactate dehydrogenase (LDH) assays were used to monitor cell viability and membrane permeability after treatment with each compound. Cellular assays monitoring ROS production and extracellular dopamine metabolite levels were also used. Structure and stereochemistry for dieldrin were found to be very important for toxicity and other end points measured. Small changes in structure for dieldrin (e.g., comparison to the stereoisomer endrin) yielded significant differences in toxicity. Interestingly, the cis-diol metabolite of dieldrin was found to be significantly more toxic than the parent compound. Disruption of dopamine catabolism yielded elevated levels of the neurotoxin, 3,4-dihydroxyphenylacetaldehyde, for many organochlorines. Comparisons of the toxicity profiles for each dieldrin analogue indicated a structure-specific effect important for elucidating the mechanisms of dieldrin neurotoxicity. PMID:23763672

  9. Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure-activity relationship (SAR) and CYP53 docking studies.

    PubMed

    Berne, Sabina; Kova?i?, Lidija; Sova, Matej; Kraševec, Nada; Gobec, Stanislav; Križaj, Igor; Komel, Radovan

    2015-08-01

    Previously, we identified CYP53 as a fungal-specific target of natural phenolic antifungal compounds and discovered several inhibitors with antifungal properties. In this study, we performed similarity-based virtual screening and synthesis to obtain benzoic acid-derived compounds and assessed their antifungal activity against Cochliobolus lunatus, Aspergillus niger and Pleurotus ostreatus. In addition, we generated structural models of CYP53 enzyme and used them in docking trials with 40 selected compounds. Finally, we explored CYP53-ligand interactions and identified structural elements conferring increased antifungal activity to facilitate the development of potential new antifungal agents that specifically target CYP53 enzymes of animal and plant pathogenic fungi. PMID:26154240

  10. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: spectroscopic, theoretical and microbiological studies.

    PubMed

    ?wis?ocka, Renata; Piekut, Jolanta; Lewandowski, W?odzimierz

    2013-01-01

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and (1)H, (13)C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties. PMID:22341494

  11. Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability.

    PubMed

    Fázio, Marcos A; Oliveira, Vani X; Bulet, Philippe; Miranda, M Terêsa M; Daffre, Sirlei; Miranda, Antonio

    2006-01-01

    Gomesin is an antimicrobial peptide isolated from hemocytes of the Brazilian spider Acanthoscurria gomesiana that contains two disulfide bridges Cys(2-15)/Cys(6-11) and presents a beta-hairpin structure. To investigate the role of the disulfide bridges on gomesin conformation, bioactivities, and serum stability, structure-activity relationship (SAR) studies were conducted. Initially, gomesin and variants lacking one or both disulfide bridges were synthesized. CD studies showed that the gomesin structure is very rigid independently of the solvent environment. On the other hand, the linearized analogues adopted secondary structures according to the environment, while the monocyclic disulfide-bridged peptides had a tendency to adopt a turn structure. The absence of one or both bridges resulted in a decrease in the antimicrobial and hemolytic activities. In addition, serum stability studies revealed that, contrasting to gomesin that was stable even after 48 h of incubation, the linearized analogues were rapidly degraded. The replacement of the disulfide bounds by lactam bridges led to monocyclic and bicyclic compounds. SAR studies indicated that the monocyclic lactam-bridged analogues tend to assume a alpha-helical structure being less potent, hemolytic, and serum stable than the wild-type gomesin. On the other hand, the bicyclic lactam/disulfide-bridged analogues displayed a similar conformation and degradation kinetics identical to gomesin. However, the antimicrobial activity appeared to be dependent on the lactam bridge position and size. These findings indicated that (i) the secondary structure plays a pivotal role for the full activity of gomesin; (ii) the antimicrobial and hemolytic activities of gomesin are correlated events; (iii) while at least one of the disulfide bridges is needed for the maintenance of a significant antimicrobial activity of gomesin, both bridges are required for high serum stability and optimal conformation; and finally (iv) the best analogue obtained was the bicyclo (2-15,6-11)[Glu2, Cys(6,11), Lys15]-Gm since it is as stable and potent as gomesin. PMID:16235231

  12. Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structure-activity relationships.

    PubMed

    De Vincenzo, R; Scambia, G; Benedetti Panici, P; Ranelletti, F O; Bonanno, G; Ercoli, A; Delle Monache, F; Ferrari, F; Piantelli, M; Mancuso, S

    1995-09-01

    This study was carried out to determine the effect of 15 different natural and synthetic chalcones on the proliferation of both established and primary ovarian cancer cells expressing type II oestrogen binding sites (type II EBS). The binding affinity of chalcones for type II EBS was also tested. At concentrations from 0.1 to 10 microM, chalcones inhibited ovarian cancer cell proliferation and [3H]oestradiol ([3H]E2) binding to type II EBS. Considering the structure-related variation in IC50 (concentration resulting in a 50% inhibition of cell growth) and Di50 (concentration resulting in a 50% displacement of [3H]E2 bound to type II EBS), it appeared that the presence of an alpha-beta double bond, the hydroxylation in 3 or 2 of ring B and the absence of a prenyl group were important to both the antiproliferative and binding activity. Structure-related variations in IC50 and Di50 were significantly concordant (Fisher's exact test: P = 0.0291), suggesting that there may be a type II EBS-mediated mechanism for chalcone antiproliferative activity. Our data indicate that chalcones could be considered as potential new anticancer drugs. PMID:7575989

  13. Quantitative structure retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based compounds.

    PubMed

    Šegan, Sandra; Opsenica, Igor; Zlatović, Mario; Milojković-Opsenica, Dušanka; Šolaja, Bogdan

    2016-02-15

    The chromatographic behaviour of series of 4-amino-7-chloroquinoline (4,7-ACQ) based compounds was studied by reversed-phase thin-layer chromatography (RPTLC) with binary mobile phases containing water and the organic modifiers, DMSO or acetone. The lipophilicity of the studied compounds was determined by extrapolation of retention parameters RM to pure water content in mobile phase. In order to obtain some basic insight into the chromatographic behaviour and structural features of investigated compounds, PCA was performed on both chromatographic data (RM values) and calculated 2D and 3D structural descriptors. Both QSRR and QSAR models were built by means of the partial least squares (PLS) statistical method. It was found that descriptors which encode hydrophobic (dispersive) interactions have positive influence on retention, while influence of descriptors encoding polar interactions was negative. According to the obtained PLS model for inhibition of botulinum neurotoxin serotype A light chain, hydrophobic interactions influence positively on the mechanism of action of the investigated 4,7-ACQ, while polar interactions are less favoured. Contrary, the results of PLS modelling of activity against Plasmodium falciparum strains (W2, D6 and TM91C235) indicate that higher polarity of 4,7-ACQ contribute to their higher antimalarial activity. PMID:26827282

  14. Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach.

    PubMed

    Vinholes, Juliana; Rudnitskaya, Alisa; Gonçalves, Pedro; Martel, Fátima; Coimbra, Manuel A; Rocha, Sílvia M

    2014-03-01

    The relative hepatoprotection effect of fifteen sesquiterpenoids, commonly found in plants and plant-derived foods and beverages was assessed. Endogenous lipid peroxidation (assay A) and induced lipid peroxidation (assay B) were evaluated in liver homogenates from Wistar rats by the thiobarbituric acid reactive species test. Sesquiterpenoids with different chemical structures were tested: trans,trans-farnesol, cis-nerolidol, (-)-α-bisabolol, trans-β-farnesene, germacrene D, α-humulene, β-caryophyllene, isocaryophyllene, (+)-valencene, guaiazulene, (-)-α-cedrene, (+)-aromadendrene, (-)-α-neoclovene, (-)-α-copaene, and (+)-cyclosativene. Ascorbic acid was used as a positive antioxidant control. With the exception of α-humulene, all the sesquiterpenoids under study (1mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The 3D-QSAR models developed, relating the hepatoprotection activity with molecular properties, showed good fit (Radj(2) 0.819 and 0.972 for the assays A and B, respectively) with good prediction power (Q(2)>0.950 and SDEP<2%, for both models A and B). A network of effects associated with structural and chemical features of sesquiterpenoids such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. PMID:24176316

  15. Seasonal and interannual variability in the temperature structure around the tropical tropopause and its relationship with convective activities

    NASA Astrophysics Data System (ADS)

    Nishimoto, Eriko; Shiotani, Masato

    2012-01-01

    Seasonal and interannual variability in the tropical tropopause temperatures and its relationship with convective activities are examined by using the ECMWF 40 year reanalysis data and NOAA/OLR data. Low temperatures generally occur over the equator in the eastern hemisphere and extend northwestward and southwestward in the subtropics to form a horseshoe-shaped structure. Because this structure resembles a stationary wave response known as the Matsuno-Gill pattern, which is a superposition of the Rossby and Kelvin responses, the two preliminary indices are defined to represent the two responses. The horseshoe-shaped structure index is then calculated from the two indices. The seasonal cycle in the horseshoe-shaped structure index is significantly related to that observed in convective activities adjacent to three monsoon regions: the South Asian monsoon (SoAM) and the North Pacific monsoon (NPM) areas during the northern summer and the Australian monsoon (AUM) area during the southern summer. The convective activities in the SoAM and NPM areas individually influence the horseshoe-shaped structure. During the northern summer, interannual variation in the horseshoe-shaped structure index in the NPM area is related to that observed in convective activities associated with the El Niño-Southern Oscillation (ENSO) cycle with about a half-year time lag. In the SoAM area, the variation is mainly controlled by isolated high temperatures, which are surrounded by the horseshoe-shaped temperature structures and are not related to convective activities. During the southern summer, the horseshoe-shaped structure index is related to convective anomalies associated with the ENSO cycle, shifting eastward in El Niño years.

  16. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy.

    PubMed

    Jeon, Ju-Hyun; Lee, Hoi-Seon

    2014-08-27

    The acaricidal and insecticidal potential of the active constituent isolated from Citrullus colocynthis fruits and its structurally related analogues was evaluated by performing leaf disk, contact toxicity, and fumigant toxicity bioassays against Tetranychus urticae, Sitophilus oryzae, and Sitophilus zeamais adults. The active constituent of C. colocynthis fruits was isolated by chromatographic techniques and was identified as 4-methylquinoline on the basis of spectroscopic analyses. To investigate the structure-activity relationships, 4-methylquinoline and its structural analogues were tested against mites and two insect pests. On the basis of the LC50 values, 7,8-benzoquinoline was the most effective against T. urticae. Quinoline, 8-hydroxyquinoline, 2-methylquinoline, 4-methylquinoline, 6-methylquinoline, 8-methylquinoline, and 7,8-benzoquinoline showed high insecticidal activities against S. oryzae and S. zeamais regardless of the application method. These results indicate that introduction of a functional group into the quinoline skeleton and changing the position of the group have an important influence on the acaricidal and insecticidal activities. Furthermore, 4-methylquinoline isolated from C. colocynthis fruits, along with its structural analogues, could be effective natural pesticides for managing spider mites and stored grain weevils. PMID:25110971

  17. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Driess, Matthias

    2015-03-01

    Artificial photosynthesis by harvesting solar light into chemical energy could solve the problems of energy conversion and storage in a sustainable way. In nature, CO2 and H2 O are transformed into carbohydrates by photosynthesis to store the solar energy in chemical bonds and water is oxidized to O2 in the oxygen-evolving center (OEC) of photosystem II (PS II). The OEC contains CaMn4 O5 cluster in which the metals are interconnected through oxido bridges. Inspired by biological systems, manganese-oxide-based catalysts have been synthesized and explored for water oxidation. Structural, functional modeling, and design of the materials have prevailed over the years to achieve an effective and stable catalyst system for water oxidation. Structural flexibility with eg(1) configuration of Mn(III) , mixed valency in manganese, and higher surface area are the main requirements to attain higher efficiency. This Minireview discusses the most recent progress in heterogeneous manganese-oxide-based catalysts for efficient chemical, photochemical, and electrochemical water oxidation as well as the structural requirements for the catalyst to perform actively. PMID:25641823

  18. Structure-Activity Relationship of New Antituberculosis Agents Derived from Oxazoline and Oxazole Esters

    PubMed Central

    Moraski, Garrett C.; Chang, Mayland; Villegas-Estrada, Adriel; Franzblau, Scott G.; Möllmann, Ute; Miller, Marvin J.

    2010-01-01

    During the syntheses and studies of natural iron chelators (mycobactins), we serendipitously discovered that a simple, small molecule, oxazoline-containing intermediate 3 displayed surprising anti-tuberculosis activity (MIC of 7.7 µM, average). Herein we report elaboration of SAR around this hit as well as the syntheses and evaluation of a hundred oxazoline- and oxazole-containing compounds derived from an efficient three step process: 1) formation of ?-hydroxy amides with serine or threonine; 2) cyclization to afford oxazolines; and 3) dehydration to give the corresponding oxazoles. A number of compounds prepared by this method were shown to possess impressive activity against M. tuberculosis, extremely low toxicity and therefore high therapeutic indexes, as well as activity against even the more recalcitrant non-replicating form of M. tuberculosis. The uniqueness of their structures and their simplicity should allow them to be further optimized to meet ADME (absorption, distribution, metabolism, excretion) requirements. The syntheses of eight of the most potent in vitro compounds were scaled up and the compounds were tested in an in vivo mouse infection model to evaluate their efficacy before engaging upon more elaborate compound design and optimization. PMID:20116900

  19. Binding studies and quantitative structure-activity relationship of 3-amino-1H-indazoles as inhibitors of GSK3?.

    PubMed

    Caballero, Julio; Zilocchi, Szymon; Tiznado, William; Collina, Simona; Rossi, Daniela

    2011-10-01

    Docking of 3-amino-1H-indazoles complexed with glycogen synthase kinase 3 beta (GSK3?) was performed to gain insight into the structural requirements and preferred conformations of these inhibitors. The study was conducted on a selected set of 57 compounds with variation in structure and activity. We found that the most active compounds established three hydrogen bonds with the residues of the hinge region of GSK3?, but some of the less active compounds have other binding modes. In addition, models able to predict GSK3? inhibitory activities (IC(50) ) of the studied compounds were obtained by 3D-QSAR methods CoMFA and CoMSIA. Ligand-based and receptor-guided alignment methods were utilized. Adequate R(2) and Q(2) values were obtained by each method, although some striking differences existed between the obtained contour maps. Each of the predictive models exhibited a similar ability to predict the activity of a test set. The application of docking and quantitative structure-activity relationship together allowed conclusions to be drawn for the choice of suitable GSK3? inhibitors. PMID:21756288

  20. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. PMID:26301627

  1. Synthesis and quantitative structure-activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis B virus replication.

    PubMed

    Yang, Jing; Ma, Min; Wang, Xue-Ding; Jiang, Xing-Jun; Zhang, Yuan-Yuan; Yang, Wei-Qing; Li, Zi-Cheng; Wang, Xi-Hong; Yang, Bin; Ma, Meng-Lin

    2015-06-24

    A series of new phenylpropenamide derivatives containing different substituents was synthesized, characterized and evaluated for their anti-hepatitis B virus (HBV) activities. The quantitative structure-activity relationships (QSAR) of phenylpropenamide compound have been studied. The 2D-QSAR models, based on DFT and multiple linear regression analysis methods, revealed that higher values of total energy (TE) and lower entropy (S(Ó©)) enhanced the anti-HBV activities of the phenylpropenamide molecules. Predictive 3D-QSAR models were established using SYBYL multifit molecular alignment rule. The optimum models were all statistically significant with cross-validated and conventional coefficients, indicating that they were reliable enough for activity prediction. PMID:26057705

  2. Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus.

    PubMed

    Spathelf, Barbara M; Rautenbach, Marina

    2009-08-01

    Six major tyrocidines, purified from the antibiotic tyrothricin complex produced by Bacillus aneurinolyticus, showed significant lytic and growth inhibitory activity towards the gram+ bacteria, Micrococcus luteus and Listeria monocytogenes, but not against the gram- bacterium, Escherichia coli. The isolated natural tyrocidines were in particular more active against the leucocin A (antimicrobial peptide) resistant strain, L. monocytogenes B73-MR1, than the sensitive L. monocytogenes B73 strain. Remarkably similar structure-activity trends toward the three gram+ bacteria were found between growth inhibition and different physicochemical parameters (solution amphipathicity, theoretical lipophilicity, side-chain surface area and mass-over-charge ratio). PMID:19586775

  3. A Structure-Activity Relationship Study of Naphthoquinone Derivatives as Antitubercular Agents Using Molecular Modeling Techniques.

    PubMed

    Sharma, Mukesh C

    2015-12-01

    Tuberculosis (TB) is one of the major causes of death worldwide. Mycobacterium tuberculosis, the leading causative agent of TB, is responsible for the morbidity and mortality of a large population worldwide. In view of above and as a part of our effort to develop new and potent anti-TB agents, a series of substituted naphthoquinone derivatives were subjected to molecular modeling using various feature selection methods. The statistically significant best 2D-QSAR model having correlation coefficient [Formula: see text] and cross-validated squared correlation coefficient [Formula: see text] with external predictive ability of [Formula: see text] was developed by SA-PLS, and group-based QSAR model having [Formula: see text] and [Formula: see text] with [Formula: see text] was developed by SA-PLS. Further analysis using three-dimensional QSAR technique identifies a suitable model obtained by SA-partial least square method leading to antitubercular activity prediction. k-nearest neighbor molecular field analysis was used to construct the best 3D-QSAR model using SA-PLS method, showing good correlative and predictive capabilities in terms of [Formula: see text] and [Formula: see text]. The pharmacophore analysis results obtained from this study show that the distance between the aromatic/hydrophobic and the naphthoquinone moiety sites to the aliphatic and acceptor groups should be connected with almost the same distance for significant antitubercular activity. The information rendered by QSAR models may lead to a better understanding of structural requirements of antitubercular activity and also can help in the design of novel potent antitubercular activity. PMID:26159131

  4. Structure-activity relationship for D-ring derivatives of grayanotoxin in the squid giant axon.

    PubMed

    Yakehiro, M; Yamamoto, S; Baba, N; Nakajima, S; Iwasa, J; Seyama, I

    1993-06-01

    Grayanotoxin (GTX) binds specifically to the voltage-dependent sodium channel and induces a persistent increase in the membrane permeability to sodium ion. By studying the structure-activity relation of the GTX action, we attempt to elucidate the molecular moiety of the sodium channel facing around the carbon atoms C-15 beta, C-16 beta and C-14S in the D-ring of GTX in exerting the biological activity. A dose-response curve for each GTX analog was constructed using membrane depolarization as an index and assuming a one-to-one stoichiometry. Addition of alpha-OH, carbonyl and beta-OH groups to either C-15 or C-16 sequentially reduces the toxin potency, suggesting that the domain of the Na channel facing C-15 and C-16 contains a positive charge. Substitution of a hydroxymethyl group to the beta side of C-16 reduces GTX activity 10 times more than a similar substitution in the alpha side, indicating that this positive charge is located close to the beta side. Introduction of a hydrophilic hydroxy group into C-14S reduced GTX activity by a factor of 20, whereas introduction of an electronegative amino group totally eliminated it. We infer that hydrophobic bonds are a predominant factor on the alpha surface of the GTX molecule. In summary, 3 beta-OH, 5 beta-OH and 6 beta-OH of the GTX molecule make contact with the Na channel by hydrogen bonding and with most of remainder by hydrophobic bond in binding to the Na channel.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8389862

  5. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships.

