Science.gov

Sample records for structure activity relationships

  1. Ecological Structure Activity Relationships

    EPA Science Inventory

    Ecological Structure Activity Relationships, v1.00a, February 2009
    ECOSAR (Ecological Structure Activity Relationships) is a personal computer software program that is used to estimate the toxicity of chemicals used in industry and discharged into water. The program predicts...

  2. Structure-activity relationships of anthocyanidin glycosylation.

    PubMed

    Zhao, Chang Ling; Chen, Zhong Jian; Bai, Xue Song; Ding, Can; Long, Ting Ju; Wei, Fu Gang; Miao, Kang Ru

    2014-08-01

    This paper summarizes the main achievements about the structure-activity relationships of anthocyanidin glycosylation. Anthocyanidin glycosylation is the essential step of anthocyanin biosynthesis and also the prerequisite of the further modifications of anthocyanins, which is jointly characterized by the glycosylation site, the type and number of the glycosyl as well as the glycosidic bond type. It generally enhances the stability, results in the hypsochromic effect and blueing, decreases the bioavailability and anticancer activity, and decreases, increases, or does not change the antioxidant activity of the anthocyanidins or anthocyanins, which is synergetically determined by the glycosylation site and the type and number of the glycosyl. Thereinto, in nature, the blue hues caused by the glycosylation may also be reinforced by the formation of the anthocyanic vacuolar inclusions. This review could provide a reference for the research of the structure-optimizing and function-exploiting of anthocyanins. PMID:24792223

  3. Structural relationships and vasorelaxant activity of monoterpenes

    PubMed Central

    2012-01-01

    Background and purpose of the study The hypotensive activity of the essential oil of Mentha x villosa and its main constituent, the monoterpene rotundifolone, have been reported. Therefore, our objective was to evaluate the vasorelaxant effect of monoterpenes found in medicinal plants and establish the structure-activity relationship of rotundifolone and its structural analogues on the rat superior mesenteric artery. Methods Contractions of the vessels were induced with 10 μM of phenylephine (Phe) in rings with endothelium. During the tonic phase of the contraction, the monoterpenes (10-8 - 10-3, cumulatively) were added to the organ bath. The extent of relaxation was expressed as the percentage of Phe-induced contraction. Results The results from the present study showed that both oxygenated terpenes (rotundifolone, (+)-limonene epoxide, pulegone epoxide, carvone epoxide, and (+)-pulegone) and non-oxygenated terpene ((+)-limonene) exhibit relaxation activity. The absence of an oxygenated molecular structure was not a critical requirement for the molecule to be bioactive. Also it was found that the position of ketone and epoxide groups in the monoterpene structures influence the vasorelaxant potency and efficacy. Major conclusion The results suggest that the presence of functional groups in the chemical structure of rotundifolone is not essential for its vasorelaxant activity. PMID:23351149

  4. Structure-activity relationships of estrogens.

    PubMed Central

    Jordan, V C; Mittal, S; Gosden, B; Koch, R; Lieberman, M E

    1985-01-01

    The last 50 years has seen an exponential rise in the published reports about estrogen action. The model to describe the early events in the mechanism of action of estrogens via the estrogen receptor is updated in this paper to incorporate some of the recent data on the subcellular localization of the receptor. New evidence suggests that the receptor is a nuclear protein, so it appears that estrogens must first diffuse into the nuclear compartment to initiate estrogen action via the receptor complex. This review traces the development of potent estrogenic compounds by the study of their structure-activity relationships. Studies of structure-activity relationships in vivo using Allen Doisy or 3-day uterine weight tests can provide much valuable information, but the assays suffer from the complex problems of pharmacokinetics and metabolic transformation. Studies in vitro using primary cultures of rat pituitary or uterine cells to assay the ability of a compound to induce prolactin synthesis or progesterone receptor synthesis, respectively, can provide essential information about the structural requirements for a compound to produce estrogenic effects. Nevertheless, it should be pointed out that studies in vivo are required to determine whether a compound is metabolically activated to an estrogen. Estrogen receptor binding models are presented to describe the changes in a molecule that will predict high affinity for the ligand and agonist, partial agonist and antagonist properties of the ligand-receptor complex. Most estrogenic pesticides and phytoestrogens comform to the predictions of the estrogen receptor binding model. PMID:3905383

  5. Structure activity relationships of selected naphthalene derivatives

    SciTech Connect

    Schultz, T.W.; Dumont, J.N.; Sankey, F.D.; Schmoyer, R.L. Jr.

    1983-01-01

    Twenty-two derivatives of naphthalene were assayed under an acute static regime with biological activity being monitored as population growth of Tetrahymena pyriformis. Activity varied over one log unit. Substituent constant structure-activity analyses revealed the model, log BR = 0.282Ha + 0.352..pi.. + 0.692F + 0.334/sup 1/X/sub sub//sup v/ - 0.326R + 0.027, to be best and to account for 85% of the variation in log BR (BR, biological response; Ha, hydrogen acceptance; ..pi.., hydrophobic substituent constant; F, polar electronic substituent constant, /sup 1/X/sub sub//sup v/, substituent molar connectivity index; R, resonance electronic substituent constant). The Ha and ..pi.. parameters are the most important, accounting for 71% of the log BR variability. 21 references, 1 figure, 7 tables.

  6. DEVELOPMENT OF STRUCTURE ACTIVITY RELATIONSHIPS FOR ASSESSING ECOLOGICAL RISKS

    EPA Science Inventory

    In the field of environmental toxicology, structure activity relationships (SARs) have developed as scientifically-credible tools for predicting the effects of chemicals when little or no empirical data are available.

  7. Antiproliferative and Structure Activity Relationships of Amaryllidaceae Alkaloids.

    PubMed

    Cedrón, Juan C; Ravelo, Ángel G; León, Leticia G; Padrón, José M; Estévez-Braun, Ana

    2015-01-01

    The antiproliferative activity of a set of seven natural Amaryllidaceae alkaloids and 32 derivatives against four cancer cell lines (A2780, SW1573, T47-D and WiDr) was determined. The best antiproliferative activities were achieved with alkaloids derived from pancracine (2), haemanthamine (6) and haemantidine (7). For each skeleton, some structure-activity relationships were outlined. PMID:26263960

  8. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  9. Quantitative structure-activity relationships for fluoroelastomer/chlorofluorocarbon systems

    SciTech Connect

    Paciorek, K.J.L.; Masuda, S.R.; Nakahara, J.H. ); Snyder, C.E. Jr.; Warner, W.M. )

    1991-12-01

    This paper reports on swell, tensile, and modulus data that were determined for a fluoroelastomer after exposure to a series of chlorofluorocarbon model fluids. Quantitative structure-activity relationships (QSAR) were developed for the swell as a function of the number of carbons and chlorines and for tensile strength as a function of carbon number and chlorine positions in the chlorofluorocarbons.

  10. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii. PMID:26410195

  11. Antioxidant activity of taxifolin: an activity-structure relationship.

    PubMed

    Topal, Fevzi; Nar, Meryem; Gocer, Hulya; Kalin, Pınar; Kocyigit, Umit M; Gülçin, İlhami; Alwasel, Saleh H

    2016-08-01

    Taxifolin is a kind of flavanonol, whose biological ability. The objectives of this study were to investigate the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods including DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, the total antioxidant influence, reducing capabilities, and Fe(2+)-chelating activities. Taxifolin demonstrated 81.02% inhibition of linoleic acid emulsion peroxidation at 30 µg/mL concentration. At the same concentration, standard antioxidants including trolox, α-tocopherol, BHT, and BHA exhibited inhibitions of linoleic acid emulsion as 88.57, 73.88, 94.29, and 90.12%, respectively. Also, taxifolin exhibited effective DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, reducing capabilities, and Fe(2+)-chelating effects. The results obtained from this study clearly showed that taxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities. Also, this study exhibits a scientific shore for the significant antioxidant activity of taxifolin and its structure-activity insight. PMID:26147349

  12. (Quantitative structure-activity relationships in environmental toxicology)

    SciTech Connect

    Turner, J.E.

    1990-10-04

    The traveler attended the Fourth International Workshop on QSAR (Quantitative Structure-Activity Relationships) in Environmental Toxicology. He was an author or co-author on one platform and two poster presentations. The subject of the workshop offers a framework for analyzing and predicting the fate of chemical pollutants in organisms and the environment. QSAR is highly relevant to the ORNL program on the physicochemical characterization of chemical pollutants for health protection.

  13. Structure-activity relationship of crustacean peptide hormones.

    PubMed

    Katayama, Hidekazu

    2016-04-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed. PMID:26624010

  14. Piperine and Derivatives: Trends in Structure-Activity Relationships.

    PubMed

    Singh, Inder Pal; Choudhary, Alka

    2015-01-01

    Piperine is the main constituent of pepper, a commonly used kitchen spice and has been reported to possess various pharmacological activities. The structural features, an aromatic ring with a methylenedioxy bridge, a conjugated dienone system and a piperidine ring constituting an amide bond, possessed by the molecule have been considered important for the molecule to exhibit an array of bioactivities. Several modifications of above structural units have affected the biological properties of piperine, either enhancing or in some cases completely abolishing the activity. The present review emphasizes on the synthetic aspects of piperine along with the structure-activity relationships of its derivatives so as to rationalize the discovery of newer piperine based molecules. PMID:25915609

  15. Penoxsulam--structure-activity relationships of triazolopyrimidine sulfonamides.

    PubMed

    Johnson, Timothy C; Martin, Timothy P; Mann, Richard K; Pobanz, Mark A

    2009-06-15

    The discovery of the sulfonamide herbicides, which inhibit the enzyme acetolactate synthase (ALS), has resulted in many investigations to exploit their herbicidal activity. One area which proved particularly productive was the N-aryltriazolo[1,5-c]pyrimidine sulfonamides, providing three commercial herbicides, cloransulam-methyl, diclosulam and florasulam. Additional structure-activity investigations by reversing the sulfonamide linkage resulted in the discovery of triazolopyrimidine sulfonamides with cereal crop selectivity and high levels of grass and broadleaf weed control. Research efforts to exploit these high levels of weed activity ultimately led to the discovery of penoxsulam, a new herbicide developed for grass, sedge and broadleaf weed control in rice. Synthetic efforts and structure-activity relationships leading to the discovery of penoxsulam will be discussed. PMID:19464188

  16. Structure-activity relationship of kahalalide F synthetic analogues.

    PubMed

    Jiménez, José C; López-Macià, Angel; Gracia, Carol; Varón, Sonia; Carrascal, Marta; Caba, Josep M; Royo, Miriam; Francesch, Andrés M; Cuevas, Carmen; Giralt, Ernest; Albericio, Fernando

    2008-08-28

    Kahalalide F (KF) is a natural product currently under phase II clinical trials. Here, we report the solid phase synthesis of 132 novel analogues of kahalalide F and their in vitro activity on a panel of up to 14 cancer cell lines. The structure-activity relationship of these analogues revealed that KF is highly sensitive to backbone stereotopical modification but not to side chain size modification. These observations suggest that this compound has a defined conformational structure and also that it interacts with chiral compounds through its backbone and not through its side chains. The N-terminal aliphatic acid appears to be a hydrophobic buoy in a membrane-like environment. Moreover, significant improvement of the in vitro activity was achieved. PMID:18672864

  17. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  18. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  19. StructureActivity Relationship Studies of Pyrrolone Antimalarial Agents

    PubMed Central

    Murugesan, Dinakaran; Kaiser, Marcel; White, Karen L; Norval, Suzanne; Riley, Jennifer; Wyatt, Paul G; Charman, Susan A; Read, Kevin D; Yeates, Clive; Gilbert, Ian H

    2013-01-01

    Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structureactivity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine-and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival. PMID:23918316

  20. Synthesis and Structural Activity Relationship Study of Antitubercular Carboxamides

    PubMed Central

    Ugwu, D. I.; Ezema, B. E.; Eze, F. U.; Ugwuja, D. I.

    2014-01-01

    The unusual structure and chemical composition of the mycobacterial cell wall, the tedious duration of therapy, and resistance developed by the microorganism have made the recurrence of the disease multidrug resistance and extensive or extreme drug resistance. The prevalence of tuberculosis in synergy with HIV/AIDS epidemic augments the risk of developing the disease by 100-fold. The need to synthesize new drugs that will shorten the total duration of effective treatment and/or significantly reduce the dosage taken under DOTS supervision, improve on the treatment of multidrug-resistant tuberculosis which defies the treatment with isoniazid and rifampicin, and provide effective treatment for latent TB infections which is essential for eliminating tuberculosis prompted this review. In this review, we considered the synthesis and structure activity relationship study of carboxamide derivatives with antitubercular potential. PMID:25610646

  1. Structure activity relationships: their function in biological prediction

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Quantitative structure activity relationships provide a means of ranking or predicting biological effects based on chemical structure. For each compound used to formulate a structure activity model two kinds of quantitative information are required: (1) biological activity and (2) molecular properties. Molecular properties are of three types: (1) molecular shape, (2) physiochemical parameters, and (3) abstract quantitations of molecular structure. Currently the two best descriptors are the hydrophobic parameter, log 1-octanol/water partition coefficient (log P), and the /sup 1/X/sup v/(one-chi-v) molecular connectivity index. Biological responses can be divided into three main categories: (1) non-specific effects due to membrane perturbation, (2) non-specific effects due to interaction with functional groups of proteins, and (3) specific effects due to interaction with receptors. Twenty-six synthetic fossil fuel-related nitrogen-containing aromatic compounds were examined to determine the quantitative correlation between log P and /sup 1/X/sup v/ and population growth impairment of Tetrahymena pyriformis. Nitro-containing compounds are the most active, followed by amino-containing compounds and azaarenes. Within each analog series activity increases with alkyl substitution and ring addition. The planar model log BR = 0.5564 log P + 0.3000 /sup 1/X/sup v/ -2.0138 was determined using mono-nitrogen substituted compounds. Attempts to extrapolate this model to dinitrogen-containing molecules were, for the most part, unsuccessful because of a change in mode of action from membrane perturbation to uncoupling of oxidative phosphoralation.

  2. Autotaxin Structure Activity Relationships Revealed through Lysophosphatidylcholine Analogs

    PubMed Central

    North, E. Jeffrey; Osborne, Daniel A.; Bridson, Peter K.; Baker, Daniel L.; Parrill, Abby L.

    2009-01-01

    Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization. PMID:19345587

  3. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  4. Structure-activity relationship of cytoplasmic 5'-nucleotidase substrate sites.

    PubMed Central

    Skladanowski, A C; Hoffmann, C; Krass, J; Jastorff, B; Makarewicz, W

    1996-01-01

    Various 5'-nucleotidases (EC 3.1.3.5) exist in vertebrate tissues. The sequence and cDNA cloning of the membrane-bound ecto-5'-nucleotidase (e-N) and one of the cytosolic isoenzymes, IMP-preferring (c-N-II), but not the cytosolic AMP-preferring form (c-N-I), have been reported. While c-N-II has a broad tissue distribution, c-N-I is found only in vertebrate heart. The published data on substrate specificity involve mainly the naturally occurring nucleoside monophosphates, without a systematic structure-activity relationship study. In the present study we have used a series of AMP and IMP analogues to examine the structure-activity relationship for c-N-I and c-N-II in detail. The rank order of activity of the test compounds differed substantially between c-N-I and c-N-II. c-N-I and c-N-II varied with respect to the following interactions with substrate: (1) hydrogen-bond formation with the substituent in the 6-position of the purine ring (a donor-type with c-N-I and an acceptor-type with c-N-II); and (2) hydrophobic attraction of the 6-position unsubstituted purine ring (more pronounced with c-N-I than with c-N-II). No better substrate than 5'-AMP was found for c-N-I. We propose that c-N-I functions as an AMP-binding protein in the myocardial cell with an important role during ischaemic ATP breakdown when AMP accumulates rapidly. PMID:8615751

  5. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (≥300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  6. Capsaicin and its analogues: structure-activity relationship study.

    PubMed

    Huang, X-F; Xue, J-Y; Jiang, A-Q; Zhu, H-L

    2013-01-01

    Capsaicin, the main ingredient responsible for the hot pungent taste of chilli peppers, is an alkaloid found in the Capsicum family. Capsaicin was traditionally used for muscular pain, headaches, to improve circulation and for its gastrointestinal protective effects. It was also commonly added to herbal formulations because it acts as a catalyst for other herbs and aids in their absorption. In addition, capsaicin and other capsaicinoid compounds showed strong evidence of having promising potential in the fight against many types of cancer. The mechanism of action of capsaicin has been extensively studied over the past decade. It has been established that capsaicin binds to the transient receptor potential vanilloid 1 receptor which was expressed predominantly by sensory neurons. And many analogues of capsaicin have been synthesized and evaluated for diverse bioactivities. In this review, we will attempt to summarize the biology and structure-activity relationship of capsaicinoids. PMID:23627937

  7. Interpretable correlation descriptors for quantitative structure-activity relationships

    PubMed Central

    2009-01-01

    Background The topological maximum cross correlation (TMACC) descriptors are alignment-independent 2D descriptors for the derivation of QSARs. TMACC descriptors are generated using atomic properties determined by molecular topology. Previous validation (J Chem Inf Model 2007, 47: 626-634) of the TMACC descriptor suggests it is competitive with the current state of the art. Results Here, we illustrate the interpretability of the TMACC descriptors, through the analysis of the QSARs of inhibitors of angiotensin converting enzyme (ACE) and dihydrofolate reductase (DHFR). In the case of the ACE inhibitors, the TMACC interpretation shows features specific to C-domain inhibition, which have not been explicitly identified in previous QSAR studies. Conclusions The TMACC interpretation can provide new insight into the structure-activity relationships studied. Freely available, open source software for generating the TMACC descriptors can be downloaded from http://comp.chem.nottingham.ac.uk. PMID:20151000

  8. Structure-based design, structure-activity relationship analysis, and antitumor activity of diaryl ether derivatives.

    PubMed

    Yang, Shao-Mei; Huang, Zhi-Ning; Zhou, Zhong-Shi; Hou, Jin; Zheng, Man-Yi; Wang, Li-Juan; Jiang, Yu; Zhou, Xin-Yi; Chen, Qiu-Yue; Li, Shan-Hua; Li, Fu-Nan

    2015-10-01

    To identify novel therapeutic agents to treat cancer, we synthesized a series of diaryl ether derivatives. Structure-activity relationship studies revealed that the presence of a chlorine or hydroxyl at the para-position on the phenyl ring (5h or 5k) significantly enhanced antitumor activity. Compound 5h had stronger growth inhibitory activity in HepG2, A549, and HT-29 cells than compound 5k, with IC50 values of 2.57, 5.48, and 30.04 μM, respectively. Compound 5h also inhibited the growth of other cells lines, including Hep3B, PLC/PRF5, SMMC-7721, HeLa, and A375, with IC50 values of 2.76, 4.26, 29.66, 18.86, and 10.21 μM, respectively. The antitumor activity of compound 5h was confirmed by a colony forming assay. Further, our results indicated that the antitumor activity of compound 5h may be mediated by enhancing expression of p21 and cl-caspase3, and leading to apoptosis of cancer cells. PMID:25724284

  9. Structure-Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase.

    PubMed

    Asthana, Shailendra; Zucca, Paolo; Vargiu, Attilio V; Sanjust, Enrico; Ruggerone, Paolo; Rescigno, Antonio

    2015-08-19

    The structure-activity relationships of four hydroxycoumarins, two with the hydroxyl group on the aromatic ring of the molecule and two with the hydroxyl group replacing hydrogen of the pyrone ring, and their interactions with mushroom tyrosinase were studied. These compounds displayed different behaviors upon action of the enzyme. The two compounds, ar-hydroxylated 6-hydroxycoumarin and 7-hydroxycoumarin, were both weak substrates of the enzyme. Interestingly, in both cases, the product of the catalysis was the 6,7-hydroxycoumarin, although 5,6- and 7,8-isomers could also theoretically be formed. Additionally, both were able to reduce the formation of dopachrome when tyrosinase acted on its typical substrate, L-tyrosine. Although none of the compounds that contained a hydroxyl group on the pyrone ring were substrates of tyrosinase, the 3-hydroxycoumarin was a potent inhibitor of the enzyme, and the 4-hydroxycoumarin was not an inhibitor. These results were compared with those obtained by in silico molecular docking predictions to obtain potentially useful information for the synthesis of new coumarin-based inhibitors that resemble the structure of the 3-hydroxycoumarin. PMID:26263396

  10. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  11. Structure-Activity Relationship of Nerve-Highlighting Fluorophores

    PubMed Central

    Gibbs, Summer L.; Xie, Yang; Goodwill, Haley L.; Nasr, Khaled A.; Ashitate, Yoshitomo; Madigan, Victoria J.; Siclovan, Tiberiu M.; Zavodszky, Maria; Tan Hehir, Cristina A.; Frangioni, John V.

    2013-01-01

    Nerve damage is a major morbidity associated with numerous surgical interventions. Yet, nerve visualization continues to challenge even the most experienced surgeons. A nerve-specific fluorescent contrast agent, especially one with near-infrared (NIR) absorption and emission, would be of immediate benefit to patients and surgeons. Currently, there are only three classes of small molecule organic fluorophores that penetrate the blood nerve barrier and bind to nerve tissue when administered systemically. Of these three classes, the distyrylbenzenes (DSBs) are particularly attractive for further study. Although not presently in the NIR range, DSB fluorophores highlight all nerve tissue in mice, rats, and pigs after intravenous administration. The purpose of the current study was to define the pharmacophore responsible for nerve-specific uptake and retention, which would enable future molecules to be optimized for NIR optical properties. Structural analogs of the DSB class of small molecules were synthesized using combinatorial solid phase synthesis and commercially available building blocks, which yielded more than 200 unique DSB fluorophores. The nerve-specific properties of all DSB analogs were quantified using an ex vivo nerve-specific fluorescence assay on pig and human sciatic nerve. Results were used to perform quantitative structure-activity relationship (QSAR) modeling and to define the nerve-specific pharmacophore. All DSB analogs with positive ex vivo fluorescence were tested for in vivo nerve specificity in mice to assess the effect of biodistribution and clearance on nerve fluorescence signal. Two new DSB fluorophores with the highest nerve to muscle ratio were tested in pigs to confirm scalability. PMID:24039960

  12. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e

  13. Structure activity relationship of synaptic and junctional neurotransmission

    PubMed Central

    Goyal, Raj K; Chaudhury, Arun

    2013-01-01

    Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140

  14. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives.

    PubMed

    Sahu, Pramod K; Sahu, Praveen K; Sahu, Puran L; Agarwal, Dau D

    2016-02-15

    Series of curcumin derivatives/analogues were designed and efficient method for synthesis thereof is described. All the synthesized compounds have been screened for their cytotoxicity and evaluated their antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines Hep-G2, HCT-116 and QG-56 by MTT assay method. Structure activity relationship has revealed that particularly, compound 3c, (IC50 value 6.25μM) has shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 4H-pyrimido[2,1-b]benzothiazole derivatives (2e and 2f), pyrazoles (3a, 3b, 3c and 3d) benzylidenes (4d) exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. PMID:26810315

  15. Structure-anticonvulsant activity relationships of cannabidiol analogs.

    PubMed

    Martin, A R; Consroe, P; Kane, V V; Shah, V; Singh, V; Lander, N; Mechoulam, R; Srebnik, M

    1987-01-01

    Cannabidiol (CBD) exhibits anticonvulsant activity in experimental animals and in man. As part of a structure-activity study, analogs were prepared wherein the terpene unit, the aryl unit, and/or the side chain were modified. Thus, several pinenyl and carenyl derivatives, aryl ethers and acetates, and a variety of 1",1"-dialkylhexyl and 1",1"-dialkylheptyl analogs were synthesized. The compounds were evaluated for anti-convulsant activity in seizure susceptible (AGS) rats and for neurotoxicity in the rat rotorod (ROT) test. Comparisons of stereoisomers of CBD and several analogs revealed a general lack of stereoselectivity for anticonvulsant and other CNS properties of this class of compounds. PMID:3125480

  16. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer

    PubMed Central

    Lee, Juneyoung

    2008-01-01

    To develop novel antibiotic peptides useful as therapeutic drugs, the enantiomeric analogue of pleurocidin (Ple), which is a well known 25-mer antimicrobial peptide, was designed for proteolytic resistance by D-amino acids substitution. The proteolytic resistance was confirmed by using HPLC after the digestion with various proteases. To investigate the antibiotic effect of L- and D-Ple, the antibacterial activity and hemolytic effect were tested against human erythrocytes. The D-Ple showed a decreased antibacterial activity and a dramatically decreased hemolytic activity compared with L-Ple. The hemolytic effect of analogue was further confirmed by using calcein leakage measurement with liposome. To elucidate these results, the secondary structure of the peptides was investigated by using circular dichroism spectroscopy. The results revealed that D-Ple, as well as L-Ple, had typical ?-helical structures which were mirror images, with a different helicity. These results suggested that the discrepancy of the structure between the two peptides made their antibacterial activity distinct. PMID:18779649

  17. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  18. Structure-activity relationships of G protein-coupled receptors.

    PubMed

    Ulloa-Aguirre, A; Stanislaus, D; Janovick, J A; Conn, P M

    1999-01-01

    The primary function of cell-surface receptors is to discriminate the specific signaling molecule or ligand from a large array of chemically diverse extracellular substances and to activate an effector signaling cascade that triggers an intracellular response and eventually a biological effect. G protein-coupled cell-surface receptors (GPCRs) mediate their intracellular actions through the activation of guanine nucleotide-binding signal-transducing proteins (G proteins), which form a diverse family of regulatory GTPases that, in the GTP-bound state, bind and activate downstream membrane-localized effectors. Hundreds of GPCRs signal through one or more of these G proteins in response to a large variety of stimuli including photons, neurotransmitters, and hormones of variable molecular structure. The mechanisms by which these ligands provoke activation of the receptor/G-protein system are highly complex and multifactorial. Knowledge and mapping of the structural determinants and requirements for optimal GPCR function are of paramount importance, not only for a better and more detailed understanding of the molecular basis of ligand action and receptor function in normal and abnormal conditions, but also for a rational design of early diagnostic and therapeutic tools that may allow exogenous regulation of receptor and G protein function in disease processes. PMID:10714355

  19. COMPUTER-ASSISTED STUDIES OF MOLECULAR STRUCTURE-BIOLOGICAL ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Computer-assisted methods can be used to investigate the relationships between the molecular structures of compounds and their biological activity. A number of approaches have been reported in the literature, including correlations of activity with substituent constants, conforma...

  20. Novel spiropyrazolone antitumor scaffold with potent activity: Design, synthesis and structure-activity relationship.

    PubMed

    Wu, Shanchao; Li, Yu; Xu, Guixia; Chen, Shuqiang; Zhang, Yongqiang; Liu, Na; Dong, Guoqiang; Miao, Chaoyu; Su, Hua; Zhang, Wannian; Sheng, Chunquan

    2016-06-10

    Phenotypic screening of high quality compound library is an effective strategy to discover novel bioactive molecules. Previously, we developed the divergent organocatalytic cascade approach to efficiently construct a focused library with scaffold diversity and successfully identified a novel spiropyrazolone antitumor scaffold. Herein, a series of spiropyrazolone derivatives were designed, synthesized and assayed. Most of them showed good in vitro antitumor activity with a broad spectrum. Preliminary structure-activity relationship for the substitutions and the stereo configuration were obtained. Compound 5k showed good antitumor activity and could effectively induce cancer cell apoptosis, which represents a good starting point for the development of novel antitumor agents. PMID:27016707

  1. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-01-01

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents. PMID:25985362

  2. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABAA Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABAA receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABAA receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABAA receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  3. Synthesis, Activity and Structure-Activity Relationship of Noroviral Protease Inhibitors

    PubMed Central

    Deng, Lisheng; Muhaxhiri, Zana; Estes, Mary K.; Palzkill, Timothy; Prasad, B. V. Venkataram; Song, Yongcheng

    2013-01-01

    The protease of norovirus, an important human pathogen, is essential for the viral replication and, therefore, represents a potential drug target. A series of tripeptide-based inhibitors of the protease were designed, synthesized and tested, among which several potent inhibitors were identified with Ki values as low as 75 nM. The structure-activity relationships of these inhibitors are discussed. PMID:24244836

  4. Current trends in the structure-activity relationships of sialyltransferases.

    PubMed

    Audry, Magali; Jeanneau, Charlotte; Imberty, Anne; Harduin-Lepers, Anne; Delannoy, Philippe; Breton, Christelle

    2011-06-01

    Sialyltransferases (STs) represent an important group of enzymes that transfer N-acetylneuraminic acid (Neu5Ac) from cytidine monophosphate-Neu5Ac to various acceptor substrates. In higher animals, sialylated oligosaccharide structures play crucial roles in many biological processes but also in diseases, notably in microbial infection and cancer. Cell surface sialic acids have also been found in a few microorganisms, mainly pathogenic bacteria, and their presence is often associated with virulence. STs are distributed into five different families in the CAZy database (http://www.cazy.org/). On the basis of crystallographic data available for three ST families and fold recognition analysis for the two other families, STs can be grouped into two structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the catalytic base (a histidine or an aspartate residue). The observed structural and functional differences strongly suggest that these two structural superfamilies have evolved independently. PMID:21098518

  5. Structure-activity relationship of immunomodulating pectins from elderberries.

    PubMed

    Ho, Giang Thanh Thi; Ahmed, Abeeda; Zou, Yuan-Feng; Aslaksen, Torun; Wangensteen, Helle; Barsett, Hilde

    2015-07-10

    The berries of Sambucus nigra have traditionally been used and are still used to treat respiratory illnesses such as cold and flu in Europe, Asia and America. The aim of this paper was to elucidate the structures and the immunomodulating properties of the pectic polymers from elderberries. All the purified fractions obtained from 50% ethanol, 50°C water and 100°C water extracts showed potent dose-dependent complement fixating activity and macrophage stimulating activity. The isolated fractions consisted of long homogalacturonan regions, in addition to arabinogalactan-I and arabinogalactan-II probably linked to a rhamnogalacturonan backbone. Reduced bioactivity was observed after reduction of Araf residues and 1→3,6 Gal by weak acid hydrolysis. The rhamnogalacturonan region in SnBe50-I-S3-I and SnBe50-I-S3-II showed higher activity compared to the native polymer, SnBe50-S3, after enzymatic treatment with endo-α-d-(1→4)-polygalacturonase. These results indicated that elderberries contained immunomodulating polysaccharides, where the ramified regions express the activities observed. PMID:25857988

  6. Structure-Activity Relationships for the Antifungal Activity of Selective Estrogen Receptor Antagonists Related to Tamoxifen

    PubMed Central

    Butts, Arielle; Martin, Jennifer A.; DiDone, Louis; Bradley, Erin K.; Mutz, Mitchell; Krysan, Damian J.

    2015-01-01

    Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold. PMID:26016941

  7. Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity.

    PubMed

    Gurfinkel, D M; Rao, A V

    2003-01-01

    Soyasaponins are bioactive compounds found in many legumes. Although crude soyasaponins have been shown to have anti-colon carcinogenic activity, there have been no structure-activity studies. In this study, therefore, purified soyasaponins and soyasapogenins were tested for their ability to suppress the growth of HT-29 colon cancer cells, as determined by the WST-1 assay, over a concentration range of 0-50 ppm. Soyasaponin I and III, soyasapogenol B monoglucuronide, soyasapogenol B, soyasaponin A1, soyasaponin A2, and soyasapogenol A were evaluated. Also tested were mixtures comprising acetylated group A soyasaponins, deacetylated group A soyasaponins, and group B soyasaponins. The most potent compounds were the aglycones soyasapogenol A and B, which showed almost complete suppression of cell growth. The glycosidic soyasaponins by comparison were largely inactive. Soyasaponin A(1), A(2), and I, group B and deacetylated and acetylated group A fractions had no effect on cell growth. Soyasaponin III and soyasapogenol B monoglucuronide were marginally bioactive. These results suggested that the bioactivity of soyasaponins increased with increased lipophilicity. Results from in vitro fermentation suggested that colonic microflora readily hydrolyzed the soyasaponins to aglycones. These observations suggest that the soyasaponins may be an important dietary chemopreventive agent against colon cancer, after alteration by microflora. PMID:14769534

  8. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    PubMed

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds. PMID:26826838

  9. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies.

    PubMed

    Tasdemir, Deniz; Kaiser, Marcel; Brun, Reto; Yardley, Vanessa; Schmidt, Thomas J; Tosun, Fatma; Redi, Peter

    2006-04-01

    Trypanosomiasis and leishmaniasis are important parasitic diseases affecting millions of people in Africa, Asia, and South America. In a previous study, we identified several flavonoid glycosides as antiprotozoal principles from a Turkish plant. Here we surveyed a large set of flavonoid aglycones and glycosides, as well as a panel of other related compounds of phenolic and phenylpropanoid nature, for their in vitro activities against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani. The cytotoxicities of more than 100 compounds for mammalian L6 cells were also assessed and compared to their antiparasitic activities. Several compounds were investigated in vivo for their antileishmanial and antitrypanosomal efficacies in mouse models. Overall, the best in vitro trypanocidal activity for T. brucei rhodesiense was exerted by 7,8-dihydroxyflavone (50% inhibitory concentration [IC50], 68 ng/ml), followed by 3-hydroxyflavone, rhamnetin, and 7,8,3',4'-tetrahydroxyflavone (IC50s, 0.5 microg/ml) and catechol (IC50, 0.8 microg/ml). The activity against T. cruzi was moderate, and only chrysin dimethylether and 3-hydroxydaidzein had IC50s less than 5.0 microg/ml. The majority of the metabolites tested possessed remarkable leishmanicidal potential. Fisetin, 3-hydroxyflavone, luteolin, and quercetin were the most potent, giving IC50s of 0.6, 0.7, 0.8, and 1.0 microg/ml, respectively. 7,8-Dihydroxyflavone and quercetin appeared to ameliorate parasitic infections in mouse models. Generally, the test compounds lacked cytotoxicity in vitro and in vivo. By screening a large number of flavonoids and analogues, we were able to establish some general trends with respect to the structure-activity relationship, but it was not possible to draw clear and detailed quantitative structure-activity relationships for any of the bioactivities by two different approaches. However, our results can help in directing the rational design of 7,8-dihydroxyflavone and quercetin derivatives as potent and effective antiprotozoal agents. PMID:16569852

  10. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity.

    PubMed

    Ou, Jun-Lin; Mizushina, Yoshiyuki; Wang, Sheng-Yang; Chuang, Duen-Yau; Nadar, Muthukumar; Hsu, Wei-Li

    2013-11-01

    Curcumin (Cur) is a commonly used colouring agent and spice in food. Previously, we reported that Cur inhibits type A influenza virus (IAV) infection by interfering with viral haemagglutination (HA) activity. To search for a stable Cur analogue with potent anti-IAV activity and to investigate the structure contributing to its anti-IAV activity, a comparative analysis of structural and functional analogues of Cur, such as tetrahydrocurcumin (THC) and petasiphenol (Pet), was performed. The result of time-of-drug addition tests indicated that these curcuminoids were able to inhibit IAV production in cell cultures. Noticeably, Pet and THC inhibit IAV to a lesser extent than Cur, which is in line with their effect on reducing plaque formation when IAV was treated with Cur analogues before infection. Unexpectedly, both THC and Pet did not harbour any HA inhibitory effect. It should be noted that the structure of Pet and THC differs from Cur with respect to the number of double bonds present in the central seven-carbon chain, and structure modelling of Cur analogues indicates that the conformations of THC and Pet are distinct from that of Cur. Moreover, simulation docking of Cur with the HA structure revealed that Cur binds to the region constituting sialic acid anchoring residues, supporting the results obtained by the inhibition of HA activity assay. Collectively, structure-activity relationship analyses indicate that the presence of the double bonds in the central seven-carbon chain enhanced the Cur -dependent anti-IAV activity and also that Cur might interfere with IAV entry by its interaction with the receptor binding region of viral HA protein. PMID:24034558

  11. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  12. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  13. A quantitative structure-activity relationship model for radical scavenging activity of flavonoids.

    PubMed

    Om, A; Kim, J H

    2008-03-01

    A quantitative structure-activity relationship (QSAR) study has been carried out for a training set of 29 flavonoids to correlate and predict the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (RSA) values obtained from published data. Genetic algorithm and multiple linear regression were employed to select the descriptors and to generate the best prediction model that relates the structural features to the RSA activities using (1) three-dimensional (3D) Dragon (TALETE srl, Milan, Italy) descriptors and (2) semi-empirical descriptor calculations. The predictivity of the models was estimated by cross-validation with the leave-one-out method. The result showed that a significant improvement of the statistical indices was obtained by deleting outliers. Based on the data for the compounds used in this study, our results suggest a QSAR model of RSA that is based on the following descriptors: 3D-Morse, WHIM, and GETAWAY. Therefore, satisfactory relationships between RSA and the semi-empirical descriptors were found, demonstrating that the energy of the highest occupied molecular orbital, total energy, and energy of heat of formation contributed more significantly than all other descriptors. PMID:18361735

  14. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies

    PubMed Central

    Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña

    2012-01-01

    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345

  15. ESTIMATION OF ELECTRON AFFINITY BASED ON STRUCTURE ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Electron affinity for a wide range of organic molecules was calculated from molecular structure using the chemical reactivity models developed in SPARC. hese models are based on fundamental chemical structure theory applied to the prediction of chemical reactivities for organic m...

  16. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  17. The cytotoxic activities of cardiac glycosides from Streptocaulon juventas and the structure-activity relationships.

    PubMed

    Xue, Rui; Han, Na; Ye, Chun; Wang, Lihui; Yang, Jingyu; Wang, Yu; Yin, Jun

    2014-10-01

    A series of cardiac glycosides were isolated and identified from the anti-tumor fraction of the root of Streptocaulon juventas in previous studies. In the present research, the cytotoxic activities of the 43 cardiac glycosides on three cell lines, human lung A549 adenocarcinoma cell, large cell lung cancer NCI-H460 cell and normal human fetal lung fibroblast MRC-5 cell, were evaluated in vitro. Most of the tested compounds showed potent inhibitory activities toward the three cell lines. Then, the structure-activity relationships were discussed in detail. It was indicated that hydroxyl and acetyl groups at C-16 increased the activity, whereas hydroxyl group at C-1 and C-5 can both increase and decrease the activity. Two glucosyl groups which were connected by C1'?C6' showed better inhibitory activity against cancer cell lines, while the C1'?C4' connection showed stronger inhibitory activity against the normal cell line. Also, this is the first report that the activities of these compounds exhibited different variation trends between A549 and NCI-H460 cell lines, which indicated that these compounds could selectively inhibit the cell growth. The results would lay a foundation for further research on new anti-tumor drug development. PMID:25128424

  18. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  19. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis.

    PubMed

    Ali, Hussein M; Almagribi, Wafaa; Al-Rashidi, Mona N

    2016-03-01

    Eight anthocyanidins, seven anthocyanins and two synthesized 4'-hydroxy flavyliums were examined as hydrogen donors to DPPH, ABTS and hydroxyl radicals, and as electron donors in the FRAP assay. Most compounds gave better activities than trolox and catechol. A structure-activity relationship (SAR) study showed that, in the absence of the 3-OH group, radicals of the 4, 5 or 7-OH groups can only be stabilized by resonance through pyrylium oxygen, while 3-OH group improved hydrogen atom donation because of the stabilization by anthocyanidin semiquinone-like resonance. Electron donation was also enhanced by the 3-OH group. Both anthocyanidins and their respective anthocyanins showed similar trends and close activities. Different types of sugar unit bonded to the 3-OH group or counter ion had minor effect on activities. The catechol structure improved both hydrogen and electron donation. Compounds lacking the catechol structure had a decreasing order of H-atom and electron donation (Mv>Pn>Pg>Ap>4'-OH-flavylium) consistent with the decreasing number of their hydroxyl and/or methoxy groups. PMID:26471682

  20. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    PubMed

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors. PMID:24710340

  1. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    PubMed Central

    de Arajo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendona, Francisco J. B.; Barbosa-Filho, Jos M.

    2013-01-01

    The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 ?g/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

  2. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru; Itakura, Yuki; Batubara, Irmanida

    2015-07-01

    Ugonin J, K, and L, which are luteolin derivatives, were isolated from Helminthostachys zeylanica roots by a series of chromatographic separations of a 50% ethanol/water extract. They were identified using nuclear magnetic resonance (NMR), ultraviolet (UV) spectra, and ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS). In this study, the intra and extracellular melanogenic activity of the ugonins were determined using B16 melanoma cells. The results showed that ugonin J at 12.5, 25, and 50μM reduced extracellular melanin contents to 75, 16, and 14%, respectively, compared to the control. This indicates that ugonin J showed a stronger activity than arbutin, used as the positive control. Moreover, ugonin K showed a more potent inhibition with 19, 8, and 9% extracellular melanin reduction at the same concentrations, than that shown by ugonin J. In contrast, ugonin L did not inhibit intra- or extracellular melanogenic activity. Furthermore, in order to investigate the structure-activity relationships of the ugonins, the intra- and extracellular melanogenic activity of luteolin, methylluteolin, quercetin, eriodictyol, apigenin, and chrysin were determined. Consequently, it was suggested that the catechol and flavone skeleton of ugonin K is essential for the extracellular melanogenic inhibitory activity, and the low polarity substituent groups on the A ring of ugonin K may increase the activity. PMID:25979512

  3. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  4. Activity cliff clusters as a source of structure-activity relationship information.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2015-05-01

    The activity cliff (AC) concept is widely applied in medicinal chemistry. ACs are formed by compounds with small structural changes having large differences in potency. Accordingly, ACs are a primary source of structure-activity relationship (SAR) information. Through large-scale compound data mining it has been shown that the vast majority of ACs are formed in a coordinated manner by groups of structurally analogous compounds with significant potency variations. In network representations coordinated ACs form clusters of varying size but frequently recurrent topology. Recently, computational methods have been introduced to systematically organize AC clusters and extract SAR information from them. AC clusters are widely distributed over compound activity classes and represent a rich source of SAR information. These clusters can be visualized in AC networks and isolated. However, it is challenging to extract SAR information from such clusters and make this information available to the practice of medicinal chemistry. Therefore, it is essential to go beyond subjective case-by-case analysis and design computational approaches to systematically access SAR information associated with AC clusters. PMID:25715967

  5. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected. PMID:25466709

  6. Structure-Activity Relationship of Chlorotoxin-Like Peptides

    PubMed Central

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A. B.; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-01-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na+, K+, Ca+, Cl−, etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  7. Structure-Activity Relationship of Chlorotoxin-Like Peptides.

    PubMed

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A B; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-02-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na⁺, K⁺, Ca⁺, Cl(-), etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  8. The relationship between the structure and the activity of pyrethroids

    PubMed Central

    Elliott, M.

    1971-01-01

    There is considerable scope for developing new non-persistent insecticides with little hazard for man and mammals by modifying the structures of the natural pyrethrins. New compounds already synthesized are more effective against some insect species than are the natural compounds, are even less hazardous to mammals, and do not need synergists to supplement their insecticidal action. Other examples show considerable insect species specificity. These compounds may help to control insect vectors when other insecticides are no longer effective because resistance has developed or because their residues can no longer be tolerated. PMID:4938024

  9. Structure-activity relationship of immunostimulatory effects of phthalates

    PubMed Central

    Larsen, Søren T; Nielsen, Gunnar D

    2008-01-01

    Background Some chemicals, including some phthalate plasticizers, have been shown to have an adjuvant effect in mice. However, an adjuvant effect, defined as an inherent ability to stimulate the humoral immune response, was only observed after exposure to a limited number of the phthalates. An adjuvant effect may be due to the structure or physicochemical characteristics of the molecule. The scope of this study was to investigate which molecular characteristics that determine the observed adjuvant effect of the most widely used phthalate plasticizer, the di-(2-ethylhexyl) phthalate (DEHP), which is documented as having a strong adjuvant effect. To do so, a series of nine lipophilic compounds with structural and physicochemical relations to DEHP were investigated. Results Adjuvant effect of phthalates and related compounds were restricted to the IgG1 antibody formation. No effect was seen on IgE. It appears that lipophilicity plays a crucial role, but lipophilicity does not per se cause an adjuvant effect. In addition to lipophilicity, a phthalate must also possess specific stereochemical characteristics in order for it to have adjuvant effect. Conclusion The adjuvant effect of phthalates are highly influenced by both stereochemical and physico-chemical properties. This knowledge may be used in the rational development of plasticizers without adjuvant effect as well as in the design of new immunological adjuvants. PMID:18976460

  10. Strong Nonadditivity as a Key StructureActivity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts

    PubMed Central

    2015-01-01

    Nonadditivity in proteinligand affinity data represents highly instructive structureactivity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (??pKi and ??pIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools. PMID:25760829

  11. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  12. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group. PMID:24824737

  13. STRUCTURE-ACTIVITY RELATIONSHIPS FOR SCREENING ORGANIC CHEMICALS FOR POTENTIAL ECOTOXICITY EFFECTS

    EPA Science Inventory

    The paper presents structure-activity relationships (QSAR) for estimating the bioconcentration factor and acute toxicity of some classes of industrial chemicals using only the n-octanol/water partition coefficient (Log P) which is derived from chemical structure. The bioconcentra...

  14. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  15. Synthesis, antitumor activity and structure-activity relationships of a series of Ru(II) complexes.

    PubMed

    Liu, Jie; Zheng, Wenjie; Shi, Shuo; Tan, Caiping; Chen, Jincan; Zheng, Kangcheng; Ji, Liangnian

    2008-02-01

    A series of octahedral Ru(II) polypyridyl complexes, [Ru(phen)(2)L](2+) (L=R-PIP and PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by elementary analysis, (1)H NMR and ES-MS, as well as UV-visible spectra and emission spectra. The antitumor activities of these complexes and their corresponding ligands were investigated against mouse leukemia L1210 cells, human oral epidermoid carcinoma KB cells, human promyelocytic leukemia cells (HL-60) and Bel-7402 liver cancer cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. It was found that the complexes [Ru(phen)(2)L](2+) (L=R-PIP) exert rather potent activities against all of these cell lines, especially for the KB cells (IC(50)=4.7+/-1.3 microM). The binding affinities of these Ru(II) complexes to CT-DNA (calf thymus DNA), as well as the DNA-unwinding properties on supercoiled pBR322 DNA were also investigated. The results showed that these Ru(II) polypyridyl complexes not only had an excellent DNA-binding property but also possessed a highly effective DNA-photocleavage ability. The structure-activity relationships and antitumor mechanism were also carefully discussed. PMID:17825915

  16. Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides

    PubMed Central

    Mojsoska, Biljana; Zuckermann, Ronald N.

    2015-01-01

    The constant emergence of new bacterial strains that resist the effectiveness of marketed antimicrobials has led to an urgent demand for and intensive research on new classes of compounds to combat bacterial infections. Antimicrobial peptoids comprise one group of potential candidates for antimicrobial drug development. The present study highlights a library of 22 cationic amphipathic peptoids designed to target bacteria. All the peptoids share an overall net charge of +4 and are 8 to 9 residues long; however, the hydrophobicity and charge distribution along the abiotic backbone varied, thus allowing an examination of the structure-activity relationship within the library. In addition, the toxicity profiles of all peptoids were assessed in human red blood cells (hRBCs) and HeLa cells, revealing the low toxicity exerted by the majority of the peptoids. The structural optimization also identified two peptoid candidates, 3 and 4, with high selectivity ratios of 4 to 32 and 8 to 64, respectively, and a concentration-dependent bactericidal mode of action against Gram-negative Escherichia coli. PMID:25941221

  17. Structure-activity relationship study between baicalein and wogonin by spectrometry, molecular docking and microcalorimetry.

    PubMed

    Tu, Bao; Li, Rong-Rong; Liu, Zhi-Juan; Chen, Zhi-Feng; Ouyang, Yu; Hu, Yan-Jun

    2016-10-01

    Flavones (e.g. baicalein and wogonin) extensively used worldwide in food preparation and traditional medicine. In this study, a systematically comparative study of their structure-activity relationships (SAR) on their interaction with BSA, antioxidant activity and antibacterial activity has been carried out by spectrometry, molecular docking and microcalorimetry. Our results show that the skeleton structure of flavones, the number of hydroxyl groups, the type of functional group, conjugated system and the steric hindrance may be responsible for their different biological activity. These findings not only would lay a scientific foundation for discovering and designing flavones-based food and drug, may also help us to understanding the structure-activity relationship between flavones at the molecular level. PMID:27132840

  18. Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity

    PubMed Central

    Tyssen, David; Henderson, Scott A.; Johnson, Adam; Sterjovski, Jasminka; Moore, Katie; La, Jennifer; Zanin, Mark; Sonza, Secondo; Karellas, Peter; Giannis, Michael P.; Krippner, Guy; Wesselingh, Steve; McCarthy, Tom; Gorry, Paul R.; Ramsland, Paul A.; Cone, Richard; Paull, Jeremy R. A.; Lewis, Gareth R.; Tachedjian, Gilda

    2010-01-01

    Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides. PMID:20808791

  19. Structure-activity relationships in a series of orally active gamma-hydroxy butenolide endothelin antagonists.

    PubMed

    Patt, W C; Edmunds, J J; Repine, J T; Berryman, K A; Reisdorph, B R; Lee, C; Plummer, M S; Shahripour, A; Haleen, S J; Keiser, J A; Flynn, M A; Welch, K M; Reynolds, E E; Rubin, R; Tobias, B; Hallak, H; Doherty, A M

    1997-03-28

    The design of potent and selective non-peptide antagonists of endothelin-1 (ET-1) and its related isopeptides are important tools defining the role of ET in human diseases. In this report we will describe the detailed structure-activity relationship (SAR) studies that led to the discovery of a potent series of butenolide ETA selective antagonists. Starting from a micromolar screening hit, PD012527, use of Topliss decision tree analysis led to the discovery of the nanomolar ET(A) selective antagonist PD155080. Further structural modifications around the butenolide ring led directly to the subnanomolar ETA selective antagonist PD156707, IC50's = 0.3 (ET(A)) and 780 nM (ET(B)). This series of compounds exhibited functional activity exemplified by PD156707. This derivative inhibited the ETA receptor mediated release of arachidonic acid from rabbit renal artery vascular smooth muscle cells with an IC50 = 1.1 nM and also inhibited the ET-1 induced contraction of rabbit femoral artery rings (ETA mediated) with a pA2 = 7.6. PD156707 also displayed in vivo functional activity inhibiting the hemodynamic responses due to exogenous administration of ET-1 in rats in a dose dependent fashion. Evidence for the pH dependence of the open and closed tautomerization forms of PD156707 was demonstrated by an NMR study. X-ray crystallographic analysis of the closed butenolide form of PD156707 shows the benzylic group located on the same side of the butenolide ring as the gamma-hydroxyl and the remaining two phenyl groups on the butenolide ring essentially orthogonal to the butenolide ring. Pharmacokinetic parameters for PD156707 in dogs are also presented. PMID:9089328

  20. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives.

    PubMed

    Yang, Chun; Zhi, Xiaoyan; Xu, Hui

    2016-01-01

    Honokiol and magnolol (an isomer of honokiol) are small-molecule polyphenols isolated from the barks of Magnolia officinalis, which have been widely used in traditional Chinese and Japanese medicines. In the last decade, a variety of biological properties of honokiol and magnolol (e.g., anti-oxidativity, antitumor activity, anti-depressant activity, anti-inflammatory activity, neuroprotective activity, anti-diabetic activity, antiviral activity, and antimicrobial activity) have been reported. Meanwhile, certain mechanisms of action of some biological activities were also investigated. Moreover, many analogs of honokiol and magnolol were prepared by structural modification or total synthesis, and some exhibited very potent pharmacological activities with improved water solubility. Therefore, the present review will provide a systematic coverage on recent developments of honokiol and magnolol derivatives in regard to semisynthesis, total synthesis, and structure-activity relationships from 2000 up to now. PMID:26586125

  1. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  2. STRUCTURE-ACTIVITY RELATIONSHIPS AND ESTIMATION TECHNIQUES FOR BIODEGRADATION OF XENOBIOTICS

    EPA Science Inventory

    The Current status of structure-activity relationships for the biodegradation of xenobiotics is reviewed. esults are presented of a pilot study on biodegradation Constants obtained from Computer databases. ew analyses for a relatively large number of anilines and phenols are pres...

  3. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    PubMed Central

    Zhang, Jun; Li, Chunxia; Yu, Guangli; Guan, Huashi

    2014-01-01

    Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined. PMID:24945415

  4. DEVELOPMENT OF QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR PREDICTING BIODEGRADATION KINETICS

    EPA Science Inventory

    Results have been presented on the development of a structure-activity relationship for biodegradation using a group contribution approach. sing this approach, reported results of the kinetic rate constant agree within 20% with the predicted values. dditional compound studies are...

  5. Structure-Activity Relationship for Thiohydantoin Androgen Receptor Antagonists for Castration-Resistant Prostate Cancer (CRPC)

    PubMed Central

    Jung, Michael E.; Ouk, Samedy; Yoo, Dongwon; Sawyers, Charles L.; Chen, Charlie; Tran, Chris; Wongvipat, John

    2011-01-01

    A structure-activity relationship study was carried out on a series of thiohydantoins and their analogues 14 which led to the discovery of 92 (MDV3100) as the clinical candidate for the treatment of hormone refractory prostate cancer. PMID:20218717

  6. STRUCTURE-ACTIVITY RELATIONSHIPS (SARS) AMONG MUTAGENS AND CARCINOGENS: A REVIEW

    EPA Science Inventory

    The review is an introduction to methods for evaluating structure-activity relationships (SARs), and, in particular, to those methods that have been applied to study mutagenicity and carcinogenicity. A brief history and some background material on the earliest attempts to correla...

  7. DETERMINING THE STRUCTURE-ACTIVITY RELATIONSHIPS OF AMINOBIPHENYL AND BENZIDINE ANALOGS

    EPA Science Inventory

    Determining the structure-activity relationships of aminobiphenyl and benzidine analogues

    Benzidine is a confirmed human carcinogen causing bladder and other types of cancer in humans and animals. Many of the benzidine and related aminobiphenyl compounds are mutagenic in t...

  8. Indolo[3,2-b]quinolines: Synthesis, Biological Evaluation and Structure Activity-Relationships

    PubMed Central

    Kumar, Eyunni V.K. Suresh; Etukala, Jagan R.; Ablordeppey, Seth Y.

    2013-01-01

    The tetracyclic indolo[3,2-b]quinoline ring system constitutes an important structural moiety in natural products exhibiting numerous biological activities. In particular, indolo [3, 2-b]quinoline, commonly known as linear quindo-line is of particular interest, because of its rigid structure and scope of derivatization. Although the core linear quindoline skeleton shows little or no activity in several biological systems, introduction of a methyl group on the N-5 atom leading to cryptolepine induces remarkable activity against a broad spectrum of biological targets. A number of analogs of quindoline and cryptolepine have been synthesized, incorporating various functional groups on the core quindoline skeleton leading to improved biological activities. In this review, we describe various synthetic methodologies leading to the quindoline scaffold, the biological activities and the structure activity relationships (SAR) of quindoline derivatives toward different disease states to give a better picture of the importance of this moiety in medicinal chemistry. PMID:18537709

  9. Structure-activity relationship of citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger.

    PubMed

    Liu, Li; Xu, Xiaoyun; Cheng, Dan; Yao, Xiaolin; Pan, Siyi

    2012-05-01

    Citrus peels are rich in polymethoxylated flavones (PMFs) and are potential sources of natural preservatives. Six PMFs extracts, isolated and purified from the peels of three mandarins (Citrus reticulata) and three sweet oranges (Citrus sinensis), were identified and quantitated. Their inhibitory effects on Aspergillus niger were evaluated using a microbroth dilution assay. The Red tangerine variety exhibited the greatest antifungal activity (MIC = 0.2 mg/mL), while Jincheng showed the lowest activity (MIC = 1.8 mg/mL). An analysis of principal components was applied to the results in order to elucidate the structure-activity relationships of the citrus PMFs. The structure-activity relationship analysis revealed that, for good inhibitory effect, the 5-OH, 3-OCH₃, and 8-OCH₃ functionalities were essential, while the presence of 3-OH and 3'-OCH₃ greatly reduced inhibition. The findings of this study provide important information for the exploitation and utilization of citrus PMFs as natural biopreservatives. PMID:22500738

  10. Structure-activity relationships for G2 checkpoint inhibition by caffeine analogs

    PubMed Central

    Jiang, Xiuxian; Lim, Lynette Y.; Daly, John W.; Li, An Hu; Jacobson, Kenneth A.; Roberge, Michel

    2016-01-01

    Caffeine inhibits the G2 checkpoint activated by DNA damage and enhances the toxicity of DNA-damaging agents towards p53-defective cancer cells. The relationship between structure and G2 checkpoint inhibition was determined for 56 caffeine analogs. Replacement of the methyl group at position 3 or 7 resulted in loss of activity, while replacement at position 1 by ethyl or propyl increased activity slightly. 8-Substituted caffeines retained activity, but were relatively insoluble. The structure-activity profile did not resemble those for other known pharmacological activities of caffeine. The active analogs also potentiated the killing of p53-defective cells by ionizing radiation, but none was as effective as caffeine. PMID:10762633

  11. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    PubMed Central

    Jäntschi, Lorentz; Bolboacǎ, Sorana-Daniela

    2007-01-01

    The aim of the paper is to present the results obtained by utilization of an original approach called Molecular Descriptors Family on Structure-Property (MDF-SPR) and Structure-Activity Relationships (MDF-SAR) applied on classes of chemical compounds and its usefulness as precursors of models elaboration of new compounds with better properties and/or activities and low production costs. The MDF-SPR/MDF-SAR methodology integrates the complex information obtained from compound’s structure in unitary efficient models in order to explain properties/activities. The methodology has been applied on a number of thirty sets of chemical compounds. The best subsets of molecular descriptors family members able to estimate and predict property/activity of interest were identified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR models were validated through internal and/or external validation methods. The estimation and prediction abilities of the MDF-SPR/MDF-SAR models were compared with previous reported models by applying of correlated correlation analysis, which revealed that the MDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodology opens a new pathway in understanding the relationships between compound’s structure and property/activity, in property/activity prediction, and in discovery, investigation and characterization of new chemical compounds, more competitive as costs and property/activity, being a method less expensive comparative with experimental methods.

  12. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    PubMed Central

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-01-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2′-dihydroxy-3′,4′-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products. PMID:26350974

  13. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  14. The structure-activity relationships of the antiviral chemotherapeutic activity of isatin ?-thiosemicarbazone

    PubMed Central

    Bauer, D. J.; Sadler, P. W.

    1960-01-01

    As part of an investigation devoted to the development of new antiviral agents a compound of established antiviral activity has been subjected to systematic structural modification. The structure-activity data so obtained have been used in the design of new compounds, some of which are described. The compound chosen was isatin ?-thiosemicarbazone, which has high activity against neurovaccinia infection in mice, and a 4-point parallel-line assay of in vivo chemotherapeutic activity has been developed, which has enabled the activity of the derivatives to be determined against isatin ?-thiosemicarbazone as a standard. The overall dimensions of the isatin ?-thiosemicarbazone molecule appear to be nearly maximal for the retention of high activity, as all substituents in the aromatic ring decrease the activity irrespective of their nature or position. The projection of the -CS.NH2 group in relation to the ring nitrogen was found to be critical, as the ?-thiosemicarbazone was inactive. A number of modifications of the side-chain were investigated:all led to reduction or loss of antiviral activity. The antiviral activity showed a positive correlation with chloroform solubility over a considerable range. The most active compound encountered was 1-ethylisatin ?-thiosemicarbazone, with an activity of 286 (isatin ?-thiosemicarbazone?100). Isatin ?-thiosemicarbazone showed no activity against 15 other viruses, and 20 related compounds showed on activity against ectromelia. PMID:13797622

  15. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  16. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase.

    PubMed

    Chupak, Louis S; Zheng, Xiaofan; Hu, Shuanghua; Huang, Yazhong; Ding, Min; Lewis, Martin A; Westphal, Ryan S; Blat, Yuval; McClure, Andrea; Gentles, Robert G

    2016-04-01

    N-Benzylic-substituted glycine sulfonamides that reversibly inhibit diacylglycerol (DAG) lipases are reported. Detailed herein are the structure activity relationships, profiling characteristics and physico-chemical properties for the first reported series of DAG lipase (DAGL) inhibitors that function without covalent attachment to the enzyme. Highly potent examples are presented that represent valuable tool compounds for studying DAGL inhibition and constitute important leads for future medicinal chemistry efforts. PMID:26917221

  17. Structure-activity & structure-toxicity relationship study of salinomycin diastereoisomers and their benzoylated derivatives.

    PubMed

    Zhang, Wenxuan; Wu, Jun; Li, Bo; Wu, Hongna; Wang, Liu; Hao, Jie; Wu, Song; Zhou, Qi

    2016-03-01

    Salinomycin diastereoisomers and their benzoylated derivatives were synthesized and evaluated for both antiproliferative activity and neurotoxicity in vitro. The results indicated that the stereoscopic configurations of the spiro C17 and C21 atoms as well as the benzoyl groups of O-20 on the rigid B/C/D spiro-ketal structures are crucial for biological activity and neural toxicity. In general, there are some positive correlations between the antiproliferative activity and neurotoxicity in these salinomycin derivatives, indicating possibly similar mechanisms of action. PMID:26795020

  18. HomoSAR: bridging comparative protein modeling with quantitative structural activity relationship to design new peptides.

    PubMed

    Borkar, Mahesh R; Pissurlenkar, Raghuvir R S; Coutinho, Evans C

    2013-11-15

    Peptides play significant roles in the biological world. To optimize activity for a specific therapeutic target, peptide library synthesis is inevitable; which is a time consuming and expensive. Computational approaches provide a promising way to simply elucidate the structural basis in the design of new peptides. Earlier, we proposed a novel methodology termed HomoSAR to gain insight into the structure activity relationships underlying peptides. Based on an integrated approach, HomoSAR uses the principles of homology modeling in conjunction with the quantitative structural activity relationship formalism to predict and design new peptide sequences with the optimum activity. In the present study, we establish that the HomoSAR methodology can be universally applied to all classes of peptides irrespective of sequence length by studying HomoSAR on three peptide datasets viz., angiotensin-converting enzyme inhibitory peptides, CAMEL-s antibiotic peptides, and hAmphiphysin-1 SH3 domain binding peptides, using a set of descriptors related to the hydrophobic, steric, and electronic properties of the 20 natural amino acids. Models generated for all three datasets have statistically significant correlation coefficients (r(2)) and predictive r2 (r(pred)2) and cross validated coefficient ( q(LOO)2). The daintiness of this technique lies in its simplicity and ability to extract all the information contained in the peptides to elucidate the underlying structure activity relationships. The difficulties of correlating both sequence diversity and variation in length of the peptides with their biological activity can be addressed. The study has been able to identify the preferred or detrimental nature of amino acids at specific positions in the peptide sequences. PMID:24105965

  19. Exploring the structure-activity relationships of ABCC2 modulators using a screening approach.

    PubMed

    Wissel, Gloria; Kudryavtsev, Pavel; Ghemtio, Leo; Tammela, Päivi; Wipf, Peter; Yliperttula, Marjo; Finel, Moshe; Urtti, Arto; Kidron, Heidi; Xhaard, Henri

    2015-07-01

    ABCC2 is a transporter with key influence on liver and kidney pharmacokinetics. In order to explore the structure-activity relationships of compounds that modulate ABCC2, and by doing so gain insights into drug-drug interactions, we screened a library of 432 compounds for modulators of radiolabeled β-estradiol 17-(β-d-glucuronide) (EG) and fluorescent 5(6)-carboxy-2',7'-dichlorofluorescein transport (CDCF) in membrane vesicles. Following the primary screen at 80μM, dose-response curves were used to investigate in detail 86 compounds, identifying 16 low μM inhibitors and providing data about the structure-activity relationships in four series containing 19, 24, 10, and eight analogues. Measurements with the CDCF probe were consistently more robust than for the EG probe. Only one compound was clearly probe-selective with a 50-fold difference in the IC50s obtained by the two assays. We built 24 classification models using the SVM and fused-XY Kohonen methods, revealing molecular descriptors related to number of rings, solubility and lipophilicity as important to distinguish inhibitors from inactive compounds. This study is to the best of our knowledge the first to provide details about structure-activity relationships in ABCC2 modulation. PMID:25935289

  20. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  1. Buspirone analogues. 2. Structure-activity relationships of aromatic imide derivatives.