    PubMed

    Jamison, Matthew T; Molinski, Tadeusz F

    2015-03-27

    Investigation of antifungal natural products from the marine sponge Pseudaxinella reticulata from the Bahamas led to the discovery of new crambescin homologues (1, 2) and enantiomers (3, 4) of known natural products. The cyclic-guanidine structures were solved through analysis of 2D NMR, MS-MS, and CD data. The absolute configurations of 1-4 were established as 13R-opposite of known homologues reported from Crambe crambe obtained from the Mediterranean Sea-by comparison of their CD spectra with predicted Cotton effects obtained from DFT calculations. Antifungal activities of 1-4 against the pathogenic strains Candida albicans and Cryptococcus sp. were observed to correlate potency (MIC50 and MIC90) with the length of the alkyl side chain. PMID:25738226

  6. Structure-activity relationships in the free-radical metabolism of xenobiotics

    SciTech Connect

    Chignell, C.F.

    1985-09-01

    Many xenobiotics, including naturally occurring compounds, drugs, and environmental agents, are metabolized both in vivo and in vitro to free-radical intermediates. The one-electron reduction of nitroaromatic compounds, quinones, and a wide variety of other chemicals is catalyzed enzymatically by a number of reductases and dehydrogenases. Structure-activity studies have shown that the cytotoxicities of nitroaromatic compounds and quinones are related to their one-electron reduction potentials (E/sub 7//sup 1/). Other factors such as oil:water partition coefficients may also be important. Xenobiotics may also be oxidized to free radicals by peroxidases and oxidases. Hammett's rules apply to the one-electron oxidation of simple meta- and para-substituted phenols and amines by horseradish peroxidase, compound I.

  7. Structure-activity relationships of mineral dusts as heterogeneous nuclei for ammonium sulfate crystallization from supersaturated aqueous solutions.

    PubMed

    Martin, S T; Schlenker, J; Chelf, J H; Duckworth, O W

    2001-04-15

    Mineral inclusions, present in aqueous atmospheric salt droplets, regulate crystallization when relative humidity decreases by providing a surface for heterogeneous nucleation and thus reducing the critical supersaturation. Although laboratory studies have quantified these processes to some extent, the diverse atmospheric mineralogy presents more chemical systems than practically feasible for direct study. Structure--activity relationships are necessary. To that end, in the present work the interactions of ammonium sulfate with corundum, hematite, mullite, rutile, anatase, and baddeleyite were studied by diffuse reflectance fourier transform infrared spectroscopy (DRIFTS) and by epitaxial modeling. The spectroscopic results show that shifts in sulfate peak positions due to chemisorption are not a correlative indicator of the efficacy of heterogeneous nucleation. In contrast, epitaxial modeling results of unreconstructed surfaces explain the sequence of critical supersaturations for constant particle size. If validated by further work, this computer modeling method would provide an important structure--activity tool for the estimation of heterogeneous nucleation properties of the atmospheric mineralogy. PMID:11329712

  8. Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents.

    PubMed

    Fattorusso, Caterina; Campiani, Giuseppe; Kukreja, Gagan; Persico, Marco; Butini, Stefania; Romano, Maria Pia; Altarelli, Maria; Ros, Sindu; Brindisi, Margherita; Savini, Luisa; Novellino, Ettore; Nacci, Vito; Fattorusso, Ernesto; Parapini, Silvia; Basilico, Nicoletta; Taramelli, Donatella; Yardley, Vanessa; Croft, Simon; Borriello, Marianna; Gemma, Sandra

    2008-03-13

    Malaria is a major health problem in poverty-stricken regions where new antiparasitic drugs are urgently required at an affordable price. We report herein the design, synthesis, and biological investigation of novel antimalarial agents with low potential to develop resistance and structurally based on a highly conjugated scaffold. Starting from a new hit, the designed modifications were performed hypothesizing a specific interaction with free heme and generation of radical intermediates. This approach provided antimalarials with improved potency against chloroquine-resistant plasmodia over known drugs. A number of structure-activity relationship (SAR) trends were identified and among the analogues synthesized, the pyrrolidinylmethylarylidene and the imidazole derivatives 5r, 5t, and 8b were found as the most potent antimalarial agents of the new series. The mechanism of action of the novel compounds was investigated and their in vivo activity was assessed. PMID:18278859

  9. Quantitative structure-activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis.

    PubMed

    Lewis, D F; Ioannides, C; Parke, D V; Schulte-Hermann, R

    2000-11-15

    The results of a quantitative structure-activity relationship (QSAR) study on a total of 14 steroids exhibiting induction of a CYP3A-associated activity and increase in liver weight/DNA synthesis is reported. It is found that different, but related, structural descriptors correlate with increase in ethylmorphine N-demethylase activity (r=0.92) and with the increase in liver weight (r=0.78) and DNA synthesis (r=0.78). Although there is a strong correlation between increase in liver weight and DNA content (r=0.999), neither of these correlated with ethylmorphine N-demethylase activity. These findings are discussed in the light of CYP3A induction, substrate specificity and inhibition; a proposed model of human CYP3A4 based on sequence homology with CYP102, a bacterial P450 of known crystal structure, demonstrates the possible mode of interaction between substrates and inhibitors within the putative active site. PMID:11162923

  10. Comparative three-dimensional quantitative structure-activity relationship study of safeners and herbicides.

    PubMed

    Bordás, B; Kömíves, T; Szántó, Z; Lopata, A

    2000-03-01

    The competitive antagonist hypothesis for safeners and herbicides was investigated by studying the 3D similarity between 28 safener and 20 herbicide molecules in their putative biologically active, low-energy conformations using comparative molecular field analysis (CoMFA). In addition, CoMFA provided information about the structural requirements for the interactions of safeners and herbicides with a proteinaceous component (SafBP) isolated from etiolated corn seedlings. Statistically significant CoMFA models have been developed for the united and separate safener and herbicide molecule sets using retrospective binding affinity data of the ligands measured at the SafBP receptor. The predictive power of the models was characterized by squared cross-validated correlation coefficients (q(2)) of 0.708, 0.564, and 0.4000 for the united safener plus herbicide set, the safener set, and the herbicide set, respectively. The CoMFA results support the competitive antagonist hypothesis between certain types of safeners and herbicides. The findings suggest that structural similarity between these two classes of agrochemicals is a useful guide in the design of new safeners. PMID:10725176

  11. Structure-activity relationships for the anticholinoceptor action of tricyclic antidepressants.

    PubMed Central

    Shein, K; Smith, S E

    1978-01-01

    1 The anticholinoceptor action of 15 tricyclic antidepressants and derivatives has been studied on the guinea-pig ileum. At the muscarinic receptors the compounds were found to exert antagonism which was reversible and apparently competitive up to dose-ratios of around 100 but non-competitive above this level. 2 Log affinity constants were derived from log dose-response curves at dose-ratios less than 100, where parallel curves were obtained. Amitriptyline, the most potent compound, had 214 X the potency of the weakest, hydroxyimipramine, but was itself 20 X weaker than atropine. 3 Structure-activity studies showed that dibenzocycloheptane derivatives were more potent than dibenzazepines and that S or O substitution for C-11 or other major changes in the central ring of the tricyclic nucleus greatly reduced activity. Side-chain N-methylation increased potency markedly. This and other findings indicate that both tricyclic nucleus and side-chain receptor attachments are largely non-polar in type. PMID:656701

  12. New Luminescent Polynuclear Metal Complexes with Anticancer Properties: Toward Structure-Activity Relationships.

    PubMed

    Wenzel, Margot; de Almeida, Andreia; Bigaeva, Emilia; Kavanagh, Paul; Picquet, Michel; Le Gendre, Pierre; Bodio, Ewen; Casini, Angela

    2016-03-01

    A series of new heterodinuclear luminescent complexes with two different organic ligands have been synthesized and characterized. A luminescent Ru(II)(polypyridine) moiety and a metal-based anticancer fragment (AuCl, (p-cymene)RuCl2, (p-cymene)OsCl2, (Cp*)RhCl2, or Au-thioglucose) are the two general features of these complexes. All of the bimetallic compounds have been evaluated for their antiproliferative properties in vitro in human cancer cell lines. Only the complexes containing an Au(I) fragment exhibit antiproliferative activity in the range of cisplatin or higher. The photophysical and electrochemical properties of the bimetallic species have been investigated, and fluorescence microscopy experiments have been performed successfully. The most promising bimetallic cytotoxic complexes (i.e., with the Au-thioglucose scaffold) have shown to be easily taken up by cancer cells at 37 °C in the cytoplasm or in specific organelles. Interestingly, experiments repeated at 4 °C showed no uptake of the bimetallic species inside cells, which confirms involvement of active transport processes. To evaluate the role of glucose transporters in the cell uptake of the gold complexes, inhibition of the GluT-1 (glucose transporter isoform with high level of expression in cancer cells) was achieved, showing only scarce influence on the compounds' uptake. Finally, the observed absence of interactions with nucleic acid model structures suggests that the gold compounds may have different intracellular targets with respect to cisplatin. PMID:26867101

  13. Structure-activity relationship of tryptamine analogues on the heart of venus mercenaria

    PubMed Central

    Greenberg, M. J.

    1960-01-01

    A number of tryptamine analogues and other exciter agents have been tested on the heart of Venus mercenaria. The method of estimation of potency, especially for irreversibly acting compounds, is discussed. Specificity of action with respect to the site of action of 5-hydroxytryptamine is defined experimentally. The specific activity of tyramine and phenethylamine and the non-specific excitatory action of indole and skatole indicate that the indole ring is neither necessary nor sufficient for 5-hydroxytryptamine-like activity. Tryptamine analogues differ in mode of action as well as potency. Congeners without a 5-hydroxyl group tend to act more slowly and irreversibly as well as less strongly than 5-hydroxytryptamine. Methyl substitution also increases the time of action and difficulty of reversal. However, the potency of such compounds may be increased or decreased depending upon the position of substitution and the presence of the 5-hydroxyl group. The relations between structure and potency and mode of action are discussed. Suggestions are made concerning the effective conformation of the 5-hydroxytryptamine molecule and the nature of its receptor. ImagesFIG. 7 PMID:13708259

  14. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase

    PubMed Central

    Bourne, Christina R.; Wakeham, Nancy; Nammalwar, Baskar; Tseitin, Vladimir; Bourne, Philip C.; Barrow, Esther W.; Mylvaganam, Shankari; Ramnarayan, Kal; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2012-01-01

    Background Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. Methods We have characterized inhibitors of Bacillus anthracis dihydrofolate reductase by measuring the Ki and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. Results We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. Conclusions These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents. PMID:22999981

  15. Analysis of structure-activity relationships in renin substrate analogue inhibitory peptides.

    PubMed

    Hui, K Y; Carlson, W D; Bernatowicz, M S; Haber, E

    1987-08-01

    On the basis of the minimal octapeptide sequence of the renin substrate, a series of peptides was synthesized containing (3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid (statine) or (3S,4S)-4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA) at the P1P1' position. Some of these peptides also contained Nin-formyltryptophan at the P5, P3, or P3' position. Renin-inhibitory potency varied over a wide range (from inactive to IC50 = 3 nM). Potency was reduced by at least 10-fold when the peptide was shortened by two residues at either the amino or carboxy terminus. The AHPPA-containing inhibitors were several-fold less potent than the statine-containing inhibitors. Analysis of models for the three-dimensional structure of inhibitors at the active site of human renin suggests that the diminished potency of the AHPPA peptides in comparison with the statine-containing peptides was caused by a shift in the peptide backbone due to a steric conflict between the phenyl ring of the AHPPA residue and the S1 subsite. The importance of the side chain and the 3(S)-hydroxyl group of the statine residue was demonstrated by substituting 5-aminovaleric acid for a dipeptide unit at the P1P1' position, which resulted in a peptide devoid of renin-inhibitory activity. Substitutions of other basic amino acids for histidine at the P2 position caused a great loss in potency, possibly due to disruption of a hydrogen bond as suggested by molecular modeling. Studies on the plasma renins of four nonhuman species suggest that the isoleucine-histidine segment at the P2'P3' position is important to defining the human specificity of the substrate. This work suggests a number of properties important to the design of potent renin inhibitors, and demonstrates the usefulness of three-dimensional models in the interpretation of structure-activity data. PMID:3302256

  16. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-01-01

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models. PMID:26703557

  17. Design, synthesis and structure-activity relationships of azole acids as novel, potent dual PPAR alpha/gamma agonists.

    PubMed

    Zhang, Hao; Ryono, Denis E; Devasthale, Pratik; Wang, Wei; O'Malley, Kevin; Farrelly, Dennis; Gu, Liqun; Harrity, Thomas; Cap, Michael; Chu, Cuixia; Locke, Kenneth; Zhang, Litao; Lippy, Jonathan; Kunselman, Lori; Morgan, Nathan; Flynn, Neil; Moore, Lisa; Hosagrahara, Vinayak; Zhang, Lisa; Kadiyala, Pathanjali; Xu, Carrie; Doweyko, Arthur M; Bell, Aneka; Chang, Chiehying; Muckelbauer, Jodi; Zahler, Robert; Hariharan, Narayanan; Cheng, Peter T W

    2009-03-01

    The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice. PMID:19201606

  18. Structure and activity relationship in the (S)-N-chroman-3-ylcarboxamide series of voltage-gated sodium channel blockers.

    PubMed

    Kers, Inger; Csjernyik, Gabor; Macsari, Istvan; Nylöf, Martin; Sandberg, Lars; Skogholm, Karin; Bueters, Tjerk; Eriksson, Anders B; Oerther, Sandra; Lund, Per-Eric; Venyike, Elisabet; Nyström, Jan-Erik; Besidski, Yevgeni

    2012-09-01

    Recent findings showing a relation between mutations in the Na(V)1.7 channel in humans and altered pain sensation has contributed to increase the attractiveness of this ion channel as target for development of potential analgesics. Amido chromanes 1 and 2 were identified as blockers of the Na(V)1.7 channel and analogues with modifications of the 5-substituent and the carboxamide part of the molecule were prepared to establish the structure-activity relationship. Compounds 13 and 29 with good overall in vitro and in vivo rat PK profile were identified. Furthermore, 29 showed in vivo efficacy in a nociceptive pain model. PMID:22832315

  19. Phenethyl nicotinamides, a novel class of Na(V)1.7 channel blockers: structure and activity relationship.

    PubMed

    Kers, Inger; Macsari, Istvan; Csjernyik, Gabor; Nylöf, Martin; Skogholm, Karin; Sandberg, Lars; Minidis, Alexander; Bueters, Tjerk; Malmborg, Jonas; Eriksson, Anders B; Lund, Per-Eric; Venyike, Elisabet; Luo, Lei; Nyström, Jan-Erik; Besidski, Yevgeni

    2012-10-01

    The Na(V)1.7 ion channel is an attractive target for development of potential analgesic drugs based on strong genetic links between mutations in the gene coding for the channel protein and inheritable pain conditions. The (S)-N-chroman-3-ylcarboxamide series, exemplified by 1, was used as a starting point for development of new channel blockers, resulting in the phenethyl nicotinamide series. The structure and activity relationship for this series was established and the metabolic issues of early analogues were addressed by appropriate substitutions. Compound 33 displayed acceptable overall in vitro properties and in vivo rat PK profile. PMID:22939696

  20. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  1. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system.

    PubMed

    Linnewiel, Karin; Ernst, Hansgeorg; Caris-Veyrat, Catherine; Ben-Dor, Anat; Kampf, Arie; Salman, Hagar; Danilenko, Michael; Levy, Joseph; Sharoni, Yoav

    2009-09-01

    Induction of phase II detoxifying enzymes is a major cellular strategy for reducing the risk of cancer. We previously reported that carotenoids activate the electrophile/antioxidant response element (EpRE/ARE) transcription system and induced the expression of phase II enzymes. Various electrophilic phytonutrients have been shown to induce the EpRE/ARE system by disrupting the inhibitory activity of Keap1 on Nrf2, the major EpRE/ARE activating transcription factor. However, hydrophobic carotenoids such as lycopene lack any electrophilic group and, thus, are unlikely to directly activate Nrf2 and the EpRE/ARE system. Here we demonstrate that carotenoid oxidation products are the active mediators in the stimulation of the EpRE/ARE system by carotenoids. Two lines of evidence support this conclusion. (A) The oxidized derivatives, extracted by ethanol from partially oxidized lycopene, transactivated EpRE/ARE with a potency similar to that of the unextracted lycopene mixture, whereas the intact carotenoid showed a nonsignificant effect. (B) Using a series of characterized mono- and diapocarotenoids that potentially can be derived from in vivo metabolism of carotenoids we defined the following structure-activity rules for activation of EpRE/ARE: (I) aldehydes and not acids are the active molecules; (II) the activity depends on the relative position of the methyl group to the terminal aldehyde which determines the reactivity of the conjugated double bond; (III) the optimal length of a dialdehyde derivative is 12 carbons in the main chain of the molecule. The apocarotenals inhibited breast and prostate cancer cell growth with a similar order of potency to the activation of EpRE/ARE. These results may provide a mechanistic explanation for the cancer preventive activity of carotenoids. PMID:19524036

  2. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    PubMed

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. PMID:26916437

  3. In Vitro Photodynamic Therapy and Quantitative Structure–Activity Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin Photosensitizers

    PubMed Central

    Huang, Ying-Ying; Mroz, Pawel; Zhiyentayev, Timur; Sharma, Sulbha K.; Balasubramanian, Thiagarajan; Ruzié, Christian; Krayer, Michael; Fan, Dazhong; Borbas, K. Eszter; Yang, Eunkyung; Kee, Hooi Ling; Kirmaier, Christine; Diers, James R.; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2010-01-01

    Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the macrocycle. These molecules are characterized by strong absorption features from 700 to >800 nm, which enable deep penetration into tissue. This report describes testing of 12 new stable synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative structure–activity relationships were derived, and subcellular localization was determined. The most active compounds have both low dark toxicity and high phototoxicity. This combination together with near-infrared absorption gives these bacteriochlorins great potential as photosensitizers for treatment of cancer. PMID:20441223

  4. New imidazo[1,2-b]pyrazoles as anticancer agents: synthesis, biological evaluation and structure activity relationship analysis.

    PubMed

    Grosse, Sandrine; Mathieu, Véronique; Pillard, Christelle; Massip, Stéphane; Marchivie, Mathieu; Jarry, Christian; Bernard, Philippe; Kiss, Robert; Guillaumet, Gérald

    2014-09-12

    Synthesis and functionalization strategies of the imidazo[1,2-b]pyrazole core were developed giving a rapid access to three series of novel imidazo[1,2-b]pyrazole type derivatives: C-2/C-6/C-7 trisubstituted, C-2/C-3/C-6 tri(hetero)arylated and C-2/C-3/C-6/C-7 tetrasubstituted imidazo[1,2-b]pyrazoles. 39 of the synthetized products were evaluated for in vitro anticancer activity using the MTT colorimetric assay against 5 human and 1 murine cancer cell lines. Promising in vitro growth inhibitory activities were exhibited by some of the target compounds. Of the 39 evaluated products, 4 displayed an IC50 ? 10 ?M in the 6 cell lines analyzed (compounds 4d, 4g, 9a, 11a). A structure activity relationship analysis is also reported in this paper. PMID:25064349

  5. Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization.

    PubMed

    Candice, Soares de Melo; Feng, Tzu-Shean; van der Westhuyzen, Renier; Gessner, Richard K; Street, Leslie J; Morgans, Garreth L; Warner, Digby F; Moosa, Atica; Naran, Krupa; Lawrence, Nina; Boshoff, Helena I M; Barry, Clifton E; Harris, C John; Gordon, Richard; Chibale, Kelly

    2015-11-15

    Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified. PMID:26522089

  6. Structure-activity relationship of N-benzenesulfonyl matrinic acid derivatives as a novel class of coxsackievirus B3 inhibitors.