    PubMed

    New, J S; Yevich, J P; Eison, M S; Taylor, D P; Eison, A S; Riblet, L A; VanderMaelen, C P; Temple, D L

    1986-08-01

    Several analogues of the novel anxiolytic buspirone were synthesized and evaluated in vivo for tranquilizing activity and their ability to reverse neuroleptic-induced catalepsy. The in vitro binding affinities of these compounds were also examined for both the alpha 1 and dopamine D2 receptor systems. The general structure-activity relationships of this series highlight compounds 17, 21, and 32 as having anticonflict activity. Each of these structures contains the 1-(2-pyrimidinyl)piperazine moiety linked by a tetramethylene chain to a variable cyclic imide moiety. Compound 32 (4,4-dimethyl-1-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,6- piperidinedione) was found to be equipotent with buspirone in its anxiolytic activity and was therefore selected for extensive preclinical characterization. The pharmacology of buspirone and 32 is contrasted, and the potent serotonin agonist properties of 32 are discussed with reference to its potential contribution to the anxioselective mechanism of this compound. PMID:2874226

  2. Structure-activity relationship for the reactivators of acetylcholinesterase inhibited by nerve agent VX.

    PubMed

    Kuca, Kamil; Musilek, Kamil; Jun, Daniel; Karasova, Jana; Soukup, Ondrej; Pejchal, Jaroslav; Hrabinova, Martina

    2013-08-01

    Nerve agents such as sarin, VX and tabun are organophosphorus compounds able to inhibit an enzyme acetylcholinesterase (AChE). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None from the known AChE reactivators is able to reactivate AChE inhibited by all kinds of nerve agents. In this work, reactivation potency of seventeen structurally different AChE reactivators was tested in vitro and subsequently, relationship between their chemical structure and biological activity was outlined. VX was chosen as appropriate member of the nerve agent family. PMID:22779796

  3. Design, synthesis, and structure-activity relationship of novel aniline derivatives of chlorothalonil.

    PubMed

    Guan, Ai-Ying; Liu, Chang-Ling; Huang, Guang; Li, Hui-Chao; Hao, Shu-Lin; Xu, Ying; Li, Zhi-Nian

    2013-12-11

    Chlorothalonil with both low cost and low toxicity is a popularly used fungicide in the agrochemical field. The presence of nucleophilic groups on this compound allows further chemical modifications to obtain novel chlorothalonil derivatives. Fluazinam, another commercially available agent with a broad fungicidal spectrum, has a scaffold of diaryl amine structure. To mimic this backbone structure, a variety of (un)substituted phenyl amines was used as nucleophilic agents to react with chlorothalonil to obtain compounds with a diphenyl amine structure. Via an elegant design, two leads, 2,4,5-trichloro-6-(2,4-dichlorophenylamino)isophthalonitrile (7) and 2,4,5-trichloro-6-(2,4,6-trichlorophenylamino)isophthalonitrile (11), with potential fungicidal activity were discovered after a preliminary bioassay screen. These two leads were further modified to obtain final products by replacing the chlorine groups in the phenyl ring in phenyl amine with other functional groups. These functional groups with various electronic properties and spatial characteristics were considered to explore the relationship between structure and fungicidal activity. The results indicate that the electron-withdrawing group NO2 on the 4 position on the right phenyl ring plays a unique role on enhancing the fungicidal activity. The compounds were identified by proton nuclear magnetic resonance and elemental analysis. Bioassays demonstrated that some of the title compounds exhibited excellent fungicidal activities against cucumber downy mildew at 25 mg/L. Compound 20 has been shown as the optimal structure with 85% control against cucumber downy mildew at 6.25 mg/L concentration. The relationship between structure and fungicidal activity is reported. The present work demonstrates that chlorothalonil derivatives can be used as possible lead compounds for developing novel fungicides. PMID:24255942

  4. StructureActivity Relationship Studies of the Tricyclic Indoline Resistance-Modifying Agent

    PubMed Central

    2015-01-01

    Previously we discovered a tricyclic indoline, N-[2-(6-bromo-4-methylidene-2,3,4,4a,9,9a-hexahydro-1H-carbazol-4a-yl)ethyl]-4-chlorobenzene-1-sulfonamide (1, Of1), from bioinspired synthesis of a highly diverse polycyclic indoline alkaloid library, that selectively resensitizes methicillin-resistant Staphylococcus aureus strains to ?-lactam antibiotics. Herein, we report a thorough structureactivity relationship investigation of 1, which identified regions of 1 that tolerate modifications without compromising activity and afforded the discovery of a more potent analogue with reduced mammalian toxicity. PMID:24694192

  5. Structure-activity relationship studies of the tricyclic indoline resistance-modifying agent.

    PubMed

    Chang, Le; Podoll, Jessica D; Wang, Wei; Walls, Shane; O'Rourke, Courtney P; Wang, Xiang

    2014-05-01

    Previously we discovered a tricyclic indoline, N-[2-(6-bromo-4-methylidene-2,3,4,4a,9,9a-hexahydro-1H-carbazol-4a-yl)ethyl]-4-chlorobenzene-1-sulfonamide (1, Of1), from bioinspired synthesis of a highly diverse polycyclic indoline alkaloid library, that selectively resensitizes methicillin-resistant Staphylococcus aureus strains to ?-lactam antibiotics. Herein, we report a thorough structure-activity relationship investigation of 1, which identified regions of 1 that tolerate modifications without compromising activity and afforded the discovery of a more potent analogue with reduced mammalian toxicity. PMID:24694192

  6. Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Song, Ping; Wang, Ying; Pan, Jing; Xu, Weilin; Zhuang, Lin

    2015-12-01

    A sustainable Iron (Fe), Nitrogen (N) co-doped high performance Fe-Nx/C electrocatalyst for oxygen reduction reaction (ORR) is synthesized simply based on nitric acid oxidation of cheap carbon black. The obtained optimal nonprecious metal electrocatalyst shows high ORR performance in both alkaline and acidic conditions and possesses appreciable performance/price ratio due to its low cost. Furthermore, the structure-activity relationship of different active sites on Fe-Nx/C is revealed systematically: Fe-N4/2-C > Fe4-N-C > N-C >> Fe4-C ≥ C, from both experimental and theoretical points of view.

  7. Use of selected toxicology information resources in assessing relationships between chemical structure and biological activity.

    PubMed Central

    Wassom, J S

    1985-01-01

    This paper addresses the subject of the use of selected toxicology information resources in assessing relationships between chemical structure and specific biological end points. To assist the researcher in how to access the primary literature of genetic toxicology, teratogenesis, and carcinogenesis, three specific specialized information centers are discussed--Environmental Mutagen Information Center, Environmental Teratology Information Center, and Environmental Carcinogenesis Information Center. Also included are descriptions of information resources that contain evaluated (peer-reviewed) biological research results. The U.S. Environmental Protection Agency Genetic Toxicology Program, the International Agency for Research on Cancer Monographs, and the Toxicology Data Bank are the best sources currently available to obtain peer-reviewed results for compounds tested for genotoxicity, carcinogenicity, and other toxicological end points. The value of published information lies in its use. It has become evident that most information cannot be accepted at face value for interpretation and analysis when subjected to stringent quality evaluation criteria. This deficit can be corrected by rigid editorship and the cognizance of authors. Increased interest in alternative methods to in vivo animal testing will be exemplified by use of short-term bioassays and in structure-activity relationship studies. With respect to this latter area, it must be remembered that mechanically (computer generated) derived data cannot substitute, at least at this stage, for data obtained from actual animal testing. The future of structure-activity relationship studies will rest only in their use as a predictive tool. PMID:4065070

  8. Discovery of KDM5A inhibitors: Homology modeling, virtual screening and structure-activity relationship analysis.

    PubMed

    Wu, Xiaoai; Fang, Zhen; Yang, Bo; Zhong, Lei; Yang, Qiuyuan; Zhang, Chunhui; Huang, Shenzhen; Xiang, Rong; Suzuki, Takayoshi; Li, Lin-Li; Yang, Sheng-Yong

    2016-05-01

    Herein we report the discovery of a series of new KDM5A inhibitors. A three-dimensional (3D) structure model of KDM5A jumonji domain was firstly established based on homology modeling. Molecular docking-based virtual screening was then performed against commercial chemical databases. A number of hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the most active hit compound, 9 (IC50: 2.3μM), which led to the discovery of several new KDM5A inhibitors. Among them, compound 15e is the most potent one with an IC50 value of 0.22μM against KDM5A. This compound showed good selectivity for KDM5A and considerable ability to suppress the demethylation of H3K4me3 in intact cells. Compound 15e could be taken as a good lead compound for further studies. PMID:27020306

  9. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3?.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3? were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3? ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3? inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSS? leading to the identification of key molecular features that contribute to a high GSK3? inhibitory activity. PMID:24081608

  10. Quantitative structure-activity relationship of catechol derivatives inhibiting 5-lipoxygenase.

    PubMed

    Naito, Y; Sugiura, M; Yamaura, Y; Fukaya, C; Yokoyama, K; Nakagawa, Y; Ikeda, T; Senda, M; Fujita, T

    1991-07-01

    Various catechol derivatives (beta-substituted 3,4-dihydroxystyrenes, 1-substituted 3,4-dihydroxybenzenes, and 6-substituted 2,3-dihydroxynaphthalenes) were synthesized and their inhibition of 5-lipoxygenase was assayed. Their structure-activity relationships were examined quantitatively with substituent and structural parameters and regression analysis. The variations in the inhibitory activity were explained in bilinear hydrophobic parameter (log P) terms, and steric (molecular thickness) and electronic (proton nuclear magnetic resonance (1H-NMR) chemical shift of the proton adjacent to the catechol group) parameter terms. The hydrophobicity of the inhibitor molecule was important, and the optimum value of logP was about 4.3-4.6, beyond which inhibition did not increase further. A lower electron density of the aromatic ring containing the catechol group and the greater thickness of the lipophilic side chains were unfavorable to the activity. The results added a physicochemical basis for the selection of candidate compounds for developmental studies. PMID:1777927

  11. Synthesis, evaluation and structure-activity relationship of new 3-carboxamide coumarins as FXIIa inhibitors.

    PubMed

    Bouckaert, Charlotte; Serra, Silvia; Rondelet, Grégoire; Dolušić, Eduard; Wouters, Johan; Dogné, Jean-Michel; Frédérick, Raphaël; Pochet, Lionel

    2016-03-01

    Inhibitors of the coagulation factor XIIa (FXIIa) are attractive to detail the roles of this protease in hemostasis and thrombosis, to suppress artifact due to contact pathway activation in blood coagulation assays, and they are promising as antithrombotic therapy. The 3-carboxamide coumarins have been previously described as small-molecular-weight FXIIa inhibitors. In this study, we report a structure-activity relationship (SAR) study around this scaffold with the aim to discover new selective FXIIa inhibitors with an improved physico-chemical profile. To better understand these SAR, docking experiments were undertaken. For this purpose, we built an original hybrid model of FXIIa. This model has the advantage to gather the best features from the recently published crystal structure of FXIIa in its zymogen form and a more classical homology model. Results with the hybrid model are encouraging as they help understanding the activity and selectivity of our best compounds. PMID:26827162

  12. Using a cloud electrification model to study relationships between lightning activity and cloud microphysical structure

    NASA Astrophysics Data System (ADS)

    Formenton, M.; Panegrossi, G.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Di Paola, F.; Betz, H.-D.; Price, C.; Yair, Y.

    2013-04-01

    In this study a one-dimensional numerical cloud electrification model, called the Explicit Microphysics Thunderstorm Model (EMTM), is used to find quantitative relationships between the simulated electrical activity and microphysical properties in convective clouds. The model, based on an explicit microphysics scheme coupled to an ice-ice noninductive electrification scheme, allows us to interpret the connection of cloud microphysical structure with charge density distribution within the cloud, and to study the full evolution of the lightning activity (intracloud and cloud-to-ground) in relation to different environmental conditions. Thus, we apply the model to a series of different case studies over continental Europe and the Mediterranean region. We first compare, for selected case studies, the simulated lightning activity with the data provided by the ground-based Lightning Detection Network (LINET) in order to verify the reliability of the model and its limitations, and to assess its ability to reproduce electrical activity consistent with the observations. Then, using all simulations, we find a correlation between some key microphysical properties and cloud electrification, and derive quantitative relationships relating simulated flash rates to minimum thresholds of graupel mass content and updrafts. Finally, we provide outlooks on the use of such relationships and comments on the future development of this study.

  13. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-01

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction. PMID:26766301

  14. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

  15. Structure-activity relationships for withanolides as inducers of the cellular heat-shock response.

    PubMed

    Wijeratne, E M Kithsiri; Xu, Ya-Ming; Scherz-Shouval, Ruth; Marron, Marilyn T; Rocha, Danilo D; Liu, Manping X; Costa-Lotufo, Leticia V; Santagata, Sandro; Lindquist, Susan; Whitesell, Luke; Gunatilaka, A A Leslie

    2014-04-10

    To understand the relationship between the structure and the remarkably diverse bioactivities reported for withanolides, we obtained withaferin A (WA; 1) and 36 analogues (2-37) and compared their cytotoxicity to cytoprotective heat-shock-inducing activity (HSA). By analyzing structure-activity relationships for the series, we found that the ring A enone is essential for both bioactivities. Acetylation of 27-OH of 4-epi-WA (28) to 33 enhanced both activities, whereas introduction of β-OH to WA at C-12 (29) and C-15 (30) decreased both activities. Introduction of β-OAc to 4,27-diacetyl-WA (16) at C-15 (37) decreased HSA without affecting cytotoxicity, but at C-12 (36), it had minimal effect. Importantly, acetylation of 27-OH, yielding 15 from 1, 16 from 14, and 35 from 34, enhanced HSA without increasing cytotoxicity. Our findings demonstrate that the withanolide scaffold can be modified to enhance HSA selectively, thereby assisting development of natural product-inspired drugs to combat protein aggregation-associated diseases by stimulating cellular defense mechanisms. PMID:24625088

  16. Synthesis, antifungal activity and structure-activity relationships of vanillin oxime-N-O-alkanoates.

    PubMed

    Ahluwalia, Vivek; Garg, Nandini; Kumar, Birendra; Walia, Suresh; Sati, Om P

    2012-12-01

    Vanillin oxime-N-O-alkanoates were synthesized following reaction of vanillin with hydroxylamine hydrochloride, followed by reaction of the resultant oxime with acyl chlorides. The structures of the compounds were confirmed by IR, 1H, 13C NMR and mass spectral data. The test compounds were evaluated for their in vitro antifungal activity against three phytopathogenic fungi Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii by the poisoned food technique. The moderate antifungal activity of vanillin was slightly increased following its conversion to vanillin oxime, but significantly increased after conversion of the oxime to oxime-N-O-alkanoates. While vanillin oxime-N-O-dodecanoate with an EC50 value 73.1 microg/mL was most active against M. phaseolina, vanillin oxime-N-O-nonanoate with EC50 of value 66.7 microg/mL was most active against R. solani. The activity increased with increases in the acyl chain length and was maximal with an acyl chain length of nine carbons. PMID:23413571

  17. Structure-activity relationship study of beta-carboline derivatives as haspin kinase inhibitors

    PubMed Central

    Cuny, Gregory D.; Ulyanova, Natalia P.; Patnaik, Debasis; Liu, Ji-Feng; Lin, Xiangjie; Auerbach, Ken; Ray, Soumya S.; Xian, Jun; Glicksman, Marcie A.; Stein, Ross L.; Higgins, Jonathan M.G.

    2012-01-01

    Haspin is a serine/threonine kinase that phosphorylates Thr-3 of histone H3 in mitosis that has emerged as a possible cancer therapeutic target. High throughput screening of approximately 140,000 compounds identified the beta-carbolines harmine and harmol as moderately potent haspin kinase inhibitors. Based on information obtained from a structure-activity relationship study previously conducted for an acridine series of haspin inhibitors in conjunction with in silico docking using a recently disclosed crystal structure of the kinase, harmine analogs were designed that resulted in significantly increased haspin kinase inhibitory potency. The harmine derivatives also demonstrated less activity towards DYRK2 compared to the acridine series. In vitro mouse liver microsome stability and kinase profiling of a representative member of the harmine series (42, LDN-211898) are also presented. PMID:22335895

  18. In Vivo Structure-Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase

    PubMed Central

    Korotchenko, Vasiliy N.; Saydmohammed, Manush; Vollmer, Laura L.; Bakan, Ahmet; Sheetz, Kyle; Debiec, Karl T.; Greene, Kristina A.; Agliori, Christine S.; Bahar, Ivet; Day, Billy W.; Vogt, Andreas; Tsang, Michael

    2014-01-01

    Dual specificity phosphatase 6 (DUSP6) functions as a feedback attenuator of Fibroblast Growth Factor signaling during development. In vitro high throughput chemical screening attempts to discover DUSP6 inhibitors have yielded limited success. Yet, in vivo whole organism screens using zebrafish identified 1 (BCI) as an allosteric inhibitor of DUSP6. Here we designed and synthesized a panel of analogs to define structure-activity relationship (SAR) of DUSP6 inhibition. In vivo, high-content analysis in transgenic zebrafish coupled with cell-based chemical complementation assays identified structural features of the 1 pharmacophore that were essential for biological activity. In vitro assays of DUSP hyperactivation corroborated the results from in vivo and cellular SAR. The results reinforce the notion that DUSPs are druggable through allosteric mechanisms, and illustrate the utility of zebrafish as a model organism for in vivo SAR analyses. PMID:24909879

  19. Quantitative structure-activity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs).

    PubMed

    Lewis, D F; Dickins, M

    2001-10-01

    The results of quantitative structure-activity relationship (QSAR) studies on series of P450 inhibitors are reported. Cytochrome P450 families CYP1, CYP2 and CYP51 have been investigated for QSAR analysis, including those of CYP2 subfamilies: CYP2A, CYP2B, CYP2C, CYP2D and CYP2E. The accumulated evidence indicates different structural descriptors being involved, depending on the P450 enzyme concerned, although compound lipophilicity in the form of either logP or logD(7.4) appears to represent a common factor in some cases. This is thought to represent desolvation of the P450 active site, although quadratic expressions in lipophilicity tend to suggest that membrane transport is important, especially for CYP2B and CYP2E isoforms. In general, there is close agreement (R = 0.95-0.99) between experimental pKi values and those calculated via QSAR analysis. PMID:11916137

  20. In vivo structure-activity relationship studies support allosteric targeting of a dual specificity phosphatase.

    PubMed

    Korotchenko, Vasiliy N; Saydmohammed, Manush; Vollmer, Laura L; Bakan, Ahmet; Sheetz, Kyle; Debiec, Karl T; Greene, Kristina A; Agliori, Christine S; Bahar, Ivet; Day, Billy W; Vogt, Andreas; Tsang, Michael

    2014-07-01

    Dual specificity phosphatase 6 (DUSP6) functions as a feedback attenuator of fibroblast growth factor signaling during development. In vitro high throughput chemical screening attempts to discover DUSP6 inhibitors have yielded limited success. However, in vivo whole-organism screens of zebrafish identified compound 1 (BCI) as an allosteric inhibitor of DUSP6. Here we designed and synthesized a panel of analogues to define the structure-activity relationship (SAR) of DUSP6 inhibition. In vivo high-content analysis in transgenic zebrafish, coupled with cell-based chemical complementation assays, identified structural features of the pharmacophore of 1 that were essential for biological activity. In vitro assays of DUSP hyperactivation corroborated the results from in vivo and cellular SAR. The results reinforce the notion that DUSPs are druggable through allosteric mechanisms and illustrate the utility of zebrafish as a model organism for in vivo SAR analyses. PMID:24909879

  1. Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies.

    PubMed

    Ahmad, Viqar Uddin; Ullah, Farman; Hussain, Javid; Farooq, Umar; Zubair, Muhammad; Khan, Mahmud Tareq Hassan; Choudhary, Muhammad Iqbal

    2004-12-01

    A new coumarinolignoid 8'-epi-cleomiscosin A (1) together with the new glycoside 8-O-beta-D-glucopyranosyl-6-hydroxy-2-methyl-4H-1-benzopyrane-4-one (2) have been isolated from the aerial parts of Rhododendron collettianum and their structures determined on the basis of spectroscopic evidences. Tyrosinase inhibition study of these compounds and their structure-activity relationship (SAR) were also investigated. The compounds exhibited potent to mild inhibition activity against the enzyme. Especially, the compound 1 showed strong inhibition (IC50=1.33 microM) against the enzyme tyrosinase, as compared to the standard tyrosinase inhibitors kojic acid (IC50=16.67 microM) and L-mimosine (IC50=3.68 microM), indicating its potential used for the treatment of hyperpigmentation associated with the high production of melanocytes. PMID:15577244

  2. Structure-Antifungal Activity Relationships of Polyene Antibiotics of the Amphotericin B Group

    PubMed Central

    Tevyashova, Anna N.; Olsufyeva, Evgenia N.; Solovieva, Svetlana E.; Printsevskaya, Svetlana S.; Reznikova, Marina I.; Trenin, Aleksei S.; Galatenko, Olga A.; Treshalin, Ivan D.; Pereverzeva, Eleonora R.; Mirchink, Elena P.; Isakova, Elena B.; Zotchev, Sergey B.

    2013-01-01

    A comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics and in vitro antifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10. Antibiotics with OH groups at both C-7 and C-9 had the lowest activity. The replacement of the C-16 carboxyl with methyl group did not significantly affect the in vitro antifungal activity of antibiotics without modifications at the amino group of mycosamine. In contrast, the activity of the N-modified derivatives was modulated both by the presence of CH3 or COOH group in the position C-16 and by the structure of the modifying substituent. The most active compounds were tested in vivo to determine the maximum tolerated doses and antifungal activity on the model of candidosis sepsis in leukopenic mice (cyclophosphamide-induced). Study of our library of semisynthetic polyene antibiotics led to the discovery of compounds, namely, N-(l-lysyl)-BSG005 (compound 3n) and, especially, l-glutamate of 2-(N,N-dimethylamino)ethyl amide of S44HP (compound 2j), with high antifungal activity that were comparable in in vitro and in vivo tests to AMB and that have better toxicological properties. PMID:23716057

  3. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    EPA Science Inventory

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  4. Quantitative structure-activity relationship for prediction of the toxicity of polybrominated diphenyl ether (PBDE) congeners.

    PubMed

    Wang, Yawei; Zhao, Chunyan; Ma, Weiping; Liu, Hanxia; Wang, Thanh; Jiang, Guibin

    2006-07-01

    Levels of Polybrominated diphenyl ether (PBDEs) are increasing in the environment due to their use as flame retardants. The similarities of structure to polychlorinated biphenyl (PCB) congeners suggest that they may share similar toxicological properties, such as hepatic enzyme induction. In this work, quantitative structure-activity relationship (QSAR) models were constructed based on 406 descriptors for the logarithm of toxicology index (aryl hydrocarbon receptor relative binding affinities, AhR, I) of 18 PBDE congeners. The method used for building model is the Heuristic method, which is included in comprehensive descriptors for structural and statistical analysis (CODESSA) software. The best regression model involved four descriptors, which were related to the conformational changes, atomic reactivity, molecular electrostatic field, and non-uniformity of mass distribution in a molecule of PBDEs, etc. The high square of the correlation coefficient R(2)(0.903) showed the model was satisfactory. PMID:16406101

  5. Substrate structure-activity relationships guide rational engineering of modular polyketide synthase ketoreductases.

    PubMed

    Bailey, Constance B; Pasman, Marjolein E; Keatinge-Clay, Adrian T

    2016-01-14

    Modular polyketide synthase ketoreductases can set two chiral centers through a single reduction. To probe the basis of stereocontrol, a structure-activity relationship study was performed with three α-methyl, β-ketothioester substrates and four ketoreductases. Since interactions with the β-ketoacyl moiety were found to be most critical, residues implicated in contacting this moiety were mutated. Two mutations were sufficient to completely reverse the stereoselectivity of the model ketoreductase EryKR1, converting it from an enzyme that generates (2S,3R)-products into one that yields (2S,3S)-products. PMID:26568113

  6. Quantitative structure-activity relationships for predicting skin and respiratory sensitization.

    PubMed

    Rodford, Rosemary; Patlewicz, Grace; Walker, John D; Payne, Martin P

    2003-08-01

    Quantitative structure-activity relationships (QSARs) for predicting skin and respiratory sensitization are reviewed. Overall, progress has been hampered by the sparseness of good quality experimental data, a fact that makes it difficult, at this time, to recommend one or two QSARs for predicting skin and respiratory sensitization. Creation of appropriate data sets for uninvestigated classes of chemicals by experimentation should facilitate the development of more robust QSARs for predicting skin and respiratory sensitization. Such QSARs will be valuable in the evaluation of identifiable toxic hazards where dose responses are relevant, as is the case for skin and respiratory sensitization. PMID:12924584

  7. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis. PMID:24287985

  8. A Receptor-Grounded Approach to Teaching Nonsteroidal Antiinflammatory Drug Chemistry and Structure-Activity Relationships

    PubMed Central

    2009-01-01

    Objective To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. Design Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. Assessment Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. Conclusion Student performance on NSAID-focused quizzes and examinations documented the success of this approach. PMID:20221336

  9. Substrate Structure-Activity Relationships Guide Rational Engineering of Modular Polyketide Synthase Ketoreductases

    PubMed Central

    Bailey, Constance B.; Pasman, Marjolein E.; Keatinge-Clay, Adrian T.

    2015-01-01

    Modular polyketide synthase ketoreductases can set two chiral centers through a single reduction. To probe the basis of stereocontrol, a structure-activity relationship study was performed with three α-methyl, β-ketothioester substrates and four ketoreductases. Since interactions with the β-ketoacyl moiety were found to be most critical, residues implicated in contacting this moiety were mutated. Two mutations were sufficient to completely reverse the stereoselectivity of the model ketoreductase EryKR1, converting it from an enzyme that generates (2S,3R)-products into one that yields (2S,3S)-products. PMID:26568113

  10. Identification of New Nonsteroidal RORα Ligands; Related Structure-Activity Relationships and Docking Studies.

    PubMed

    Dubernet, Mathieu; Duguet, Nicolas; Colliandre, Lionel; Berini, Christophe; Helleboid, Stéphane; Bourotte, Marilyne; Daillet, Matthieu; Maingot, Lucie; Daix, Sébastien; Delhomel, Jean-François; Morin-Allory, Luc; Routier, Sylvain; Walczak, Robert

    2013-06-13

    A high throughput screen was developed to identify novel, nonsteroidal RORα agonists. Among the validated hit compounds, the 4-(4-(benzyloxy)phenyl)-5-carbonyl-2-oxo-1,2,3,4-tetrahydropyrimidine scaffold was the most prominent. Among the numerous analogues tested, compounds 8 and 9 showed the highest activity. Key structure-activity relationships (SAR) were established, where benzyl and urea moieties were both identified as very important elements to maintain the activity. Most notably, the SAR were consistent with the binding mode of the compound 8 (S-isomer) in the RORα docking model that was developed in this program. As predicted by the model, the urea moiety is engaged in the formation of key hydrogen bonds with the backbone of Tyr380 and Asp382. The benzyl group is located in a wide hydrophobic pocket. The structural relationships reported in this letter will help in further optimization of this compound series and will provide novel synthetic probes helpful for elucidation of complex RORα physiopathology. PMID:24900700

  11. Structure-Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase.

    PubMed

    Sosič, Izidor; Anderluh, Marko; Sova, Matej; Gobec, Martina; Mlinarič Raščan, Irena; Derouaux, Adeline; Amoroso, Ana; Terrak, Mohammed; Breukink, Eefjan; Gobec, Stanislav

    2015-12-24

    Penicillin-binding proteins represent well-established, validated, and still very promising targets for the design and development of new antibacterial agents. The transglycosylase domain of penicillin-binding proteins is especially important, as it catalyzes polymerization of glycan chains, using the peptidoglycan precursor lipid II as a substrate. On the basis of the previous discovery of a noncovalent small-molecule inhibitor of transglycosylase activity, we systematically explored the structure-activity relationships of these tryptamine-based inhibitors. The main aim was to reduce the nonspecific cytotoxic properties of the initial hit compound and concurrently to retain the mode of its inhibition. A focused library of tryptamine-based compounds was synthesized, characterized, and evaluated biochemically. The results presented here show the successful reduction of the nonspecific cytotoxicity, and the retention of the inhibition of transglycosylase enzymatic activity, as well as the ability of these compounds to bind to lipid II and to have antibacterial actions. PMID:26588190

  12. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides.

    PubMed

    Hou, T J; Wang, J M; Liao, N; Xu, X J

    1999-01-01

    Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified. PMID:10529984

  13. Design, synthesis and structure-activity relationship of novel diphenylamine derivatives.

    PubMed

    Li, Huichao; Guan, Aiying; Huang, Guang; Liu, Chang-Ling; Li, Zhinian; Xie, Yong; Lan, Jie

    2016-02-01

    Diphenylamine derivatives have been reported with good fungicidal, insecticidal, acaricidal, rodenticidal and/or herbicidal activities. To find new lead compound of this kind, a series of novel diphenylamine derivatives were designed and synthesized by the approach of Intermediate Derivatization Methods. All compounds were identified by (1)H NMR and elemental analysis. Bioassays demonstrated that some compounds substituted at 2,4,6-positions or 2,4,5-positions of phenyl ring B exhibited excellent fungicidal activities. The optimal compounds P30 and P33 showed 80% and 85% control respectively against cucumber downy mildew at 12.5mgL(-1), both 100% control against rice blast at 0.3mgL(-1) and both 100% control against cucumber gray mold at 0.9mgL(-1). The relationship between structure and fungicidal activities was discussed as well. PMID:26432603

  14. Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents.

    PubMed

    Milelli, Andrea; Tumiatti, Vincenzo; Micco, Marialuisa; Rosini, Michela; Zuccari, Guendalina; Raffaghello, Lizzia; Bianchi, Giovanna; Pistoia, Vito; Fernando Díaz, J; Pera, Benet; Trigili, Chiara; Barasoain, Isabel; Musetti, Caterina; Toniolo, Marianna; Sissi, Claudia; Alcaro, Stefano; Moraca, Federica; Zini, Maddalena; Stefanelli, Claudio; Minarini, Anna

    2012-11-01

    Novel 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) derivatives were synthesized and evaluated for their antiproliferative activity on a wide number of different tumor cell lines. The prototypes of the present series were derivatives 1 and 2 characterized by interesting biological profiles as anticancer agents. The present investigation expands on the study of structure-activity relationships of prototypes 1 and 2, namely, the influence of the different substituents of the phenyl rings on the biological activity. Derivatives 3-22, characterized by a different substituent on the aromatic rings and/or a different chain length varying from two to three carbon units, were synthesized and evaluated for their cytostatic and cytotoxic activities. The most interesting compound was 20, characterized by a linker of three methylene units and a 2,3,4-trimethoxy substituent on the two aromatic rings. It displayed antiproliferative activity in the submicromolar range, especially against some different cell lines, the ability to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Its theoretical recognition against duplex and quadruplex DNA structures have been compared to experimental thermodynamic measurements and by molecular modeling investigation leading to putative binding modes. Taken together these findings contribute to define this compound as potential Multitarget-Directed Ligands interacting simultaneously with different biological targets. PMID:22819507

  15. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Andolfi, Anna; Zonno, Maria Chiara; Boari, Angela; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Ash, Gavin; Evidente, Antonio

    2013-10-01

    Phomentrioloxin is a phytotoxic geranylcyclohexenetriol produced in liquid culture by Phomopsis sp. (teleomorph: Diaporthe gulyae), a potential mycoherbicide proposed for the control of the annual weed Carthamus lanatus. In this study, seven derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on nonhost weedy and agrarian plants, fungi, Gram+ and Gram- bacteria, and on brine shrimp larvae. The results provide insights into an investigation of the structural requirements for activity. The hydroxy groups at C-2 and C-4 appeared to be important features for the phytotoxicity, as well as an unchanged cyclohexentriol ring. A role seemed also to be played by the unsaturations of the geranyl side chain. These findings could be useful for understanding the mechanisms of action of new natural products, for identifying the active sites, and possibly in devising new herbicides of natural origin. PMID:24083323

  16. Structure-activity relationship studies on cholecystokinin: Analogues with partial agonist activity

    SciTech Connect

    Galas, M.C.; Lignon, M.F.; Rodriguez, M.; Mendre, C.; Fulcrand, P.; Laur, J.; Martinez, J. )

    1988-02-01

    In the present study, hepta- and octapeptide analogues of the C-terminal part of cholecystokinin, modified on the C-terminal phenylalanine residue, were synthesized. CCK analogues were prepared in which the peptide bond between aspartic acid and phenylalanine had or had not been modified and were lacking the C-terminal primary amide function. These CCK derivatives were able to cause full stimulation of amylase release from rat pancreatic acini but without a decrease in amylase release at supramaximal concentrations. There was a close relationship between the abilities of these derivatives to stimulate amylase release and their abilities to inhibit binding of {sup 125}I-BH-CCK-9 to CCK receptors on rat and guinea pig pancreatic acini. These CCK analogues were also able to recognize the guinea pig brain CCK receptors, some of them being particularly potent. The findings indicate that the aromatic ring of phenylalanine is important for the binding to brain and pancreatic CCK receptors, whereas the C-terminal primary amide function is not essential for the binding to pancreatic CCK receptors but is crucial for biological activity of rat pancreatic acini.

  17. Fundamental Structure-Activity Relationships of Titanium Dioxide-Based Photocatalysts

    NASA Astrophysics Data System (ADS)

    Roberts, Charles A.

    Heterogeneous photocatalysis has been identified as a means of using renewable solar energy to produce the sustainable, non-carbon fuel H 2 and a variety of useful chemical intermediates. Currently, however, heterogeneous photocatalytic reactions are too inefficient to be industrially relevant and a deeper understanding of the effect of fundamental photocatalytic material properties on photoactivity is needed to further enhance the yields of desired products. In the general field of heterogeneous catalysis, structure-activity relationships aid in the rational design of improved catalysts and this ideology was applied to photocatalytic reactions over TiO2 based photocatalysts and model supported TiO2/SiO2 catalysts in this study. The model supported TiO2/SiO2 catalysts contain well-defined TiOx nanodomain structures that vary in domain size and electronic structure and greatly facilitate the determination of structure-photoactivity relationships. These catalysts were used in reactor studies during photocatalytic water splitting and cyclohexane photo-oxidation, and were monitored for production of H2 and cyclohexanone, respectively. It was found that for both reactions the trend in photoactivity for the TiOx nanodomains proceeded as: pure TiO2 (anatase) (24 nm) > TiO2 (anatase) nanoparticles (4--11 nm) > polymeric surface TiO5 (˜1 nm) > surface isolated TiO4 (˜0.4 nm). Photoluminescence (PL) spectroscopy was employed to yield insight into how exciton generation and recombination are related to TiOx domain size and, thus, to the photoactivity of the examined reactions. Transient PL decay studies determined that the larger bulk structure found in TiO 2 (anatase) nanoparticles (NPs) acts as a reservoir for excitons exhibiting slow recombination kinetics, which have an increased opportunity to participate in photochemistry at the surface active sites. The reactions were also studied using in situ attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) to observe the formation of adsorbed intermediates and products. For cyclohexane photo-oxidation, cyclohexanone intermediates and products were identified and the high photoactivity of the unsupported TiO2 (anatase) NPs was attributed to improved product desorption characteristics. The identification of intermediates during water splitting is made difficult by the extremely high absorption of infrared wavelengths by H2O. ATR-FTIR and Raman spectroscopy measurements were performed during photocatalytic splitting of water in an attempt to confirm the surface reaction intermediates currently identified in the literature and evidence for both superoxide (O2-) and peroxide (O2 2-) adsorbed species were found by ATR-FTIR, but no surface Ti-OOH was detected by Raman. Finally, alternate Ti-containing structures, titanate and TiO2 (anatase) nanotubes, were characterized with Raman spectroscopy and screened for their photocatalytic activity. Depending on the photo-reaction (4-chlorophenol decomposition or water splitting), thermal treatment to form the anatase phase in the nanotubular structure is a benefit to photoactivity due to the increased crystallinity. For water splitting, however, the structure-activity relationship found for supported TiO 2/SiO2 holds, and the presence of a larger bulk structure yields the best H2 production photoactivity. The structure-photoactivity relationship in this dissertation exists for two different photo-reactions and is expected to be a beneficial aid to future studies on the rational design of new and novel photocatalysts.

  18. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction. PMID:19689389

  19. Localized heuristic inverse quantitative structure activity relationship with bulk descriptors using numerical gradients.

    PubMed

    Stålring, Jonna; Almeida, Pedro R; Carlsson, Lars; Helgee Ahlberg, Ernst; Hasselgren, Catrin; Boyer, Scott

    2013-08-26

    State-of-the-art quantitative structure-activity relationship (QSAR) models are often based on nonlinear machine learning algorithms, which are difficult to interpret. From a pharmaceutical perspective, QSARs are used to enhance the chemical design process. Ultimately, they should not only provide a prediction but also contribute to a mechanistic understanding and guide modifications to the chemical structure, promoting compounds with desirable biological activity profiles. Global ranking of descriptor importance and inverse QSAR have been used for these purposes. This paper introduces localized heuristic inverse QSAR, which provides an assessment of the relative ability of the descriptors to influence the biological response in an area localized around the predicted compound. The method is based on numerical gradients with parameters optimized using data sets sampled from analytical functions. The heuristic character of the method reduces the computational requirements and makes it applicable not only to fragment based methods but also to QSARs based on bulk descriptors. The application of the method is illustrated on congeneric QSAR data sets, and it is shown that the predicted influential descriptors can be used to guide structural modifications that affect the biological response in the desired direction. The method is implemented into the AZOrange Open Source QSAR package. The current implementation of localized heuristic inverse QSAR is a step toward a generally applicable method for elucidating the structure activity relationship specifically for a congeneric region of chemical space when using QSARs based on bulk properties. Consequently, this method could contribute to accelerating the chemical design process in pharmaceutical projects, as well as provide information that could enhance the mechanistic understanding for individual scaffolds. PMID:23845139

  20. Quantitative structure--activity relationship (QSAR) studies on non steroidal anti-inflammatory drugs (NSAIDs).

    PubMed

    Hadjipavlou-Litina, D

    2000-04-01

    Different chemical structures have been found to possess different anti-inflammatory activities. Inflammation is a normal and essential response to any noxious stimulus which threatens the host and may vary from a localized response to a more generalized one. In view of the complexity and multitude of biochemical factors involved in inflammatory events, few general correlations of chemical structures and physicochemical properties with biological activities would be expected. Nevertheless some general features seem to be commonly associated with a large number of active drugs. However, these main features are not sufficient, but they could reflect certain physicochemical requirements for in vivo efficacy. QSAR is a useful means for maximizing the potency of a new lead compound. In the lead optimization phase of the synthetic project various QSAR procedures with the aid of computer-technology have been proposed. Among them, the classical Hansch approach has been widely used leading to quite a few successful examples. In the QSAR approaches, the prescription to optimise the lead structure is inferred from mathematical equations correlating variations in the potency of a certain biological activity with physicochemical and structural descriptors among congeneric molecules. The QSAR procedures are based on physical organic concepts and involve calculational operations. In the last years, quantum-chemical descriptors have been used in QSAR studies, because of the large physical information content encoded in many of the descriptors. Several anti-inflammatory receptor site models have been proposed. Since inflammation is a complex phenomenon involving interrelationships between humoral and cellular reactions through a number of inflammatory mediators, there is not much evidence on QSAR studies. Several QSAR studies have been reported obtaining only partial results. It was found that substituents which contribute to the high lipophilicity, were favourable to the activity. Substituents of short length (H, CH3) have also a favourable effect. Satisfactory relationships between the in vivo activities and deprotonation energies, the HOMO energies and lipophilicities were found. PMID:10702615

  1. Orthogonal chemistry for the synthesis of thiocoraline-triostin hybrids. Exploring their structure-activity relationship.

    PubMed

    Tulla-Puche, Judit; Auriemma, Sara; Falciani, Chiara; Albericio, Fernando

    2013-07-11

    The natural compounds triostin and thiocoraline are potent antitumor agents that act as DNA bisintercalators. From a pharmaceutical point of view, these compounds are highly attractive although they present a low pharmacokinetic profile, in part due to their low solubility. Synthetically, they represent a tour de force because no robust strategies have been developed to access a broad range of these bicyclic (depsi)peptides in a straightforward manner. Here we describe solid-phase strategies to synthesize new bisintercalators, such as thiocoraline-triostin hybrids, as well as analogues bearing soluble tags. Orthogonal protection schemes (up to five from: Fmoc, Boc Alloc, pNZ, o-NBS, and Troc), together with the right concourse of the coupling reagents (HOSu, HOBt, HOAt, Oxyma, EDC, DIPCDI, PyAOP, PyBOP, HATU, COMU), were crucial to establish the synthetic plan. In vitro studies and structure-activity relationships have been shown trends in the structure-activity relationship that will facilitate the design of new bisintercalators. PMID:23746132

  2. A categorical structure-activity relationship analysis of GPR119 ligands

    PubMed Central

    Kumar, Pritesh; Carrasquer, Carl A.; Carter, Arren; Song, Zhao-Hui; Cunningham, Albert R.

    2016-01-01

    The categorical structure-activity relationship (cat-SAR) expert system has been successfully used in the analysis of chemical compounds that cause toxicity. Herein we describe the use of this fragment-based approach to model ligands for the G protein-coupled receptor 119 (GPR119). Using compounds that are known GPR119 agonists and compounds that we have confirmed experimentally that are not GPR119 agonists, four distinct cat-SAR models were developed. Using a leave-one out validation routine, the best GPR119 model had an overall concordance of 99 %, a sensitivity of 99 %, and a specificity of 100 %. Our findings from the in-depth fragment analysis of several known GPR119 agonists were consistent with previously reported GPR119 structure-activity relationship (SAR) analyses. Overall, while our results indicate that we have developed a highly predictive cat-SAR model that can be potentially used to rapidly screen for prospective GPR119 ligands the applicability domain must be taken into consideration. Moreover, our study demonstrates for the first time, that the cat-SAR expert system can be used to model G protein-coupled receptor ligands, many of which are important therapeutic agents. PMID:25401513

  3. FISH ACUTE TOXICITY SYNDROMES: APPLICATION TO THE DEVELOPMENT OF MECHANISM-SPECIFIC QSARS (QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS)

    EPA Science Inventory

    Predictive models based on quantitative structure activity relationships (QSARs), are used as rapid screening tools to identify potentially hazardous chemicals. Several QSARs are now available that predict the acute toxicity of narcotic-industrial chemicals. Predictions for compo...

  4. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  5. Quantitative structure-activity relationships for aqueous metal-siderophore complexes.

    PubMed

    Duckworth, Owen W; Bargar, John R; Sposito, Garrison

    2009-01-15

    Siderophores, biogenic chelating agents that facilitate the solubilization and uptake of ferric iron, form stable complexes with a wide range of nutrient and contaminant metals and thus may profoundly affect their fate, transport, and biogeochemical cycling. To understand more comprehensively the factors that control the stability and reactivity, as well as the potential for microbial uptake, of metal-siderophore complexes, we probed the structures of complexes formed between the trihydroxamate siderophore desferrioxamine B (DFOB) and Cu(II), Ga(III), Mn(II), Ni(II), and Zn(II) in solution by using extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that all metals studied are dominantly in octahedral coordination, with significant Jahn-Teller distortion of the Cu(II)HDFOB(0) complex. Additionally, log-transformed complex stability constants correlate not only with the charge-normalized interatomic distances within the complex, affirming and expanding existing predictive relationships, but also with the Debye-Waller parameter of the first coordination shell. The derived structure-activity relationships not only quantitatively relate the measured physical architecture of aqueous complexes to their observed stability but also allow for the prediction of siderophore-metal stability constants. PMID:19238962

  6. Monitoring the Progression of Structure-Activity Relationship Information during Lead Optimization.

    PubMed

    Shanmugasundaram, Veerabahu; Zhang, Liying; Kayastha, Shilva; de la Vega de León, Antonio; Dimova, Dilyana; Bajorath, Jürgen

    2016-05-12

    Lead optimization (LO) in medicinal chemistry is largely driven by hypotheses and depends on the ingenuity, experience, and intuition of medicinal chemists, focusing on the key question of which compound should be made next. It is essentially impossible to predict whether an LO project might ultimately be successful, and it is also very difficult to estimate when a sufficient number of compounds has been evaluated to judge the odds of a project. Given the subjective nature of LO decisions and the inherent optimism of project teams, very few attempts have been made to systematically evaluate project progression. Herein, we introduce a computational framework to follow the evolution of structure-activity relationship (SAR) information over a time course. The approach is based on the use of SAR matrix data structures as a diagnostic tool and enables graphical analysis of SAR redundancy and project progression. This framework should help the process of making decisions in close-in analogue work. PMID:26569348

  7. Development of quantitative structure activity relationships for the binding affinity of methoxypyridinium cations for human acetylcholinesterase.

    PubMed

    Morrill, Jason A; Topczewski, Joseph J; Lodge, Alexander M; Yasapala, Nilanthi; Quinn, Daniel M

    2015-11-01

    Among the most toxic substances known are the organophosphorus (OP) compounds used as pesticides and chemical warfare agents. Owing to their high toxicity there is a number of efforts underway to develop effective therapies for OP agent exposure. To date all therapies in use treat inhibited acetylcholinesterase (AChE), but are ineffective for the treatment of inhibited AChE, which has undergone a subsequent hydrolysis process, referred to as aging. Toward developing a therapy for treating victims of OP intoxication in the aged state we have developed Quantitative Structure-Activity Relationships (QSARs) based on the AM1 semiempirical quantum mechanical method using the program, CODESSA (COmprehensive Descriptors for Structural and Statistical Analysis). Using this methodology we obtained a multiple correlation QSAR equation which gave R(2)=0.9359 for a random training set of 38 ligands and R(2)=0.9236 for prediction on a random test set of 9 ligands. PMID:26454505

  8. Identification and structure-activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors.

    PubMed

    Alokam, Reshma; Jeankumar, Variam Ullas; Sridevi, Jonnalagadda Padma; Matikonda, Siddharth Sai; Peddi, Santosh; Alvala, Mallika; Yogeeswari, Perumal; Sriram, Dharmarajan

    2014-08-01

    In the present study, we identified carvacrol, a major phenolic component of oregano oil as a novel small molecule inhibitor of Mycobacterium tuberculosis (MTB) chorismate mutase (CM) enzyme with IC50 of 1.06 ± 0.4 µM. Virtual screening of the BITS-Pilani in-house database using the crystal structure of the MTB CM bound transition state intermediate (PDB: 2FP2) as framework identified carvacrol as a potential lead. Further various carvacrol derivatives were evaluated in vitro for their ability to inhibit MTB CM enzyme, whole cell MTB and cytotoxicity as steps toward the derivation of structure-activity relationships (SAR) and lead optimization. PMID:24090423

  9. Defensive sesquiterpenes from Senecio candidans and S. magellanicus, and their structure-activity relationships.

    PubMed

    Reina, Matías; Santana, Omar; Domínguez, Dulce M; Villarroel, Luis; Fajardo, Víctor; Rodríguez, Matías L; González-Coloma, Azucena

    2012-03-01

    Eleven eremophilanolides, 1-3 and 6-13, and two eremophilanes, 24 and 25, were isolated from Senecio candidans and S. magellanicus from the Magallanes Region (Chile). Compounds 2, 3, 9, and 10 have not been previously reported as natural products. Their structures were established by NMR spectroscopic analysis and chemical transformations. The X-ray analysis of compounds 11, 13, and 17 were also performed. Different semisynthetic analogs from eremophilanolide 11 were generated to carry out a structure-activity relationship study. Their possible plant defensive role was tested against herbivorous insects (Spodoptera littoralis, Rhopalosiphum padi, and Myzus persicae) and plants (Lactuca sativa). Additionally, their effects on insect (Sf9) and mammalian (CHO) cell lines were tested. PMID:22422530

  10. Quantitative structure-activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections.

    PubMed

    Jung, Mankil; Tak, Jungae; Lee, Yongnam; Jung, Youngae

    2007-02-15

    A diverse approach to the quantitative structure-activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity was studied using variable selections of stepwise multiple linear regression (MLR), genetic algorithm (GA)-MLR, and simulated annealing (SA)-MLR. AChE activity (logRA) of tacrine derivatives was expressed with acceptable explanation (95.5-95.9%) and good predictive power (94.5-95.2%), respectively, in the models. The best equation was obtained from simulated annealing (SA) MLR with greater explanatory capability and better prediction, with a smaller standard error than other methods. The resulting models with the given descriptors illustrate the significant roles of hydrophobic and electrostatic interaction on increasing AChE activity, but hydrophilic and topological feature of molecules were shown to decrease AChE activity. PMID:17158047

  11. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    PubMed

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis. PMID:26776000

  12. Quantitative structure-activity relationships of imidazolium oximes as nerve agent antidotes

    SciTech Connect

    Musallam, H.A.; Foye, W.O.; Hansch, C.; Harris, R.N.; Engle, R.R.

    1993-05-13

    Organophosphorus-containing pesticides and chemical warfare agents are potent inhibitors of synaptic acetylcholinesterase, a key regulator of cholinergic neurotransmission. These nerve agents have for many years constituted a serious threat to military personnel. These threats stimulated considerable efforts to develop effective medical countermeasures. Several potential drugs have been found recently which are capable of protecting animals from lethal levels of nerve agents. A recent U. S. Army Medical Research and Development Command drug development project synthesized a large number of imidazolium oximes. These compounds were found to possess strong antidotal activity against one of the most lethal nerve agents, soman. The Army's approach, like most conventional drug discovery approaches, depended primarily on the trial and error method. This research was carried out to determine if these potential nerve agent antidotes could have been discovered through the use of Quantitative Structure Activity-Relationships (QSAR) technique.

  13. Structure Activity Relationships of ?v Integrin Antagonists for Pulmonary Fibrosis by Variation in Aryl Substituents

    PubMed Central

    2014-01-01

    Antagonism of ?v?6 is emerging as a potential treatment of idiopathic pulmonary fibrosis based on strong target validation. Starting from an ?v?3 antagonist lead and through simple variation in the nature and position of the aryl substituent, the discovery of compounds with improved ?v?6 activity is described. The compounds also have physicochemical properties commensurate with oral bioavailability and are high quality starting points for a drug discovery program. Compounds 33S and 43E1 are pan ?v antagonists having ca. 100 nM potency against ?v?3, ?v?5, ?v?6, and ?v?8 in cell adhesion assays. Detailed structure activity relationships with these integrins are described which also reveal substituents providing partial selectivity (defined as at least a 0.7 log difference in pIC50 values between the integrins in question) for ?v?3 and ?v?5. PMID:25408832

  14. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B.

    PubMed

    Harper, Jacquie L; Khalil, Iman M; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R

    2015-08-01

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds. PMID:26266415

  15. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B

    PubMed Central

    Harper, Jacquie L.; Khalil, Iman M.; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R.

    2015-01-01

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds. PMID:26266415

  16. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship.

    PubMed

    Mateos, Raquel; Madrona, Andrés; Pereira-Caro, Gema; Domínguez, Vanessa; Cert, Rosa M A; Parrado, Juan; Sarriá, Beatriz; Bravo, Laura; Espartero, José Luis

    2015-04-15

    Isochroman-derivatives of the natural olive oil phenol hydroxytyrosol (HT) have been synthesised via Oxa-Pictet-Spengler reaction in high yields. Lipophilicity and antioxidant activity were determined to establish the structure-activity relationship of isochromans compared to HT, BHT and α-tocopherol. Antioxidant capacity was tested in two different media: bulk oils, using the Rancimat test, and brain homogenates, by measuring malondialdehyde (MDA) levels as a lipoperoxidation biomarker. In addition, other antioxidant assays (FRAP, ABTS and ORAC) were carried out. Rancimat and MDA results show that antioxidant activity was related with lipophilicity, directly in brain homogenates and inversely in the oils, in agreement with the polar paradox. Free o-diphenolic groups positively determined the activity in the oils, whereas reducing and radical-scavenging activities were related to the number of free hydroxyl moieties. BHT and α-tocopherol showed lower antioxidant activity than isochromans and HT. We conclude that HT-isochromans present significant potential as bioactive compounds. PMID:25466028

  17. Antiproliferative and apoptotic activities of triterpenoid saponins from the roots of Platycodon grandiflorum and their structure-activity relationships.

    PubMed

    Chun, Jaemoo; Ha, In Jin; Kim, Yeong Shik

    2013-05-01

    The present study was undertaken to investigate the antiproliferative and apoptotic activities of Platycodon saponins, including platycodin D, 2''-O-acetylplatycodin D, 3''-O-acetylplatycodin D, polygalacin D, 2''-O-acetylpolygalacin D, and 3''-O-acetylpolygalacin D, isolated from Platycodon grandiflorum, and prosapogenins which lack the C-3 or C-28 sugar residues, obtained from hydrolysis of platycodin D. We also clarified the structure-activity relationships of these molecules to define structural features that are crucial for the biological activity of Platycodon saponins and prosapogenins. The results showed that all Platycodon saponins had antiproliferative effects on the seven types of cancer cell lines tested. In particular, O-acetylation at the C-2 or C-3 position of rhamnose and dehydroxylation at C-24 increase the compound's cytotoxicity, while the loss of sugar residues linked to C-3 or C-28 dramatically reduced cytotoxicity. This cytotoxicity was associated with apoptosis, which was indicated by DNA fragmentation, phosphatidylserine externalization, and the activation of caspases in AGS cells. Furthermore, Platycodon saponins suppressed the phosphorylation of Akt, which resulted in the inhibition of mTOR and NF-κB signaling following the inhibition of their downstream proteins. In conclusion, six Platycodon saponins have antiproliferative activity, and the presence of sugar residues, an O-acetyl group on the rhamnose, and a methyl group at C-4 contributes to their cytotoxicity and apoptotic activity. These findings may be useful in evaluating the structure-activity relationships of Platycodon saponins and modifying them as a potent apoptosis-inducing agent. PMID:23576176

  18. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    SciTech Connect

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  19. Synthesis, screening and quantitative structure-activity relationship (QSAR) studies of some glutamine analogues for possible anticancer activity.

    PubMed

    Srikanth, K; Kumar, Ch Anil; Ghosh, Balaram; Jha, Tarun

    2002-07-01

    We described the syntheses, biological activities and QSAR studies of 36 new 5-n-substituted-2-(substituted benzenesulphonyl) glutamines 6-41 with different substitutions. These compounds were designed as structural analogues of most reactive amino acid, 'glutamine' (GLN), especially in the tumor cells. They present the new basic lateral chains at R(5) position as well as different substitutions at 2', 3', 4', and 5' positions on the benzene ring. The synthesized compounds have been tested for antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice using percentage inhibition of tumor weight as inhibitory parameter. In order to elucidate the structural requirements for antitumor activity, quantitative structure-activity relationship (QSAR) studies have been performed using extra thermodynamic model of Hansch. QSAR equations showed that the electronic parameter (sigma) on the aromatic ring system, steric parameter (Es) and to some extent Sterimol length of the substituent (L) on the aliphatic side chain correlate significantly with the antitumor activity. Resonance factor occupies the major electronic contribution on the aromatic ring system to the activity. PMID:11983508

  20. Evolving interpretable structure-activity relationship models. 2. Using multiobjective optimization to derive multiple models.

    PubMed

    Birchall, Kristian; Gillet, Valerie J; Harper, Gavin; Pickett, Stephen D

    2008-08-01

    A multiobjective evolutionary algorithm (MOEA) is described for evolving multiple structure-activity relationships (SARs). The SARs are encoded in easy-to-interpret reduced graph queries which describe features that are preferentially present in active compounds compared to inactives. The MOEA addresses a limitation associated with many machine learning methods; that is, the inherent tradeoff that exists in recall and precision which is usually handled by combining the two objectives into a single measure with a consequent loss of control. By simultaneously optimizing recall and precision, the MOEA generates a family of SARs that lie on the precision-recall (PR) curve. The user is then able to select a query with an appropriate balance in the two objectives: for example, a low recall-high precision query may be preferred when establishing the SAR, whereas a high recall-low precision query may be more appropriate in a virtual screening context. Each query on the PR curve aims at capturing the structure-activity information into a single representation, and each can be considered as an alternative (equally valid) solution. We then investigate combining individual queries into teams with the aim of capturing multiple SARs that may exist in a data set, for example, as is commonly seen in high-throughput screening data sets. Team formation is carried out iteratively as a postprocessing step following the evolution of the individual queries. The inclusion of uniqueness as a third objective within the MOEA provides an effective way of ensuring the queries are complementary in the active compounds they describe. Substantial improvements in both recall and precision are seen for some data sets. Furthermore, the resulting queries provide more detailed structure-activity information than is present in a single query. PMID:18637673

  1. Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena

    Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study of Ni-based catalyst materials. Chapter V discusses the synthesis of tin-titanium oxide nanoparticles with tunable lattice constants. These materials could be used to make high-surface-area supports for thin layers of OER catalysts, which is important for maximizing catalyst surface area, minimizing the use of precious-metal catalysts, and optimizing 3D structure for enhanced mass/bubble transport. Finally, Chapter VI summarizes this work and outlines directions for future research.

  2. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  3. The Effect of Nano Confinement on the C–H Activation and its Corresponding Structure-Activity Relationship

    PubMed Central

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-01-01

    The C–H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C–H activation occurring both on the inner and outer surfaces of the nano channel. The C–O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C–H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement. PMID:25428459

  4. StructureActivity Relationships of a Novel Capsid Targeted Inhibitor of HIV-1 Replication

    PubMed Central

    2015-01-01

    Despite the considerable successes of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS, cumulative drug toxicities and the development of multidrug-resistant virus necessitate the search for new classes of antiretroviral agents with novel modes of action. The HIV-1 capsid (CA) protein has been structurally and functionally characterized as a druggable target. We have recently designed a novel small molecule inhibitor I-XW-053 using the hybrid structure based method to block the interface between CA N-terminal domains (NTDNTD interface) with micromolar affinity. In an effort to optimize and improve the efficacy of I-XW-053, we have developed the structure activity relationship of I-XW-053 compound series using ligand efficiency methods. Fifty-six analogues of I-XW-053 were designed that could be subclassified into four different core domains based on their ligand efficiency values computed as the ratio of binding efficiency (BEI) and surface efficiency (SEI) indices. Compound 34 belonging to subcore-3 showed an 11-fold improvement over I-XW-053 in blocking HIV-1 replication in primary human peripheral blood mononuclear cells (PBMCs). Surface plasmon resonance experiments confirmed the binding of compound 34 to purified HIV-1 CA protein. Molecular docking studies on compound 34 and I-XW-053 to HIV-1 CA protein suggested that they both bind to NTDNTD interface region but with different binding modes, which was further validated using site-directed mutagenesis studies. PMID:25302989

  5. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    SciTech Connect

    J Beierlein; N Karri; A Anderson

    2011-12-31

    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  6. Structure-hepatoprotective activity relationship study of sesquiterpene lactones: A QSAR analysis

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Rasulev, Bakhtiyor; Syrov, Vladimir; Khushbaktova, Zainab; Leszczynski, Jerzy

    This study has been carried out using quantitative structure-activity relationship analysis (QSAR) for 22 sesquiterpene lactones to correlate and predict their hepatoprotective activity. Sesquiterpenoids, the largest class of terpenoids, are a widespread group of substances occurring in various plant organisms. QSAR analysis was carried out using methods such as genetic algorithm for variables selection among generated and calculated descriptors and multiple linear regression analysis. Quantum-chemical calculations have been performed by density functional theory at B3LYP/6-311G(d, p) level for evaluation of electronic properties using reference geometries optimized by semi-empirical AM1 approach. Three models describing hepatoprotective activity values for series of sesquiterpene lactones are proposed. The obtained models are useful for description of sesquiterpene lactones hepatoprotective activity and can be used to estimate the hepatoprotective activity of new substituted sesquiterpene lactones. The models obtained in our study show not only statistical significance, but also good predictive ability. The estimated predictive ability (rtest2) of these models lies within 0.942-0.969.

  7. Structure-Activity Relationships of the Antitumor C5-Curcuminoid GO-Y030.

    PubMed

    Kohyama, Aki; Yamakoshi, Hiroyuki; Hongo, Shoko; Kanoh, Naoki; Shibata, Hiroyuki; Iwabuchi, Yoshiharu

    2015-01-01

    1,5-Bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (2) was isolated from Curcuma domestica as a curcumin (1)-related compound, which we named C5-curcumin. Intrigued by the potent antitumor activity of C5-curcumin (2)-related 1,5-bisaryl-1,4-pentadiene-3-ones [bis(arylmethylidene)acetones, termed C5-curcuminoids], we previously conducted a structure-activity relationship study of C5-curcuminoids and showed that highly active GO-Y030 [1,5-bis(3,5-bis(methoxymethoxy)phenyl)-1,4-pentadiene-3-one (4)] is the most promising antitumor compound. In this study, a panel of C5-curcuminoids based on GO-Y030, consisting of 30 new and 10 known compounds, was synthesized to elucidate in detail which moiety of GO-Y030 is significant for antitumor activity. The results confirmed that both the cross-conjugated dienone moiety and the 3,5-bis(methoxymethoxy) substituent are important for the antitumor activity. PMID:26305242

  8. Drug-receptor interaction-based quantitative structure-activity relationship of tetrahydroimidazodiazepinone

    NASA Astrophysics Data System (ADS)

    Sahu, V. K.; Khan, A. K. R.; Singh, R. K.; Singh, P. P.

    Log P, solvent-accessible surface area (SASA), total energy, bond length, and bond strain of the most favorable H-bond formed between drug and receptor; and quantum chemical descriptor ?E nm-based quantitative structure-activity relationship (QSAR) study of tetrahydroimidazodiazepinone derivatives have been done. For QSAR study, the 3D modeling and geometry optimization of all the derivatives and receptor's amino acid have been carried out on CAChe software by applying semiempirical method using MOPAC 2002. Softness Calculator using semiempirical PM3 methods has done the atomic softness of every atom of the derivatives and receptor's amino acids. The biological activities of tetrahydroimidazodiazepinone derivatives have been taken from the literature. The predicted values of biological activity with the help of multiple linear regression analysis are close to observed activity. The cross-validation coefficient and correlation coefficient also indicate that the QSAR model is valuable. Regression analysis shows that hydrophobic interaction is predominant and made major contribution, whereas hydrogen bonding and polar interactions help in proper orientation of the compound (or its functional groups) to make maximum interaction. With the help of these descriptors, prediction of the biological activity of new derivative is possible.

  9. Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships.

    PubMed

    Kortagere, Sandhya; Ekins, Sean; Welsh, William J

    2008-09-01

    The properties of chemicals are rooted in their molecular structure. It follows that structural analysis of specific interactions between ligands and biomolecules at the molecular level is invaluable for defining structure-activity relationships (SARs) and structure-toxicity relationships (STRs). This study has elucidated the structural and molecular basis of interactions of biomolecules with alkyl and aryl halides that are extensively used as components in many commercial pesticides, disinfectants, and drugs. We analyzed the protein structures deposited in Protein Data Bank (PDB) for structural information associated with interactions between halogenated ligands and proteins. This analysis revealed distinct patterns with respect to the nature and structural characteristics of halogen interactions with specific types of atoms and groups in proteins. Fluorine had the highest propensity of interactions for glycine, while chlorine for leucine, bromine for arginine, and iodine for lysine. Chlorine, bromine and iodine had the lowest propensity of interactions for cysteine, while fluorine had a lowest propensity for proline. These trends for highest propensity shifted towards the hydrophobic residues for all the halogens when only interactions with the side chain were considered. Halogens had equal propensities of interaction for the halogen bonding partners (nitrogen and oxygen atoms), albeit with different geometries. The optimal angle for interactions with halogens was approximately 120 degrees for oxygen atoms, and approximately 96 degrees for nitrogen atoms. The distance distributions of halogens with various amino acids were mostly bimodal, and the angle distributions were unimodal. Insights gained from this study have implications for the rational design of safer drugs and commercially important chemicals. PMID:18524655

  10. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test

    SciTech Connect

    Schueuermann, G.; Somashekar, R.K.; Kristen, U.