    PubMed

    Wang, Sheng-Gang; Kong, Lan-Ying; Li, Ying-Hong; Cheng, Xin-Yue; Su, Feng; Tang, Sheng; Bi, Chong-Wen; Jiang, Jian-Dong; Li, Yu-Huan; Song, Dan-Qing

    2015-09-01

    A novel series of N-benzenesulfonyl matrinic amine/amide and matrinic methyl ether analogues were designed, synthesized and evaluated for their in vitro anti-coxsackievirus B3 (CVB3) activities. The structure-activity relationship (SAR) studies revealed that introduction of a suitable amide substituent on position 4' could greatly enhance the antivirus potency. Compared to the lead compounds, the newly synthesized matrinic amide derivatives 21c-d and 21j exhibited stronger anti-CVB3 activities with lower micromolar IC50 from 2.5 ?M to 2.7 ?M, and better therapeutic properties with improved selectivity index (SI) from 63 to 67. The SAR results provided powerful information for further strategic optimization, and these top compounds were selected for the next evaluation as novel enterovirus inhibitors. PMID:26112440

  7. Use of a (quantitative) structure-activity relationship [(Q)SAR] model to predict the toxicity of naphthenic acids.

    PubMed

    Frank, Richard A; Sanderson, Hans; Kavanagh, Richard; Burnison, B Kent; Headley, John V; Solomon, Keith R

    2010-01-01

    Naphthenic acids (NA) are a complex mixture of carboxylic acids that are natural constituents of oil sand found in north-eastern Alberta, Canada. NA are released and concentrated in the alkaline water used in the extraction of bitumen from oil sand sediment. NA have been identified as the principal toxic components of oil sands process-affected water (OSPW), and microbial degradation of lower molecular weight (MW) NA decreases the toxicity of NA mixtures in OSPW. Analysis by proton nuclear magnetic resonance spectroscopy indicated that larger, more cyclic NA contain greater carboxylic acid content, thereby decreasing their hydrophobicity and acute toxicity in comparison to lower MW NA. The relationship between the acute toxicity of NA and hydrophobicity suggests that narcosis is the probable mode of acute toxic action. The applicability of a (quantitative) structure-activity relationship [(Q)SAR] model to accurately predict the toxicity of NA-like surrogates was investigated. The U.S. Environmental Protection Agency (EPA) ECOSAR model predicted the toxicity of NA-like surrogates with acceptable accuracy in comparison to observed toxicity values from Vibrio fischeri and Daphnia magna assays, indicating that the model has potential to serve as a prioritization tool for identifying NA structures likely to produce an increased toxicity. Investigating NA of equal MW, the ECOSAR model predicted increased toxic potency for NA containing fewer carbon rings. Furthermore, NA structures with a linear grouping of carbon rings had a greater predicted toxic potency than structures containing carbon rings in a clustered grouping. PMID:20077300

  8. Isolation of antiplasmodial anthraquinones from Kniphofia ensifolia, and synthesis and structure-activity relationships of related compounds.

    PubMed

    Dai, Yumin; Harinantenaina, Liva; Bowman, Jessica D; Da Fonseca, Isabel Osorio; Brodie, Peggy J; Goetz, Michael; Cassera, Maria B; Kingston, David G I

    2014-01-01

    Bioassay-guided separation of the South African plant Kniphofia ensifolia for antiplasmodial activity led to the isolation of two new anthraquinones, named kniphofiones A and B (3 and 4), together with three known bioactive anthraquinone monomers (1, 2 and 5), and four known bisanthraquinones (6-9). The structures of the two new compounds were elucidated based on analyses of their 1D and 2D NMR spectra and mass spectrometric data. The dimeric compounds 6 and 7 displayed the strongest antiplasmodial activity among all the isolated compounds, with IC?? values of 0.4 ± 0.1 and 0.2 ± 0.1 ?M, respectively. The two new compounds displayed modest activities, with IC?? values of 26 ± 4 and 9 ± 1 ?M, respectively. Due to the synthetic accessibility of the new compounds and the increased activity shown by the dimeric compounds, a structure-activity relationship study was conducted. As a result, one analogue of kniphofione B (4), the caffeic acid derivative of aloe-emodin, was found to have the highest activity among all the aloe-emodin derivatives, with an IC50 value of 1.3 ± 0.2 ?M. PMID:24326280

  9. Isolation of antiplasmodial anthraquinones from Kniphofia ensifolia, and synthesis and structure-activity relationships of related compounds

    PubMed Central

    Dai, Yumin; Harinantenaina, Liva; Bowman, Jessica D.; Fonseca, Isabel Osorio Da; Brodie, Peggy J.; Goetz, Michael; Cassera, Maria B.; Kingston, David G. I.

    2014-01-01

    Bioassay-guided separation of the South African plant Kniphofia ensifolia for antiplasmodial activity led to the isolation of two new anthraquinones, named kniphofiones A and B (3, 4), together with three known bioactive anthraquinone monomers (1, 2 and 5), and four known bisanthraquinones (6–9). The structures of the two new compounds were elucidated based on analyses of their 1D and 2D NMR spectra and mass spectrometric data. The dimeric compounds 6 and 7 displayed the strongest antiplasmodial activity among all the isolated compounds, with IC50 values of 0.4 ± 0.1 and 0.2 ± 0.1 ?M, respectively. The two new compounds displayed modest activities, with IC50 values of 26 ± 4 and 9 ± 1 ?M, respectively. Due to the synthetic accessibility of the new compounds and the increased activity shown by the dimeric compounds, a structure-activity relationship study was conducted. As a result, one analogue of kniphofione B (4), the caffeic acid derivative of aloe-emodin, was found to have the highest activity among all the aloe-emodin derivatives, with an IC50 value of 1.3 ± 0.2 ?M. PMID:24326280

  10. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    PubMed

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-01

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions. PMID:24057052

  11. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China

    NASA Astrophysics Data System (ADS)

    Huang, Jinli; Zhao, Dapeng; Zheng, Sihua

    2002-10-01

    The Sichuan-Yunnan region in southwest China is located in the boundary area between the active Tibetan Plateau to the west and the stable South China platform to the east. This region is characterized by complex Cenozoic structures and active seismotectonics. In this study, we have used over 30,000 arrival times from 1315 local earthquakes recorded by 172 seismic stations to determine a detailed three-dimensional (3-D) P wave velocity structure of the lithosphere down to 85 km depth in this region. We have taken into account the complex morphology of the Moho discontinuity to conduct the tomographic inversions, which leads to a better result than that with a flat Moho as in the previous studies. Our results show that large velocity variations of up to 7% exist in the crust and upper mantle in the Sichuan-Yunnan region. The velocity image of the upper crust correlates with the surface geological features. The Sichuan basin is imaged as a prominent low-velocity zone, while the Panzhihua mining district is imaged as a high-velocity feature. Velocity changes are visible across some of the large fault zones, and the faults and some large crustal earthquakes seem to occur at the boundary areas between slow and fast velocity anomalies. Some of the faults, such as the Red River fault, may have cut through the crust and reached up to the upper mantle. Under the Tengchong volcanic area, strong low-velocity zones are visible down to 85 km depth, with a lateral extent of about 100 km, suggesting the existence of magma chambers under the volcano. It is unclear how the Tengchong intraplate volcanism was generated. It may be related to the collision processes between the Indian plate, Burma microplate and the Eurasian plate, and the possible subduction of the Burma microplate under the Eurasian plate. Another possibility is that it was caused by the extensional fractures of the lithosphere and the upward intrusion of the hot asthenospheric materials. It is also possible that the Tengchong volcanism represents a hot spot with a lower mantle origin.

  12. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  13. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H?-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  14. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  15. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGESBeta

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  16. Structure Activity Relationships of Monocyte Chemoattractant Proteins in Complex with a Blocking Antibody

    SciTech Connect

    Reid,C.; Rushe, M.; Jarpe, M.; Van Vlijmen, H.; Dolinski, B.; Qian, F.; Cachero, T.; Cuervo, H.; Yanachkova, M.; et al.

    2006-01-01

    Monocyte chemoattractant proteins (MCPs) are cytokines that direct immune cells bearing appropriate receptors to sites of inflammation or injury and are therefore attractive therapeutic targets for inhibitory molecules. 11K2 is a blocking mouse monoclonal antibody active against several human and murine MCPs. A 2.5 Angstroms structure of the Fab fragment of this antibody in complex with human MCP-1 has been solved. The Fab blocks CCR2 receptor binding to MCP-1 through an adjacent but distinct binding site. The orientation of the Fab indicates that a single MCP-1 dimer will bind two 11K2 antibodies. Several key residues on the antibody and on human MCPs were predicted to be involved in antibody selectivity. Mutational analysis of these residues confirms their involvement in the antibody- chemokine interaction. In addition to mutations that decreased or disrupted binding, one antibody mutation resulted in a 70-fold increase in affinity for human MCP-2. A key residue missing in human MCP-3, a chemokine not recognized by the antibody, was identified and engineering the preferred residue into the chemokine conferred binding to the antibody.

  17. Amide-Modified Prenylcysteine based Icmt Inhibitors: Structure Activity Relationships, Kinetic Analysis and Cellular Characterization

    PubMed Central

    Majmudar, Jaimeen D.; Hodges-Loaiza, Heather B.; Hahne, Kalub; Donelson, James L.; Song, Jiao; Shrestha, Liza; Harrison, Marietta L.; Hrycyna, Christine A.; Gibbs, Richard A.

    2012-01-01

    Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the ?-carboxyl methylation of the C-termimal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng – Prusoff method, the Ki values were determined from the IC50 values. Analog 1a has a KIC of 1.4 ± 0.2 ?M and a KIU of 4.8 ± 0.5 ?M while 1b has a KIC of 0.5 ± 0.07 ?M and a KIU of 1.9 ± 0.2 ?M. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells. PMID:22142613

  18. Amide-modified prenylcysteine based Icmt inhibitors: Structure-activity relationships, kinetic analysis and cellular characterization.

    PubMed

    Majmudar, Jaimeen D; Hodges-Loaiza, Heather B; Hahne, Kalub; Donelson, James L; Song, Jiao; Shrestha, Liza; Harrison, Marietta L; Hrycyna, Christine A; Gibbs, Richard A

    2012-01-01

    Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the ?-carboxyl methylation of the C-terminal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng-Prusoff method, the K(i) values were determined from the IC(50) values. Analog 1a has a K(IC) of 1.4±0.2?M and a K(IU) of 4.8±0.5?M while 1b has a K(IC) of 0.5±0.07?M and a K(IU) of 1.9±0.2?M. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells. PMID:22142613

  19. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Reif, Rubén; Gan, Jay

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP???a/b, NP???a and NP??? in the effluent. Moreover, biodegradability was related to the bulkiness of ?-substituents and followed ?-dimethyl > ?-ethyl-?-methyl > ?-methyl-?-n-propyl > ?-iso-propyl-?-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP. PMID:25462736

  20. Structure-activity relationship of C5-curcuminoids and synthesis of their molecular probes thereof.

    PubMed

    Yamakoshi, Hiroyuki; Ohori, Hisatsugu; Kudo, Chieko; Sato, Atsuko; Kanoh, Naoki; Ishioka, Chikashi; Shibata, Hiroyuki; Iwabuchi, Yoshiharu

    2010-02-01

    A series of novel analogues of 1,5-bis(4-hydroxy-3-methoxyphenyl)-penta-(1E,4E)-1,4-dien-3-one (C(5)-curcumin), which is a natural analogue of curcumin isolated from the rhizomes of Curcuma domestica Val. (Zingiberacea), were synthesized and evaluated for their cytotoxicities against human colon cancer cell line HCT-116 to conclude the SAR of C(5)-curcuminoids for further development of their use in cancer chemotherapy: (1) Bis(arylmethylidene)acetone serves as a promising skeleton for eliciting cytotoxicity. (2) The 3-oxo-1,4-pentadiene structure is essential for eliciting cytotoxicity. (3) As for the extent of the aromatic substituents, hexasubstituted compounds exhibit strong activities, in which 3,4,5-hexasubstitution results in the highest potency. (5) The symmetry between two aryl rings is not an essential requirement for bis(arylmethylidene)acetones to elicit cytotoxicity. (6) para-Positions allows the installation of additional functional groups for use as molecular probes. By taking advantage of the SAR diagram, we have elaborated several advanced derivatives having GI(50) of single-digit micromolar potencies that will function as molecular probes to target and/or report key biomolecules interacting with curcumin and C(5)-curcumin. PMID:20060305

  1. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  2. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    TOXLINE Toxicology Bibliographic Information

    Lu Z; Reif R; Gan J

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP???a/b, NP???a and NP??? in the effluent. Moreover, biodegradability was related to the bulkiness of ?-substituents and followed ?-dimethyl > ?-ethyl-?-methyl > ?-methyl-?-n-propyl > ?-iso-propyl-?-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.

  3. Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties

    PubMed Central

    Pot??ková, Eliška; Hrušková, Kate?ina; Bureš, Jan; Kova?íková, Petra; Špirková, Iva A.; Pravdíková, Kate?ina; Kolbabová, Lucie; Hergeselová, Tereza; Hašková, Pavlína; Jansová, Hana; Machá?ek, Miloslav; Jirkovská, Anna; Richardson, Vera; Lane, Darius J. R.; Kalinowski, Danuta S.; Richardson, Des R.; Vávrová, Kate?ina; Šim?nek, Tomáš

    2014-01-01

    Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects. PMID:25393531

  4. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells

    PubMed Central

    Quan, Kai; Liu, Qun; Wan, Jin-Yi; Zhao, Yi-Jing; Guo, Ru-Zhou; Alolga, Raphael N.; Li, Ping; Qi, Lian-Wen

    2015-01-01

    The anticancer activities of ginsenosides are widely reported. The structure-activity relationship of ginsenosides against cancer is not well elucidated because of the unavailability of these compounds. In this work, we developed a transformation method to rapidly produce rare dehydroxylated ginsenosides by acid treatment. The optimized temperature, time course, and concentration of formic acid were 120°C, 4 h and 0.01%, respectively. From 100 mg of Rh1, 8.3 mg of Rk3 and 18.7 mg of Rh4 can be produced by acid transformation. Similarly, from 100 mg of Rg3, 7.4 mg of Rk1 and 15.1 mg of Rg5 can be produced. From 100 mg of Rh2, 8.3 mg of Rk2 and 12.7 mg of Rh3 can be generated. Next, the structure-activity relationships of 23 ginsenosides were investigated by comparing their cytotoxic effects on six human cancer cells, including HCT-116, HepG2, MCF-7, Hela, PANC-1, and A549. The results showed that: (1) the cytotoxic effect of ginsenosides is inversely related to the sugar numbers; (2) sugar linkages rank as C-3 > C-6 > C-20; (3) the protopanaxadiol-type has higher activities; (4) having the double bond at the terminal C20-21 exhibits stronger activity than that at C20-22; and (5) 20(S)-ginsenosides show stronger effects than their 20(R)-stereoisomers. PMID:25716943

  5. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships.

    PubMed

    Jung, Yearam; Shin, Soon Young; Yong, Yeonjoong; Jung, Hyeryoung; Ahn, Seunghyun; Lee, Young Han; Lim, Yoongho

    2015-05-01

    Although several plant-derived flavones inhibit aurora B kinase (aurB), quantitative relationships between the structural properties of plant-derived flavones and their inhibitory effects on aurB remain unclear. In this report, these quantitative structure-activity relationships were obtained. For quercetagetin, found in the Eriocaulon species, showing the best IC50 value among the flavone derivatives tested in this report, further biological tests were performed using cell-based assays, including Western blot analysis, flow cytometry, and immunofluorescence microscopy. In vitro cellular experiments demonstrated that quercetagetin inhibits aurB. The molecular-binding mode between quercetagetin and aurB was elucidated using in silico docking. Quercetagetin binds to aurB, aurA, and aurC and prevents the active phosphorylation of all three aurora kinases. In addition, quercetagetin triggers mitotic arrest and caspase-mediated apoptosis. These observations suggest that quercetagetin is an aurora kinase inhibitor. Induction of mitosis-associated tumor cell death by quercetagetin is a promising strategy for developing novel chemotherapeutic anticancer agents. PMID:25298094

  6. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. PMID:26004577

  7. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.

    PubMed

    Yang, Lei; Wang, Peng; Jiang, Yilin; Chen, Jian

    2005-01-01

    Although artificial neural networks (ANNs) have been shown to exhibit superior predictive power in the study of quantitative structure-activity relationships (QSARs), they have also been labeled a "black box" because they provide little explanatory insight into the relative influence of the independent variables in the predictive process so that little information on how and why compounds work can be obtained. Here, we have turned our interests to their explanatory capacities; therefore, a method was proposed for assessing the relative importance of variables indicating molecular structure, on the basis of axon connection weights and partial derivatives of the ANN output with respect to its input, which can identify variables that significantly contribute to network predictions, and providing a variable selection method for ANNs. We show that, by extending this approach to ANNs, the "black box" mechanics of ANNs can be greatly illuminated, thereby making it very useful in understanding environmental chemical QSAR models. PMID:16309287

  8. Synthesis and structure-activity relationships of novel naphthalenic and bioisosteric related amidic derivatives as melatonin receptor ligands.

    PubMed

    Leclerc, V; Fourmaintraux, E; Depreux, P; Lesieur, D; Morgan, P; Howell, H E; Renard, P; Caignard, D H; Pfeiffer, B; Delagrange, P; Guardiola-Lemaître, B; Andrieux, J

    1998-10-01

    A previous paper reported the synthesis of melatonin receptor ligands. In order to complete the structure-activity relationships and to obtain antagonists to the melatonin receptor, a new series of naphthalenic analogues of melatonin have been synthesized. Modifications include deletion of the 7-methoxy group, replacement of the ethylene moiety, replacement of the amidic function by bioisosteres, and replacement of the naphthalenic nucleus by other bicyclic rings. Almost all the structural modifications lead to decreased affinity for the melatonin receptor. However, the N-n propyl urea derivative (27) is a very potent ligand at this receptor (pKi = 14.3). Most interestingly deletion of the methoxy group resulted in the first antagonist in this series. This molecule, compound 12, or N-[2-(1-naphthyl)-ethyl]cyclobutyl carboxamide has been selected for preclinical development. PMID:9839017

  9. Quantitative structure-activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors.

    PubMed

    Gramatica, Paola; Papa, Ester; Marrocchi, Assunta; Minuti, Lucio; Taticchi, Aldo

    2007-03-01

    Various polycyclic aromatic hydrocarbons (PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A homogeneous set of mutagenicity data (TA98 and TA100,+S9) for 32 benzocyclopentaphenanthrenes/chrysenes was modeled by the quantitative structure-activity relationship classification methods k-nearest neighbor and classification and regression tree, using theoretical holistic molecular descriptors. Genetic algorithm provided the selection of the best subset of variables for modeling mutagenicity. The models were validated by leave-one-out and leave-50%-out approaches and have good performance, with sensitivity and specificity ranges of 90-100%. Mutagenicity assessment for these PAHs requires only a few theoretical descriptors of their molecular structure. PMID:16616369

  10. Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, Structure–Activity Relationship, and Anticancer Activities

    PubMed Central

    2013-01-01

    Cancer cells often have a high demand for antiapoptotic proteins in order to resist programmed cell death. CDK9 inhibition selectively targets survival proteins and reinstates apoptosis in cancer cells. We designed a series of 4-thiazol-2-anilinopyrimidine derivatives with functional groups attached to the C5-position of the pyrimidine or to the C4-thiazol moiety and investigated their effects on CDK9 potency and selectivity. One of the most selective compounds, 12u inhibits CDK9 with IC50 = 7 nM and shows over 80-fold selectivity for CDK9 versus CDK2. X-ray crystal structures of 12u bound to CDK9 and CDK2 provide insights into the binding modes. This work, together with crystal structures of selected inhibitors in complex with both enzymes described in a companion paper,34 provides a rationale for the observed SAR. 12u demonstrates potent anticancer activity against primary chronic lymphocytic leukemia cells with a therapeutic window 31- and 107-fold over those of normal B- and T-cells. PMID:23301767

  11. Kinetics and quantitative structure-activity relationship study on the degradation reaction from perfluorooctanoic acid to trifluoroacetic acid.