    1996-10-01

    Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tube growth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolute sensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure-activity relationships using lipophilicity (log K{sub ow}), acidity (pK{sub a}), and quantum chemical parameters to model intrinsic acidity, solvation interactions, and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotic-type relationship is derived, which, however, shows marked differences in slope and intercept when compared to reference regression equations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action: oxidative uncoupling activity is associated with a pK{sub a} window from 3.8 to 8.5, and more acidic congeners with diortho-substitution show a transition from uncoupling to a narcotic mode of action with decreasing pK{sub a} and log K{sub ow}. Model calculations for phenol nucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds.

  11. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

    PubMed Central

    Zarghi, Afshin; Arfaei, Sara

    2011-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the undesired side effects arise from inhibition of COX-1 activity. Thus, it was though that more selective COX-2 inhibitors would have reduced side effects. Based upon a number of selective COX-2 inhibitors (rofecoxib, celecoxib, valdecoxibetc.) were developed as safer NSAIDs with improved gastric safety profile. However, the recent market removal of some COXIBs such as rofecoxib due to its adverse cardiovascular side effects clearly encourages the researchers to explore and evaluate alternative templates with COX-2 inhibitory activity. Recognition of new avenues for selective COX-2 inhibitors in cancer chemotherapy and neurological diseases such as Parkinson and Alzheimer’s diseases still continues to attract investigations on the development of COX-2 inhibitors. This review highlights the various structural classes of selective COX-2 inhibitors with special emphasis on their structure-activity relationships. PMID:24250402

  12. Structure-activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids.

    PubMed

    Aoki, Shunji; Watanabe, Yasuo; Tanabe, Daiki; Arai, Masayoshi; Suna, Hideaki; Miyamoto, Katsushiro; Tsujibo, Hiroshi; Tsujikawa, Kazutake; Yamamoto, Hiroshi; Kobayashi, Motomasa

    2007-11-01

    Previously, bioassay-guided separation led us to isolate eleven novel steroidal alkaloids named cortistatins from the marine sponge Corticium simplex. These cortistatins were classified into three types based on the chemical structure of the side chain part, that is, isoquinoline, N-methyl piperidine or 3-methylpyridine units. From the structure-activity relationship study, the isoquinoline unit in the side chain was found to be crucial for the anti-angiogenic activity of cortistatins. Cortistatin A (1) showed cytostatic growth-inhibitory activity against human umbilical vein endothelial cells (HUVECs). Cortistatin A (1) also inhibited VEGF-induced migration of HUVECs and bFGF-induced tubular formation. Although cortistatin A (1) showed no effect on VEGF-induced phosphorylation of ERK1/2 and p38, which are one of the signaling pathways for migration and tubular formation, the phosphorylation of the unidentified 110kDa protein in HUVECs was inhibited by the treatment with cortistatin A. PMID:17765550

  13. [Synthesis, analgesic activity and structure-activity relationship of 4-N-propionyl analogs of cis-3-methyl fentanyl].

    PubMed

    Chen, X P; Yang, Y L; Chen, C Y; Shang, X E

    1992-01-01

    The synthesis of some 4-N-propionyl analogs of cis-3-methyl fentanyl by acyl chloride method. anhydride method, mixed anhydride method and DCC method is reported. The ethyl group in 4-N-propionyl portion of cis-3-methyl fentanyl was substituted by some groups with different electronic property. In mouse hot plate test, all compounds showed typical morphine-like action with analgesic potency corresponding to 49-1963 times that of morphine. Compound 3 was found to exhibit higher analgesic activity than cis-3-methyl fentanyl. Semiempirical INDO calculations have been undertaken for 4 typical compounds and it was found that as a result of introduction of chlorovinyl, compound 3 exhibited characteristics of electronic structure different from that of cis-3-methyl fentanyl. The relationships between analgesic activity and the electronic structure of these compounds were discussed. PMID:1359729

  14. Structure-property relationship of quinuclidinium surfactants-Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical properties represents a good starting point for further biological research. PMID:26651596

  15. Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Stout, Adam M; Mutka, Sarah C; Richards, Jane P; Rosenthal, Gary J

    2012-03-15

    The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice. PMID:22342142

  16. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.

    PubMed

    Liu, Rong; Rallo, Robert; Bilal, Muhammad; Cohen, Yoram

    2015-01-01

    Quantitative structure-activity relationships (QSARs) were developed, for cellular uptake of nanoparticles (NPs) of the same iron oxide core but with different surface-modifying organic molecules, based on linear and non-linear (epsilon support vector regression (ε-SVR)). A linear QSAR provided high prediction accuracy of R2=0.751 (coefficient of determination) using 11 descriptors selected from an initial pool of 184 descriptors calculated for the NP surfacemodifying molecules, while a ε-SVR based QSAR with only 6 descriptors improved prediction accuracy to R2=0.806. The linear and ε-SVR based QSARs both demonstrated good robustness and well spanned applicability domains. It is suggested that the approach of evaluating pertinent descriptors and their significance, via QSAR analysis, to cellular NP uptake could support planning and interpretation of toxicity studies as well as provide guidance for the tailor-design NPs with respect to targeted cellular uptake for various applications. PMID:25747434

  17. Structure activity relationships of 4-hydroxy-2-pyridones: A novel class of antituberculosis agents.

    PubMed

    Ng, Pearly Shuyi; Manjunatha, Ujjini H; Rao, Srinivasa P S; Camacho, Luis R; Ma, Ngai Ling; Herve, Maxime; Noble, Christian G; Goh, Anne; Peukert, Stefan; Diagana, Thierry T; Smith, Paul W; Kondreddi, Ravinder Reddy

    2015-12-01

    Pyridone 1 was identified from a high-throughput cell-based phenotypic screen against Mycobacterium tuberculosis (Mtb) including multi-drug resistant tuberculosis (MDR-TB) as a novel anti-TB agent and subsequently optimized series using cell-based Mtb assay. Preliminary structure activity relationship on the isobutyl group with higher cycloalkyl groups at 6-position of pyridone ring has enabled us to significant improvement of potency against Mtb. The lead compound 30j, a dimethylcyclohexyl group on the 6-position of the pyridone, displayed desirable in vitro potency against both drug sensitive and multi-drug resistant TB clinical isolates. In addition, 30j displayed favorable oral pharmacokinetic properties and demonstrated in vivo efficacy in mouse model. These results emphasize the importance of 4-hydroxy-2-pyridones as a new chemotype and further optimization of properties to treat MDR-TB. PMID:26544629

  18. Phytotoxicity of umbelliferone and its analogs: Structure-activity relationships and action mechanisms.

    PubMed

    Pan, Le; Li, Xiu-Zhuang; Yan, Zhi-Qiang; Guo, Hong-Ru; Qin, Bo

    2015-12-01

    Two coumarins, umbelliferone and daphnoretin, were isolated from roots of Stellera chamaejasme L; the former had been identified as one of the main allelochemicals in our previous studies. Both of them have the skeleton of 7-hydroxycoumarin, but showed different phytotoxic effects. Umbelliferone and its analogs were then prepared to investigate the structure-activity relationship of hydroxycoumarins and screened for phytotoxicity. The inhibitory effects varied observably in response to the coumarin derivatives, especially umbelliferone (1), 7-hydroxy-4-methylcoumarin (3) and coumarin (10) displayed strong inhibition of lettuce and two field weeds, Setaria viridis and Amaranthus retroflexus, and compounds 11 and 12 also exhibited phytotoxic activity with species specificity. The number and location of hydroxyl groups were importantly responsible for the phytotoxicity. A C7 hydroxyl group was considered to be a potentially active site and methyl substitution at the C4 position contributed significantly to the activity. The phytotoxic mechanism was briefly studied with umbelliferone by evaluating the reactive oxygen species (ROS) and chlorophylls level in lettuce seedlings. The results showed that umbelliferone induced the accumulation of ROS in the root tip and significantly decreased the chlorophyll content in the leaves. Thus, a ROS-mediated regulation pathway and the inhibition of photosynthesis were definitely involved in the phytotoxicity of umbelliferone. PMID:26509496

  19. Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships

    PubMed Central

    Zaman, Mehfuz; Toth, Istvan

    2013-01-01

    Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting). Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signaling via Toll-like receptor 2 (TLR2). Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this mini review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems. PMID:24130558

  20. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action.

    PubMed

    Anouar, El Hassane; Raweh, Salwa; Bayach, Imene; Taha, Muhammad; Baharudin, Mohd Syukri; Di Meo, Florent; Hasan, Mizaton Hazizul; Adam, Aishah; Ismail, Nor Hadiani; Weber, Jean-Frédéric F; Trouillas, Patrick

    2013-11-01

    Phenolic Schiff bases are known for their diverse biological activities and ability to scavenge free radicals. To elucidate (1) the structure-antioxidant activity relationship of a series of thirty synthetic derivatives of 2-methoxybezohydrazide phenolic Schiff bases and (2) to determine the major mechanism involved in free radical scavenging, we used density functional theory calculations (B3P86/6-31+(d,p)) within polarizable continuum model. The results showed the importance of the bond dissociation enthalpies (BDEs) related to the first and second (BDEd) hydrogen atom transfer (intrinsic parameters) for rationalizing the antioxidant activity. In addition to the number of OH groups, the presence of a bromine substituent plays an interesting role in modulating the antioxidant activity. Theoretical thermodynamic and kinetic studies demonstrated that the free radical scavenging by these Schiff bases mainly proceeds through proton-coupled electron transfer rather than sequential proton loss electron transfer, the latter mechanism being only feasible at relatively high pH. PMID:24243063

  1. Structure-activity relationship studies of flavonol analogues on pollen germination.

    PubMed

    Forbes, Alaina M; Meier, G Patrick; Haendiges, Stacey; Taylor, Loverine P

    2014-03-12

    Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance. PMID:24524670

  2. The Structure Activity Relationship of Urea Derivatives as Anti-Tuberculosis Agents

    PubMed Central

    Brown, Joshua R.; North, Elton J.; Hurdle, Julian G.; Morisseau, Christophe; Scarborough, Jerrod S.; Sun, Dianqing; Korduláková, Jana; Scherman, Michael S.; Jones, Victoria; Grzegorzewicz, Anna; Crew, Rebecca M.; Jackson, Mary; McNeil, Michael R.; Lee, Richard E.

    2011-01-01

    The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolyase enzymes. The inhibitors also showed potent inhibition of humans soluble expoxide hydrolyase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolyase inhibition towards the M. tuberculosis enzymes. PMID:21840723

  3. Structure-Activity Relationship of a U-Type Antimicrobial Microemulsion System

    PubMed Central

    Zhang, Hui; Taxipalati, Maierhaba; Yu, Liyi; Que, Fei; Feng, Fengqin

    2013-01-01

    The structure-activity relationship of a U-type antimicrobial microemulsion system containing glycerol monolaurate and ethanol at a 1∶1 mass ratio as oil phase and Tween 20 as surfactant were investigated along a water dilution line at a ratio of 80∶20 mass% surfactant/oil phase, based on a pseudo-ternary phase diagram. The differential scanning calorimetry results showed that in the region of up to 33% water, all water molecules are confined to the hydrophilic core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, and transforms into bicontinuous in the region of 33–39% water, and finally the microemulsion become o/w in the region of above 39% water. The microstructure characterization was confirmed by the dynamic light scattering measurements and freeze-fracture transmission electron microscope observation. The antimicrobial activity assay using kinetics of killing analysis demonstrated that the microemulsions in w/o regions exhibited relatively high antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the antimicrobial oil phase as the continuous phase, while the antimicrobial activity started to decrease when the microemulsions entered the bicontinuous region, and decreased rapidly as the water content increased in the o/w region, as a result of the dilution of antimicrobial oil droplets in the aqueous continuous phase. PMID:24204605

  4. Oxidative Conversion Mediates Antiproliferative Effects of tert-Butylhydroquinone: Structure and Activity Relationship Study.

    PubMed

    Sanidad, Katherine Z; Sukamtoh, Elvira; Wang, Weicang; Du, Zheyuan; Florio, Ellie; He, Lili; Xiao, Hang; Decker, Eric A; Zhang, Guodong

    2016-05-18

    Previous studies have shown that tert-butylhydroquinone (TBHQ), a widely used food antioxidant, has cytotoxic effects at high doses; however, the underlying mechanisms are not well understood. Here, we found that the effects of TBHQ on cell proliferation, cell cycle progression, and apoptosis are mainly mediated by its oxidative conversion to a quinone metabolite tert-butylquinone (TBQ). Co-addition of cupric ion (Cu(2+)) caused accelerated oxidative conversion of TBHQ to TBQ and enhanced the biological activities of TBHQ on cell proliferation, cell cycle progression, and apoptosis in MC38 colon cancer cells. In contrast, co-addition of ethylenediaminetetraacetic acid (EDTA) suppressed TBHQ oxidation and inhibited the biological activities of TBHQ in MC38 cells. For example, after 24 h of treatment in basal medium, low-dose TBHQ (1.88-7.5 μM) had little effect on MC38 cell proliferation, while co-addition of 50 μM Cu(2+) caused 30-70% inhibition of cell proliferation; in contrast, treatment with high-dose TBHQ (15 μM) inhibited 50 ± 4% MC38 proliferation, which was abolished by co-addition of 50 μM EDTA. We further showed that TBQ had more potent actions on cell proliferation and associated cellular responses than TBHQ, supporting a critical role of TBQ formation in the biological activities of TBHQ. Finally, a structure and activity relationship study showed that the fast-oxidized para-hydroquinones had potent antiproliferative effects in MC38 cells, while the slow-oxidized para-hydroquinones had weak or little biological activities. Together, these results suggest that the biological activities of TBHQ and other para-hydroquinones are mainly mediated by their oxidative metabolism to generate more biologically active quinone metabolites. PMID:27111399

  5. Quantitative structure-activity relationships and the prediction of MHC supermotifs.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-12-01

    The underlying assumption in quantitative structure-activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here--the additive method--is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A*0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data. PMID:15542370

  6. Spatial Configuration and Three-Dimensional Conformation Directed Design, Synthesis, Antiviral Activity, and Structure-Activity Relationships of Phenanthroindolizidine Analogues.

    PubMed

    Su, Bo; Cai, Chunlong; Deng, Meng; Wang, Qingmin

    2016-03-16

    Our recent investigation on the antiviral activities against tobacco mosaic virus (TMV) of phenanthroindolizidine alkaloid analogues preliminarily revealed that the basic skeleton and substitution pattern at the C13a position of the molecule, which are closely related to the spatial arrangement of the molecule, have great effects on the biological activity. To further study the in-depth influence of spatial configuration and three-dimensional (3D) conformation of the molecules on their anti-TMV activities and related structure-activity relationship (SAR), a series of D-ring opened derivatives 3, 4, 5a-5j, 6, and 7, chiral 13a- and/or 14-substituted phenanthroindolizidine analogues 10-12 and 18-20, and their enantiomers ent-10-ent-12 and ent-18-ent-20 were synthesized and evaluated for their anti-TMV activities. Bioassay results showed that most of the chiral phenanthroindolizidines displayed good to excellent in vivo anti-TMV activity. Among these compounds, ent-11 showed more potent activity than Ningnanmycin (one of the most successful commercial antiviral agents), thus emerging as a potential inhibitor of the plant virus. Further SARs were also discussed for the first time under the chiral scenario, demonstrating that both spatial configuration and 3D conformation of the molecules are crucial for keeping high anti-TMV activity. PMID:26923726

  7. Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of truncated and Ala-replacement analogs of the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica. The C-terminal hexapeptide proved to be the active core, the minimum sequence required to retain significant diureti...

  8. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods. PMID:18767832

  9. Structure-activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Lee, In-Hee; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2014-02-01

    We explored both structure-activity relationships among substituted oxyoxalamides used as the primary pharmacophore of inhibitors of the human sEH and as a secondary pharmacophore to improve water solubility of inhibitors. When the oxyoxalamide function was modified with a variety of alkyls or substituted alkyls, compound 6 with a 2-adamantyl group and a benzyl group was found to be a potent sEH inhibitor, suggesting that the substituted oxyoxalamide function is a promising primary pharmacophore for the human sEH, and compound 6 can be a novel lead structure for the development of further improved oxyoxalamide or other related derivatives. In addition, introduction of substituted oxyoxalamide to inhibitors with an amide or urea primary pharmacophore produced significant improvements in inhibition potency and water solubility. In particular, the N,N,O-trimethyloxyoxalamide group in amide or urea inhibitors (26 and 31) was most effective among those tested for both inhibition and solubility. The results indicate that substituted oxyoxalamide function incorporated into amide or urea inhibitors is a useful secondary pharmacophore, and the resulting structures will be an important basis for the development of bioavailable sEH inhibitors. PMID:24433964

  10. Synthesis and structure/antioxidant activity relationship of novel catecholic antioxidant structural analogues to hydroxytyrosol and its lipophilic esters.

    PubMed

    Bernini, Roberta; Crisante, Fernanda; Barontini, Maurizio; Tofani, Daniela; Balducci, Valentina; Gambacorta, Augusto

    2012-08-01

    A large panel of novel catecholic antioxidants and their fatty acid or methyl carbonate esters has been synthesized in satisfactory to good yields through a 2-iodoxybenzoic acid (IBX)-mediated aromatic hydroxylation as the key step. The new catechols are structural analogues of naturally occurring hydroxytyrosol (3,4-DHE). To evaluate structure/activity relationships, the antioxidant properties of all catecholic compounds were evaluated in vitro by ABTS assay and on whole cells by DCF fluorometric assay and compared with that of the corresponding already known hydroxytyrosyl derivatives. Results outline that all of the new catechols show antioxidant capacity in vitro higher than that of the corresponding hydroxytyrosyl derivatives. Less evident positive effects have been detected in whole cells experiments. Cytotoxicity experiments, using MTT assay, on a representative set of compounds evidenced no influence in cell survival. PMID:22780104

  11. Synthesis, antifungal activities and qualitative structure activity relationship of carabrone hydrazone derivatives as potential antifungal agents.

    PubMed

    Wang, Hao; Ren, Shuang-Xi; He, Ze-Yu; Wang, De-Long; Yan, Xiao-Nan; Feng, Jun-Tao; Zhang, Xing

    2014-01-01

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents. PMID:24619221

  12. Investigation of the Structure-Activity Relationships of Aza-A-Ring Indenoisoquinoline Topoisomerase I Poisons.

    PubMed

    Beck, Daniel E; Reddy, P V Narasimha; Lv, Wei; Abdelmalak, Monica; Tender, Gabrielle S; Lopez, Sophia; Agama, Keli; Marchand, Christophe; Pommier, Yves; Cushman, Mark

    2016-04-28

    Several indenoisoquinolines have shown promise as anticancer agents in clinical trials. Incorporation of a nitrogen atom into the indenoisoquinoline scaffold offers the possibility of favorably modulating ligand-binding site interactions, physicochemical properties, and biological activities. Four series of aza-A-ring indenoisoquinolines were synthesized in which the nitrogen atom was systematically rotated through positions 1, 2, 3, and 4. The resulting compounds were tested to establish the optimal nitrogen position for topoisomerase IB (Top1) enzyme poisoning activity and cytotoxicity to human cancer cells. The 4-aza compounds were the most likely to yield derivatives with high Top1 inhibitory activity. However, the relationship between structure and cytotoxicity was more complicated since the potency was influenced strongly by the side chains on the lactam nitrogen. The most cytotoxic azaindenoisoquinolines 45 and 46 had nitrogen in the 2- or 3-positions and a 3'-dimethylaminopropyl side chain, and they had MGM GI50 values that were slightly better than the corresponding indenoisoquinoline 64. PMID:27070999

  13. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship.

    PubMed

    Sheng, Ji-Yang; Chen, Tong-Tong; Tan, Xiao-Juan; Chen, Ting; Jia, Ai-Qun

    2015-11-15

    Stilbenoids, known an important phytoalexins in plants, were renowned for their beneficial effects on cardiovascular, neurological and hepatic systems. In the present study, quorum sensing inhibition activity of ten stilbenoids were tested using Chromobacterium violaceum CV026 as the bio-indicator strain and the structure-activity relationship was also investigated. Among them, resveratrol (1), piceatannol (2) and oxyresveratrol (3) showed potential anti-QS activities. At the sub-MIC concentrations, 1-3 demonstrated a statistically significant reduction of violacein in C. violaceum CV026 in a concentration dependent manner. Furthermore, the effects of 1-3 on QS regulated virulence factors in Pseudomonas aeruginosa PAO1 were also evaluated. Our results showed that the stilbenoids 1-3 can markedly decreased the production of pyocyanin and swarming motility of P. aeruginosa PAO1. Further transcriptome analyses showed that 1-3 suppressed the expression of QS-induced genes: lasR, lasI, rhlR and rhlI. PMID:26453007

  14. Comprehensive Analysis of Structure-Activity Relationships of ?-Ketoheterocycles as sn-1-Diacylglycerol Lipase ? Inhibitors.

    PubMed

    Janssen, Freek J; Baggelaar, Marc P; Hummel, Jessica J A; Overkleeft, Herman S; Cravatt, Benjamin F; Boger, Dale L; van der Stelt, Mario

    2015-12-24

    Diacylglycerol lipase ? (DAGL?) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGL? inhibitors are required to study the physiological role of 2-AG. Previously, we identified the ?-ketoheterocycles as potent and highly selective DAGL? inhibitors. Here, we present the first comprehensive structure-activity relationship study of ?-ketoheterocycles as DAGL? inhibitors. Our findings indicate that the active site of DAGL? is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGL? homology model. Altogether, our results may guide the design of future DAGL? inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders. PMID:26584396

  15. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors.

    PubMed

    Singh, Anamika; Kast, Johannes; Dirain, Marvin L S; Huang, Huisuo; Haskell-Luevano, Carrie

    2016-02-17

    The melanocortin system is involved in the regulation of several complex physiological functions. In particular, the melanocortin-3 and -4 receptors (MC3R/MC4R) have been demonstrated to regulate body weight, energy homeostasis, and feeding behavior. Synthetic and endogenous melanocortin agonists have been shown to be anorexigenic in rodent models. Herein, we report synthesis and structure-activity relationship (SAR) studies of 27 nonpeptide small molecule ligands based on an unsymmetrical substituted urea core. Three templates containing key residues from the lead compounds, showing diversity at three positions (R(1), R(2), R(3)), were designed and synthesized. The syntheses were optimized for efficient microwave-assisted chemistry that significantly reduced total syntheses time compared to a previously reported room temperature method. The pharmacological characterization of the compounds on the mouse melanocortin receptors identified compounds 1 and 12 with full agonist activity at the mMC4R, but no activity was observed at the mMC3R when tested up to 100 ?M concentrations. The SAR identified compounds possessing aliphatic or saturated cyclic amines at the R(1) position, bulky aromatic groups at the R(2) position, and benzyl group at the R(3) position resulted in mMC4R selectivity over the mMC3R. The small molecule template and SAR knowledge from this series may be helpful in further design of MC3R/MC4R selective small molecule ligands. PMID:26645732

  16. Molecular-orbital analysis of the electronic structure and determination of quantitative structure-activity and structure-toxicity relationships for water-soluble ionol derivatives

    SciTech Connect

    Bushelev, S.N.

    1985-08-01

    In this paper the authors attempt to establish a quantitative relationship between experimental data on antitumor activity and the toxicity of ionol and its derivatives on the one hand, and on the other hand the electronic structure parameters of the compounds obtained as a result of the quantum chemical calculation.

  17. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides.

    PubMed

    Lal, Jaggi; Gupta, Sushil K; Thavaselvam, D; Agarwal, Dau D

    2013-06-01

    Five series of curcumin derivatives with sulfonamides 3a-3e, 4a-4e, 5a-5e, 6a-6e and 7a-7e have been synthesized and evaluated for in vitro antibacterial activity against selected medically important gram-(+) and gram-(-) bacterial species viz. Staphylococcus aureus, Bacillus cereus, Salmonella typhi, Pseudomonas aeruginosa and Escherichia coli, and antifungal activity against few pathogenic fungal species viz. Aspergillus niger, Aspergillus flavus, Trichoderma viride and Curvularia lunata. The cytotoxicity has been determined by measuring IC50 values against human cell lines HeLa, Hep G-2, QG-56 and HCT-116. Among the compounds screened, 3a-3e showed the most potent biological activity against tested bacteria and fungi. Compounds 3a-3e displayed higher cytotoxicity than curcumin. The curcumin derivatives were also evaluated for in vivo anti-inflammatory activity. In contrast, the compounds 6a-6e and 7a-7e showed dramatically decrease in biological activity. PMID:23685942

  18. Antinociceptive activity and preliminary structure-activity relationship of chalcone-like compounds.

    PubMed

    Corrêa, Rogério; Fenner, Bruna Proiss; Buzzi, Fátima de Campos; Cechinel Filho, Valdir; Nunes, Ricardo José

    2008-01-01

    Chalcones belong to a class of alpha,beta,-unsaturated aromatic ketones which occur abundantly in nature, especially in plants. They are promising and interesting compounds due to their vast applications in pharmaceuticals, agriculture and industry. Several studies have shown that these compounds exert important biological activities in different experimental models. The present work deals with the antinociceptive activity, evaluated against the writhing test, of three series of chalcone-like compounds obtained by the Claisen-Schmidt condensation, using different aldehydes and substituted acetophenones. The results reveal that the compounds synthesized show a significant antinociceptive effect compared with nonsteroidal drugs such as aspirin, paracetamol and diclofenac. They also show that the electronic demand of the substituents is the dominant factor of the biological activity. PMID:19227830

  19. Structure-activity relationships of FMRFamide-related peptides contracting Schistosoma mansoni muscle.

    PubMed

    Day, T A; Maule, A G; Shaw, C; Pax, R A

    1997-01-01

    This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M), and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala1, Ala2, Ala3 and Ala4 YIRFamide; Ala4 and Ala5 RYIRFamide) or had much reduced potencies (Ala1, Ala2 and Ala3 RYIRFamide). Substitution of the N-terminal (Tyr1) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu2, Phe2 or Met2 residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile2 was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe4 with a Tyr4 (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. PMID:9357046

  20. Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs.

    PubMed

    Rawal, R K; Murugesan, V; Katti, S B

    2012-01-01

    In addition to the nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs) and integrase inhibitors (INIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs) have contributed significantly in the treatment of HIV-1 infections. More than 60 structurally different classes of compounds have been identified as NNRTIs, which are specifically inhibiting HIV-1 reverse transcriptase (RT). Five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine and rilpivirine) have been approved by US Food and Drug Administration (FDA) for clinical use. The NNRTIs bind with a specific 'pocket' site of HIV-1 RT (allosteric site) that is closely associated with the NRTI binding site. Due to mutations of the amino acid residues surrounding the NNRTI-binding site, NNRTIs are notorious for rapidly eliciting resistance. Though, the emergence of resistant HIV strains can be circumvented if the NNRTIs are used either alone or in combination with NRTIs (AZT, 3TC, ddI, ddC, TVD or d4T) and PIs (Indinavir, nelfinavir, saquinavir, ritonavir and lopinavir etc.) as shown by both a decrease in plasma HIV-1 RNA levels and increased CD4 T-cells. Here we are going to discuss recent advances in structure activity relationship studies on nevirapine, delavirdine, efavirenz, etravirine, rilpivirine and 4-thiazolidinones (privileged scaffold) HIV-1 NNRTIs. PMID:22998569

  1. The use of structure-activity relationship analysis in the food contact notification program.

    PubMed

    Bailey, Allan B; Chanderbhan, Ronald; Collazo-Braier, Nancy; Cheeseman, M A; Twaroski, Michelle L

    2005-07-01

    Food contact substances (FCS) include polymers, paper and paperboard, and substances used in their manufacture, that do not impart a technical effect on food. Moreover, FCSs are industrial chemicals generally consumed at dietary concentrations (DC) of less than 1mg/kg food (ppm), and more commonly at less than 0.05 ppm (50 ppb), in the daily diet. As such, many industrial chemicals have been analyzed for toxicological concern, some of which may share structural similarity with FCSs or their constituents, and the majority of these studies are available in the public domain. The DCs of these compounds lend themselves to using structure-activity relationship (SAR) analysis, as the available "expert systems" and use of analogs allows for prediction and management of potential carcinogens. This paper describes the newly implemented food contact notification (FCN) program, the program by which FDA reviews FCSs for safe use, the administrative review of FCSs, the SAR tools available to FDA, and qualitative and quantitative risk assessments using SAR analysis within the regulatory framework of reviewing the safety of FCSs. PMID:15935536

  2. Tyrosinase inhibitory effect of benzoic acid derivatives and their structure-activity relationships.

    PubMed

    Khan, Sher Bahadar; Hassan Khan, Mahmud Tareq; Jang, Eui Sung; Akhtar, Kalsoom; Seo, Jongchul; Han, Haksoo

    2010-12-01

    A series of benzoic acid derivatives 1-10 have been synthesised by two different methods. Compounds 1-6 were synthesised by a facile procedure for esterification using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent, methylene chloride as a solvent system and dimethylaminopyridine (DMAP). While 7-10 were synthesised by converting benzoic acid into benzoyl chloride by treating with thionyl chloride in the presence of benzene and performing a further reaction with amine in dried benzene. The structures of all the synthesised derivatives of benzoic acid (1-10) were assigned on the basis of extensive NMR studies. All of them showed inhibitory potential against tyrosinase. Among them, compound 7 was found to be the most potent (1.09 μM) when compared with the standard tyrosinase inhibitors of kojic acid (16.67 μM) and L-mimosine (3.68 μM). Finally in this paper, we have discussed the structure-activity relationships of the synthesised molecules. PMID:20476840

  3. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein

    PubMed Central

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mos; Rizzi, Menico; Ciaramella, Maria

    2015-01-01

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. PMID:26227971

  4. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents.

    PubMed

    Jadhavar, Pradeep S; Dhameliya, Tejas M; Vaja, Maulikkumar D; Kumar, Dinesh; Sridevi, Jonnalagadda Padma; Yogeeswari, Perumal; Sriram, Dharmarajan; Chakraborti, Asit K

    2016-06-01

    2-Styrylquinazolones are reported as a novel class of potent anti-mycobacterial agents. Forty-six target compounds have been synthesized using one pot reaction involving isatoic anhydride, amine, and triethyl orthoacetate followed by aldehyde to construct the 2-styrylquinazolone scaffold. The anti-mycobacterial potency of the compounds was determined against H37Rv strain. Twenty-six compounds exhibited anti-Mtb activity in the range of 0.40-6.25μg/mL. Three compounds 8c, 8d and 8ab showed MIC of 0.78μg/mL and were found to be non-toxic (<50% inhibition at 50μg/mL) to HEK 293T cell lines with the therapeutic index >64. The most potent compound 8ar showed MIC of 0.40μg/mL with the therapeutic index >125. An early structure activity relationship for this class of compounds has been established. The computational studies indicate the possibility of these compounds binding to the penicillin binding proteins (PBPs). PMID:27095514

  5. The nematocidal activity and the structure-activity relationships of stilbenes.

    PubMed

    Kohno, Tukasa; Togashi, Katsumi; Fukamiya, Narihiko

    2007-06-01

    The pinewood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is the causative agent of the pine wilt disease which has been devastating forests of Pinus densiflora Sieb.et Zucc. and P. thunbergii Parl. in Japan. To prevent the pine wilt disease, the development of nematocidal compound is required. Twenty-one synthesized stilbenes (1)-(20), (23), salicylic acid (21), and phenylsalicilate (22) were examined for their nematocidal activity against an isolate of B. xylophilus (T-4). Among the tested compounds, two fluorinated stilbenes (15) and (13), were found to be most potent compounds against T-4, demonstrating 99% and 98% lethality at 10 ppm concentration. The LD50 values of compounds 15 and 13 were 3 ppm, respectively. PMID:17613818

  6. Computational insight into the structure-activity relationship of novel N-substituted phthalimides with gibberellin-like activity.