    PubMed

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure-activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure-activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure-activity model shows, the bond length and energy of C1-C2 (RC1-C2 and EC1-C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (?E), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  12. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies.

    PubMed

    Nuzzi, Andrea; Fiasella, Annalisa; Ortega, Jose Antonio; Pagliuca, Chiara; Ponzano, Stefano; Pizzirani, Daniela; Bertozzi, Sine Mandrup; Ottonello, Giuliana; Tarozzo, Glauco; Reggiani, Angelo; Bandiera, Tiziano; Bertozzi, Fabio; Piomelli, Daniele

    2016-03-23

    4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the β-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation. PMID:26866968

  13. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (?E), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  14. Quantitative structure-activity relationship analysis of the cation permeability of the P2X2 channel.

    PubMed

    Mager, Peter P; Weber, Anje; Illes, Peter

    2005-03-01

    The membrane-embedded, ligand-gated P2X glycoprotein receptor is a monovalent-bivalent cation channel that is activated by physiological concentrations of extracellular ATP. A quantitative structure-activity relationship (QSAR) analysis was developed to model the cation permeability of the P2X2 channel and its mutants. As chemical properties, the helix-coil equilibrium constants and the distribution coefficients of the system octanol/water at pH 7.4 were applied and modified (sliding windows) according to Eroshkin et al. (Comput. Appl. Biosci., 1995, 11, 49-44). The results were visualized by a dimeric P2X2 channel construct. The results support the hypothesis that residues which put into the cavity and contribute to hydrogen bonding forces are involved to a control of the transport of hydrated cations through the P2X2 channel. The model may be useful to develop P2X2 receptor antagonists. PMID:16787306

  15. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ.

    PubMed

    Stokes, Neil R; Baker, Nicola; Bennett, James M; Chauhan, Pramod K; Collins, Ian; Davies, David T; Gavade, Maruti; Kumar, Dushyant; Lancett, Paul; Macdonald, Rebecca; Macleod, Leanne; Mahajan, Anu; Mitchell, Jeffrey P; Nayal, Narendra; Nayal, Yashodanand Nandan; Pitt, Gary R W; Singh, Mahipal; Yadav, Anju; Srivastava, Anil; Czaplewski, Lloyd G; Haydon, David J

    2014-01-01

    The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy. PMID:24287381

  16. Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders--A Review of Structure-Activity Relationships.

    PubMed

    Gunia-Krzy?ak, Agnieszka; Pa?czyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk

    2015-08-01

    The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the ?-aminobutyric acid type?A (GABAA ) receptors, N-methyl-D-aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage-gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target-based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure-activity relationships discussed. PMID:26083325

  17. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.

    PubMed

    Pieroni, Marco; Wan, Baojie; Cho, Sanghyun; Franzblau, Scott G; Costantino, Gabriele

    2014-01-24

    Tuberculosis (TB) is one of the deadliest infectious diseases of all times, and its recent resurgence is a supreme matter of concern. Co-infection with HIV and, in particular, the continuous isolation of new resistant strains, makes the discovery of novel anti-TB agents a strategic priority. The research of novel agents should be driven by the accessibility of the synthetic procedure and, in particular, by the lack of cross-resistance with the drugs already marketed. Moreover, in order to shorten the duration of the therapy, and therefore decrease the rate of resistance, these molecules should be active also against the nonreplicating persistent form (NRP-TB) of the infection. The availability of an in-house small library of compounds prompted us to investigate their anti-TB activity. Two compounds, embodying a 2-aminothiazole scaffold, were found to possess a certain inhibitory activity toward Mycobacterium tuberculosis H37Rv, and therefore a medicinal chemistry campaign was initiated in order to increase the activity of the hit compounds and, especially, construct a plausible body of structure-activity relationships. The potency of the hit compound was successfully improved, and, much more importantly, some of the molecules synthesized were found to be active toward the persistent phenotype, and, also, toward a panel of resistant strains. These findings encourage further investigations around this interesting antitubercular chemotype. PMID:24333612

  18. Novel 4-substituted phenyl-2,2'-bichalcophenes and aza-analogs as antibacterial agents: a structural activity relationship.

    PubMed

    Hussin, Warda A; Ismail, Mohamed A; El-Sayed, Wael M

    2013-01-01

    Antibiotic resistance is a major health problem; therefore, new antibacterial agents will need to be continuously developed. A series of novel bichalcophenes has been tested and found to have antimicrobial activity against selected bacteria. Due to the promising antimicrobial effects of these 4-substituted phenyl bichalcophene derivatives, the study reported here was launched to examine the interaction between novel bichalcophenes and tetracycline. The minimum inhibitory concentration values for all bichalcophenes were between 8 and 64 μM. Many of the bichalcophenes had synergistic activity that increased the inhibitory effect of tetracycline against bacterial growth, as indicated by the fractional inhibitory concentration index. The post-antibiotic effects of the novel bichalcophenes were determined. Many bichalcophenes were able to elongate the period required for bacteria to recover and grow after a brief exposure to tetracycline. Escherichia coli did not develop resistance to many bichalcophenes over a period of 7 days. A structural activity relationship could be characterized, as monocationic derivatives were more active than the corresponding mononitriles. The presence of a pyridyl group and/or furan ring reduced the activity, while the presence of a phenyl or thiophene ring enhanced the antibacterial activity. Our results suggest that bichalcophenes could be useful to elevate the shelf life of many antibiotics. PMID:23662048

  19. Synthesis, Optimization and Structure-Activity Relationships of 3,5-Disubstituted Isoxazolines as New Anti-tuberculosis Agents

    PubMed Central

    Rakesh, Dianqing Sun; Lee, Robin B.; Tangallapally, Rajendra; Lee, Richard E.

    2009-01-01

    In the course of the development of a potent series of nitrofuranylamide anti-tuberculosis agents, we investigated if the exceptional activity resulted in part from the isoxazoline core and if it possessed any intrinsic anti-tuberculosis activity. This led to the discovery of an isoxazoline ester with appreciable anti-tuberculosis activity. In this study we explored the anti-tuberculosis structure activity relationship of the isoxazoline ester compound through systematic modification of the 3,5-di-substituted isoxazoline core. Two approaches were used: (i) modification of the potentially metabolically labile ester functionality at the 3-position with acids, amines, amides, reverse amides, alcohols, hydrazides, and 1,3,4-oxadiazoles; (ii) substitution of the distal benzyl piperazine ring in the 5-position of the isoxazoline ring with piperazyl-ureas, piperazyl-carbamates, biaryl systems, piperidines and morpholine. Attempts to replace the ester group at C-3 position of isoxazoline with a variety of bioisosteric head groups led to significant loss of the tuberculosis inhibition indicating that an ester is required for anti-tuberculosis activity. Optimization of the isoxazoline C5-position produced compounds with improved anti-tuberculosis activity, most notably the piperazyl-urea and piperazyl-carbamate analogs. PMID:18524421

  20. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    The Wenchuan earthquake (Ms 8.0) struck the Longmen Shan area, the eastern margin of the Tibetan Plateau in Sichuan, China.It produced a large co-seismic surface rupture zone along the Yingxiu-Beichuan and Guanxian-Anxian fault zones. Our research focuses on the central fault of the Longmuanshan fault belt: the Yingxiu-Beichuan fault zone. Detailed studies were done on the coseismic surface rupture in Bajiaomiao village, Hongkou town. Combining with analyses of the cores from the No.1 Well of the Wenchuan Earthquake Fault Scientific Drilling (WFSD-1) Project, the composition features and structures of the Longmenshan fault belt are discussed. Our research indicates that the Yingxiu-Beichuan fault zone is composed of many small sub-faults (damage zone), which consist of fault breccia, cataclasite and/or fault gouge, and small amounts pseudotachylite in some faults. The thickness of the gouge in the fault zone ranges from several millimeters to 25 centimeters, which is consistent with the fault characteristics recorded in the cores of WFSD-1. Gouge is the product of the frictional effect during the earthquake, representing the principal slip zone (PSZ). The width of the Yingxiu-Beichuan fault zone is about 120 m viewed from outcrops in Bajiaomiao village. More than 80 small sub-faults that contain gouge are distributed in this area. Only several millimeters to approximately 2 centimeters gouge can be formed in one earthquake, from the results of the Taiwan Chelungpu-fault Drilling Project (TCDP) and Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, so we can infer that each layer of gouge in Yingxiu-Beichuan fault zone might be produced by at least 1 to 13 large earthquakes. The total thickness of the gouge in this area is about 150 cm, indicating at least 183 earthquake events, and suggesting that strong earthquakes repeatedly occurred along the Yingxiu-Beichuan fault zone. Each earthquake does not completely slip along the principal slip zone (PSZ) of the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  1. Peroxisome induction potential and lipid-regulating activity in rats. Quantitative microscopy and chemical structure-activity relationships.

    PubMed Central

    McGuire, E. J.; Lucas, J. A.; Gray, R. H.; de la Iglesia, F. A.

    1991-01-01

    Structurally diverse lipid-regulating agents induce hepatomegaly, hepatic peroxisome proliferation, and hepatocarcinoma in rats by mechanisms not fully understood. Nevertheless the initial hepatic response is a prompt, florid proliferation of peroxisomes. In investigations reported here, changes in the rat hepatic peroxisome compartment were measured by quantitative microscopy to determine chemical structure requirements that relate to peroxisome proliferation and lipid regulation. Aryloxyalkanoic acids plus amide analogs, and thio, benzimidazole, phenylpiperazine, and oxazole derivatives induced peroxisome proliferation and generally decreased plasma triglyceride and total cholesterol levels. These compounds contain an acidic function or are readily metabolized to a chemical with an acidic function. Substitution of the acidic function with an adamantyloxy eliminated peroxisome proliferation and induced contrasting effects on lipid profile, increasing triglycerides and decreasing total cholesterol. A previously unreported, direct correlation emerged between peroxisome proliferation and plasma high-density lipoprotein-cholesterol levels. These effects could not be elicited separately, negating identification of functional groups that could be associated with either activity. Chemical structure and resulting peroxisome proliferation with changes in plasma lipoproteins are therefore closely interrelated in rats. Images Figure 1 PMID:1853935

  2. Designing Anti-Influenza Aptamers: Novel Quantitative Structure Activity Relationship Approach Gives Insights into Aptamer – Virus Interaction

    PubMed Central

    Musafia, Boaz; Oren-Banaroya, Rony; Noiman, Silvia

    2014-01-01

    This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus’ infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer’s binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers’ binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2?=?0.702 for the training set, and R2?=?0.66 for the independent test set. Moreover, in the test set the model’s sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer’s binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the influenza virus are discussed. PMID:24846127

  3. Structure-Activity Relationship Studies on the Mosquito Toxicity and Biting Deterrency of Callicarpenal Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Callicarpenal (13,14,15,16-tetranor-3-cleroden-12-al) has previously demonstrated significant mosquito bite-deterring activity against Aedes aegypti and Anopheles stephensi in addition to repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis. In the present study...

  4. Application of PCA and HCA to the Structure-Activity Relationship Study of Fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Li, Xiao-hong; Zhang, Xian-zhou; Cheng, Xin-lu; Yang, Xiang-dong; Zhu, Zun-lue

    2006-04-01

    Density functional theory (DFT) was used to calculate molecular descriptors (properties) for 12 fluoroquinolone with anti-S.pneumoniae activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce dimensionality and investigate in which variables should be more effective for classifying fluoroquinolones according to their degree of an-S.pneumoniae activity. The PCA results showed that the variables ELUMO, Q3, Q5, QA, logP, MR, VOL and ?EHL of these compounds were responsible for the anti-S.pneumoniae activity. The HCA results were similar to those obtained with PCA. The methodologies of PCA and HCA provide a reliable rule for classifying new fluoroquinolones with anti-S.pneumoniae activity. By using the chemometric results, 6 synthetic compounds were analyzed through the PCA and HCA and two of them are proposed as active molecules with anti-S.pneumoniae, which is consistent with the results of clinic experiments.

  5. Structure-activity relationships of sandalwood odorants: synthesis of a new campholene derivative.

    PubMed

    Stappen, Iris; Höfinghoff, Joris; Buchbauer, Gerhard; Wolschann, Peter

    2010-09-01

    Structural modifications of natural (-)-(Z)-beta-santalol have shown that the sandalwood odor impression is highly sensitive, even to small structural changes. Particularly, the substitution of the quaternary carbon is of great influence on the scent. Epi-compounds with side chains in the endo-position possess sandalwood odor in only a few derivatives, whereas modifications at this side chain, as well as modification at the bicyclic ring systems mostly lead to a complete loss of sandalwood fragrance. PMID:20922988

  6. Drug structure-transport relationships.

    PubMed

    Roberts, Michael S

    2010-12-01

    Malcolm Rowland has greatly facilitated an understanding of drug structure-pharmacokinetic relationships using a physiological perspective. His view points, covering a wide range of activities, have impacted on my own work and on my appreciation and understanding of our science. This overview summarises some of our parallel activities, beginning with Malcolm's work on the pH control of amphetamine excretion, his work on the disposition of aspirin and on the application of clearance concepts in describing the disposition of lidocaine. Malcolm also spent a considerable amount of time developing principles that define solute structure and transport/pharmacokinetic relationships using in situ organ studies, which he then extended to involve the whole body. Together, we developed a physiological approach to studying hepatic clearance, introducing the convection-dispersion model in which there was a spread in blood transit times through the liver accompanied by permeation into hepatocytes and removal by metabolism or excretion into the bile. With a range of colleagues, we then further developed the model and applied it to various organs in the body. One of Malcolm's special interests was in being able to apply this knowledge, together with an understanding of physiological differences in scaling up pharmacokinetics from animals to man. The description of his many other activities, such as the development of clearance concepts, application of pharmacokinetics to the clinical situation and using pharmacokinetics to develop new compounds and delivery systems, has been left to others. PMID:21107662

  7. Three-dimensional quantitative structure-activity relationship study on antioxidant capacity of curcumin analogues

    NASA Astrophysics Data System (ADS)

    Chen, Bohong; Zhu, Zhibo; Chen, Min; Dong, Wenqi; Li, Zhen

    2014-03-01

    A comparative molecular similarity indices analysis (CoMSIA) was performed on a set of 27 curcumin-like diarylpentanoid analogues with the radical scavenging activities. A significant cross-validated correlation coefficient Q2 (0.784), SEP (0.042) for CoMSIA were obtained, indicating the statistical significance of the correlation. Further we adopt a rational approach toward the selection of substituents at various positions in our scaffold,and finally find the favored and disfavoured regions for the enhanced antioxidative activity. The results have been used as a guide to design compounds that, potentially, have better activity against oxidative damage.

  8. Structure-activity relationship for the addition of OH to (poly)alkenes: site-specific and total rate constants.

    PubMed

    Peeters, J; Boullart, W; Pultau, V; Vandenberk, S; Vereecken, L

    2007-03-01

    A novel site-specific structure-activity relationship was developed for the site-specific addition of OH radicals to (poly)alkenes at 298 K. From a detailed structure-activity analysis of some 65 known OH + alkene and diene reactions, it appears that the total rate constant for this reaction class can be closely approximated by a sum of independent partial rate constants, ki, for addition to the specific (double-bonded) C atoms that depend only on the stability type of the ensuing radical (primary, secondary, etc.), that is, on the number of substituents on the neighboring C atom in the double bond. The (nine) independent partial rate constants, ki, were derived, and the predicted rate constants (kOH,pred = Sigmak(i)) were compared with experimental k(OH,exp) values. For noncyclic (poly)alkenes, including conjugated structures, the agreement is excellent (Delta < 10%). The SAR-predicted rate constants for cyclic (poly)alkenes are in general also within <15% of the experimental value. On the basis of this SAR, it is possible to predict the site-specific rate constants for (poly)alkene + OH reactions accurately, including larger biogenic compounds such as isoprene and terpenes. An important section is devoted to the rigorous experimental validation of the SAR predictions against direct measurements of the site-specific addition contributions within the alkene, for monoalkenes as well as conjugated alkenes. The measured site specificities are within 10-15% of the SAR predictions. PMID:17298042

  9. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides.

    PubMed

    Musilek, Kamil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil

    2011-07-01

    Organophosphate pesticides (OPPs; e.g. chlorpyrifos, diazinon, paraoxon) are a wide and heterogeneous group of organophosphorus compounds. Their biological activity of inhibiting acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) ranks them as life endangering agents. The necessary treatment after OPP exposure involves the use of parasympatolytics (e.g. atropine), oxime reactivators (e.g. obidoxime), and anticonvulsive drugs (e.g. diazepam). Therefore, the reactivators of AChE are essential compounds in the treatment of OPP intoxications. Commercial AChE reactivators (e.g. pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) were originally developed for other members of the organophosphate family, such as nerve agents (e.g. sarin, soman, tabun, VX). Pralidoxime, HI-6, and methoxime were found to be weak reactivators of OPP-inhibited AChE. Obidoxime and trimedoxime showed satisfactory reactivation against various OPPs with minor toxicity issues. During the last two decades, the treatment of OPP exposure has become more widely discussed because of growing agricultural production, industrialization, and harmful social issues (e.g. suicides). In this review is the summarized design, evaluation, and structure-activity relationship studies of recently produced AChE reactivators. Since pralidoxime, over 300 oximes have been produced or tested against OPP poisoning, and several novel compounds show very promising abilities as comparable (or higher) to commercial oximes. Some of these are highlighted for their further testing of OPP exposure and, additionally, the main structure-activity relationship of AChE reactivators against OPP is discussed. PMID:20027669

  10. Synthesis and Structure-Activity Relationships of Tambjamines and B-Ring Functionalized Prodiginines as Potent Antimalarials.

    PubMed

    Kancharla, Papireddy; Kelly, Jane Xu; Reynolds, Kevin A

    2015-09-24

    Synthesis and antimalarial activity of 94 novel bipyrrole tambjamines (TAs) and a library of B-ring functionalized tripyrrole prodiginines (PGs) against a panel of Plasmodium falciparum strains are described. The activity and structure-activity relationships demonstrate that the ring-C of PGs can be replaced by an alkylamine, providing for TAs with retained/enhanced potency. Furthermore, ring-B of PGs/TAs can be substituted with short alkyl substitutions at either 4-position (replacement of OMe) or 3- and 4-positions without impacting potency. Eight representative TAs and two PGs have been evaluated for antimalarial activity against multidrug-resistant P. yoelii in mice in the dose range of 5-100 mg/kg × 4 days by oral administration. The KAR425 TA offered greater efficacy than previously observed for any PG, providing 100% protection to malaria-infected mice until day 28 at doses of 25 and 50 mg/kg × 4 days, and was also curative in this model in a single oral dose (80 mg/kg). This study presents the first account of antimalarial activity in tambjamines. PMID:26305125

  11. Structure Activity Relationship and Mechanism of Action Studies of Manzamine Analogues for the Control of Neuroinflammation and Cerebral Infections

    PubMed Central

    Peng, Jiangnan; Kudrimoti, Sucheta; Prasanna, Sivaprakasam; Odde, Srinivas; Doerksen, Robert J.; Pennaka, Hari K; Choo, Yeun-Mun; Rao, Karumanchi V.; Tekwani, Babu L.; Madgula, Vamsi; Khan, Shabana I.; Wang, Bin; Mayer, Alejandro M. S.; Jacob, Melissa R.; Tu, Lan Chun; Gertsch, Jürg; Hamann, Mark T.

    2010-01-01

    Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinol isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g. Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3β (GSK-3β), which is a putative target of manzamines. Based on the results presented here it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases. PMID:20017491

  12. Design, synthesis and structure?activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K.; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S.; An, Yongmi; Sack, John S.; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J.; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L.; Lombardo, Louis J.; Fargnoli, Joseph; Borzilleri, Robert M.

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  13. Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors.

    PubMed

    Wang, Hui; Yang, Chunying; Doherty, Joanne R; Roush, William R; Cleveland, John L; Bannister, Thomas D

    2014-09-11

    Novel substituted pteridine-derived inhibitors of monocarboxylate transporter 1 (MCT1), an emerging target for cancer therapy, are reported. The activity of these compounds as inhibitors of lactate transport was confirmed using a (14)C-lactate transport assay, and their potency against MCT1-expressing human tumor cells was established using MTT assays. The four most potent compounds showed substantial anticancer activity (EC50 37-150 nM) vs MCT1-expressing human Raji lymphoma cells. PMID:25068893

  14. Synthesis, biological evaluation, and structure-activity relationship study of novel stilbene derivatives as potential fungicidal agents.

    PubMed

    He, Daohang; Jian, Weilin; Liu, Xianping; Shen, Huifang; Song, Shaoyun

    2015-02-11

    A total of 22 novel stilbene derivatives containing the 1,3,4-oxadiazole moiety and trimethoxybenzene were designed and synthesized. Their chemical structures were characterized by (1)H and (13)C nuclear magnetic resonance, infrared, and high-resolution mass spectrometry. Bioassay results revealed that some of the title compounds showed potent in vivo fungicidal activities against three phytopathogenic fungi (Pseudoperonospora cubensis, Colletotrichum lagenarium, and Septoria cucurbitacearum) from cucurbits at 600 ?g/mL. Notably, compounds 4b, 4d, 4i, 4k, and 4l exhibited a broad spectrum and remarkably high activities against those fungi, some of which even showed a comparable control efficacy to that of the commercial fungicides. Three-dimensional quantitative structure-activity relationship based on comparative molecular field analysis with good predictive ability (q(2) = 0.516; r(2) = 0.920) was reasonably discussed. For the first time, the present work suggested that the stilbene derivatives containing the 1,3,4-oxadiazole moiety could be developed as potential fungicides for crop protection. PMID:25594285

  15. Dihydro-β-agarofuran sesquiterpenes from celastraceae species as anti-tumour-promoting agents: Structure-activity relationship.

    PubMed

    Núñez, Marvin J; Jiménez, Ignacio A; Mendoza, Cristina R; Chavez-Sifontes, Marvin; Martinez, Morena L; Ichiishi, Eiichiro; Tokuda, Ryo; Tokuda, Harukuni; Bazzocchi, Isabel L

    2016-03-23

    Inhibition of tumour promotion in multistage chemical carcinogenesis is considered a promising strategy for cancer chemoprevention. In an ongoing investigation of bioactive secondary metabolites from Celastraceae species, five new dihydro-β-agarofuran sesquiterpenes (1-5), named Chiapens A-E, and seventeen known ones, were isolated from Maytenus chiapensis. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric techniques, and their absolute configurations were determined by circular dichroism studies, chemical correlations and biogenic means. The isolated compounds, along with twenty known sesquiterpenes, previously isolated from Zinowiewia costaricensis, have been tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorpol-13-acetate (TPA). Thirty three compounds from this series showed stronger effects than that of β-carotene, the reference inhibitor. The structure-activity relationship (SAR) analysis revealed that the type of substituent, in particular at the C-1 position of the sesquiterpene scaffold, was able to modulate the anti-tumour promoting activity. Compounds 3, 6, and 33 showed significant effects in an in vivo two-stage mouse-skin carcinogenesis model. PMID:26854381

  16. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids. PMID:26080741

  17. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  18. Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands.

    PubMed

    Dring, Ann M; Anderson, Linnea E; Qamar, Saima; Stoner, Matthew A

    2010-12-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  19. Synthesis and structure-activity relationships of a novel class of dithiocarbamic acid esters as anticancer agent.

    PubMed

    Hou, Xueling; Ge, Zemei; Wang, Tingmin; Guo, Wei; Wu, Jun; Cui, Jingrong; Lai, Chingsan; Li, Runtao

    2011-05-01

    Based on a novel lead compound 4-methylpiperazine-1-carbodithioic acid 3-cyano-3,3-diphenylpropyl ester 1, the systematic structural modification was carried out. All the synthesized compounds were evaluated for their in-vitro anticancer activities on four to six different cell lines at three different concentrations. Most of the tested compounds could selectively inhibit the growth of HL-60 and Bel-7402 cell lines at a medium concentration. Four compounds (3f, 3g, 3n, and 5) were selected for the IC(50) test, and the results revealed that three compounds (3g, 3n, and 5) showed almost the same or a slightly weaker activity than compound 1 against HL-60, and three compounds (3f, 3g, and 3n) showed >2-fold higher potency than compound 1 against Bel-7402. The in-vivo efficacy of 3n?·?HCl was evaluated with transplanted hepatocyte carcinoma 22 as an in-vivo test model. It was found that 3n?·?HCl could inhibit significantly the growth of tumor, and that this effect was dose-dependent. Meanwhile, the compound 3n?·?HCl showed low toxicity compared with compound 1?·?HCl as evidenced by the little body-weight loss. These results confirmed that compound 3n?·?HCl is more potent than the lead compound 1?·?HCl. Preliminary structure-activity relationships indicated that: a) Both nitrile group and the cyclic amine containing at least two nitrogens were indispensable moieties to keep the activity; b) substitution of the piperazine ring is unfavorable for the improvement of activity; c) the suitable linker joining the piperazinyl dithiocarboxyl and diphenylacetonitril group should be ethylene; d) a non-coplanar arrangement of the two benzene rings appears to be essential for activity. PMID:21509804

  20. Structure-activity relationships of retinoids in developmental toxicology. IV. Planar Cisoid conformational restriction.

    PubMed

    Willhite, C C; Dawson, M I

    1990-04-01

    To evaluate the influence of the three-dimensional configuration of retinoids on teratogenic activity, 14 retinoids were studied in hamsters. Retinoids with a conformational restriction of the retinoic acid polyene chain adjacent to the beta-cyclogeranylidene ring showed increased teratogenic potency and retinoids with aromatic conformational restriction adjacent to the polar terminus showed potency equivalent to retinoic acid. Conformational restriction of the polyene chain that permits rotation of the bond adjacent to the beta-cyclogeranylidene ring abolished teratogenic activity. Incorporation of dimethyl substituents at positions corresponding to C1 and C4 positions of retinoic acid enhanced teratogenic potency. Elimination of the twist chair conformation of gem-dimethyl substituents via incorporation of a benzothiopyran or substituted planar aromatic ring decreased teratogenic potency. Planar cisoid conformational restriction alone was insufficient to confer teratogenic activity in that elimination of the polar terminus abolished teratogenic activity. That an acidic polar terminus, as contrasted to a carboxyl residue per se, was required for teratogenic activity was illustrated by administration of a retinoidal phenyl sulfone which was metabolized to the corresponding teratogenic sulfonic acid. Retinoid teratogenicity in hamsters depends upon the assumption of a 10,11 cisoid and/or 12,13 cisoid rotameric form by a conjugated spacer greater than five carbon atoms in length located between a hydrophobic ring system and an acidic terminus, ionized at physiologic pH. Comparison of the relative teratogenic potencies of this series of conformationally restricted retinoids with their activities in assays for chemoprevention activity showed that those analogs with high intrinsic control of epithelial or mesenchymal cell differentiation were also the more potent teratogens. The results suggest that those biochemical mechanisms responsible for retinoid control of normal adult or neoplastic cell differentiation also mediate retinoid-induced teratogenesis. PMID:2330592

  1. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases.

    PubMed Central

    Danielson, U H; Esterbauer, H; Mannervik, B

    1987-01-01

    The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557

  2. Structure-Function Relationship of a Novel PR-5 Protein with Antimicrobial Activity from Soy Hulls.

    PubMed

    Liu, Chun; Cheng, Fenfen; Sun, Yingen; Ma, Hongyu; Yang, Xiaoquan

    2016-02-01

    An alkaline isoform of the PR-5 protein (designated GmOLPc) has been purified from soybean hulls and identified by MALDI-TOF/TOF-MS. GmOLPc effectively inhibited in vitro the growth of Phytophthora soja spore and Pseudomonas syringae pv glycinea. The antimicrobial activity of GmOLPc should be mainly ascribed to its high binding affinity with vesicles composed of DPPG, (1,3)-?-d-glucans, and weak endo-(1,3)-?-d-glucanase activity. From the 3D models, predicted by the homology modeling, GmOLPc contains an extended negatively charged cleft. The cleft was proved to be a prerequisite for endo-(1,3)-?-d-glucanase activity. Molecular docking revealed that the positioning of linear (1,3)-?-d-glucans in the cleft of GmOLPc allowed an interaction with Glu83 and Asp101 that were responsible for the hydrolytic cleavage of glucans. Interactions of GmOLPc with model membranes indicated that GmOLPc possesses good surface activity which could contribute to its antimicrobial activity, as proved by the behavior of perturbing the integrity of membranes through surface hydrophobic amino acid residues (Phe89 and Phe94). PMID:26753535

  3. Curcumin bioconjugates: studies on structure-activity relationship and antibacterial properties against clinically isolated strains.

    PubMed

    Rai, Diwakar; Kumari, Garima; Singh, Anuradha; Singh, Ramendra K

    2013-11-01

    Curcumin bioconjugates, with folic acid, fatty acids and dipeptide, have shown much lower MIC than curcumin against clinically isolated Gram-positive, S.viridians, and Gram-negative bacterial strains, E. coli, P. mirabilis and K. pneumoniae. Polynomial regression analysis was performed to establish a correlation between lipophilicity (logP) and antibacterial activity (pMIC), which showed the efficacy of these molecules against the bacterial strains in the following order: E. coli > S viridans = K. pneumoniae > P. mirabilis. The regression coefficients (R(2) = 0.62 to 0.91) derived for each strain were correlated significantly and led to a conclusion that it was the amphiphilic nature that governed the antibacterial activity. Thus, the bioconjugate 2, having folic acid attached at active methylene site of curcumin with free phenolic hydroxyls, showed the best result. PMID:23189999

  4. Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine.

    PubMed Central

    Feinberg, A P; Snyder, S H

    1975-01-01

    The antischizophrenic activity of phenothiazine drugs and their tendency to elicit extrapyramidal symptoms are thought to involve blockade of synaptic dopamine receptors in the brain. Space filling molecular models show how favorable Van der Waal's interactions between the side chain amino of phenothiazines and the 2-substituent on ring A can promote a conformation mimicking dopamine. These Van der Waal's attractive forces can expain (i) the greater potency of drugs with trifluoromethyl rather than chlorine as a 2-substituent; (ii) the enhanced activity of phenothiazines with piperazine instead of alkylamino side chains; (iii) the increased potency associated with hydroxyethylpiperazines as contrasted to piperazine side chains; (iv) the greater potency of cis rather than trans thioxanthenes; and (v) the crucial location of the ring A substituent at carbon no. 2. Potential energy calculations support the observations with molecular models and suggest an active conformation for the phenothiazines. PMID:239403

  5. Structure-activity relationships of 2'-modified-4'-selenoarabinofuranosyl-pyrimidines as anticancer agents.

    PubMed

    Kim, Jin-Hee; Yu, Jinha; Alexander, Varughese; Choi, Jung Hee; Song, Jayoung; Lee, Hyuk Woo; Kim, Hea Ok; Choi, Jungwon; Lee, Sang Kook; Jeong, Lak Shin

    2014-08-18

    Based on the potent anticancer activity of the D-arabino-configured cytosine nucleoside ara-C, novel 2'-substituted-4'-selenoarabinofuranosyl pyrimidines 3a-3u, comprising azido, fluoro, and hydroxyl substituents at C-2' were designed, synthesized, and evaluated for anticancer activity. The 2'-azido group was stereoselectively introduced by the Mitsunobu reaction using diphenylphosphoryl azide (DPPA), and the 2'-fluoro group was stereoselectively introduced through the double inversions of stereochemistry via the episelenium intermediate, which was formed by the participation of the selenium atom. Among the compounds tested, the 2'-fluoro derivative 3t (X = NH2, Y = H, R = F) was found to be the most potent anticancer agent and showed more potent anticancer activity than the control, ara-C in all tested human cancer cell lines (HCT116, A549, SNU638, T47D, and PC-3) except the leukemia cell lines (K562). The anticancer activity of the 2'-substituted-4'-selenonucleosides is in the following order: 2'-F > 2'-OH > 2'-N3. PMID:24956556

  6. Antitumor sulfonylhydrazines: design, structure-activity relationships, resistance mechanisms, and strategies for improving therapeutic utility.

    PubMed

    Shyam, Krishnamurthy; Penketh, Philip G; Baumann, Raymond P; Finch, Rick A; Zhu, Rui; Zhu, Yong-Lian; Sartorelli, Alan C

    2015-05-14

    1,2-Bis(sulfonyl)-1-alkylhydrazines (BSHs) were conceived as more specific DNA guanine O-6 methylating and chloroethylating agents lacking many of the undesirable toxicophores contained in antitumor nitrosoureas. O(6)-Alkylguanine-DNA alkyltransferase (MGMT) is the sole repair protein for O(6)-alkylguanine lesions in DNA and has been reported to be absent in 5-20% of most tumor types. Many BSHs exhibit highly selective cytotoxicity toward cells deficient in MGMT activity. The development of clinically useful MGMT assays should permit the identification of tumors with this vulnerability and allow for the preselection of patient subpopulations with a high probability of responding. The BSH system is highly versatile, permitting the synthesis of many prodrug types with the ability to incorporate an additional level of tumor-targeting due to preferential activation by tumor cells. Furthermore, it may be possible to expand the spectrum of activity of these agents to include tumors with MGMT activity by combining them with tumor-targeted MGMT inhibitors. PMID:25612194

  7. Inuloxins A-D and derivatives as antileishmanial agents: structure-activity relationship study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inuloxins A-D (1-4) and a-costic acid (5), the phytotoxic compounds previously isolated from Inula viscosa, as well as synthetic derivatives of inuloxin A (compounds 6-10), inuloxin C (compound 11) and inuloxin D (compound 12) were tested in vitro for their activity against Leishmania donovani, the ...

  8. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    SciTech Connect

    Thompson, M.R. ); Ebner, J.R. )

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account for the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.

  9. Structure-activity relationships of the lissoclinamides: cytotoxic cyclic peptides from the ascidian Lissoclinum patella.

    PubMed

    Hawkins, C J; Lavin, M F; Marshall, K A; van den Brenk, A L; Watters, D J

    1990-06-01

    Two new lissoclinamides (lissoclinamides 7 and 8) have been isolated from the aplousobranch ascidian Lissoclinum patella. These lissoclinamides are cyclic heptapeptides with the same structural features as lissoclinamides 4 and 5 reported earlier, containing an oxazoline ring, one proline, one valine, two phenylalanine residues, and thiazole and/or thiazoline rings. All four peptides have the same sequence of amino acids around the ring and differ from one another only in their stereochemistry or the number of thiazole and thiazoline rings. The cytotoxicities of the compounds were tested with human fibroblast and bladder carcinoma cell lines and normal lymphocytes. Slight changes in structure resulted in marked differences in the cytotoxicities of these compounds. The most potent is lissoclinamide 7, containing two thiazoline rings, which rivals didemnin B in cytotoxicity in vitro. PMID:2342056

  10. Molecular determinants for improved activity at PPAR?: structure-activity relationship of pirinixic acid derivatives, docking study and site-directed mutagenesis of PPAR?.

    PubMed

    Lamers, Christina; Dittrich, Michaela; Steri, Ramona; Proschak, Ewgenij; Schubert-Zsilavecz, Manfred

    2014-08-15

    Peroxisome proliferator-activated receptors (PPARs) are attractive targets for the treatment of the metabolic syndrome. Especially a combination of PPAR? and PPAR? agonistic activity seems worthwhile to be pursued. Herein we present the design and synthesis of a series of pirinixic acid derivatives as potent PPAR? particularly dual PPAR?/? agonists with 2-((4-chloro-6-((4-(phenylamino)phenyl)amino)pyrimidin-2-yl)thio)octanoicacid having the highest potential. Our investigations based on molecular docking and structure-activity relationship (SAR) studies elucidated structural determinants affecting the potency at PPAR?. A diphenylamine-scaffold seems to play a key role. Careful in silico analysis revealed an essential role for a hydrogen bond between the diphenylamine and a water cluster. We confirmed this hypothesis using a mutated PPAR? LBD in our transactivation assay to disrupt the water cluster and to validate the proposed interaction. PMID:25022880

  11. Quantitative structure-activity relationships for skin sensitization potential of urushiol analogues.

    PubMed

    Roberts, D W; Benezra, C

    1993-08-01

    The relative alkylation index (RAI), a theoretically derived parameter intended to quantify the relative extent of carrier haptenation resulting from a given dose of a given sensitizer, has previously been successfully applied to the analysis of relative sensitization potential and dose-response data for a variety of contact allergens which are directly electrophilic. Here the RAI concept is applied to analysis of data on compounds related to urushiol (i.e., 3-substituted catechols), the naturally occurring mixture of allergens responsible for contact allergy to poison ivy and poison oak. These allergens are believed to act as pro-electrophiles, being oxidized to electrophilic orthoquinones in vivo. It is found that the various types of urushiol derivatives fit the same sort of RAI-sensitization relationships as expected theoretically and as found previously with direct acting electrophiles. There is evidence that in many cases, the test conditions were such that overload effects, whereby the degree of sensitization induced decreases with increasing carrier haptenation, applied. It is also concluded that the question as to the relative sensitization potencies of the naturally occurring urushiols remains open. The commonly held view that with these materials, sensitization potential increases with increasing unsaturation in the 3-hydrocarbyl chain of the 3-hydrocarbyl catechols, is based on evidence that is capable of alternative interpretation. PMID:8365181

  12. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine.

    PubMed

    Golmohammadi, Hassan; Dashtbozorgi, Zahra; Acree, William E

    2012-09-29

    In the present study a quantitative structure-activity relationship (QSAR) technique was developed to investigate the blood-to-brain barrier partitioning behavior (log BB) for various drugs and organic compounds. Important descriptors were selected by genetic algorithm-partial least square (GA-PLS) methods. Partial least squares (PLS) and support vector machine (SVM) methods were employed to construct linear and non-linear models, respectively. The results showed that, the log BB values calculated by SVM were in good agreement with the experimental data, and the performance of the SVM model was superior to the PLS model. The study provided a novel and effective method for predicting blood-to-brain barrier penetration of drugs, and disclosed that SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:22771548

  13. Quantitative structure-activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda.

    PubMed

    Jing, Guohua; Zhou, Zuoming; Zhuo, Jing

    2012-01-01

    The acute toxicity of 13 quaternary ammonium compounds (QACs) to Chlorella pyrenoidosa and Scenedesmus quadricauda was investigated in the present study. Significant inhibition on algae biomass was observed and 96 h EC(50)-value of 13 QACs was tested. Sixteen physicochemical and quantum chemical parameters of the QACs were calculated using the semi-empirical MOPAC AMI method. The multiple linear regression (MLR) was employed to derive the quantitative structure-activity relationship (QSAR) models, by which the calculated parameters were correlated to the toxicity of QACs on the two green algaes. Results showed that the alkyl chain lengths (CL) and total connectivity (T(Con)) were the main descriptors in governing the log (1/EC(50)) values of the QACs in the two QSAR models. The two models had high predictive ability and stability, and two parameters were proved to have the general applicability in QSAR study of QACs congeners. PMID:22014469

  14. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-01

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles. PMID:25526675

  15. Endothelin receptor antagonist triterpenoid, myriceric acid A, isolated from Myrica cerifera, and structure activity relationships of its derivatives.