    PubMed

    Li, Dongling; Du, Shaoqing; Tan, Weiming; Duan, Hongxia

    2015-10-01

    N-substituted phthalimides (NSPs) that show multiple gibberellin (GA)-like effects on the growth and development of higher plants have been reported. These NSPs may represent a potential alternative to commercial GAs. Therefore, in this work, molecular docking and molecular dynamics simulations were used to explore the mode of interaction between some NSPs and the GA receptor GID1A in order to clarify the relationship between structure and GA-like activity in the NSPs. The results obtained demonstrate that both a multiple-hydrogen-bond network and a "hat-shaped" hydrophobic interaction play important roles in the binding of the NSPs to GID1A. The carbonyl group of a phthalimide fragment in the NSPs acted in a similar manner to the pharmacophore group 6-COOH in GAs, forming multiple-hydrogen-bond interactions with residues Ser191 and Tyr322 in the binding domain of GID1A. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to further study the 3D quantitative structure-activity relationship (3D-QSAR) of the NSPs. It was confirmed that the GA-like activity of these NSPs is strongly linked to a few H-bond donor and acceptor field contributions of the NSPs to the H-bond interactions with GID1A. Five new NSP molecules D1-D5 were designed using the binding domain of GID1A and then docked into the receptor. D1 and D4 were shown to have good docking scores due to enhanced hydrophobic contact. We hope that these results will provide useful guidance in the rational design of new NSPs. PMID:26412055

  7. A relational learning approach to Structure-Activity Relationships in drug design toxicity studies.

    PubMed

    Camacho, Rui; Pereira, Max; Costa, Vítor Santos; Fonseca, Nuno A; Adriano, Carlos; Simões, Carlos J V; Brito, Rui M M

    2011-01-01

    It has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship (SAR) studies, using relational Machine Learning (ML) algorithms, have already been shown to be very useful in the complex process of rational drug design. Despite the ML successes, human expertise is still of the utmost importance in the drug development process. An iterative process and tight integration between the models developed by ML algorithms and the know-how of medicinal chemistry experts would be a very useful symbiotic approach. In this paper we describe a software tool that achieves that goal--iLogCHEM. The tool allows the use of Relational Learners in the task of identifying molecules or molecular fragments with potential to produce toxic effects, and thus help in stream-lining drug design in silico. It also allows the expert to guide the search for useful molecules without the need to know the details of the algorithms used. The models produced by the algorithms may be visualized using a graphical interface, that is of common use amongst researchers in structural biology and medicinal chemistry. The graphical interface enables the expert to provide feedback to the learning system. The developed tool has also facilities to handle the similarity bias typical of large chemical databases. For that purpose the user can filter out similar compounds when assembling a data set. Additionally, we propose ways of providing background knowledge for Relational Learners using the results of Graph Mining algorithms. PMID:21926445

  8. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  9. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids.

    PubMed

    Wiley, Jenny L; Marusich, Julie A; Huffman, John W

    2014-02-27

    Originally synthesized for research purposes, indole- and pyrrole-derived synthetic cannabinoids are the most common psychoactive compounds contained in abused products marketed as "spice" or "herbal incense." While CB1 and CB2 receptor affinities are available for most of these research chemicals, in vivo pharmacological data are sparse. In mice, cannabinoids produce a characteristic profile of dose-dependent effects: antinociception, hypothermia, catalepsy and suppression of locomotion. In combination with receptor binding data, this tetrad battery has been useful in evaluation of the relationship between the structural features of synthetic cannabinoids and their in vivo cannabimimetic activity. Here, published tetrad studies are reviewed and additional in vivo data on synthetic cannabinoids are presented. Overall, the best predictor of likely cannabimimetic effects in the tetrad tests was good CB1 receptor affinity. Further, retention of good CB1 affinity and in vivo activity was observed across a wide array of structural manipulations of substituents of the prototypic aminoalkylindole molecule WIN55,212-2, including substitution of an alkyl for the morpholino group, replacement of an indole core with a pyrrole or phenylpyrrole, substitution of a phenylacetyl or tetramethylcyclopropyl group for JWH-018's naphthoyl, and halogenation of the naphthoyl group. This flexibility of cannabinoid ligand-receptor interactions has been a particular challenge for forensic scientists who have struggled to identify and regulate each new compound as it has appeared on the drug market. One of the most pressing future research needs is determination of the extent to which the pharmacology of these synthetic cannabinoids may differ from those of classical cannabinoids. PMID:24071522

  10. Moving around the molecule: Relationship between chemical structure and in vivo activity of synthetic cannabinoids

    PubMed Central

    Wiley, Jenny L.; Marusich, Julie A.; Huffman, John W.

    2013-01-01

    Originally synthesized for research purposes, indole- and pyrrole-derived synthetic cannabinoids are the most common psychoactive compounds contained in abused products marketed as “spice” or “herbal incense.” While CB1 and CB2 receptor affinities are available for most of these research chemicals, in vivo pharmacological data are sparse. In mice, cannabinoids produce a characteristic profile of dose-dependent effects: antinociception, hypothermia, catalepsy and suppression of locomotion. In combination with receptor binding data, this tetrad battery has been useful in evaluation of the relationship between the structural features of synthetic cannabinoids and their in vivo cannabimimetic activity. Here, published tetrad studies are reviewed and additional in vivo data on synthetic cannabinoids are presented. Overall, the best predictor of likely cannabimimetic effects in the tetrad tests was good CB1 receptor affinity. Further, retention of good CB1 affinity and in vivo activity was observed across a wide array of structural manipulations of substituents of the prototypic aminoalkylindole molecule WIN55,212-2, including substitution of an alkyl for the morpholino group, replacement of an indole core with a pyrrole or phenylpyrrole, substitution of a phenylacetyl or tetramethylcyclopropyl group for JWH-018’s naphthoyl, and halogenation of the naphthoyl group. This flexibility of cannabinoid ligand-receptor interactions has been a particular challenge for forensic scientists who have struggled to identify and regulate each new compound as it has appeared on the drug market. One of the most pressing future research needs is determination of the extent to which the pharmacology of these synthetic cannabinoids may differ from those of classical cannabinoids. PMID:24071522

  11. Inhibition of cancer-associated mutant isocitrate dehydrogenases: synthesis, structure-activity relationship, and selective antitumor activity.

    PubMed

    Liu, Zhen; Yao, Yuan; Kogiso, Mari; Zheng, Baisong; Deng, Lisheng; Qiu, Jihui J; Dong, Shuo; Lv, Hua; Gallo, James M; Li, Xiao-Nan; Song, Yongcheng

    2014-10-23

    Mutations of isocitrate dehydrogenase 1 (IDH1) are frequently found in certain cancers such as glioma. Different from the wild-type (WT) IDH1, the mutant enzymes catalyze the reduction of α-ketoglutaric acid to d-2-hydroxyglutaric acid (D2HG), leading to cancer initiation. Several 1-hydroxypyridin-2-one compounds were identified to be inhibitors of IDH1(R132H). A total of 61 derivatives were synthesized, and their structure-activity relationships were investigated. Potent IDH1(R132H) inhibitors were identified with Ki values as low as 140 nM, while they possess weak or no activity against WT IDH1. Activities of selected compounds against IDH1(R132C) were found to be correlated with their inhibitory activities against IDH1(R132H), as well as cellular production of D2HG, with R(2) of 0.83 and 0.73, respectively. Several inhibitors were found to be permeable through the blood-brain barrier in a cell-based model assay and exhibit potent and selective activity (EC50 = 0.26-1.8 μM) against glioma cells with the IDH1 R132H mutation. PMID:25271760

  12. Synthesis and structure-activity relationships of novel 9-oxime acylides with improved bactericidal activity.

    PubMed

    Han, Xu; Lv, Wei; Guo, Si-Yang; Cushman, Mark; Liang, Jian-Hua

    2015-10-01

    9-Oxime acylides have different SAR and binding modes from 9-oxime ketolides. An aminopyridyl or carbamoylpyridyl group anchored at the end of the 9-oxime 2-propargyl group is beneficial for antimicrobial activity. Both the 2-pyridyl and 3-pyridyl groups derived from 3-OH have stacking interactions with the base pair G2505/C2610 (Escherichia coli numbering) of the bacterial rRNA. Compounds 3 presented characteristic features that belong to bactericidal agents when used against constitutive-erm resistant Staphylococcus aureus, susceptible and mef-encoded Streptococcus pneumoniae, inducible-erm resistant Streptococcus pyogenes, and Moraxella catarrhalis. A docking model indicated that the carbamoylpyridyl group of 3h may hydrogen bond to G2061 in addition to π-π stacking over the adenine of A2062 that proved to gate the tunnel for the egress of the nascent peptide. This study suggests that the 9-oxime acylides possess a bactericidal mechanism that is different from the traditional near-complete inhibition of protein synthesis. These studies provide a foundation for the rational design of macrolide antibiotics. PMID:26349628

  13. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity

    PubMed Central

    Ardah, Mustafa T.; Paleologou, Katerina E.; Lv, Guohua; Abul Khair, Salema B.; Kazim, Abdulla S.; Minhas, Saeed T.; Al-Tel, Taleb H.; Al-Hayani, Abdulmonem A.; Haque, Mohammed E.; Eliezer, David; El-Agnaf, Omar M. A.

    2014-01-01

    The aggregation of α-synuclein (α-syn) is considered the key pathogenic event in many neurological disorders such as Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy, giving rise to a whole category of neurodegenerative diseases known as synucleinopathies. Although the molecular basis of α-syn toxicity has not been precisely elucidated, a great deal of effort has been put into identifying compounds that could inhibit or even reverse the aggregation process. Previous reports indicated that many phenolic compounds are potent inhibitors of α-syn aggregation. The aim of the present study was to assess the anti-aggregating effect of gallic acid (GA) (3,4,5-trihydroxybenzoic acid), a benzoic acid derivative that belongs to a group of phenolic compounds known as phenolic acids. By employing an array of biophysical and biochemical techniques and a cell-viability assay, GA was shown not only to inhibit α-syn fibrillation and toxicity but also to disaggregate preformed α-syn amyloid fibrils. Interestingly, GA was found to bind to soluble, non-toxic oligomers with no β-sheet content, and to stabilize their structure. The binding of GA to the oligomers may represent a potential mechanism of action. Additionally, by using structure activity relationship data obtained from fourteen structurally similar benzoic acid derivatives, it was determined that the inhibition of α-syn fibrillation by GA is related to the number of hydroxyl moieties and their position on the phenyl ring. GA may represent the starting point for designing new molecules that could be used for the treatment of PD and related disorders. PMID:25140150

  14. Structure-activity Relationships of Peptidomimetics that Inhibit PPI of HER2-HER3

    PubMed Central

    Kanthala, Shanthi; Gauthier, Ted; Satyanarayanajois, Seetharama

    2014-01-01

    Human epidermal growth factor receptor-2 (HER2) is a tyrosine kinase family protein receptor that is known to undergo heterodimerization with other members of the family of epidermal growth factor receptors (EGFR) for cell signaling. Overexpression of HER2 and deregulation of signaling has implications in breast, ovarian, and lung cancers. We have designed several peptidomimetics to block the HER2-mediated dimerization, resulting in antiproliferative activity for cancer cells. In the present work we have investigated the structure-activity relationships of peptidomimetic analogs of compound 5. Compound 5 was conformationally constrained by N- and C-terminal modification and cyclization as well as by substitution with D-amino acids at the N-and C-termini. Among the compounds studied in this work, a peptidomimetic compound 21 with D-amino acid substitution and its N- and C-termini capped with acetyl and amide functional groups and a reversed sequence compared to that of compound 5 exhibited better antiproliferative activity in HER2-overexpressed breast, ovarian, and lung cancer cell lines. Compound 21 was further evaluated for its protein-protein interaction (PPI) inhibition ability using enzyme fragment complementation (EFC) assay, proximity ligation assay (PLA), and Western blot analysis. Results suggested that compound 21 is able to block HER2:HER3 interaction and inhibit phosphorylation of the kinase domain of HER2. The mode of binding of compound 21 to HER2 protein was modeled using a docking method. Compound 21 seems to bind to domain IV of HER2 near the PPI site of EGFR:HER2 and HER:HER3 and inhibit PPI. PMID:24222531

  15. Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1).

    PubMed

    Arai, Yuki; Endo, Satoshi; Miyagi, Namiki; Abe, Naohito; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Oyama, Masayoshi; Goda, Hiroaki; El-Kabbani, Ossama; Hara, Akira; Matsunaga, Toshiyuki; Ikari, Akira

    2015-03-01

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase superfamily, reduces a variety of carbonyl compounds including therapeutic drugs. CBR1 is involved in the reduction of the anthracycline anticancer drugs to their less anticancer C-13 hydroxy metabolites, which are cardiotoxic. CBR1 inhibitors are thought to be promising agents for adjuvant therapy with twofold beneficial effect in prolonging the anticancer efficacy of the anthracyclines while decreasing cardiotoxicity, a side effect of the drugs. In this study, we evaluated 27 flavonoids for their inhibitory activities of CBR1 in order to explore the structure-activity relationship (SAR). Among them, luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one) showed the most potent inhibition (IC5095nM), which is also more potent compared to all known classes of CBR1 inhibitors. The inhibition of luteolin was noncompetitive with respect to the substrate in the NADPH-dependent reduction direction, but CBR1 exhibited moderate NADP(+)-dependent dehydrogenase activity for some alicyclic alcohols, in which the luteolin inhibition was competitive with respect to the alcohol substrate (Ki59nM). The SAR of the flavonoids indicated that the 7-hydroxy group of luteolin was responsible for the potent inhibition of CBR1. The molecular docking of luteolin in CBR1-NADPH complex showed that theflavonoid binds to the substrate-binding cleft, in which its 7-hydroxy group formed a H-bond with main-chain oxygen of Met234, in addition to H-bond interactions (of its 5-hydroxy and 4-carbonyl groups with catalytically important residues Tyr193 and/or Ser139) and a π-stacking interaction (between its phenyl ring and Trp229). PMID:25549925

  16. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  17. Structure-activity relationship studies of carboxamido-biaryl ethers as opioid receptor antagonists (OpRAs). Part 1.

    PubMed

    Takeuchi, Kumiko; Holloway, William G; McKinzie, Jamie H; Suter, Todd M; Statnick, Michael A; Surface, Peggy L; Emmerson, Paul J; Thomas, Elizabeth M; Siegel, Miles G; Matt, James E; Wolfe, Chad N; Mitch, Charles H

    2007-10-01

    A structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes. PMID:17720493

  18. Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity.

    PubMed

    Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh

    2015-11-15

    Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. PMID:26432036

  19. COMPUTER-ASSISTED STRUCTURE ACTIVITY RELATIONSHIPS OF NITROGENOUS CYCLIC COMPOUNDS TESTED IN SALMONELLA ASSAYS FOR MUTAGENICITY

    EPA Science Inventory

    Study of the relationship between mutagenicity and molecular structure for a data set of nitrogenous cyclic compounds is reported. A computerized SAR system (ADAPT) was utilized to classify a data set of 114 nitrogenous cyclic compounds with 19 molecular descriptors. All of the d...

  20. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona. PMID:25961528

  1. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors.

    PubMed

    Sharma, Sahil; Singh, Jagjeet; Ojha, Ritu; Singh, Harbinder; Kaur, Manpreet; Bedi, P M S; Nepali, Kunal

    2016-04-13

    Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors. PMID:26907156

  2. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents.

    PubMed

    Levet, A; Bordes, C; Clément, Y; Mignon, P; Chermette, H; Marote, P; Cren-Olivé, C; Lantéri, P

    2013-10-01

    REACH regulation requires ecotoxicological data to characterize industrial chemicals. To limit in vivo testing, Quantitative Structure-Activity Relationships (QSARs) are advocated to predict toxicity of a molecule. In this context, the topic of this work was to develop a reliable QSAR explaining the experimental acute toxicity of organic solvents for fish trophic level. Toxicity was expressed as log(LC50), the concentration in mmol.L(-1) producing the 50% death of fish. The 141 chemically heterogeneous solvents of the dataset were described by physico-chemical descriptors and quantum theoretical parameters calculated via Density Functional Theory. The best subsets of solvent descriptors for LC50 prediction were chosen both through the Kubinyi function associated with Enhanced Replacement Method and a stepwise forward multiple linear regressions. The 4-parameters selected in the model were the octanol-water partition coefficient, LUMO energy, dielectric constant and surface tension. The predictive power and robustness of the QSAR developed were assessed by internal and external validations. Several techniques for training sets selection were evaluated: a random selection, a LC50-based selection, a balanced selection in terms of toxic and non-toxic solvents, a solvent profile-based selection with a space filling technique and a D-optimality onions-based selection. A comparison with fish LC50 predicted by ECOSAR model validated for neutral organics confirmed the interest of the QSAR developed for the prediction of organic solvent aquatic toxicity regardless of the mechanism of toxic action involved. PMID:23866172

  3. Utilization of quantitative structure-activity relationships (QSARs) in risk assessment: Alkylphenols

    SciTech Connect

    Beck, B.D.; Toole, A.P.; Callahan, B.G.; Siddhanti, S.K. )

    1991-12-01

    Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromatic ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.

  4. Reactivity parameters in structure-activity relationship-based risk assessment of chemicals.

    PubMed Central

    McKinney, J D

    1996-01-01

    New approaches to the risk assessment process are needed that might be more definitive and satisfying to the scientific community, interest groups, and the public at large. This commentary examines an alternative approach that is based on understanding the relationships of chemical structure and reactivity properties to the toxicokinetic behavior of chemicals in biological systems. This approach is based on the likelihood that there is a limited number of triggering (reactivity) mechanisms by which chemicals can express their toxicity at the molecular level. The fundamental importance of electrophilic character of chemicals as a determinant of their critical molecular reactivities and interactions with biological material in the expression of toxicity is supported. Such an approach also takes advantage of the maturing field of theoretical/computational chemistry in understanding important molecular recognition and reactivity processes (both qualitatively and quantitatively) for chemicals that can underlie their biological/toxicological activity. A process that permits assessment of reaction equivalents delivered to biological systems may hold promise for grouping chemicals by common triggering mechanisms with clearly delineated toxicological endpoints. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. PMID:8875147

  5. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fisheri

    SciTech Connect

    Schultz, T.W.; Cronin, M.T.D.

    1997-02-01

    Acute toxicity values of 16 organic compounds thought to elicit their response via the weak acid respiratory uncoupling mechanism of toxic action were secured from the literature. Regression analysis of toxicities revealed that a measured 5-min V. fisheri potency value can be used as a surrogate for the 30-min value. Regression analysis of toxicity versus hydrophobicity, measured as the 1-octanol/water partition coefficient (log K{sub ow}), was used to formulate a quantitative structure-activity relationship (QSAR). The equation log pT{sub 30}{sup {minus}1} = 0.489(log K{sub ow}) + 0.126 was found to be a highly predictive model. This V. fisheri QSAR is statistically similar to QSARs generated from weak acid uncoupler potency data for Pimephales promelas survivability and Tetrahymena pyriformis population growth impairment. This work, therefore, suggests that the weak acid respiratory uncoupling mechanism of toxic action is present in V. fisheri, and as such is not restricted to mitochondria-containing organisms.

  6. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu S.; Soni, Shivani; Chin, Kenneth T.; Chaudhuri, Padmaparna; Muto, Katherine W.; Berkowitz, Julia; Handlogten, Michael W.; Alves, Nathan J.; Bilgicer, Basar; Dinulescu, Daniela M.; Mashelkar, Raghunath A.; Sengupta, Shiladitya

    2010-01-01

    Cisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation. We engineered a novel polymer, glucosamine-functionalized polyisobutylene-maleic acid, where platinum (Pt) can be complexed to the monomeric units using a monocarboxylato and an O?Pt coordinate bond. We show that at a unique platinum to polymer ratio, this complex self-assembles into a nanoparticle, which releases cisplatin in a pH-dependent manner. The nanoparticles are rapidly internalized into the endolysosomal compartment of cancer cells, and exhibit an IC50 (4.250.16?M) comparable to that of free cisplatin (3.870.37?M), and superior to carboplatin (14.750.38?M). The nanoparticles exhibited significantly improved antitumor efficacy in terms of tumor growth delay in breast and lung cancers and tumor regression in a K-rasLSL/+/Ptenfl/fl ovarian cancer model. Furthermore, the nanoparticle treatment resulted in reduced systemic and nephrotoxicity, validated by decreased biodistribution of platinum to the kidney as quantified using inductively coupled plasma spectroscopy. Given the universal need for a better platinate, we anticipate this coupling of nanotechnology and structure-activity relationship to rationally reengineer cisplatin could have a major impact globally in the clinical treatment of cancer. PMID:20616005

  7. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). PMID:27074054

  8. Quantitative structure-activity relationships for the mutagenicity of propylene oxides with Salmonella.

    PubMed

    Hooberman, B H; Chakraborty, P K; Sinsheimer, J E

    1993-04-01

    A quantitative structure-activity relationship approach was used to investigate the mutagenicity of a series of seventeen-monosubstituted propylene oxides in Salmonella typhimurium strains TA100 and TA1535. Mutagenicity in strain TA100, using a liquid suspension assay, was found to correlate with chemical reactivity, as measured by the rates of reaction with two model bionucleophiles, nicotinamide and 4-(4-nitrobenzyl)pyridine. However, since the reactivity of three of the epoxides did not correlate to their Taft sigma * values, as a measure of the electronic effects of substituent groups, neither was their mutagenicity predicted by this substituent constant. The relative mutagenicity for the propylene oxides was different in the liquid suspension assay than that determined by the standard plate incorporation assay and also differed between the two bacterial strains. The assay differences were attributed to epoxide stability. The differences between strains was observed to be due to the response of the error-prone repair system, found only in TA100, to the stronger alkylating agents. PMID:7680427

  9. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer. PMID:26773437

  10. [Rough sets theory in the analysis of structure-activity relationships of quaternary quinolinium- and isoquinolinium compounds].

    PubMed

    Krysinski, J

    1991-11-01

    Relationship between chemical structure and antimicrobial activity of 72 quaternary quinolinium and isoquinolinium compounds is analyzed using the theory of rough sets. The compounds are described by 11 attributes concerning structure and are divided into 3 classes of activity. The description builds up on information system. Using the rough sets approach a smallest set of attributes significant for a high quality of classification has been found. A decision algorithm has been driven from the information system showing up important relations between structure and activity. This may be helpful in supporting decisions concerning synthesis of new antimicrobial compounds. PMID:1804057

  11. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.

    PubMed

    Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard

    2015-11-17

    The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes. PMID:26451961

  12. Structure-activity relationship studies toward the discovery of selective apelin receptor agonists.

    PubMed

    Margathe, Jean-Franois; Iturrioz, Xavier; Alvear-Perez, Rodrigo; Marsol, Claire; Rich, Stphanie; Chabane, Hadjila; Tounsi, Nassera; Kuhry, Maxime; Heissler, Denis; Hibert, Marcel; Llorens-Cortes, Catherine; Bonnet, Dominique

    2014-04-10

    Apelin is the endogenous ligand for the previously orphaned G protein-coupled receptor APJ. Apelin and its receptor are widely distributed in the brain, heart, and vasculature, and are emerging as an important regulator of body fluid homeostasis and cardiovascular functions. To further progress in the pharmacology and the physiological role of the apelin receptor, the development of small, bioavailable agonists and antagonists of the apelin receptor, is crucial. In this context, E339-3D6 (1) was described as the first nonpeptidic apelin receptor agonist. We show here that 1 is actually a mixture of polymethylated species, and we describe an alternative and versatile solid-phase approach that allows access to highly pure 27, the major component of 1. This approach was also applied to prepare a series of derivatives in order to identify the crucial structural determinants required for the ligand to maintain its affinity for the apelin receptor as well as its capacity to promote apelin receptor signaling and internalization. The study of the structure-activity relationships led to the identification of ligands 19, 21, and 38, which display an increased affinity compared to that of 27. The latter and 19 behave as full agonists with regard to cAMP production and apelin receptor internalization, whereas 21 is a biased agonist toward cAMP production. Interestingly, the three ligands display a much higher stability in mouse plasma (T1/2 > 10 h) than the endogenous apelin-17 peptide 2 (T1/2 < 4 min). PMID:24625069

  13. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters.

    PubMed

    Puterka, Gary J; Farone, William; Palmer, Tracy; Barrington, Anthony

    2003-06-01

    Synthetic sugar esters are a relatively new class of insecticidal compounds that are produced by reacting sugars with fatty acids. The objective of this research was to determine how systematic alterations in sugar or fatty acid components of sugar ester compounds influenced their insecticidal properties. Sucrose octanoate, sorbitol octanoate, sorbitol decanoate, sorbitol caproate, xylitol octanoate, xylitol decanoate and xylitol dodecanoate were synthesized and evaluated against a range of arthropod pests. Dosage-mortality studies were conducted on pear psylla (Cacopsylla pyricola Foerster) on pear, tobacco aphid (Myzus nicotianae) Blackman and tobacco hornworm (Manduca sexta [Johannson]) on tobacco, and twospotted spider mite (Tetranychus urticae Koch) on apple in laboratory bioassays. These sugar esters were compared with insecticidal soap (M-Pede, Dow AgroSciences L.L.C., San Diego, CA), to determine how toxicologically similar these materials were against the arthropod pests. Substitutions in either the sugar or fatty acid component led to significant changes in the physical properties and insecticidal activity of these compounds. The sugar esters varied in their solubility in water and in emulsion stability, yet, droplet spread upon pear leaves occurred at low concentrations of 80-160 ppm and was strongly correlated with psylla mortalities (R2 = 0.73). Sequentially altering the sugar or fatty acid components from lower to higher numbers of carbon chains, or whether the sugar was a monosaccharide or disaccharide did not follow a predictable relationship to insecticidal activity. Intuitively, changing the hydrophile from sorbitol (C6) to xylitol (C5) would require a decrease in lipophile chain length to maintain hydrophilic-lipophilic balance (HLB) relationships, yet an increase in lipophile chain length was unexpectedly needed for increasing insecticidal activity. Thus, the HLB of these materials did not correlate with pear psylla mortalities. Initial insect bioassays and dosage-mortality data found significant differences among sugar ester compounds' toxicity to the range of arthropod species. Sucrose octanoate high in monoester content had the highest activity against the range of arthropod pests at low concentrations of 1200-2400 ppm. No single chemical structure for the xylitol or sorbitol esters were optimally effective against the range of arthropods we tested and sorbitol octanoate and xylitol decanoate had the highest insecticidal activity of this group. All of the sugar ester materials produced high T. urticae mortalities on apple at very low concentrations of 400 ppm. Overall, most of the sugar esters that were examined had superior insecticidal activity compared with insecticidal soap. Sugar ester chemistry offers a unique opportunity to design an insecticide or miticide specific to certain arthropod pests which would be valuable in crop integrated pest management (IPM) programs. Sucrose esters are currently used as additives in the food industry which makes them especially attractive as safe and effective insecticides. PMID:12852599

  14. Actinomycin Analogues Containing Pipecolic Acid: Relationship of Structure to Biological Activity

    PubMed Central

    Formica, Joseph V.; Shatkin, Aaron J.; Katz, Edward

    1968-01-01

    Streptomyces antibioticus synthesizes a mixture of actinomycins which differ at the “imino acid” site of the peptide chains. In the presence of exogenous pipecolic acid, several new actinomycins were synthesized and 70% of the proline in the antibiotic mixture was replaced by the analogue. Three new antibiotics (designated Pip 1α, Pip 1β, and Pip 2) were isolated from culture filtrates, purified, and crystallized. The molar ratio of pipecolic acid to proline was: Pip 1α, 1:0; Pip 1β, 1:1; Pip 2, 2:0. These compounds inhibited the growth and cell division of gram-positive, but not gram-negative, bacteria. The relative inhibitory activity against bacteria, Escherichia coli deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase in vitro, and RNA synthesis in Bacillus subtilis and mouse L-929 cells was: actinomycin IV = Pip 1β > Pip 2 > Pip 1α. Protein synthesis in B. subtilis was less affected, and DNA synthesis was inhibited only at higher concentrations of antibiotic tested. In L cells, DNA formation was reduced less than RNA synthesis, whereas protein synthesis was not blocked under the experimental conditions employed. Kinetic studies with B. subtilis revealed that RNA synthesis was inhibited rapidly followed by an inhibition of protein synthesis. All four antibiotics markedly inhibited the replication of vaccinia virus and reovirus in tissue culture cells, but the production of poliovirus was resistant to the antibiotics. These actinomycins bind to DNA, resulting in an elevation of its Tm and a decrease in the peak extinction of the actinomycins. The mode of action, as well as the structure-activity relationships among the actinomycins, are discussed relative to a previously proposed model of binding. PMID:4174667

  15. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    SciTech Connect

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish). Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.

  16. Structural Elucidation and Structure-Anti-inflammatory Activity Relationships of Cembranoids from Cultured Soft Corals Sinularia sandensis and Sinularia flexibilis.

    PubMed

    Tsai, Tsung-Chang; Chen, Hsueh-Yu; Sheu, Jyh-Horng; Chiang, Michael Y; Wen, Zhi-Hong; Dai, Chang-Feng; Su, Jui-Hsin

    2015-08-19

    New cembranoids 4-carbomethoxyl-10-epigyrosanoldie E (1), 7-acetylsinumaximol B (2), diepoxycembrene B (6), dihydromanaarenolide I (8), and isosinulaflexiolide K (9), along with 11 known related metabolites, were isolated from cultured soft corals Sinularia sandensis and Sinularia flexibilis. The structures were elucidated by means of infrared, mass spectrometry, and nuclear magnetic resonance techniques, and the absolute configurations of 1, 4, 9, and 15 were further confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of these coral metabolites and comparison with known analogues showed that one hypothesis (that cembrane diterpenes possessing an absolute configuration of an isopropyl group at C1 obtained from Alcyonacean soft corals belong to the ? series, whereas analogues isolated from Gorgonacean corals belong to the ? series) is not applicable for a small number of cembranoids. An in vitro anti-inflammatory study using LPS-stimulated macrophage-like cell line RAW 264.7 revealed that compounds 9-14 significantly suppressed the accumulation of pro-inflammatory proteins, iNOS and COX-2. Structure-activity relationship analysis indicated that cembrane-type compounds with one seven-membered lactone moiety at C-1 are potential anti-inflammatory agents. This is the first culture system in the world that has successfully been used to farm S. sandensis. PMID:26260702

  17. Three dimensional quantitative structure-activity relationships of sulfonamides binding monoclonal antibody by comparative molecular field analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs, binding a monoclonal antibody (MabSMR) produced against sulfamerazine was carried out by comparative molecular field analysis (CoMFA). The affinities of MabSMR, expressed as Log10IC50, for 17 ...

  18. Synthesis and structure-activity relationships of 8-azabicyclo[3.2.1]octane benzylamine NK1 antagonists.

    PubMed

    Thomson, Christopher G; Carlson, Emma; Chicchi, Gary G; Kulagowski, Janusz J; Kurtz, Marc M; Swain, Christopher J; Tsao, Kwei-Lan C; Wheeldon, Alan

    2006-02-15

    A series of 8-azabicyclo[3.2.1]octane amine hNK1 antagonists has been investigated and structure-activity relationships of the benzylamine and 6-exo substituents described. Acidic substituents at C6 give a series of high affinity compounds for hNK1 with selectivity over the hERG channel. PMID:16307878

  19. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants.