    PubMed

    Sakurawi, K; Yasuda, F; Tozyo, T; Nakamura, M; Sato, T; Kikuchi, J; Terui, Y; Ikenishi, Y; Iwata, T; Takahashi, K; Konoike, T; Mihara, S; Fujimoto, M

    1996-02-01

    As the first non-peptide endothelin receptor antagonist from a higher plant, a new triterpenoid, myriceric acid A (50-235) (1) was isolated from the bayberry, Myrica cerifera. Myriceric acid A (1) inhibited not only an endothelin-1-induced increase in cytosolic free Ca2+ concentration (IC50 = 11 +/- 2 nM) but [125I]endothelin-1 binding in rat aortic smooth muscle cells (Ki = 66 +/- 15 nM). Two new related triterpenoids, myriceric acid C (6), and myriceric acid D (8), were also isolated. Furthermore, the chemical modification of these natural products led to the synthesis of sulfated derivatives (13, 14, 15) which showed 1.5 to 20 times higher affinity for endothelin receptors. The structure activity relationships of myriceric acids and their derivatives are discussed. PMID:8998841

  16. Structure-Activity Relationship Study of the Neuritogenic Potential of the Glycan of Starfish Ganglioside LLG-3 (‡).

    PubMed

    Yamagishi, Megumi; Hosoda-Yabe, Ritsuko; Tamai, Hideki; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Yabe, Tomio; Ando, Hiromune; Kiso, Makoto

    2015-01-01

    LLG-3 is a ganglioside isolated from the starfish Linchia laevigata. To clarify the structure-activity relationship of the glycan of LLG-3 toward rat pheochromocytoma PC12 cells in the presence of nerve growth factor, a series of mono- to tetrasaccharide glycan derivatives were chemically synthesized and evaluated in vitro. The methyl group at C8 of the terminal sialic acid residue was crucial for neuritogenic activity, and the terminal trisaccharide moiety was the minimum active motif. Furthermore, the trisaccharide also stimulated neuritogenesis in human neuroblastoma SH-SY5Y cells via mitogen-activated protein kinase (MAPK) signaling. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was rapidly induced by adding 1 or 10 nM of the trisaccharide. The ratio of phosphorylated ERK to ERK reached a maximum 5 min after stimulation, and then decreased gradually. However, the trisaccharide did not induce significant Akt phosphorylation. These effects were abolished by pretreatment with the MAPK inhibitor U0126, which inhibits enzymes MEK1 and MEK2. In addition, U0126 inhibited the phosphorylation of ERK 1/2 in response to the trisaccharide dose-dependently. Therefore, we concluded that the trisaccharide promotes neurite extension in SH-SY5Y cells via MAPK/ERK signaling, not Akt signaling. PMID:26690179

  17. Discovery of Tricyclic Clerodane Diterpenes as Sarco/Endoplasmic Reticulum Ca(2+)-ATPase Inhibitors and Structure-Activity Relationships.

    PubMed

    De Ford, Christian; Calderón, Carlos; Sehgal, Pankaj; Fedosova, Natalya U; Murillo, Renato; Olesen, Claus; Nissen, Poul; Møller, Jesper V; Merfort, Irmgard

    2015-06-26

    Tricyclic clerodane diterpenes (TCDs) are natural compounds that often show potent cytotoxicity for cancer cells, but their mode of action remains elusive. A computationally based similarity search (CDRUG), combined with principal component analysis (ChemGPS-NP) and docking calculations (GOLD 5.2), suggested TCDs to be inhibitors of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump, which is also the target of the sesquiterpene lactone thapsigargin. Biochemical studies were performed with 11 TCDs on purified rabbit skeletal muscle sarcoplasmic reticulum membranes, which are highly enriched with the SERCA1a isoform. Casearborin D (2) exhibited the highest affinity, with a KD value of 2 ?M and giving rise to complete inhibition of SERCA1a activity. Structure-activity relationships revealed that functionalization of two acyl side chains (R1 and R4) and the hydrophobicity imparted by the aliphatic chain at C-9, as well as a C-3,C-4 double bond, play crucial roles for inhibitory activity. Docking studies also suggested that hydrophobic interactions in the binding site, especially with Phe256 and Phe834, may be important for a strong inhibitory activity of the TCDs. In conclusion, a novel class of SERCA inhibitory compounds is presented. PMID:25993619

  18. Oxoquinoline derivatives: identification and structure-activity relationship (SAR) analysis of new anti-HSV-1 agents.

    PubMed

    Abreu, Paula A; da Silva, Viveca A G G; Santos, Fernanda C; Castro, Helena C; Riscado, Cecília S; de Souza, Mariana T; Ribeiro, Camilly P; Barbosa, Juliana E; dos Santos, Cláudio C C; Rodrigues, Carlos R; Lione, Viviane; Correa, Bianca A M; Cunha, Anna C; Ferreira, Vitor F; de Souza, Maria C B V; Paixão, Izabel C N P

    2011-05-01

    Herpes simplex virus is an important human pathogen responsible for a range of diseases from mild uncomplicated mucocutaneous infections to life-threatening ones. Currently, the emergence of Herpes simplex virus resistant strains increased the need for more effective and less cytotoxic drugs for Herpes treatment. In this work, we synthesized a series of oxoquinoline derivatives and experimentally evaluated the antiviral activity against acyclovir resistant HSV-1 strain as well as their cytotoxity profile. The most active compound (3b), named here as Fluoroxaq-3b, showed a promising profile with a better cytotoxicity profile than acyclovir. The theoretical analysis of the structure-activity relationship of these compounds revealed some stereoelectronic properties such as lower LUMO energy and lipophilicity, besides a higher polar surface area and number of hydrogen bond acceptor groups as important parameters for the antiviral activity. Fluoroxaq-3b showed a good oral theoretical bioavailability, according to Lipinski rule of five, with a promising profile for further in vivo analysis. PMID:21225264

  19. Structure-Activity Relationship Study of the Neuritogenic Potential of the Glycan of Starfish Ganglioside LLG-3 ‡

    PubMed Central

    Yamagishi, Megumi; Hosoda-Yabe, Ritsuko; Tamai, Hideki; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Yabe, Tomio; Ando, Hiromune; Kiso, Makoto

    2015-01-01

    LLG-3 is a ganglioside isolated from the starfish Linchia laevigata. To clarify the structure-activity relationship of the glycan of LLG-3 toward rat pheochromocytoma PC12 cells in the presence of nerve growth factor, a series of mono- to tetrasaccharide glycan derivatives were chemically synthesized and evaluated in vitro. The methyl group at C8 of the terminal sialic acid residue was crucial for neuritogenic activity, and the terminal trisaccharide moiety was the minimum active motif. Furthermore, the trisaccharide also stimulated neuritogenesis in human neuroblastoma SH-SY5Y cells via mitogen-activated protein kinase (MAPK) signaling. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was rapidly induced by adding 1 or 10 nM of the trisaccharide. The ratio of phosphorylated ERK to ERK reached a maximum 5 min after stimulation, and then decreased gradually. However, the trisaccharide did not induce significant Akt phosphorylation. These effects were abolished by pretreatment with the MAPK inhibitor U0126, which inhibits enzymes MEK1 and MEK2. In addition, U0126 inhibited the phosphorylation of ERK 1/2 in response to the trisaccharide dose-dependently. Therefore, we concluded that the trisaccharide promotes neurite extension in SH-SY5Y cells via MAPK/ERK signaling, not Akt signaling. PMID:26690179

  20. Pharmacological and structure-activity relationship evaluation of 4-aryl-1-diphenylacetyl(thio)semicarbazides.

    PubMed

    Wujec, Monika; K?dzierska, Ewa; Ku?mierz, Edyta; Plech, Tomasz; Wróbel, Andrzej; Paneth, Agata; Orzelska, Jolanta; Fidecka, Sylwia; Paneth, Piotr

    2014-01-01

    This article describes the synthesis of six 4-aryl-(thio)semicarbazides (series a and b) linked with diphenylacetyl moiety along with their pharmacological evaluation on the central nervous system in mice and computational studies, including conformational analysis and electrostatic properties. All thiosemicarbazides (series b) were found to exhibit strong antinociceptive activity in the behavioural model. Among them, compound 1-diphenylacetyl-4-(4-methylphenyl)thiosemicarbazide 1b was found to be the most potent analgesic agent, whose activity is connected with the opioid system. For compounds from series a significant anti-serotonergic effect, especially for compound 1-diphenylacetyl-4-(4-methoxyphenyl)semicarbazide 2b was observed. The computational studies strongly support the obtained results. PMID:24743932

  1. Structure-activity relationships of two Rhodnius prolixus calcitonin-like diuretic hormone analogs.

    PubMed

    Zandawala, Meet; Poulos, Constantine; Orchard, Ian

    2015-06-01

    The calcitonin-like diuretic hormone (CT/DH) in Rhodnius prolixus influences various tissues associated with feeding-related physiological events. The receptors for this peptide have also been identified and shown to be expressed in these tissues. In the present study, we have investigated the effects of two R. prolixus CT/DH analogs (full-length form and N-terminal truncated form) on hindgut contractions and in a heterologous receptor expression system. The analogs contained the amino acid methyl-homoserine in place of methionine in order to prevent them from being oxidized and thus increase their stability. The full-length form of the analog retained all of its activity in our assays when compared to the endogenous peptide. Truncated analog displayed no activity in our assays. PMID:24703964

  2. Structure-activity-relationship of amide and sulfonamide analogs of omarigliptin.

    PubMed

    Chen, Ping; Feng, Dennis; Qian, Xiaoxia; Apgar, James; Wilkening, Robert; Kuethe, Jeffrey T; Gao, Ying-Duo; Scapin, Giovanna; Cox, Jason; Doss, George; Eiermann, George; He, Huaibing; Li, Xiaohua; Lyons, Kathryn A; Metzger, Joseph; Petrov, Aleksandr; Wu, Joseph K; Xu, Shiyao; Weber, Ann E; Yan, Youwei; Roy, Ranabir Sinha; Biftu, Tesfaye

    2015-12-15

    A series of novel substituted-[(3R)-amino-2-(2,5-difluorophenyl)]tetrahydro-2H-pyran analogs have been prepared and evaluated as potent, selective and orally active DPP-4 inhibitors. These efforts lead to the discovery of a long acting DPP-4 inhibitor, omarigliptin (MK-3102), which recently completed phase III clinical development and has been approved in Japan. PMID:26546218

  3. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera.

    PubMed

    Bílikova, Katarina; Huang, Sheng-Chang; Lin, I-Ping; Šimuth, Jozef; Peng, Chi-Chung

    2015-06-01

    Royalisin is a 5.5-kDa antibacterial peptide isolated from the royal jelly of the honeybee (Apis mellifera). The antimicrobial activity of royalisin against fungi, Gram-positive and Gram-negative bacteria has been revealed. Compared with another insect antibacterial peptide, there is an extra stretch of 11 amino acid residues at the C-terminus of royalisin. In this study, a recombinant shortened form of royalisin named as royalisin-D, was constructed without the 11 amino acid residues at the C-terminal of royalisin and linked to the C-terminal of oleosin by an inteinS fragment. The recombinant protein was overexpressed in Escherichia coli, purified by artificial oil body system and subsequently released through self-splicing of inteinS induced by the changes of temperature. The antibacterial activity of royalisin-D was compared with royalisin via minimal inhibitory concentration (MIC) assay, minimal bactericidal concentration (MBC) assay, microbial adhesion to solvents (MATS) methods, and cell membrane permeability. Furthermore, the recombinant royalisin and royalisin-D have also been treated with the reducing agent of disulfide bonds, dithiothreitol (DTT), to investigate the importance of the intra-disulfide bond in royalisin. In our results, royalisin-D exhibited similar antimicrobial activity to royalisin. Royalisin and royalisin D lost their antimicrobial activities when the intra-disulfide bonds were reduced by DDT. The intra-disulfide bond plays a more important role than the extra stretch of 11 amino acid residues at the C-terminus of royalisin in terms of the antimicrobial properties of the native royalisin. PMID:25784287

  4. Novel Insights into Structure-Activity Relationships of N-Terminally Modified PACE4 Inhibitors.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Beauchemin, Sophie; Desjardins, Roxane; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2016-02-01

    PACE4 plays important roles in prostate cancer cell proliferation. The inhibition of this enzyme has been shown to slow prostate cancer progression and is emerging as a promising therapeutic strategy. In previous work, we developed a highly potent and selective PACE4 inhibitor, the multi-Leu (ML) peptide, an octapeptide with the sequence Ac-LLLLRVKR-NH2 . Here, with the objective of developing a useful compound for in?vivo administration, we investigate the effect of N-terminal modifications. The inhibitory activity, toxicity, stability, and cell penetration properties of the resulting analogues were studied and compared to the unmodified inhibitor. Our results show that the incorporation of a polyethylene glycol (PEG) moiety leads to a loss of antiproliferative activity, whereas the attachment of a lipid chain preserves or improves it. However, the lipidated peptides are significantly more toxic when compared with their unmodified counterparts. Therefore, the best results were achieved not by the N-terminal extension but by the protection of both ends with the d-Leu residue and 4-amidinobenzylamide, which yielded the most stable inhibitor, with an excellent activity and toxicity profile. PMID:26751825

  5. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    SciTech Connect

    Bello, A.; Konforte, D; Poduch, E; Furlonger, C; Wei, L; Liu, Y; Lewis, M; Pai, E; Paige, C; Kotra, L

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro, 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.

  6. Structure-Activity Relationships of Benzbromarone Metabolites and Derivatives as EYA Inhibitory Anti-Angiogenic Agents

    PubMed Central

    Pandey, Ram Naresh; Wang, Tim Sen; Tadjuidje, Emmanuel; McDonald, Matthew G.; Rettie, Allan E.; Hegde, Rashmi S.

    2013-01-01

    The tyrosine phosphatase activity of the phosphatase-transactivator protein Eyes Absent (EYA) is angiogenic through its roles in endothelial cell migration and tube formation. Benzbromarone, a known anti-gout agent, was previously identified as an inhibitor of EYA with anti-angiogenic properties. Here we show that the major metabolite of BBR, 6-hydroxy benzbromarone, is a significantly more potent inhibitor of cell migration, tubulogenesis and angiogenic sprouting. In contrast, other postulated metabolites of BBR such as 5-hydroxy benzbromaorne and 1’-hydroxy benzbromarone are less potent inhibitors of EYA tyrosine phosphatase activity as well as being less effective in cellular assays for endothelial cell migration and angiogenesis. Longer substituents at the 2 position of the benzofuran ring promoted EYA3 binding and inhibition, but were less effective in cellular assays, likely reflecting non-specific protein binding and a resulting reduction in free, bio-available inhibitor. The observed potency of 6-hydroxy benzbromarone is relevant in the context of the potential re-purposing of benzbromarone and its derivatives as anti-angiogenic agents. 6-hydroxy benzbromarone represents a metabolite with a longer half-life and greater pharmacological potency than the parent compound, suggesting that biotransformation of benzbromarone could contribute to its therapeutic activity. PMID:24367676

  7. Structure-activity relationships of HIV-1 protease inhibitors containing gem-diaminoserine core unit.

    PubMed

    Marastoni, M; Bortolotti, F; Salvadori, S; Tomatis, R

    1998-06-01

    Two series of peptidomimetics containing 1,1-diamino-2-hydroxyethane (gSer) core structure were prepared, from amino acid starting materials, and evaluated as inhibitors of HIV-1 protease (HIV-1 Pr). Asymmetrical pseudodipeptides, Y-Xaa-gSer-Y (Y = Z, Fmoc; Xaa = Cha, Phe, Tyr, Tic) showed weak inhibitory potency (IC50 > or = 5 mumol/l), whereas the corresponding pseudotripeptides displayed a more significant HIV-1 Pr inhibition: Fmoc-Tic-gSer-Tic-Fmoc (Fmoc = fluorenylmethyloxycarbonyl, Tic = 1,2,3,4-tetradroisoquinoline-3-carboxylic acid) was the most potent compound of the series (IC50 = 385 nmol/l). PMID:9689433

  8. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    SciTech Connect

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D.

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  9. Synthesis, Pharmacological Characterization, and Structure–Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor

    PubMed Central

    2014-01-01

    GPR88 is an orphan G-protein-coupled receptor (GPCR) enriched in the striatum. Genetic deletion and gene expression studies have suggested that GPR88 plays an important role in the regulation of striatal functions and is implicated in psychiatric disorders. The signal transduction pathway and receptor functions of GPR88, however, are still largely unknown due to the lack of endogenous and synthetic ligands. In this paper, we report the synthesis of a GPR88 agonist 2-PCCA and its pure diastereomers, which were functionally characterized in both transiently and stably expressing GPR88 HEK293 cells. 2-PCCA inhibited isoproterenol-stimulated cAMP accumulation in a concentration-dependent manner in cells expressing GPR88 but not in the control cells, suggesting that the observed cAMP inhibition is mediated through GPR88 and that GPR88 is coupled to G?i. 2-PCCA did not induce calcium mobilization in GPR88 cells, indicating no G?q-mediated response. A structure–activity relationship (SAR) study of 2-PCCA was also conducted to explore the key structural features for GPR88 agonist activity. PMID:24793972

  10. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    PubMed

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives. PMID:26758798

  11. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources.

    PubMed

    Chen, Baiyang; Zhang, Tian; Bond, Tom; Gan, Yiqun

    2015-12-15

    Quantitative structure-activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application. PMID:26142156

  12. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    PubMed

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators. PMID:25797163

  13. Structure-activity relationships of bisphenol A analogs at estrogen receptors (ERs): discovery of an ER?-selective antagonist.

    PubMed

    Maruyama, Keisuke; Nakamura, Masaharu; Tomoshige, Shusuke; Sugita, Kazuyuki; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2013-07-15

    Our multi-template approach for drug discovery, focusing on protein targets with similar fold structures, has yielded lead compounds for various targets. We have also shown that a diphenylmethane skeleton can serve as a surrogate for a steroid skeleton. Here, on the basis of those ideas, we hypothesized that the diphenylmethane derivative bisphenol A (BPA) would bind to the ligand-binding domain of estrogen receptors (ERs) in a similar manner to estradiol and act as a steroid surrogate. To test this idea, we synthesized a series of BPA analogs and evaluated their structure-activity relationships, focusing on agonistic/antagonistic activities at ERs and ER?/ER? subtype selectivity. Among the compounds examined, 18 was found to be a potent ER?-antagonist with high selectivity over ER? and androgen receptor under our assay conditions. A computational docking study suggested that 18 would bind to the antagonistic conformation of ER?. ER?-selective antagonists, such as 18, are candidate agents for treatment of breast cancer. PMID:23768907

  14. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  15. In vitro studies of acute toxicity mechanisms and structure-activity relationships of nonionic surfactants in fish

    SciTech Connect

    Bodishbauah, D.F.