    PubMed

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  20. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  1. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  2. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  3. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  4. Quantitative structure-activity relationships for organophosphates binding to trypsin and chymotrypsin.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Gearhart, Jeffery M

    2011-01-01

    Organophosphate (OP) nerve agents such as sarin, soman, tabun, and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) do not react solely with acetylcholinesterase (AChE). Evidence suggests that cholinergic-independent pathways over a wide range are also targeted, including serine proteases. These proteases comprise nearly one-third of all known proteases and play major roles in synaptic plasticity, learning, memory, neuroprotection, wound healing, cell signaling, inflammation, blood coagulation, and protein processing. Inhibition of these proteases by OP was found to exert a wide range of noncholinergic effects depending on the type of OP, the dose, and the duration of exposure. Consequently, in order to understand these differences, in silico biologically based dose-response and quantitative structure-activity relationship (QSAR) methodologies need to be integrated. Here, QSAR were used to predict OP bimolecular rate constants for trypsin and α-chymotrypsin. A heuristic regression of over 500 topological/constitutional, geometric, thermodynamic, electrostatic, and quantum mechanical descriptors, using the software Ampac 8.0 and Codessa 2.51 (SemiChem, Inc., Shawnee, KS), was developed to obtain statistically verified equations for the models. General models, using all data subsets, resulted in R(2) values of .94 and .92 and leave-one-out Q(2) values of 0.9 and 0.87 for trypsin and α-chymotrypsin. To validate the general model, training sets were split into independent subsets for test set evaluation. A y-randomization procedure, used to estimate chance correlation, was performed 10,000 times, resulting in mean R(2) values of .24 and .3 for trypsin and α-chymotrypsin. The results show that these models are highly predictive and capable of delineating the complex mechanism of action between OP and serine proteases, and ultimately, by applying this approach to other OP enzyme reactions such as AChE, facilitate the development of biologically based dose-response models. PMID:21120745

  5. Structure-activity relationship for two lipoxygenase inhibitors and their potential for inducing nephrotic syndrome.

    PubMed

    Morley, T J; Evans, G O; Goodwin, D A; Read, N G; Hodgson, S T; Hawksworth, G M

    1997-10-01

    In a study of structure-activity relationship with drug-induced nephropathy two lipoxygenase inhibitors, the N-hydroxyurea derivative 70C ((E)-N-{3-[3-(4-fluorophenoxy) phenyl]-1-(R, S)-methylprop-2-enyl}-N-hydroxyurea) and the N-hydroxamic acid analogue 360C ((E)-N-{3-[3-(4-fluorophenoxy) phenyl]-1-(R, S)-methylprop-2-enyl}-N-hydroxamic acid), were administered to rats. 70C and 360C were dosed to female Wistar rats at 100 mg/kg po daily for 7 days. Another group of rats was given a single intravenous bolus dose of puromycin aminonucleoside (PAN) at 100 mg/kg. Urine samples were collected from all groups during the study and plasma samples were collected after 7 days. Kidneys were excised and fixed for examination by electron microscopy. 70C- and PAN-treated groups both showed early changes in the glomeruli, in which the visceral cells appeared enlarged and showed varying degrees of foot process loss. This foot process loss was associated with decreases in total plasma protein and albumin and increases in the plasma cholesterol, triglycerides, creatinine, and urea were recorded. Marked proteinuria was observed in both the 70C and PAN groups. The foot process loss together with increased proteinuria, hypoalbuminemia, hypercholesterolemia, and lipemia are all characteristic of the human condition, Minimal Change Nephrotic Syndrome. All the biochemical and morphological investigations showed that 360C-treated rats were similar to the control group, suggesting that the hydroxyurea moiety of 70C is responsible, either directly or indirectly, for the induction of the nephrotic syndrome seen in rats. PMID:9344898

  6. Application of quantitative structure--activity relationships for assessing the aquatic toxicity of phthalate esters.

    PubMed

    Parkerton, T F; Konkel, W J

    2000-01-01

    Phthalate esters (PEs) are an important class of industrial chemicals for which an extensive aquatic toxicity database is available. The objectives of this study were to use these data to develop quantitative structure-activity relationships (QSARs) that describe aquatic toxicity for different freshwater and marine species, gain insights into toxicity mechanisms, and calculate PE water quality criteria using statistical extrapolation procedures. Results for low-molecular-weight PEs with log Kow<6 indicate that toxicity data conform to a simple log Kow-dependent QSAR. Fish were found to be more sensitive than algae while invertebrates spanned a wide range in toxicological response. Freshwater and marine species demonstrated a similar distribution of sensitivities. Comparison of species-dependent QSARs supports the hypothesis that biotransformation plays an important role in explaining toxicity differences observed between species. Estimated critical body residues (CBRs) for parent PE in fish were in the range reported for other polar organic chemicals while CBRs for parent PE plus associated metabolites were in the range reported for nonpolar narcotics (i.e., baseline toxicity) suggesting a possible putative role of PE metabolites. Depending on extrapolation procedure and assumptions, predicted no-effect concentrations (PNECs) for dimethyl, diethyl, dibutyl, and butybenzyl phthalate ranged from 3109 to 4780, 865 to 1173, 43 to 62, and 38 to 60 microg l(-1), respectively. PNECs derived using this approach provide a transparent technical basis to support aquatic risk assessment for low-molecular-weight PEs. Results for high-molecular-weight PEs (log Kow>6) indicate that these chemicals are not acutely or chronically toxic to freshwater or marine organisms due to the combined role of low water solubility and limited bioconcentration potential which precludes attainment of internal concentrations that are required to elicit adverse effects. It is concluded that attempts to establish aquatic PNECs for high-molecular-weight PEs are not scientifically defensible. PMID:10677269

  7. Synthesis, Biological Evaluation and Structure-Activity Relationships of Dithiolethiones as Inducers of Cytoprotective Phase 2 Enzymes

    PubMed Central

    Munday, Rex; Zhang, Yuesheng; Paonessa, Joseph D.; Munday, Christine M.; Wilkins, Alistair L.; Babu, Jacob

    2010-01-01

    Dithiolethiones are a family of promising cancer chemopreventive agents, and induction of Phase 2 enzymes is key to their chemopreventive activities. Two dithiolethiones have been evaluated in humans for cancer prevention. While some chemopreventive activities were detected in several human studies, potential side effects are a concern. Herein, we report structure-activity relationships of 25 dithiolethiones. Several compounds show exceedingly potent and bladder specific activity in Phase 2 enzyme induction. Structural features responsible for such activity, as well as those inhibiting the activity, are discussed. Moreover, the compounds activate and depend on Nrf2 for their inductive activities. Nrf2 is a major transcriptional stimulator of cytoprotective genes and is critical for cancer prevention. Thus, several new dithiolethiones that are highly promising for bladder cancer prevention have been identified. Because the compounds act specifically in the bladder, the likelihood of potential systemic toxicity may be low. PMID:20481594

  8. Systematic characterization of structure-activity relationships and ADMET compliance: a case study.

    PubMed

    Yongye, Austin B; Medina-Franco, José L

    2013-08-01

    Traditionally, activity landscape modeling has been focused on analyzing SAR, despite the fact that lead optimization in drug discovery involves concurrent enhancements of activity and ADMET properties of leads. As a case study, we discuss the systematic analysis of activity landscapes, incorporating ADMET considerations, using a dataset of 166 compounds screened for kappa-opioid receptor activity. Pairwise MACCS/Tanimoto structure similarities, property similarities utilizing 33 ADMET descriptors and a 35-dimensional 'violation bit vector' representing drug-likeness are analyzed. We address the question about the range of ADMET property violations that arise from structural changes, subtle and significant. Pairs of compounds are identified bearing identical, comparable and significantly different drug-likeness in the three informative regions of structure-activity landscapes. PMID:23583765

  9. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action.

    PubMed

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-?B and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure-activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  10. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  11. [Discussion on correlation between preparation, in vivo conversion process and potential structure-activity relationship of ginsenoside].

    PubMed

    Jin, Xin; Zhang, Zhen-Hai; Sun, E; Liu, Qi-Yuan; Jia, Xiao-Bin

    2013-02-01

    Ginseng is one of traditional Chinese medicines widely used worldwide according to the theory that "food and medicine share the same origin". Its main active ingredients are believed to be ginsenoside. In the past decades, studies on their chemical structure and pharmacological activity have made significant progress. So far, however, there is not a specific describtion on ginseng preparation and in vivo conversion process as well as an explanation on why rare ginsenoside can enhance anticancer activity. Therefore, this essay first describes the diversity of ginsenoside contained in ginseng, including natural ginsenoside, special ginsenoside generated from preparation and bioconversion processes. Subsequently, it summarizes the preparation and in vitro conversion processes, and discusses the potential structure-activity relationship between rare ginsenoside and its pharmacological activity. The study on the correlation between these chemical changes and their pharmacological activity help bring forth new ideas to the enhancement of anticancer activity of ginsenoside, and facilitate the development of new anticancer drugs. PMID:23667999

  12. Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships.

    PubMed

    Ferriola, P C; Cody, V; Middleton, E

    1989-05-15

    Protein kinase C (PKC) from rat brain was inhibited by plant flavonoids in a concentration-dependent manner depending on flavonoid structure. Of the fifteen flavonoids studied, fisetin, quercetin and luteolin were the most potent, while hesperetin, taxifolin and rutin were among the least potent. The flavonol fisetin was almost 100% inhibitory at a concentration of 100 microM. The extent of inhibition was the same whether diacylglycerol or 12-O-tetradecanoylphorbol-13-acetate was used as enzyme activator. Inhibition was independent of Ca2+, phospholipid, and enzyme activator, as shown by inhibition of protamine phosphorylation in the absence of the regulatory components. Fisetin was a competitive inhibitor with respect to ATP binding and noncompetitive with respect to protein substrate. The X-ray crystal structure analysis of hesperetin monohydrate showed that the molecule is essentially planar despite the sofa conformation of the gamma-pyran ring and the 27 degrees twist of the 2-phenyl ring. Comparison of this inactive flavanone with those of the active flavones showed that, although hesperetin can adopt a planar profile similar to those of fisetin and quercetin, the 4'-methoxy substituent blocks an essential structural feature required for inhibitory activity. Analysis of these structure-activity data revealed a model of the minimal essential features required for PKC inhibition by flavonoids: a coplanar flavone structure with free hydroxyl substituents at the 3', 4' and 7-positions. PMID:2730676

  13. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells.

    PubMed

    Perucca, Paola; Savio, Monica; Cazzalini, Ornella; Mocchi, Roberto; Maccario, Cristina; Sommatis, Sabrina; Ferraro, Daniela; Pizzala, Roberto; Pretali, Luca; Fasani, Elisa; Albini, Angelo; Stivala, Lucia Anna

    2014-11-01

    The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O₂ partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue. PMID:25105482

  14. Determination of the Biological Activity and Structure Activity Relationships of Drugs Based on the Highly Cytotoxic Duocarmycins and CC-1065

    PubMed Central

    Tietze, Lutz F.; Krewer, Birgit; von Hof, J. Marian; Frauendorf, Holm; Schuberth, Ingrid

    2009-01-01

    The natural antibiotics CC?1065 and the duocarmycins are highly cytotoxic compounds which however are not suitable for cancer therapy due to their general toxicity. We have developed glycosidic prodrugs of seco-analogues of these antibiotics for a selective cancer therapy using conjugates of glycohydrolases and tumour-selective monoclonal antibodies for the liberation of the drugs from the prodrugs predominantly at the tumour site. For the determination of structure activity relationships of the different seco-drugs, experiments addressing their interaction with synthetic DNA were performed. Using electrospray mass spectrometry and high performance liquid chromatography, the experiments revealed a correlation of the stability of these drugs with their cytotoxicity in cell culture investigations. Furthermore, it was shown that the drugs bind to AT-rich regions of double-stranded DNA and the more cytotoxic drugs induce DNA fragmentation at room temperature in several of the selected DNA double-strands. Finally, an explanation for the very high cytotoxicity of CC-1065, the duocarmycins and analogous drugs is given. PMID:22069536

  15. Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum.

    PubMed

    Peng, Qiang; Liu, Hang; Lei, Hongjie; Wang, Xiaoqin

    2016-03-01

    An immunologically active arabinogalactan (LRGP3) was selectively degraded by acetolysis, mild acid hydrolysis and enzymatic digestion. After exo-?-l-arabinofuranosidase digestion, 56% of the arabinosyl chains were released. The resistant product (LRGP3-AF) had markedly increased complement fixating activities. The acid hydrolysis product (LRGP3-T) contained (1?3)-linked (17.6%), (1?6)-linked (23.1%), (1?3,6)-linked (30.1%) and terminal (29.2%) galactosyl residues, and its complement fixating activity was lower than that of LRGP3-AF. The side chains (Oligo-S) consisted of arabinose, galactose, and rhamnose in the molar ratios 16.8:1.4:1.0. The complement fixating activity of Oligo-S was weak, but Oligo-S had potent macrophage stimulation activity. Degradation of arabinosyl residues in LRGP3 decreased the macrophage stimulation activity, but the galactan backbone still expressed partial activity. The results demonstrated that the galactan backbone of the polymer might be essential for the expression of complement fixating activity and the arabinosyl side chains could be more responsible for the macrophage activation activity. There may be several structurally different active sites involved in the immunological activity of LRGP3. PMID:26471597

  16. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  17. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at rat A3 receptors. The model presented here, which is consistent with the detailed SAR found in this study, may serve to suggest future chemical modification, site-directed mutagenesis, and SAR studies to further define essential characteristics of the ligand-receptor interaction and to develop even more potent and selective A3 receptor ligands. PMID:8022403

  18. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: Identification, functional expression, and structure-activity relationships of ligand analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone biosynthesis activating neuropeptide (PBAN) promotes synthesis and release of sex pheromones in moths. We have identified and functionally expressed a PBAN receptor from Heliothis virescens (HevPBANR) and elucidated structure-activity relationships of PBAN analogs. Screening of a larval C...

  19. Design, Synthesis, and Structure-Activity Relationship of Substrate Competitive, Selective, and in Vivo Active Triazole and Thiadiazole inhibitors of the c-Jun N-Terminal Kinase

    PubMed Central

    De, Surya K.; Stebbins, John L.; Chen, Li-Hsing; Riel-Mehan, Megan; Machleidt, Thomas; Dahl, Russell; Yuan, Hongbin; Emdadi, Aras; Barile, Elisa; Chen, Vida; Murphy, Ria; Pellecchia, Maurizio

    2009-01-01

    We report comprehensive structure activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. The compounds are substrate competitive inhibitors that bind to the docking site of the kinase. The reported medicinal chemistry and structure-based optimizations studies resulted in the discovery of selective and potent thiadiazole JNK inhibitors that displays promising in vivo activity in mouse models of insulin insensitivity. PMID:19271755

  20. Perovskite-supported palladium for methane oxidation - structure-activity relationships.

    PubMed

    Eyssler, Arnim; Lu, Ye; Matam, Santhosh Kumar; Weidenkaff, Anke; Ferri, Davide

    2012-01-01

    Palladium is the precious metal of choice for methane oxidation and perovskite-type oxides offer the possibility to stabilize it as PdO, considered crucial for catalytic activity. Pd can adopt different oxidation and coordination states when associated with perovskite-type oxides. Here, we review our work on the effect of perovskite composition on the oxidation and coordination states of Pd and its influence on catalytic activity for methane oxidation in the case of typical Mn, Fe and Co perovskite-based oxidation catalysts. Especially X-ray absorption near edge structure (XANES) spectroscopy is shown to be crucial to fingerprint the different coordination states of Pd. Pd substitutes Fe and Co in the octahedral sites but without modifying catalytic activity with respect to the Pd-free perovskite. On LaMnO(3) palladium is predominantly exposed at the surface thus bestowing catalytic activity for methane oxidation. However, the occupancy of B-cation sites of the perovskite structure by Pd can be exploited to cyclically activate Pd and to protect it from particle growth. This is explicitly demonstrated for La(Fe, Pd)O(3), where catalytic activity for methane oxidation is enhanced under oscillating redox conditions at 500 °C, therefore paving the way to the practical application in three-way catalysts for stoichiometric natural gas engines. PMID:23211725

  1. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  2. Sedative effects of inhaled essential oil components of traditional fragrance Pogostemon cablin leaves and their structure-activity relationships.

    PubMed

    Ito, Ken; Akahoshi, Yasuko; Ito, Michiho; Kaneko, Shuji

    2016-04-01

    Plants rich in essential oils, such as Pogostemon cablin (P. cablin; guǎng huò xiāng), have been used for aromas and as herbal medicines since ancient times because of their sedative effects. We investigated the sedative effects of hexane extract from P. cablin using locomotor activity in mice. Inhalation of P. cablin hexane extract exhibited significant sedative activity in a dose-dependent manner. In order to isolate the active constituents, the extract was fractionated and diacetone alcohol was identified as an active compound. Inhalation of diacetone alcohol significantly reduced murine locomotor activity in a dose-dependent manner, and this effect was not observed in olfaction-impaired mice. We examined the structure-activity relationship of diacetone alcohol and similar compounds. The ketone group at the two-position and number of carbons may play important roles in the sedative activity of diacetone alcohol. PMID:27114936

  3. Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues.

    PubMed

    Chen, J; Falla, T J; Liu, H; Hurst, M A; Fujii, C A; Mosca, D A; Embree, J R; Loury, D J; Radel, P A; Cheng Chang, C; Gu, L; Fiddes, J C

    2000-01-01

    Protegrin antimicrobial peptides possess activity against gram-positive and gram-negative bacteria and yeasts. An extensive structure-activity relationship (SAR) study was conducted on several hundred protegrin analogues to gain understanding of the relationship between the primary and secondary structure of the protegrins and their antimicrobial activities, and to identify a protegrin analogue for clinical development. Native sequence protegrins are cationic, amphiphilic peptides that are characterized by the presence of a beta-sheet structure that is maintained by two disulfide bridges. The presence of the beta-sheet is key to the stability of the protegrin structure; linearized analogues or analogues that have amino acid substitutions that eliminate hydrogen bonding across the beta-sheet have reduced activity, especially in the presence of physiological concentrations of NaCl. Also, maintaining amphiphilicity of the beta-sheet is key; analogues with substitutions of polar amino acids in the hydrophobic face have reduced activity. Analogues with reduced positive charge tend to be less active, an observation that is more marked for gram-negative than gram-positive bacteria, and may implicate binding to lipopolysaccharide as a key mechanistic step in the killing of gram-negative bacteria. A very large number of amino acid substitutions are tolerated by the protegrin structure, implying that overall structural features such as amphiphilicity, charge, and shape are more important to activity than the presence of specific amino acids. This lack of importance of specific stereochemistry is supported by the fact that completely D-amino acid substituted protegrins are fully potent. Based on the SAR studies, and on the microbiological data from an animal model, one protegrin analogue, IB-367, was selected for clinical development as a topical agent to prevent the oral mucositis associated with cancer therapy. PMID:10931444

  4. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS

    EPA Science Inventory

    The demonstrated ability of a variety of structurally diverse chemicals to bind to the estrogen receptor has raised the concern that chemicals in the environment may be causing adverse effects through interference with nuclear receptor pathways. Many structure-activity relationsh...

  5. Dynamic structural and functional relationships in recombinant plasminogen activator inhibitor-1 (rPAI-1).

    PubMed

    Vaughan, D E; Declerck, P J; Reilly, T M; Park, K; Collen, D; Fasman, G D

    1993-10-01

    The conformational characteristics of active, latent, and denatured recombinant plasminogen activator inhibitor-1 (rPAI-1) were compared using UV spectroscopy, spectrofluorimetry and circular dichroism (CD) techniques. The UV absorbance wavelength maxima in all preparations approximated 280 nm, while the extinction coefficients of active and latent rPAI-1 differed by up to 60%. When incubated at 37 degrees C, the A280 of latent rPAI-1 was quite stable while the A280 of active rPAI-1 spontaneously increased, eventually approximating that of latent rPAI-1. Alkali difference spectroscopy yielded markedly divergent titration patterns for active and latent rPAI-1, suggesting that the tyrosine residues present in active and latent rPAI-1 differ in terms of solvent exposure. At an excitation wavelength of 280 nm, active rPAI-1 exhibited the greatest relative fluorescence quantum yield. The relative fluorescence of latent and denatured rPAI-1 were less than that of active PAI-1, and the emission maxima of both species were slightly red-shifted in comparison to that of active rPAI-1, suggesting that at least one of the four tryptophan residues present in rPAI-1 is less exposed to the aqueous environment in the active form of the molecule. In contrast, the derived secondary structures based on CD of active and latent rPAI-1 were nearly identical, with both moieties exhibiting approx. 40% alpha-helix and 15% beta-sheet. Taken together, these spectroscopic data provide evidence supporting the hypothesis that active and latent PAI-1 differ in terms of their tertiary conformation and aromatic residue exposure, while their secondary structures appear generally comparable. Furthermore, denaturant-induced reactivation of latent rPAI-1 produces a partially active rPAI-1 with spectroscopic properties similar to that of latent rPAI-1, suggesting that denatured rPAI-1 more closely resembles the latent rPAI-1 conformation after refolding. The spontaneous spectroscopic changes observed in rPAI-1 may reflect conformational transitions that are critical to the regulation of endogenous PAI-1 activity. PMID:8399383

  6. Screening structural-functional relationships of neuropharmacologically active organic compounds at the nicotinic acetylcholine receptor.

    PubMed

    Barrantes, G E; Ortells, M O; Barrantes, F J

    1997-03-01

    The mechanisms of action and pharmacological effects on the nicotinic cholinoceptor of a large database of organic compounds were analyzed using a new computational procedure. This procedure is a screening method based on comparison of the molecular structures (shape and charge) of the putative active organic compounds. The resulting predictions can be used as an exploratory tool in the design of experiments aimed at testing the effects of several compounds on a target macromolecule. Unlike a conventional database search for structural similarities, the present method is able to circumscribe objectively the results to the most statistically significant molecules. PMID:9175605

  7. Computational identification of RNA functional determinants by three-dimensional quantitative structure-activity relationships.

    PubMed

    Blanchet, Marc-Frdrick; St-Onge, Karine; Lisi, Vronique; Robitaille, Julie; Hamel, Sylvie; Major, Franois

    2014-01-01

    Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin-ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data. PMID:25200082

  8. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  9. Design, Synthesis and Structure-Activity Relationship Optimization of Lycorine Derivatives for HCV Inhibition

    PubMed Central

    Chen, Duozhi; Cai, Jieyun; Cheng, Junjun; Jing, Chenxu; Yin, Junlin; Jiang, Jiandong; Peng, Zonggen; Hao, Xiaojiang

    2015-01-01

    Lycorine is reported to be a multifunctional compound. We previously showed that lycorine is an HCV inhibitor with strong activity. Further research on the antivirus mechanism indicated that lycorine does not affect the enzymes that are indispensable to HCV replication but suppresses the expression of Hsc70 in the host cell to limit HCV replication. However, due to the cytotoxicity and apoptosis induction of lycorine, lycorine is unsafe to be a anti-HCV agent for clinical application. As a result of increasing interest, its structure was optimized for the first time and a novel series of lycorine derivatives was synthesized, all of which lost their cytotoxicity to different degrees. Structure-activity analysis of these compounds revealed that disubstitution on the free hydroxyl groups at C1 and C2 and/or degradation of the benzodioxole group would markedly reduce the cytotoxicity. Furthermore, an α, β-unsaturated ketone would improve the HCV inhibitory activity of lycorine. The C3-C4 double bond is crucial to the anti-HCV activity because hydrogenation of this double bond clearly weakened HCV inhibition. PMID:26443922

  10. Evaluation and structure-activity relationship analysis of a new series of arylnaphthalene lignans as potential anti-tumor agents.

    PubMed

    Luo, Jiaoyang; Hu, Yichen; Kong, Weijun; Yang, Meihua

    2014-01-01

    Arylnaphthalene lignan lactones have attracted considerable interest because of their anti-tumor and anti-hyperlipidimic activities. However, to our knowledge, few studies have explored the effects of these compounds on human leukemia cell lines. In this study, five arylnaphthalene lignans including 6'-hydroxy justicidin A (HJA), 6'-hydroxy justicidin B (HJB), justicidin B (JB), chinensinaphthol methyl ether (CME) and Taiwanin E methyl ether (TEME) were isolated from Justicia procumbens and their effects on the proliferation and apoptosis of the human leukemia K562 cell line were investigated then used to assess structure-activity relationships. To achieve these aims, cytotoxicity was assayed using the MTT assay, while intracellular SOD activity was detected using the SOD Activity Assay kit. Apoptosis was measured by both the using a cycle TEST PLUS DNA reagent kit as well as the FITC Annexin V apoptosis detection kit in combination with flow cytometry. Activation of caspase-mediated apoptosis was evaluated using a FITC active Caspase-3 apoptosis kit and flow cytometry. The results indicated that HJB, HJA and JB significantly inhibited the growth of K562 cells by decreasing both proliferation and SOD activity and inducing apoptosis. The sequence of anti-proliferative activity induced by the five tested arylnaphthalenes by decreasing strength was HJB > HJA > JB > CME > TEME. HJB, HJA and JB also decreased SOD activity and induced apoptosis in a dose-dependent manner. Activation of caspase-3 further indicated that HJB, HJA and JB induced caspase-dependent intrinsic and/or extrinsic apoptosis pathways. Together, these assays suggest that arylnaphthalene lignans derived from Justicia procumbens induce apoptosis to varying degrees, through a caspase-dependent pathway in human leukemia K562 cells. Furthermore, analysis of structure-activity relationships suggest that hydroxyl substitution at C-1 and C-6' significantly increased the antiproliferative activity of arylnaphthalene lignans while a methoxyl at C-1 significantly decreased the effect. PMID:24675875

  11. Evaluation and Structure-Activity Relationship Analysis of a New Series of Arylnaphthalene lignans as Potential Anti-Tumor Agents

    PubMed Central

    Luo, Jiaoyang; Hu, Yichen; Kong, Weijun; Yang, Meihua

    2014-01-01

    Arylnaphthalene lignan lactones have attracted considerable interest because of their anti-tumor and anti-hyperlipidimic activities. However, to our knowledge, few studies have explored the effects of these compounds on human leukemia cell lines. In this study, five arylnaphthalene lignans including 6′-hydroxy justicidin A (HJA), 6′-hydroxy justicidin B (HJB), justicidin B (JB), chinensinaphthol methyl ether (CME) and Taiwanin E methyl ether (TEME) were isolated from Justicia procumbens and their effects on the proliferation and apoptosis of the human leukemia K562 cell line were investigated then used to assess structure-activity relationships. To achieve these aims, cytotoxicity was assayed using the MTT assay, while intracellular SOD activity was detected using the SOD Activity Assay kit. Apoptosis was measured by both the using a cycle TEST PLUS DNA reagent kit as well as the FITC Annexin V apoptosis detection kit in combination with flow cytometry. Activation of caspase-mediated apoptosis was evaluated using a FITC active Caspase-3 apoptosis kit and flow cytometry. The results indicated that HJB, HJA and JB significantly inhibited the growth of K562 cells by decreasing both proliferation and SOD activity and inducing apoptosis. The sequence of anti-proliferative activity induced by the five tested arylnaphthalenes by decreasing strength was HJB > HJA > JB > CME > TEME. HJB, HJA and JB also decreased SOD activity and induced apoptosis in a dose-dependent manner. Activation of caspase-3 further indicated that HJB, HJA and JB induced caspase-dependent intrinsic and/or extrinsic apoptosis pathways. Together, these assays suggest that arylnaphthalene lignans derived from Justicia procumbens induce apoptosis to varying degrees, through a caspase-dependent pathway in human leukemia K562 cells. Furthermore, analysis of structure-activity relationships suggest that hydroxyl substitution at C-1 and C-6′ significantly increased the antiproliferative activity of arylnaphthalene lignans while a methoxyl at C-1 significantly decreased the effect. PMID:24675875

  12. Structure-activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum.

    PubMed

    Altomare, Claudio; Pengue, Raffaele; Favilla, Mara; Evidente, Antonio; Visconti, Angelo

    2004-05-19

    Fusapyrone (1) and deoxyfusapyrone (2) are two 3-substituted-4-hydroxy-6-alkyl-2-pyrones isolated from Fusarium semitectum that have considerable antifungal activity against molds. Because of their low zootoxicity and selective action they are potentially utilizable along with biocontrol yeasts for control of postharvest crop diseases. Seven derivatives of 1 (3 and 5-10) and one derivative of 2 (4) were obtained by chemical modifications of the glycosyl residue, the 2-pyrone ring, the aliphatic chain, or a combination thereof, and a structure-activity correlation study was carried out with regard to their zootoxicity and antifungal activity. Derivatives 7-10, as well as 1, were slightly zootoxic in Artemia salina (brine shrimp) bioassays, whereas pentaacetylation of 1 into 3, 5, and 6 resulted in a strong increase in toxicity. Compound 4, the tetraacetyl derivative of 2, was as toxic as 2. Because the structural changes of 1 that resulted in an increase of biological activity in A. salina bioassay were those that affected mainly the water solubility of the molecule, it appears that toxicity is related to hydrophobicity. Compounds 1 and 2 showed strong antifungal activity toward Botrytis cinerea, Aspergillus parasiticus, and Penicilliun brevi-compactum (minimum inhibitory concentration at 24 h = 0.78-6.25 microg/mL). Among derivatives 3-10, only compounds 7, 9, and 10 retained some activity, limited to B. cinerea and at high concentration (25-50 microg/mL). None of the compounds 1-10 inhibited the growth of the biocontrol yeasts Pichia guilliermondii and Rhodotorula glutinis at the highest concentration tested (50 microg/mL). PMID:15137845

  13. Structureactivity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase

    PubMed Central

    Mao, Jialin; Eoh, Hyungjin; He, Rong; Wang, Yuehong; Wan, Baojie; Franzblau, Scott G.; Crick, Dean C.; Kozikowski, Alan P.

    2016-01-01

    We report on a target-based approach to identify possible Mycobacterium tuberculosis DXS inhibitors from the structure of a known transketolase inhibitor. A small focused library of analogs was assembled in order to begin elucidating some meaningful structureactivity relationships of 3-(4-chloro-phenyl)-5-benzyl-4H-pyrazolo[1,5-a]pyrimidin-7-one. Ultimately we found that 2-methyl-3-(4-fluorophenyl)-5-(4-meth-oxy-phenyl)-4H-pyrazolo[1,5-a]pyrimidin-7-one, although still weak, was able to inhibit M. tuberculosis DXS with an IC50 of 10.6 ?M. PMID:18783951

  14. Cucurbitane glycosides derived from mogroside IIE: structure-taste relationships, antioxidant activity, and acute toxicity.

    PubMed

    Wang, Lei; Yang, Ziming; Lu, Fenglai; Liu, Jinglei; Song, Yunfei; Li, Dianpeng

    2014-01-01

    Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE could be converted into a sweet triterpenoid saponin mixture. The reactant concentration, temperature, pH and buffer system were studied. New saponins with the α-glucose group were isolated from the resulting mixtures, and the structures of three components of the extract were determined. The structure-taste relationships of these derivatives were also studied together with those of the natural mogrosides. The number and stereoconfiguration of glucose groups present in the mogroside molecules were found to be the main factor to determine the sweet or bitter taste of a compound. The antioxidant and food safety properties were initially evaluated by their radical scavenging ability and via 7 day mice survival tests, respectively. The results showed that the sweet triterpenoid saponin mixture has the same favorable physiological and safety characteristics as the natural mogrosides. PMID:25140446

  15. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata.

    PubMed

    Ding, Guanghui; Li, Xue; Zhang, Fan; Chen, Jingwen; Huang, Liping; Qiao, Xianliang

    2009-10-01

    Four quantitative structure-activity relationships were developed for toxicity of selected photosynthesis (PHS) inhibitors and acetolactate synthase (ALS) inhibitors to Chlorella Vulgaris and Raphidocelis subcapitata using a mechanism-based approach. These models have good fitness and predictive ability. The potential of electron transfer, intermolecular interactions with weak electron-transfer, and intermolecular dispersive interactions between PHS inhibitors and the active site of action are key factors influencing the toxicity of these PHS inhibitors. Intermolecular weak electron-transfer interactions and intermolecular dispersive interactions mainly determine the toxicity of these ALS inhibitors. Sulfonyl is an important functional group governing the toxicity of ALS inhibitors investigated. PMID:19582361

  16. Antimicrobial activities of active component isolated from Lawsonia inermis leaves and structure-activity relationships of its analogues against food-borne bacteria.