    1994-12-31

    In fish, gills are believed to be a primary target for a number of toxicants. Gills perform the essential systemic functions of gas exchange, waste elimination, and ion/pH balance, and are exposed to ambient environmental toxicant levels. Qualitative gill morphology changes are easily observed, but quantitative measures of impaired function are difficult. This in vitro technique utilizes the opercular epithelium of the mummichog, Fundulus heteroclitus, as a surrogate for gill epithelium in mechanistic toxicity and structure-activity studies. This model has long been used by electrophysiologists studying osmoregulation in marine fish. Effects on trans-epithelial potential (TEP) and/or short-circuit current (I{sub sc}) across the opercular epithelium can be made for any pollutant of interest, using an epithelial voltage clamp and Ussing chamber. The nonionic synthetic surfactant class, alkylphenol ethoxylates, were chosen as a model toxicant class to test this experimental model. Synthetic surfactants are ubiquitous waterborne pollutants, with annual North American usage approaching eight billion pounds. Surfactants are recognized as potent, acute gill toxicants in fish. The exact mechanism of toxicity has yet to be elucidated. These compounds proved to be potent inhibitors of both TEP and I{sub sc} in vitro, at dose levels comparable to those causing lethality, suggesting that impaired osmoregulation plays a role in their acute toxicity. Similar structure-activity relationships were found for the endpoints of acute lethality to F. heteroclitus and impaired in vitro epithelial transport.

  16. Discovery of a new class of highly potent inhibitors of acid ceramidase: synthesis and structure-activity relationship (SAR).

    PubMed

    Pizzirani, Daniela; Pagliuca, Chiara; Realini, Natalia; Branduardi, Davide; Bottegoni, Giovanni; Mor, Marco; Bertozzi, Fabio; Scarpelli, Rita; Piomelli, Daniele; Bandiera, Tiziano

    2013-05-01

    Acid ceramidase (AC) is an intracellular cysteine amidase that catalyzes the hydrolysis of the lipid messenger ceramide. By regulating ceramide levels in cells, AC may contribute to the regulation of cancer cell proliferation and senescence and to the response to cancer therapy. We recently identified the antitumoral agent carmofur (4a) as the first nanomolar inhibitor of intracellular AC activity (rat AC, IC50 = 0.029 ?M). In the present work, we expanded our initial structure-activity relationship (SAR) studies around 4a by synthesizing and testing a series of 2,4-dioxopyrimidine-1-carboxamides. Our investigations provided a first elucidation of the structural features of uracil derivatives that are critical for AC inhibition and led us to identify the first single-digit nanomolar inhibitors of this enzyme. The present results confirm that substituted 2,4-dioxopyrimidine-1-carboxamides are a novel class of potent inhibitors of AC. Selected compounds of this class may represent useful probes to further characterize the functional roles of AC. PMID:23614460

  17. HLA-A3 supermotif defined by quantitative structure-activity relationship analysis.

    PubMed

    Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2003-01-01

    Activation of a cytotoxic T cell requires specific binding of antigenic peptides to major histocompatibility complex (MHC) molecules. This paper reports a study of peptides binding to members of the HLA-A3 superfamily using a recently developed 2D-QSAR method, called the additive method. Four alleles with high phenotype frequency were included in the study: A*0301, A*1101, A*3101 and A*6801. The influence of each of the 20 amino acids at each position of the peptide on binding was studied. A refined A3 supertype motif was defined in the study. PMID:12646688

  18. Structure-olfactory activity relationship in a group of substituted phenols.

    PubMed

    Kaliszan, R; Pankowski, M; Szymula, L; Lamparczyk, H; Nasal, A; Tomaszewska, B; Grzybowski, J

    1982-07-01

    Using phenol as the standard relative olfactory thresholds have been determined for a series of substituted phenols in experiments with 8--10 human subjects. Significant relations have been obtained describing the activity as a square function of the hydrophobicity parameter corrected for ionization. Chromatographic measurement of phenol polarity has been proposed based on retention indices determined on phases of different polarity. The human sense of smell system has been discussed as a model for studies on drug-receptor interactions involving the living organism as a whole. PMID:7134257

  19. Antimicrobial effectiveness of six paradols. 1: A structure-activity relationship study.

    PubMed

    Oloke, J K; Kolawole, D O; Erhun, W O

    1989-02-01

    The pattern of antimicrobial effectiveness of (0)-, (2)-, (3)-, (4)-, (8)- and (9)-paradols was studied. (3)- Paradol was more active than the other homologues with a minimum inhibitory concentration (MIC) of 1 mg/ml when tested against Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus and Botryodiplodia theobromae. At 0.2 mg/ml, (3)-paradol completely inhibited the spore germination of Trichophyton mentagrophytes and after 3 h of exposure at 0.5 mg/ml, it inhibited the growth of a heavy inoculum of Staphylococcus aureus (1 X 10(9) cells/ml). PMID:2497275

  20. Structure-activity relationships for dipeptide prodrugs of acyclovir: implications for prodrug design.

    PubMed

    Santos, Cledir R; Capela, Rita; Pereira, Cláudia S G P; Valente, Emília; Gouveia, Luís; Pannecouque, Christophe; De Clercq, Erik; Moreira, Rui; Gomes, Paula

    2009-06-01

    A series of water-soluble dipeptide ester prodrugs of the antiviral acyclovir (ACV) were evaluated for their chemical stability, cytotoxicity, and antiviral activity against several strains of Herpes Simplex-1 and -2, vaccinia, vesicular stomatitis, cytomegalovirus and varicella zoster viruses. ACV dipeptide esters were very active against herpetic viruses, independently of the rate at which they liberate the parent drug. Their minimum cytotoxic concentrations were above 100 microM and the resulting MCC/EC(50) values were lower than those of ACV. When comparing the reactivity of Phe-Gly esters and amides (ACV, zidovudine, paracetamol, captopril and primaquine) in pH 7.4 buffer it was found that the rate of drug release increases with drug's leaving group ability. Release of the parent drug from Phe-Gly in human plasma is markedly faster than in pH 7.4 buffer, thus suggesting that the dipeptide-based prodrug approach can be successfully applied to bioactive agents containing thiol, phenol and amine functional groups. PMID:18848738

  1. Synthesis and Structure–Activity Relationship Study of 5a-Carbasugar Analogues of SL0101

    PubMed Central

    2014-01-01

    The Ser/Thr protein kinase, RSK, is associated with oncogenesis, and therefore, there are ongoing efforts to develop RSK inhibitors that are suitable for use in vivo. SL0101 is a natural product that demonstrates selectivity for RSK inhibition. However, SL0101 has a short biological half-life in vivo. To address this issue we designed a set of eight cyclitol analogues, which should be resistant to acid catalyzed anomeric bond hydrolysis. The analogues were synthesized and evaluated for their ability to selectively inhibit RSK in vitro and in cell-based assays. All the analogues were prepared using a stereodivergent palladium-catalyzed glycosylation/cyclitolization for installing the aglycon. The l-cyclitol analogues were found to inhibit RSK2 in in vitro kinase activity with a similar efficacy to that of SL0101, however, the analogues were not specific for RSK in cell-based assays. In contrast, the d-isomers showed no RSK inhibitory activity in in vitro kinase assay. PMID:25589938

  2. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-01

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases. PMID:25602735

  3. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation.

    PubMed

    Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A; Patnaik, Debasis; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2016-02-15

    Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease. PMID:26804233

  4. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. PMID:21642011

  5. In Vitro Structure-Activity Relationship of Re-cyclized Octreotide Analogues

    PubMed Central

    Dannoon, Shorouk F.; Bigott-Hennkens, Heather M.; Ma, Lixin; Gallazzi, Fabio; Lewis, Michael R.; Jurisson, Silvia S.

    2010-01-01

    Introduction Development of radiolabeled octreotide analogues is of interest for targeting somatostatin receptor-positive tumors for diagnostic and therapeutic purposes. We are investigating a direct labeling approach for incorporation of a Re ion into octreotide analogues, where the peptide sequences are cyclized via coordination to Re rather than through a disulfide bridge. Methods Various octreotide analogue sequences and coordination systems (e.g., S2N2 and S3N) were synthesized and cyclized with non-radioactive Re. In vitro competitive binding assays with 111In-DOTA-Tyr3-octreotide in AR42J rat pancreatic tumor cells yielded IC50 values as a measure of somatostatin receptor affinity of the Re-cyclized analogues. Three-dimensional structures of Re-cyclized Tyr3-octreotate and its disulfide-bridged analogue were calculated from two-dimensional NMR experiments to visualize the effect of metal cyclization on the analogue’s pharmacophore. Results Only two of the eleven Re-cyclized analogues investigated showed moderate in vitro binding affinity toward somatostatin subtype 2 receptors. Three-dimensional molecular structures of Re- and disulfide-cyclized Tyr3-octreotate were calculated, and both of their pharmacophore turns appear to be very similar with minor differences due to metal coordination to the amide nitrogen of one of the pharmacophore amino acids. Conclusions Various Re-cyclized analogues were developed and analogue 4 had moderate affinity toward somatostatin subtype 2 receptors. In vitro stable studies that are in progress showed stable radiometal-cyclization of octreotide analogues via NS3 and N2S2 coordination forming 5- and 6- membered chelate rings. In vivo biodistribution studies are underway of 99m Tc- cyclized analogue 4. PMID:20610157

  6. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  7. Thinking in Terms of Structure-Activity-Relationships (T-SAR): A Tool to Better Understand Nanofiltration Membranes

    PubMed Central

    Fernández, José F.; Jastorff, Bernd; Störmann, Reinhold; Stolte, Stefan; Thöming, Jorg

    2011-01-01

    A frontier to be conquered in the field of membrane technology is related to the very limited scientific base for the rational and task-specific design of membranes. This is especially true for nanofiltration membranes with properties that are based on several solute-membrane interaction mechanisms. “Thinking in terms of Structure-Activity-Relationships” (T-SAR) is a methodology which applies a systematic analysis of a chemical entity based on its structural formula. However, the analysis become more complex with increasing size of the molecules considered. In this study, T-SAR was combined with classical membrane characterization methods, resulting in a new methodology which allowed us not only to explain membrane characteristics, but also provides evidence for the importance of the chemical structure for separation performance. We demonstrate an application of the combined approach and its potential to discover stereochemistry, molecular interaction potentials, and reactivity of two FilmTec nanofiltration membranes (NF-90 and NF-270). Based on these results, it was possible to predict both properties and performance in the recovery of hydrophobic ionic liquids from aqueous solution. PMID:24957730

  8. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test

    SciTech Connect

    Hermens, J.; Busser, F.; Leeuwangh, P.; Musch, A.

    1985-02-01

    Quantitative structure-activity relationships were calculated for the inhibition of bioluminescence of Photobacterium phosphoreum by 22 nonreactive organic chemicals. The inhibition was measured using the Microtox test and correlated with the partition coefficient between n-octanol and water (Poct), molar refractivity (MR), and molar volume (MW/d). At log Poct less than 1 and greater than 3, deviations from linearity were observed. Introduction of MR and MW/d improved the quality of the relationships. The influences of MR or MW/d may be related with an interaction of the tested chemicals to the enzyme system which produces the light emission. The sensitivity of the Microtox test to the 22 tested compounds is comparable to a 14-day acute mortality test with guppies for chemicals with log Poct less than 4. The inhibition of bioluminescence by a mixture of the tested compounds was slightly less than was expected in case of concentration addition. The Microtox test can give a good estimate of the total aspecific minimum toxicity of polluted waters. When rather lipophilic compounds or pollutants with more specific modes of action are present, this test will underestimate the toxicity to other aquatic life.

  9. Syntheses and structure-activity relationships for some triazolyl p38? MAPK inhibitors.

    PubMed

    Seerden, Jean-Paul G; Leusink-Ionescu, Gabriela; Leguijt, Robin; Saccavini, Catherine; Gelens, Edith; Dros, Bas; Woudenberg-Vrenken, Titia; Molema, Grietje; Kamps, Jan A A M; Kellogg, Richard M

    2014-03-01

    The design, synthesis and biological evaluation of novel triazolyl p38? MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a 'click' reaction of functional azides with 2-alkynyl imidazoles and isosteric oxazoles to generate two small libraries of 1,4-disubstituted 1,2,3-triazolyl p38? MAPK inhibitors. Triazoles with low IC50 values and desired physicochemical properties were screened for in vitro downregulation of proinflammatory gene expression and were formulated in SAINT-O-Somes. Triazolyl p38? MAPK inhibitor 88 (IC50=0.096 ?M) displayed the most promising in vitro activity. PMID:24508134

  10. Structure–Activity Relationships among Antifungal Nylon-3 Polymers: Identification of Materials Active against Drug-Resistant Strains of Candida albicans

    PubMed Central

    2015-01-01

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-?-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure–activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic–hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus. PMID:24606327

  11. Synthesis and structure-activity relationships of phenyl-substituted coumarins with anti-tubercular activity that target FadD32.

    PubMed

    Kawate, Tomohiko; Iwase, Noriaki; Shimizu, Motohisa; Stanley, Sarah A; Wellington, Samantha; Kazyanskaya, Edward; Hung, Deborah T

    2013-11-15

    In an effort to develop new and potent agents for therapy against tuberculosis, a high-throughput screen was performed against Mycobacterium tuberculosis strain H37Rv. Two 6-aryl-5,7-dimethyl-4-phenylcoumarin compounds 1a and 1b were found with modest activity. A series of coumarin derivatives were synthesized to improve potency and to investigate the structure-activity relationship of the series. Among them, compounds 1o and 2d showed improved activity with IC90 of 2 ?M and 0.5 ?M, respectively. Further optimization provided compound 3b with better physiochemical properties with IC90 0.4 ?M which had activity in a mouse model of infection. The role of the conformation of the 4- and 6-aryl substituents is also described. PMID:24103299

  12. Structure-Activity Relationships (SAR) studies of benzoxazinones, their degradation products and analogues. phytotoxicity on standard target species (STS).

    PubMed

    Macías, Francisco A; Marín, David; Oliveros-Bastidas, Alberto; Castellano, Diego; Simonet, Ana M; Molinillo, José M G

    2005-02-01

    Benzoxazinones 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) have been considered key compounds for understanding allelopathic phenomena in Gramineae crop plants such as corn (Zea mays L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.). The degradation processes in the environment observed for these compounds, in which soil microbes are directly involved, could affect potential allelopathic activity of these plants. We present in this work a complete structure-activity relationships study based on the phytotoxic effects observed for DIMBOA, DIBOA, and their main degradation products, in addition to several synthetic analogues of them. Their effects were evaluated on standard target species (STS), which include Triticum aestivum L. (wheat) and Allium cepa L. (onion) as monocots and Lepidium sativum L. (cress), Lactuca sativa L. (lettuce), and Lycopersicon esculentum Will. (tomato) as dicots. This permitted us to elucidate their ecological role and to propose new herbicide models based on their structures. The best phytotoxicity results were shown by the degradation chemical 2-aminophenoxazin-3-one (APO) and several 2-deoxy derivatives of natural benzoxazinones, including 4-acetoxy-(2H)-1,4-benzoxazin-3(4H)-one (ABOA), 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), and 4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIMBOA). They showed high inhibitory activity over almost all species growth. The fact that APO is a degradation product from DIBOA with high phytotoxicity and stability makes it possible to assign an important ecological role regarding plant defense mechanisms. 2-Deoxy derivatives of natural benzoxazinones display a wide range of activities that allow proposing them as new leads for natural herbicide models with a 1,4-benzoxazine skeleton. PMID:15686399

  13. Biomolecular recognition of antagonists by ?7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies.

    PubMed

    Peng, Wei; Ding, Fei

    2015-08-30

    As the key constituent of ligand-gated ion channels in the central nervous system, nicotinic acetylcholine receptors (nAChRs) and neurodegenerative diseases are strongly coupled in the human species. In recently years the developments of selective agonists by using nAChRs as the drug target have made a large progress, but the studies of selective antagonists are severely lacked. Currently these antagonists rest mainly on the extraction of partly natural products from some animals and plants; however, the production of these crude substances is quite restricted, and artificial synthesis of nAChR antagonists is still one of the completely new research fields. In the context of this manuscript, our primary objective was to comprehensively analyze the recognition patterns and the critical interaction descriptors between target ?7 nAChR and a series of the novel compounds with potentially antagonistic activity by means of virtual screening, molecular docking and molecular dynamics simulation, and meanwhile these recognition reactions were also compared with the biointeraction of ?7 nAChR with a commercially natural antagonist - methyllycaconitine. The results suggested clearly that there are relatively obvious differences of molecular structures between synthetic antagonists and methyllycaconitine, while the two systems have similar recognition modes on the whole. The interaction energy and the crucially noncovalent forces of the ?7 nAChR-antagonists are ascertained according to the method of Molecular Mechanics/Generalized Born Surface Area. Several amino acid residues, such as B/Tyr-93, B/Lys-143, B/Trp-147, B/Tyr-188, B/Tyr-195, A/Trp-55 and A/Leu-118 played a major role in the ?7 nAChR-antagonist recognition processes, in particular, residues B/Tyr-93, B/Trp-147 and B/Tyr-188 are the most important. These outcomes tally satisfactorily with the discussions of amino acid mutations. Based on the explorations of three-dimensional quantitative structure-activity relationships, the structure-antagonistic activity relationships of antagonists and the characteristics of ?7 nAChR-ligand recognitions were received a reasonable summary as well. These attempts emerged herein would not only provide helpful guidance for the design of ?7 nAChR antagonists, but shed new light on the subsequent researches in antagonistic mechanism. PMID:25963024

  14. Crystallographic insights into the structure-activity relationships of diazaborine enoyl-ACP reductase inhibitors.

    PubMed

    Jordan, Cheryl A; Sandoval, Braddock A; Serobyan, Mkrtich V; Gilling, Damian H; Groziak, Michael P; Xu, H Howard; Vey, Jessica L

    2015-12-01

    Enoyl-ACP reductase, the last enzyme of the fatty-acid biosynthetic pathway, is the molecular target for several successful antibiotics such as the tuberculosis therapeutic isoniazid. It is currently under investigation as a narrow-spectrum antibiotic target for the treatment of several types of bacterial infections. The diazaborine family is a group of boron heterocycle-based synthetic antibacterial inhibitors known to target enoyl-ACP reductase. Development of this class of molecules has thus far focused solely on the sulfonyl-containing versions. Here, the requirement for the sulfonyl group in the diazaborine scaffold was investigated by examining several recently characterized enoyl-ACP reductase inhibitors that lack the sulfonyl group and exhibit additional variability in substitutions, size and flexibility. Biochemical studies are reported showing the inhibition of Escherichia coli enoyl-ACP reductase by four diazaborines, and the crystal structures of two of the inhibitors bound to E. coli enoyl-ACP reductase solved to 2.07 and 2.11?Å resolution are reported. The results show that the sulfonyl group can be replaced with an amide or thioamide without disruption of the mode of inhibition of the molecule. PMID:26625295

  15. Determination of biodegradability kinetics of RCRA compounds using respirometry for structure-activity relationships

    SciTech Connect

    Tabak, H.H.; Desai, S.; Govind, R.

    1990-01-01

    Electrolytic respirometry is attaining prominence in biodegradation studies and is becoming one of the more suitable experimental methods for measuring the biodegradability and the kinetics of biodegradation of toxic organic compounds by the sewage, sludge, and soil microbiota and for determining substrate inhibitory effects to microorganisms in wastewater treatment systems. The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate, ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support the development of an EPA technical guidance document on the discharge of the above organics to POTWs. The paper discusses the experimental design and procedural steps for the respirometric biodegradation and toxicity testing approach for individual organics or specific industrial wastes at different concentration levels in a mineral salts medium. A developed multi-level protocol is presented for determination of the biodegradability, microbial acclimation to toxic substrates and first order kinetic parameters of biodegradation for estimation of the Monod kinetic parameter of toxic organic compounds, in order to correlate the extent and rate of biodegradation with a predictive model based on chemical properties and molecular structure of these compounds. Respirometric biodegradation/inhibition and biokinetic data are provided for representative RCRA alkyl benzene and ketone organics.

  16. Structures, Biological Activities and Phylogenetic Relationships of Terpenoids from Marine Ciliates of the Genus Euplotes

    PubMed Central

    Guella, Graziano; Skropeta, Danielle; Di Giuseppe, Graziano; Dini, Fernando

    2010-01-01

    In the last two decades, large scale axenic cell cultures of the marine species comprising the family Euplotidae have resulted in the isolation of several new classes of terpenoids with unprecedented carbon skeletons including the (i) euplotins, highly strained acetylated sesquiterpene hemiacetals; (ii) raikovenals, built on the bicyclo[3.2.0]heptane ring system; (iii) rarisetenolides and focardins containing an octahydroazulene moiety; and (iv) vannusals, with a unique C30 backbone. Their complex structures have been elucidated through a combination of nuclear magnetic resonance spectroscopy, mass spectrometry, molecular mechanics and quantum chemical calculations. Despite the limited number of biosynthetic experiments having been performed, the large diversity of ciliate terpenoids has facilitated the proposal of biosynthetic pathways whereby they are produced from classical linear precursors. Herein, the similarities and differences emerging from the comparison of the classical chemotaxonomy approach based on secondary metabolites, with species phylogenesis based on genetic descriptors (SSU-rDNA), will be discussed. Results on the interesting ecological and biological properties of ciliate terpenoids are also reported. PMID:20714425

  17. Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.

    PubMed

    Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel

    2010-10-27

    The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle. PMID:20925315

  18. Structure-activity relationships of targeted RuII(?6-p-cymene) anticancer complexes with flavonol-derived ligands.

    PubMed

    Kurzwernhart, Andrea; Kandioller, Wolfgang; Bächler, Simone; Bartel, Caroline; Martic, Sanela; Buczkowska, Magdalena; Mühlgassner, Gerhard; Jakupec, Michael A; Kraatz, Heinz-Bernhard; Bednarski, Patrick J; Arion, Vladimir B; Marko, Doris; Keppler, Bernhard K; Hartinger, Christian G

    2012-12-13

    RuII(arene) complexes have been shown to be promising anticancer agents, capable of overcoming major drawbacks of currently used chemotherapeutics. We have synthesized RuII(?6-arene) compounds carrying bioactive flavonol ligands with the aim to obtain multitargeted anticancer agents. To validate this concept, studies on the mode of action of the complexes were conducted which indicated that they form covalent bonds to DNA, have only minor impact on the cell cycle, but inhibit CDK2 and topoisomerase II? in vitro. The cytotoxic activity was determined in human cancer cell lines, resulting in very low IC50 values as compared to other RuII(arene) complexes and showing a structure-activity relationship dependent on the substitution pattern of the flavonol ligand. Furthermore, the inhibition of cell growth correlates well with the topoisomerase inhibitory activity. Compared to the flavonol ligands, the RuII(?6-p-cymene) complexes are more potent antiproliferative agents, which can be explained by potential multitargeted properties. PMID:23134291

  19. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity relationship analysis for polar narcotics.

    PubMed

    Chen, Chung-Yuan; Ko, Chia-Wen; Lee, Po-I

    2007-06-01

    This study evaluated the toxic effects of substituted anilines on Pseudokirchneriella subcapitata with the use of a closed algal toxicity testing technique with no headspace. Two response endpoints (i.e., dissolved oxygen production [DO] and algal growth rate) were used to evaluate the toxicity of anilines. Both DO and growth rate endpoints revealed similar sensitivity to the effects of anilines. However, trichloroanilines showed stronger inhibitory effects on microalgal photosynthetic reactions than that on algal growth. For various aquatic organisms, the relative sensitivity relationship for anilines is Daphnia magna > luminescent bacteria (Microtox) > or = Pocelia reticulata > or = Pseudokirchneriella subcapitata > or = fathead minnow > Tetrahymena pyriformis. The susceptibility of P. subcapitata to anilines is similar to fish, but P. subcapitata is apparently less sensitive than the water flea. The lack of correlation between the toxicity revealed by different aquatic organisms (microalgae, D. magna, luminescent bacteria, and P. reticulata) suggests that anilines might have different metabolic routes in these organisms. Both hydrogen bonding donor capacity (the lowest unoccupied molecular orbital energy, Elumo) and hydrophobicity (1-octanol:water partition coefficient, Kow) were found to provide satisfactory descriptions for the toxicity of polar narcotics (substituted anilines and chlorophenols). Quantitative structure-activity relationships (QSARs) based on Elumo, log Kow, or both values were established with r2 values varying from 0.75 to 0.92. The predictive power for the QSAR models were found to be satisfactory through leave-one-out cross-validation. Such relationships could provide useful information for the estimation of toxicity for other polar narcotic compounds. PMID:17571680

  20. Design, synthesis, and structure--activity-relationship of tetrahydrothiazolopyridine derivatives as potent smoothened antagonists.

    PubMed

    Ma, Haikuo; Lu, Wenfeng; Sun, Zhijian; Luo, Lusong; Geng, Delong; Yang, Zhaohui; Li, Enqin; Zheng, Jiyue; Wang, Meiyu; Zhang, Hongjian; Yang, Shilin; Zhang, Xiaohu

    2015-01-01

    The Smoothened (Smo) receptor is an important component of the hedgehog (Hh) signaling pathway, which plays a critical role during embryonic development. In adults, Hh signaling is curtailed and has limited functions such as stem cell maintenance and tissue repair. However, aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Smo leads to the blockade of Hh signaling, and therefore represents a promising approach toward novel anticancer therapy. Through scaffold morphing of a few known Smo antagonists, a series of novel tetrahydrothiazolopyridine derivatives were developed. Compounds from this new scaffold demonstrated excellent Hh signaling inhibition which was comparable to or better than that of Vismodegib. Further, compound 30 exhibited a lower melting point and a moderately improved solubility compared with those of Vismodegib; compounds 11 and 30 showed good pharmacokinetic profiles with 34% and 77% oral bioavailability in rat, respectively. Collectively, these results strongly support further optimization of this novel scaffold to develop better Smo antagonists. PMID:25462278

  1. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis

    PubMed Central

    Meissner, Anja; Boshoff, Helena I.; Vasan, Mahalakshmi; Duckworth, Benjamin P.; Barry, Clifton E.; Aldrich, Courtney C.

    2013-01-01

    A series of 2-aminothiazoles was synthesized based on a HTS scaffold from a whole-cell screen against Mycobacterium tuberculosis (Mtb). The SAR shows the central thiazole moiety and the 2-pyridyl moiety at C-4 of the thiazole are intolerant to modification. However, the N-2 position of the aminothiazole exhibits high flexibility and we successfully improved the antitubercular activity of the initial hit by more than 128-fold through introduction of substituted benzoyl groups at this position. N-(3-Chlorobenzoyl)-4-(2-pyridinyl)-1,3-thiazol-2-amine (55) emerged as one of the most promising analogues with a MIC of 0.024 ?M or 0.008 ?g/mL in 7H9 media and therapeutic index of nearly ~300. However, 55 is rapidly metabolized by human liver microsomes (t1/2 = 28 min) with metabolism occurring at the invariant aminothiazole moiety and Mtb develops spontaneous resistance with a high frequency of ~10?5. PMID:24075144

  2. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    SciTech Connect

    Prouillac, Caroline; Lecoeur, Sylvaine

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as a potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.

  3. Multi-Site ?-dynamics for simulated Structure-Activity Relationship studies

    PubMed Central

    Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    Multi-Site ?-dynamics (MS?D) is a new free energy simulation method that is based on ?-dynamics. It has been developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free energies assessed. The efficacy of MS?D for estimating relative hydration free energies and relative binding affinties is demonstrated using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene and dimethoxybenzene molecules show total combined MS?D trajectory lengths of ~1.5 ns are sufficient to reliably achieve relative hydration free energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for hybrid ligands that contain up to ten substituents modeled at a single site or five substituents modeled at each of two sites. Relative hydration free energies among six benzene derivatives calculated from MS?D simulations are in very good agreement with those from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2=0.991) and experiment (with average unsigned errors of 1.8 kcal/mol and R2=0.959). Estimates of the relative binding affinities among 14 inhibitors of HIV-1 reverse transcriptase obtained from MS?D simulations are in reasonable agreement with those from traditional free energy simulations and experiment (average unsigned errors of 0.9 kcal/mol and R2=0.402). For the same level of accuracy and precision MS?D simulations are achieved ~20–50 times faster than traditional free energy simulations and thus with reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design applications. PMID:22125476

  4. A quantitative structure activity relationships (QSAR) analysis of triarylmethane dye tracers

    NASA Astrophysics Data System (ADS)

    Mon, Jarai; Flury, Markus; Harsh, James B.

    2006-01-01

    Dyes are important hydrological tracers. Many different dyes have been proposed as optimal tracers, but none of these dyes can be considered an ideal water tracer. Some dyes are toxic and most sorb to subsurface materials. The objective of this study was to find the molecular structure of an optimal water tracer. We used QSAR to screen a large number of hypothetical molecules, belonging to the class of triarylmethane dyes, in regard to their sorption characteristics to a sandy soil. The QSAR model was based on experimental sorption data obtained from four triarylmethane dyes: C.I. Food Blue 2 (C.I. 42090; Brilliant Blue FCF), C.I. Food Green 3 (C.I. 42053; FD&C Green No. 3), C.I. Acid Blue 7 (C.I. 42080; ORCOacid Blue A 150%), and C.I. Acid Green 9 (C.I. 42100; ORCOacid Fast Green B). Sorption characteristics of the dyes to the sandy soil were expressed with the Langmuir isotherm. Our premise was that dye sorption can be reduced by attachment of sulfonic acid (SO 3) groups to the triarylmethane template. About 70 hypothetical dyes were created and QSAR were used to estimate sorption characteristics. The results indicated that both the position and the number of SO 3 groups affected dye sorption. Sorption decreased with increasing number of SO 3 groups attached to the molecule. Increasing the number of sulfonic acid groups also decreases the toxicity of the compounds. An optimal triarylmethane water tracer contains 4 to 6 SO 3 groups.

  5. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals

    SciTech Connect

    Venkatapathy, Raghuraman Wang Chingyi; Bruce, Robert Mark; Moudgal, Chandrika

    2009-01-15

    Determining the carcinogenicity and carcinogenic potency of new chemicals is both a labor-intensive and time-consuming process. In order to expedite the screening process, there is a need to identify alternative toxicity measures that may be used as surrogates for carcinogenic potency. Alternative toxicity measures for carcinogenic potency currently being used in the literature include lethal dose (dose that kills 50% of a study population [LD{sub 50}]), lowest-observed-adverse-effect-level (LOAEL) and maximum tolerated dose (MTD). The purpose of this study was to investigate the correlation between tumor dose (TD{sub 50}) and three alternative toxicity measures as an estimator of carcinogenic potency. A second aim of this study was to develop a Classification and Regression Tree (CART) between TD{sub 50} and estimated/experimental predictor variables to predict the carcinogenic potency of new chemicals. Rat TD{sub 50}s of 590 structurally diverse chemicals were obtained from the Cancer Potency Database, and the three alternative toxicity measures considered in this study were estimated using TOPKAT, a toxicity estimation software. Though poor correlations were obtained between carcinogenic potency and the three alternative toxicity (both experimental and TOPKAT) measures for the CPDB chemicals, a CART developed using experimental data with no missing values as predictor variables provided reasonable estimates of TD{sub 50} for nine chemicals that were part of an external validation set. However, if experimental values for the three alternative measures, mutagenicity and logP are not available in the literature, then either the CART developed using missing experimental values or estimated values may be used for making a prediction.

  6. Potential of 2-Hydroxy-3-Phenylsulfanylmethyl-[1,4]-Naphthoquinones against Leishmania (L.) infantum: Biological Activity and Structure-Activity Relationships

    PubMed Central

    Schmidt, Thomas J.; Borborema, Samanta E. T.; Ferreira, Vitor F.; Rocha, David R.; Tempone, Andre G.

    2014-01-01

    Naphtoquinones have been used as promising scaffolds for drug design studies against protozoan parasites. Considering the highly toxic and limited therapeutic arsenal, the global negligence with tropical diseases and the elevated prevalence of co-morbidities especially in developing countries, the parasitic diseases caused by various Leishmania species (leishmaniasis) became a significant public health threat in 98 countries. The aim of this work was the evaluation of antileishmanial in vitro potential of thirty-six 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones obtained by a three component reaction of lawsone, the appropriate aldehyde and thiols adequately substituted, exploiting the in situ generation of o-quinonemethides (o-QM) via the Knoevenagel condensation. The antileishmanial activity of the naphthoquinone derivatives was evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum and their cytotoxicity was verified in mammalian cells. Among the thirty-six compounds, twenty-seven were effective against promastigotes, with IC50 values ranging from 8 to 189 µM; fourteen compounds eliminated the intracellular amastigotes, with IC50 values ranging from 12 to 65 µM. The compounds containing the phenyl groups at R1 and R2 and with the fluorine substituent at the phenyl ring at R2, rendered the most promising activity, demonstrating a selectivity index higher than 15 against amastigotes. A QSAR (quantitative structure activity relationship) analysis yielded insights into general structural requirements for activity of most compounds in the series. Considering the in vitro antileishmanial potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones and their structure-activity relationships, novel lead candidates could be exploited in future drug design studies for leishmaniasis. PMID:25171058

  7. Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid.

    PubMed

    Albertshofer, Klaus; Siwkowski, Andrew M; Wancewicz, Edward V; Esau, Christine C; Watanabe, Tanya; Nishihara, Kenji C; Kinberger, Garth A; Malik, Leila; Eldrup, Anne B; Manoharan, Muthiah; Geary, Richard S; Monia, Brett P; Swayze, Eric E; Griffey, Richard H; Bennett, C Frank; Maier, Martin A

    2005-10-20

    Improving cellular uptake and biodistribution remains one of the major obstacles for a successful and broad application of peptide nucleic acids (PNAs) as antisense therapeutics. Recently, we reported the identification and functional characterization of an antisense PNA, which redirects splicing of murine CD40 pre-mRNA. In this context, it was discovered that a simple octa(l-lysine) peptide covalently linked to the PNA is capable of promoting free uptake of the conjugate into BCL1 cells as well as primary murine macrophages. On the basis of this peptide motif, the present study aimed at identifying the structural features, which define effective peptide carriers for cellular delivery of PNA. While the structure-activity relationship study revealed some clear correlations, only a few modifications actually led to an overall improvement as compared to the parent octa(l-lysine) conjugate. In a preliminary PK/tissue distribution study in healthy mice, the parent conjugate exhibited relatively broad tissue distribution and only modest elimination via excretion within the time frame of the study. PMID:16220989

  8. INCREASED [3H]-PHORBOL ESTER BINDING IN RAT CEREBELLAR GRANULE CELLS BY POLYCHLORINATED BIPHENYL MIXTURES AND CONGENERS: STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Our previous reports indicate that the neuroactivity of polychlorinated biphenyl (PCB) congeners may be associated with perturbations in cellular Ca2-homeostasis, and protein kinase C (PKC) activation/translocation. e have now studied the structure-activity relationship of severa...

  9. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS): tetramic, tetronic acids and dihydropyridin-2-ones.

    PubMed

    Peukert, Stefan; Sun, Yingchuan; Zhang, Rui; Hurley, Brian; Sabio, Mike; Shen, Xiaoyu; Gray, Christen; Dzink-Fox, JoAnn; Tao, Jianshi; Cebula, Regina; Wattanasin, Sompong

    2008-03-15

    Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided. PMID:18295483

  10. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid should be a high hydrophobic and low electronic amino acid (such as Ala, Gly, Val, and Leu); the center amino acid would be an amino acid that possesses high hydrogen bond property (such as base amino acid Arg, Lys, and His). The structural characteristics of antioxidative peptide be found in this paper may contribute to the further research of antioxidative mechanism.

  11. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)

    PubMed Central

    Baqi, Younis; Weyler, Stefanie; Iqbal, Jamshed; Zimmermann, Herbert

    2008-01-01

    Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM). PMID:18528783

  12. Semi-synthetic ecdysteroids as gene-switch actuators: synthesis, structure-activity relationships, and prospective ADME properties.

    PubMed

    Lapenna, Silvia; Dinan, Laurence; Friz, Jennifer; Hopfinger, Anton J; Liu, Jianzhong; Hormann, Robert E

    2009-01-01

    The ligand-inducible, ecdysteroid receptor (EcR) gene-expression system can add critical control features to protein expression in cell and gene therapy. However, potent natural ecdysteroids possess absorption, distribution, metabolism and excretion (ADME) properties that have not been optimised for use as gene-switch actuators in vivo. Herein we report the first systematic synthetic exploration of ecdysteroids toward modulation of gene-switch potency. Twenty-three semi-synthetic O-alkyl ecdysteroids were assayed in both a natural insect system (Drosophila B(II) cells) and engineered gene-switch systems in mammalian cells using Drosophila melanogaster, Choristoneura fumiferana, and Aedes aegypti EcRs. Gene-switch potency is maintained, or even enhanced, for ecdysteroids methylated at the 22-position in favourable cases. Furthermore, trends toward lower solubility, higher permeability, and higher blood-brain barrier penetration are supported by predicted ADME properties, calculated using the membrane-interaction (MI)-QSAR methodology. The structure-activity relationship (SAR) of alkylated ecdysteroids indicates that 22-OH is an H-bond acceptor, 25-OH is most likely an H-bond donor, and 2-OH and 3-OH are donors and/or acceptors in network with each other, and with the EcR. The strategy of alkylation points the way to improved ecdysteroidal actuators for switch-activated gene therapy. PMID:19065574

  13. Structure-activity relationship of mastoparan analogs: Effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity.

    PubMed

    Souza, Bibiana Monson de; Cabrera, Marcia Perez Dos Santos; Gomes, Paulo Cesar; Dias, Nathalia Baptista; Stabeli, Rodrigo Guerino; Leite, Natalia Bueno; Neto, João Ruggiero; Palma, Mario Sergio

    2015-10-01

    In this study, a series of mastoparan analogs were engineered based on the strategies of Ala and Lys scanning in relation to the sequences of classical mastoparans. Ten analog mastoparans, presenting from zero to six Lys residues in their sequences were synthesized and assayed for some typical biological activities for this group of peptide: mast cell degranulation, hemolysis, and antibiosis. In relation to mast cell degranulation, the apparent structural requirement to optimize this activity was the existence of one or two Lys residues at positions 8 and/or 9. In relation to hemolysis, one structural feature that strongly correlated with the potency of this activity was the number of amino acid residues from the C-terminus of each peptide continuously embedded into the zwitterionic membrane of erythrocytes-mimicking liposomes, probably due to the contribution of this structural feature to the membrane perturbation. The antibiotic activity of mastoparan analogs was directly dependent on the apparent extension of their hydrophilic surface, i.e., their molecules must have from four to six Lys residues between positions 4 and 11 of the peptide chain to achieve activities comparable to or higher than the reference antibiotic compounds. The optimization of the antibacterial activity of the mastoparans must consider Lys residues at the positions 4, 5, 7, 8, 9, and 11 of the tetradecapeptide chain, with the other positions occupied by hydrophobic residues, and with the C-terminal residue in the amidated form. These requirements resulted in highly active AMPs with greatly reduced (or no) hemolytic and mast cell degranulating acti