    PubMed

    Yang, Ji-Yeon; Lee, Hoi-Seon

    2015-04-01

    The antimicrobial activities of Lawsonia inermis leaf extract and 2-hydroxy-1,4-naphthoquinone analogues against food-borne bacteria. The antimicrobial activities of five fractions derived from the methanol extract of Lawsonia inermis leaves were evaluated against 7 food-borne bacteria. 2-Hydroxy-1,4-naphthoquinone was isolated by chromatographic analyses. 2-Hydroxy-1,4-naphthoquinone showed the strong activities against Bacillus cereus, Listeria monocytogenes, Salmonella enterica, Shigella sonnei, Staphylococcus epidermidis, and S. intermedius, but exerted no growth-inhibitory activities against S. typhimurium. The antimicrobial activities of the 2-hydroxy-1,4-naphthoquinone analogues were tested against 7 food-borne bacteria to establish structure-activity relationships. Hydroxyl (2-hydroxy-1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone), methoxy (2-methoxy-1,4-naphthoquinone), and methyl (2-methyl-1,4-naphthoquinone, and 5-hydroxy-2-methyl-1,4-naphthoquinone) functional groups on the 1,4-naphthoquinone skeleton possessed potent activities, whereas bromo (2-bromo-1,4-naphthoquinone and 2,3-dibromo-1,4-naphthoquione) and chloro (2,3-dichloro-1,4-naphthoquinone) exhibited no activity against 7 food-borne bacteria. The L. inermis leaf extract and 2-hydroxy-1,4-naphthoquinone analogues should be useful as natural antimicrobial agents against food-borne bacteria. PMID:25829631

  17. Structure-activity relationships of piscidin 4, a piscine antimicrobial peptide.

    PubMed

    Park, N G; Silphaduang, U; Moon, H S; Seo, J-K; Corrales, J; Noga, E J

    2011-04-26

    Piscidin 4, an antimicrobial peptide recently isolated from mast cells of hybrid striped bass (Morone chrysops female × Morone saxatilis male), is unusual in that it is twice as long (44 amino acids) as the typical members of the piscidin family. We previously showed that native piscidin 4 had a modified amino acid at position 20, but synthetic piscidin 4 (having an unmodified Trp at position 20) had similar potent activity against a number of both human and fish bacterial pathogens. In this study, the structure and membrane topology of synthetic piscidin 4 were examined using liposomes as model bilayers. Circular dichroism analyses revealed that it had a disordered structure in aqueous solution and folded to form a relatively weak α-helical structure in both membrane-mimetic trifluoroethanol solutions and liposome suspensions. Fluorescence data (piscidin 4 embedded in liposomes) and leakage experiments indicated that piscidin 4 interacted strongly with the hydrophobic part of the liposome. Binding of piscidin 4 to liposomes induced significant blue shifts of the emission spectra of the single Trp residue (Trp20). Quenching of Trp20 by water-soluble quencher (either acrylamide or I-) indicated that the fluorescence of Trp20 decreased more in the presence of liposomes than in buffer solution, thus revealing that Trp20 is less accessible to the quenchers in the presence of liposomes. The relative leakage abilities of piscidin 4 (1 μM) with liposomes were in the following order: DPPC (100%)≥EYPC (94%)>DPPC/DPPG (65%)>EYPC/EYPG (0%). This high activity against DPPC and EYPC liposomes was contrary to our data suggesting that piscidin 4 has a much weaker tendency to form an α-helix than other piscidins, such as piscidin 1. However, the structural similarity of protozoan membranes to EYPC liposomes might explain our discovery of the potent activity of piscidin 4 against the important skin/gill parasite ich (Ichthyophthirius multifiliis), but its negligible hemolytic activity against vertebrate membranes (hybrid striped bass or human erythrocytes). It also suggests that other conformation(s) in addition to the α-helix of this peptide may be responsible for its selective activity. This differential toxicity also suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass and may be capable of functioning extracellularly. PMID:21355570

  18. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline.

    PubMed

    Honeyman, Laura; Ismail, Mohamed; Nelson, Mark L; Bhatia, Beena; Bowser, Todd E; Chen, Jackson; Mechiche, Rachid; Ohemeng, Kwasi; Verma, Atul K; Cannon, E Pat; Macone, Ann; Tanaka, S Ken; Levy, Stuart

    2015-11-01

    A series of novel tetracycline derivatives were synthesized with the goal of creating new antibiotics that would be unaffected by the known tetracycline resistance mechanisms. New C-9-position derivatives of minocycline (the aminomethylcyclines [AMCs]) were tested for in vitro activity against Gram-positive strains containing known tetracycline resistance mechanisms of ribosomal protection (Tet M in Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae) and efflux (Tet K in S. aureus and Tet L in E. faecalis). A number of aminomethylcyclines with potent in vitro activity (MIC range of ≤0.06 to 2.0 μg/ml) were identified. These novel tetracyclines were more active against one or more of the resistant strains than the reference antibiotics tested (MIC range, 16 to 64 μg/ml). The AMC derivatives were active against bacteria resistant to tetracycline by both efflux and ribosomal protection mechanisms. This study identified the AMCs as a novel class of antibiotics evolved from tetracycline that exhibit potent activity in vitro against tetracycline-resistant Gram-positive bacteria, including pathogenic strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE). One derivative, 9-neopentylaminomethylminocycline (generic name omadacycline), was identified and is currently in human trials for acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). PMID:26349824

  19. Study of structure-activity relationship of enantiomeric, protonated and deprotonated forms of warfarin via vibrational spectroscopy and DFT calculations.

    PubMed

    Mishra, Alok; Srivastava, Sunil Kumar; Swati, D

    2013-09-01

    The structure-activity relationship of the anticoagulant drug warfarin were studied by studying two enantiomeric forms (S-form and R-form) of warfarin and its protonated as well as deprotonated structures in aqueous media using density functional theory (DFT). Theoretically computed Raman and IR spectra of all the computed structures were compared and their specific vibrational spectroscopic signatures were discussed. The percentage contributions of individual normal modes of warfarin, which provides direct evidence of the different molecular activity due to change in relative atomic position of atoms in molecule, were investigated through potential energy distribution (PED). The optimized energy and molecular electrostatic potential (MEP) maps show that the S-form of the drug molecules warfarin is energetically more stable than R-form and provides higher docking opportunity for the molecular binding with the receptors in the bio-systems. PMID:23747386

  20. Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs.

    PubMed

    Scapecchi, Serena; Martini, Elisabetta; Manetti, Dina; Ghelardini, Carla; Martelli, Cecilia; Dei, Silvia; Galeotti, Nicoletta; Guandalini, Luca; Novella Romanelli, Maria; Teodori, Elisabetta

    2004-01-01

    Structure-activity relationships on two novel potent cognition enhancing drugs, unifiram (DM232, 1) and sunifiram (DM235, 2), are reported. Although none of the compounds synthesised reached the potency of the parent drugs, some fairly active compounds have been identified that may represent new leads to develop other cognition enhancing drugs. An interesting result of this research is the identification of two compounds (13 and 14) that are endowed with amnesing activity (the opposite of the activity of the original molecules) and are nearly equipotent to scopolamine. Moreover, two compounds of the series (5 and 6) were found endowed with analgesic activity on a rat model of neuropathic pain at the dose of 1 mg/kg. PMID:14697772

  1. Discovery and preliminary structure-activity relationship analysis of 1,14-sperminediphenylacetamides as potent and selective antimalarial lead compounds.

    PubMed

    Liew, Lydia P P; Kaiser, Marcel; Copp, Brent R

    2013-01-15

    Screening of synthesized and isolated marine natural products for in vitro activity against four parasitic protozoa has identified the ascidian metabolite 1,14-sperminedihomovanillamide (orthidine F, 1) as being a non-toxic, moderate growth inhibitor of Plasmodium falciparum (IC(50) 0.89 μM). Preliminary structure-activity relationship investigation identified essentiality of the spermine polyamine core and the requirement for 1,14-disubstitution for potent activity. One analogue, 1,14-spermine-di-(2-hydroxyphenylacetamide) (3), exhibited two orders of magnitude increased anti-P. f activity (IC(50) 8.6 nM) with no detectable in vitro toxicity. The ease of synthesis of phenylacetamido-polyamines, coupled with potent nM levels of activity towards dual drug resistant strains of P. falciparum makes this compound class of interest in the development of new antimalarial therapeutics. PMID:23265884

  2. Structure-activity relationships in platelet-activating factor (PAF). 5. Synthesis and in vitro antagonistic activities of ketophosphonates.

    PubMed

    Furno-de Winter, A; Broquet, C; Haelters, J P; Massicot, F; Sturtz, G; Godfroid, J J

    1991-01-01

    The synthesis of new ketophosphonate isosteres of biosynthetic precursors of ether glycerophospholipids resistant to phospholipase C is described following two routes depending on whether the alkoxy chain is introduced before or after the phosphonic moiety. The common intermediates are ketophosphonic acids: better yields were obtained by attaching the n-octadecyl chain to epichlorohydrin, opening and oxidation, blockage of the resulting ketone as the chlorohydrazone, followed by an Arbuzov reaction or by azoene formation and Michael addition. These ketophosphonates differing in chain length in position 3 exhibit potent agonistic activities on rabbit platelets which increase with the number of methylene groups between the phosphonate and the ammonium moieties. PMID:1773030

  3. Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate?

    PubMed Central

    Forestier, Claire-Lise; Gao, Qi; Boons, Geert-Jan

    2015-01-01

    A key feature of many pathogenic microorganisms is the presence of a dense glycocalyx at their surface, composed of lipid-anchored glycoproteins and non-protein-bound polysaccharides. These surface glycolipids are important virulence factors for bacterial, fungal and protozoan pathogens. The highly complex glycoconjugate lipophosphoglycan (LPG) is one of the dominant surface macromolecules of the promastigote stage of all Leishmania parasitic species. LPG plays critical pleiotropic roles in parasite survival and infectivity in both the sandfly vector and the mammalian host. Here, we review the composition of the Leishmania glycocalyx, the chemical structure of LPG and what is currently known about its effects in the mammalian host, specifically. We will then discuss the current approaches employed to elucidate LPG functions. Finally, we will provide a viewpoint on future directions that this area of investigation could take to unravel in detail the biological activity of the specific molecular elements composing the structurally complex LPG. PMID:25653924

  4. Structure-Activity Relationship in Nanostructured Copper-Ceria-Based Preferential CO Oxidation Catalysts

    SciTech Connect

    Gamarra,D.; Munuera, G.; Hungria, A.; Fernandez-Garcia, M.; Conesa, J.; Midgley, P.; Wang, X.; Hanson, J.; Rodriguez, J.; Martinez-Arias, A.

    2007-01-01

    Two series of nanostructured oxidized copper-cerium catalysts with varying copper loadings, and prepared, respectively, by impregnation of ceria and by coprecipitation of the two components within reverse microemulsions, have been characterized in detail at structural and electronic levels by X-ray diffraction (XRD), Raman spectroscopy, high-resolution electron microscopy (HREM), X-ray energy dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS) (including Ar{sup +}-sputtering), and X-ray absorption fine structure (XAFS). These results have been correlated with analysis of their catalytic properties for preferential oxidation of CO in a H{sub 2}-rich stream (CO-PROX), complemented by Operando-DRIFTS. A relevant difference between the two series of catalysts concerns the nature of the support for the surface-dispersed copper oxide entities, which is essentially ceria for the samples prepared by impregnation and a Ce-Cu mixed oxide for those prepared by microemulsion-coprecipitation. The existence of copper segregation in the form of copper oxide or copper-enriched Cu-Ce mixed oxides for the latter type of samples is uniquely revealed by nanoprobe XEDS and XPS Ar{sup +}-sputtering experiments. The CO oxidation activity under CO-PROX conditions is correlated to the degree of support-promoted reduction achieved by the dispersed copper oxide particles under reaction conditions. Nevertheless, catalysts which display higher CO oxidation activity are generally more efficient also for the undesired H{sub 2} oxidation reaction. The balance between both reactions results in differences in the CO-PROX activity between the two series of catalysts which are examined on the basis of the structural differences found.

  5. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships.

    PubMed

    Zghaib, Zahraa; Guichou, Jean-François; Vappiani, Johanna; Bec, Nicole; Hadj-Kaddour, Kamel; Vincent, Laure-Anaïs; Paniagua-Gayraud, Stéphanie; Larroque, Christian; Moarbess, Georges; Cuq, Pierre; Kassab, Issam; Deleuze-Masquéfa, Carine; Diab-Assaf, Mona; Bonnet, Pierre-Antoine

    2016-06-01

    Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin. PMID:27094151

  6. Structure-Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors.

    PubMed

    Congdon, Molly D; Kharel, Yugesh; Brown, Anne M; Lewis, Stephanie N; Bevan, David R; Lynch, Kevin R; Santos, Webster L

    2016-03-10

    The two isoforms of sphingosine kinase (SphK1 and SphK2) are the only enzymes that phosphorylate sphingosine to sphingosine-1-phosphate (S1P), which is a pleiotropic lipid mediator involved in a broad range of cellular processes including migration, proliferation, and inflammation. SphKs are targets for various diseases such as cancer, fibrosis, and Alzheimer's and sickle cell disease. Herein, we disclose the structure-activity profile of naphthalene-containing SphK inhibitors and molecular modeling studies that reveal a key molecular switch that controls SphK selectivity. PMID:26985306

  7. Benzenepolycarboxylic acids with potential anti-hemorrhagic properties and structure-activity relationships.

    PubMed

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-12-01

    Previously, we reported the structural requirements of the cinnamic acid relatives for inhibition of snake venom hemorrhagic action. In the present study, we examined the effect of benzenepolycarboxylic acids and substituted benzoic acids against Protobothropsflavoviridis venom-induced hemorrhage. Pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid) was found to be a potent inhibitor of hemorrhage, with an IC(50) value of 0.035 μM. In addition, most of the antihemorrhagic activity of compounds tested in this experiment showed good correlation to acidity. PMID:22047800

  8. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Mendoza, Guillermo F.; Konotchick, Talina; Lee, Raymond

    2009-09-01

    Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000 ind. m -2) and low biomass (0.1-1.07 g m -2), except for the South Su active site, which had higher density (3494 ind. m -2) and biomass (11.94 g m -2), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae ( Prionospio sp.) in active sediments, and tanaids and deposit-feeding nuculanoid bivalves in active and inactive sediments. At Middle Valley, hot mud sediments supported few animals (1011 ind m -2) and low biomass (1.34 g m -2), while active clam bed sediments supported a high-density (19,984 ind m -2), high-biomass (4.46 g m -2), low-diversity assemblage comprised of largely orbiniid and syllid polychaetes. Microbial mat sediments had the most diverse assemblage (mainly orbiniid, syllid, dorvilleid, and ampharetid polychaetes) with intermediate densities (8191 ind m -2) and high biomass (4.23 g m -2). Fauna at both Manus Basin active sites had heavy δ 13C signatures (-17‰ to -13‰) indicative of chemosynthetic, TCA-cycle microbes at the base of the food chain. In contrast, photosynthesis and sulfide oxidation appear to fuel most of the fauna at Manus Basin inactive sites (δ 13C=-29‰ to -20‰) and Middle Valley active clam beds and microbial mats (δ 13C=-36‰ to -20‰). The two hydrothermal regions, located at opposite ends of the Pacific Ocean, supported different habitats, sharing few taxa at the generic or family level, but both exhibited elevated infaunal density and high dominance at selected sites. Subsurface-deposit feeding and bacterivory were prevalent feeding modes. Both the Manus Basin and Middle Valley assemblages exhibit significant within-region heterogeneity, apparently conferred by variations in hydrothermal activity and associated biogenic habitats.

  9. Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach.

    PubMed

    Vinholes, Juliana; Rudnitskaya, Alisa; Gonçalves, Pedro; Martel, Fátima; Coimbra, Manuel A; Rocha, Sílvia M

    2014-03-01

    The relative hepatoprotection effect of fifteen sesquiterpenoids, commonly found in plants and plant-derived foods and beverages was assessed. Endogenous lipid peroxidation (assay A) and induced lipid peroxidation (assay B) were evaluated in liver homogenates from Wistar rats by the thiobarbituric acid reactive species test. Sesquiterpenoids with different chemical structures were tested: trans,trans-farnesol, cis-nerolidol, (-)-α-bisabolol, trans-β-farnesene, germacrene D, α-humulene, β-caryophyllene, isocaryophyllene, (+)-valencene, guaiazulene, (-)-α-cedrene, (+)-aromadendrene, (-)-α-neoclovene, (-)-α-copaene, and (+)-cyclosativene. Ascorbic acid was used as a positive antioxidant control. With the exception of α-humulene, all the sesquiterpenoids under study (1mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The 3D-QSAR models developed, relating the hepatoprotection activity with molecular properties, showed good fit (Radj(2) 0.819 and 0.972 for the assays A and B, respectively) with good prediction power (Q(2)>0.950 and SDEP<2%, for both models A and B). A network of effects associated with structural and chemical features of sesquiterpenoids such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. PMID:24176316

  10. Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structure-activity relationships.

    PubMed

    De Vincenzo, R; Scambia, G; Benedetti Panici, P; Ranelletti, F O; Bonanno, G; Ercoli, A; Delle Monache, F; Ferrari, F; Piantelli, M; Mancuso, S

    1995-09-01

    This study was carried out to determine the effect of 15 different natural and synthetic chalcones on the proliferation of both established and primary ovarian cancer cells expressing type II oestrogen binding sites (type II EBS). The binding affinity of chalcones for type II EBS was also tested. At concentrations from 0.1 to 10 microM, chalcones inhibited ovarian cancer cell proliferation and [3H]oestradiol ([3H]E2) binding to type II EBS. Considering the structure-related variation in IC50 (concentration resulting in a 50% inhibition of cell growth) and Di50 (concentration resulting in a 50% displacement of [3H]E2 bound to type II EBS), it appeared that the presence of an alpha-beta double bond, the hydroxylation in 3 or 2 of ring B and the absence of a prenyl group were important to both the antiproliferative and binding activity. Structure-related variations in IC50 and Di50 were significantly concordant (Fisher's exact test: P = 0.0291), suggesting that there may be a type II EBS-mediated mechanism for chalcone antiproliferative activity. Our data indicate that chalcones could be considered as potential new anticancer drugs. PMID:7575989

  11. Quantitative structure retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based compounds.

    PubMed

    Šegan, Sandra; Opsenica, Igor; Zlatović, Mario; Milojković-Opsenica, Dušanka; Šolaja, Bogdan

    2016-02-15

    The chromatographic behaviour of series of 4-amino-7-chloroquinoline (4,7-ACQ) based compounds was studied by reversed-phase thin-layer chromatography (RPTLC) with binary mobile phases containing water and the organic modifiers, DMSO or acetone. The lipophilicity of the studied compounds was determined by extrapolation of retention parameters RM to pure water content in mobile phase. In order to obtain some basic insight into the chromatographic behaviour and structural features of investigated compounds, PCA was performed on both chromatographic data (RM values) and calculated 2D and 3D structural descriptors. Both QSRR and QSAR models were built by means of the partial least squares (PLS) statistical method. It was found that descriptors which encode hydrophobic (dispersive) interactions have positive influence on retention, while influence of descriptors encoding polar interactions was negative. According to the obtained PLS model for inhibition of botulinum neurotoxin serotype A light chain, hydrophobic interactions influence positively on the mechanism of action of the investigated 4,7-ACQ, while polar interactions are less favoured. Contrary, the results of PLS modelling of activity against Plasmodium falciparum strains (W2, D6 and TM91C235) indicate that higher polarity of 4,7-ACQ contribute to their higher antimalarial activity. PMID:26827282

  12. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy.

    PubMed

    Jeon, Ju-Hyun; Lee, Hoi-Seon

    2014-08-27

    The acaricidal and insecticidal potential of the active constituent isolated from Citrullus colocynthis fruits and its structurally related analogues was evaluated by performing leaf disk, contact toxicity, and fumigant toxicity bioassays against Tetranychus urticae, Sitophilus oryzae, and Sitophilus zeamais adults. The active constituent of C. colocynthis fruits was isolated by chromatographic techniques and was identified as 4-methylquinoline on the basis of spectroscopic analyses. To investigate the structure-activity relationships, 4-methylquinoline and its structural analogues were tested against mites and two insect pests. On the basis of the LC50 values, 7,8-benzoquinoline was the most effective against T. urticae. Quinoline, 8-hydroxyquinoline, 2-methylquinoline, 4-methylquinoline, 6-methylquinoline, 8-methylquinoline, and 7,8-benzoquinoline showed high insecticidal activities against S. oryzae and S. zeamais regardless of the application method. These results indicate that introduction of a functional group into the quinoline skeleton and changing the position of the group have an important influence on the acaricidal and insecticidal activities. Furthermore, 4-methylquinoline isolated from C. colocynthis fruits, along with its structural analogues, could be effective natural pesticides for managing spider mites and stored grain weevils. PMID:25110971

  13. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants.

    PubMed

    Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L

    2007-04-01

    In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist. PMID:17447568

  14. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships

    PubMed Central

    2015-01-01

    Background The epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to gain insight into the structural changes observed in the target protein upon mutation. We also report two novel inhibitors identified by combined approach of QSAR model development. Results The wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using 38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751), q2(0.9491) and pred_r2(0.9525). Conclusion Analysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both wild-type and mutant structure. PMID:26041145

  15. Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I

    2013-06-01

    The current study focuses on the preparation of new N-(cinnamyl) chitosan derivatives as antimicrobial agents against nine types of crop-threatening pathogens. Chitosan was reacted with a set of aromatic cinnamaldehyde analogs by reductive amination involving formation of the corresponding imines, followed by reduction with sodium borohydride to produce N-(cinnamyl) chitosan derivatives. The structural characterization was confirmed by (1)H and (13)C NMR spectroscopy and the degrees of substitution ranged from 0.08 to 0.28. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens and Erwinia carotovora. A higher inhibition activity was obtained by N-(α-methylcinnamyl) chitosan with MIC 1275 and 1025 mg/L against A. tumefaciens and E. carotovora, respectively followed by N-(o-methoxycinnamyl) chitosan (MIC=1925 and 1550 mg/L, respectively). The antifungal assessment was evaluated in vitro by mycelial radial growth technique against Alternaria alternata, Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum, Fusarium solani, Pythium debaryanum and Phytophthora infestans. N-(o-methoxycinnamyl) chitosan showed the highest antifungal activity among the tested compounds against the airborne fungi A. alternata, B. cinerea, Bd. theobromae and Ph. infestans with EC₅₀ of 672, 796, 980 and 636 mg/L, respectively. However, N-(p-N-dimethylaminocinnamyl) chitosan was the most active against the soil born fungi F. oxysporum, F. solani and P. debaryanum (EC50=411, 566 and 404 mg/L, respectively). On the other hand, the chitosan derivatives caused significant reduction in spore germination of A. alternata, B. cinerea, F. oxysporum and F. solani compared to chitosan and the reduction in spore germination was higher than that of the mycelia inhibition. The synthesis and characterization of new chitosan derivatives are ongoing in our laboratory aiming to obtain derivatives with higher antimicrobial activities and used as safe alternatives to harmful microbicides. PMID:23511055

  16. Binding studies and quantitative structure-activity relationship of 3-amino-1H-indazoles as inhibitors of GSK3?.

    PubMed

    Caballero, Julio; Zilocchi, Szymon; Tiznado, William; Collina, Simona; Rossi, Daniela

    2011-10-01

    Docking of 3-amino-1H-indazoles complexed with glycogen synthase kinase 3 beta (GSK3?) was performed to gain insight into the structural requirements and preferred conformations of these inhibitors. The study was conducted on a selected set of 57 compounds with variation in structure and activity. We found that the most active compounds established three hydrogen bonds with the residues of the hinge region of GSK3?, but some of the less active compounds have other binding modes. In addition, models able to predict GSK3? inhibitory activities (IC(50) ) of the studied compounds were obtained by 3D-QSAR methods CoMFA and CoMSIA. Ligand-based and receptor-guided alignment methods were utilized. Adequate R(2) and Q(2) values were obtained by each method, although some striking differences existed between the obtained contour maps. Each of the predictive models exhibited a similar ability to predict the activity of a test set. The application of docking and quantitative structure-activity relationship together allowed conclusions to be drawn for the choice of suitable GSK3? inhibitors. PMID:21756288

  17. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. PMID:26301627

  18. Synthesis and quantitative structure-activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis B virus replication.

    PubMed

    Yang, Jing; Ma, Min; Wang, Xue-Ding; Jiang, Xing-Jun; Zhang, Yuan-Yuan; Yang, Wei-Qing; Li, Zi-Cheng; Wang, Xi-Hong; Yang, Bin; Ma, Meng-Lin

    2015-06-24

    A series of new phenylpropenamide derivatives containing different substituents was synthesized, characterized and evaluated for their anti-hepatitis B virus (HBV) activities. The quantitative structure-activity relationships (QSAR) of phenylpropenamide compound have been studied. The 2D-QSAR models, based on DFT and multiple linear regression analysis methods, revealed that higher values of total energy (TE) and lower entropy (S(ө)) enhanced the anti-HBV activities of the phenylpropenamide molecules. Predictive 3D-QSAR models were established using SYBYL multifit molecular alignment rule. The optimum models were all statistically significant with cross-validated and conventional coefficients, indicating that they were reliable enough for activity prediction. PMID:26057705

  19. A Structure-Activity Relationship Study of Naphthoquinone Derivatives as Antitubercular Agents Using Molecular Modeling Techniques.

    PubMed

    Sharma, Mukesh C

    2015-12-01

    Tuberculosis (TB) is one of the major causes of death worldwide. Mycobacterium tuberculosis, the leading causative agent of TB, is responsible for the morbidity and mortality of a large population worldwide. In view of above and as a part of our effort to develop new and potent anti-TB agents, a series of substituted naphthoquinone derivatives were subjected to molecular modeling using various feature selection methods. The statistically significant best 2D-QSAR model having correlation coefficient [Formula: see text] and cross-validated squared correlation coefficient [Formula: see text] with external predictive ability of [Formula: see text] was developed by SA-PLS, and group-based QSAR model having [Formula: see text] and [Formula: see text] with [Formula: see text] was developed by SA-PLS. Further analysis using three-dimensional QSAR technique identifies a suitable model obtained by SA-partial least square method leading to antitubercular activity prediction. k-nearest neighbor molecular field analysis was used to construct the best 3D-QSAR model using SA-PLS method, showing good correlative and predictive capabilities in terms of [Formula: see text] and [Formula: see text]. The pharmacophore analysis results obtained from this study show that the distance between the aromatic/hydrophobic and the naphthoquinone moiety sites to the aliphatic and acceptor groups should be connected with almost the same distance for significant antitubercular activity. The information rendered by QSAR models may lead to a better understanding of structural requirements of antitubercular activity and also can help in the design of novel potent antitubercular activity. PMID:26159131

  20. Structure-activity relationship for D-ring derivatives of grayanotoxin in the squid giant axon.

    PubMed

    Yakehiro, M; Yamamoto, S; Baba, N; Nakajima, S; Iwasa, J; Seyama, I

    1993-06-01

    Grayanotoxin (GTX) binds specifically to the voltage-dependent sodium channel and induces a persistent increase in the membrane permeability to sodium ion. By studying the structure-activity relation of the GTX action, we attempt to elucidate the molecular moiety of the sodium channel facing around the carbon atoms C-15 beta, C-16 beta and C-14S in the D-ring of GTX in exerting the biological activity. A dose-response curve for each GTX analog was constructed using membrane depolarization as an index and assuming a one-to-one stoichiometry. Addition of alpha-OH, carbonyl and beta-OH groups to either C-15 or C-16 sequentially reduces the toxin potency, suggesting that the domain of the Na channel facing C-15 and C-16 contains a positive charge. Substitution of a hydroxymethyl group to the beta side of C-16 reduces GTX activity 10 times more than a similar substitution in the alpha side, indicating that this positive charge is located close to the beta side. Introduction of a hydrophilic hydroxy group into C-14S reduced GTX activity by a factor of 20, whereas introduction of an electronegative amino group totally eliminated it. We infer that hydrophobic bonds are a predominant factor on the alpha surface of the GTX molecule. In summary, 3 beta-OH, 5 beta-OH and 6 beta-OH of the GTX molecule make contact with the Na channel by hydrogen bonding and with most of remainder by hydrophobic bond in binding to the Na channel.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8389862

  1. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships.

    PubMed

    Jamison, Matthew T; Molinski, Tadeusz F

    2015-03-27

    Investigation of antifungal natural products from the marine sponge Pseudaxinella reticulata from the Bahamas led to the discovery of new crambescin homologues (1, 2) and enantiomers (3, 4) of known natural products. The cyclic-guanidine structures were solved through analysis of 2D NMR, MS-MS, and CD data. The absolute configurations of 1-4 were established as 13R-opposite of known homologues reported from Crambe crambe obtained from the Mediterranean Sea-by comparison of their CD spectra with predicted Cotton effects obtained from DFT calculations. Antifungal activities of 1-4 against the pathogenic strains Candida albicans and Cryptococcus sp. were observed to correlate potency (MIC50 and MIC90) with the length of the alkyl side chain. PMID:25738226

  2. Enzymatic Methylation and Structure-Activity-Relationship Studies on Polycarcin V, a Gilvocarcin-Type Antitumor Agent

    PubMed Central

    Chen, Jhong-Min; Shepherd, Micah D.; Horn, Jamie; Leggas, Markos; Rohr, Jürgen

    2014-01-01

    Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity-relationships of the gilvocarcin group of antitumor antibiotics, because of a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2’-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important H-bond donor for the interaction with histone H3, while converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two H-bond donors in the sugar are necessary for optimal binding. PMID:25366963

  3. Comparative three-dimensional quantitative structure-activity relationship study of safeners and herbicides.

    PubMed

    Bords, B; Kmves, T; Sznt, Z; Lopata, A

    2000-03-01

    The competitive antagonist hypothesis for safeners and herbicides was investigated by studying the 3D similarity between 28 safener and 20 herbicide molecules in their putative biologically active, low-energy conformations using comparative molecular field analysis (CoMFA). In addition, CoMFA provided information about the structural requirements for the interactions of safeners and herbicides with a proteinaceous component (SafBP) isolated from etiolated corn seedlings. Statistically significant CoMFA models have been developed for the united and separate safener and herbicide molecule sets using retrospective binding affinity data of the ligands measured at the SafBP receptor. The predictive power of the models was characterized by squared cross-validated correlation coefficients (q(2)) of 0.708, 0.564, and 0.4000 for the united safener plus herbicide set, the safener set, and the herbicide set, respectively. The CoMFA results support the competitive antagonist hypothesis between certain types of safeners and herbicides. The findings suggest that structural similarity between these two classes of agrochemicals is a useful guide in the design of new safeners. PMID:10725176

  4. New Luminescent Polynuclear Metal Complexes with Anticancer Properties: Toward Structure-Activity Relationships.

    PubMed

    Wenzel, Margot; de Almeida, Andreia; Bigaeva, Emilia; Kavanagh, Paul; Picquet, Michel; Le Gendre, Pierre; Bodio, Ewen; Casini, Angela

    2016-03-01

    A series of new heterodinuclear luminescent complexes with two different organic ligands have been synthesized and characterized. A luminescent Ru(II)(polypyridine) moiety and a metal-based anticancer fragment (AuCl, (p-cymene)RuCl2, (p-cymene)OsCl2, (Cp*)RhCl2, or Au-thioglucose) are the two general features of these complexes. All of the bimetallic compounds have been evaluated for their antiproliferative properties in vitro in human cancer cell lines. Only the complexes containing an Au(I) fragment exhibit antiproliferative activity in the range of cisplatin or higher. The photophysical and electrochemical properties of the bimetallic species have been investigated, and fluorescence microscopy experiments have been performed successfully. The most promising bimetallic cytotoxic complexes (i.e., with the Au-thioglucose scaffold) have shown to be easily taken up by cancer cells at 37 °C in the cytoplasm or in specific organelles. Interestingly, experiments repeated at 4 °C showed no uptake of the bimetallic species inside cells, which confirms involvement of active transport processes. To evaluate the role of glucose transporters in the cell uptake of the gold complexes, inhibition of the GluT-1 (glucose transporter isoform with high level of expression in cancer cells) was achieved, showing only scarce influence on the compounds' uptake. Finally, the observed absence of interactions with nucleic acid model structures suggests that the gold compounds may have different intracellular targets with respect to cisplatin. PMID:26867101

  5. Dendrotoxins: structure-activity relationships and effects on potassium ion channels.

    PubMed

    Harvey, A L; Robertson, B

    2004-12-01

    Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snakes. The original dendrotoxin was found in venom of the Eastern green mamba, Dendroaspis angusticeps, and related proteins were subsequently found in other mamba venoms. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges, and they are homologous to Kunitz-type serine protease inhibitors, such as aprotinin (BPTI). The dendrotoxins have little or no anti-protease activity, but they block particular subtypes of voltage-dependent potassium channels of the Kv1 subfamily in neurones. Alpha-dendrotoxin from green mamba Dendroaspis angusticeps and toxin I from the black mamba Dendroaspis polylepis block cloned Kv1.1, Kv1.2 and Kv1.6 channels in the low nanomolar range; toxin K, also from the black mamba Dendroaspis polylepis, preferentially blocks Kv1.1 channels and is active at picomolar concentrations. Structural modifications and mutations to dendrotoxins have helped to define the molecular recognition properties of different types of K+ channels, although more work is needed to characterise the chemical features of the toxins that underlie their selectivity and potency at particular subtypes of channels. Dendrotoxins have been useful markers of subtypes of K+ channels in vivo, and dendrotoxins have become widely used as probes for studying the function of K+ channels in physiology and pathophysiology. With some pathological conditions being associated with voltage-gated K+ channels, analogues of dendrotoxins might have therapeutic potential. PMID:15579000

  6. Development of novel pesticides based on phytoalexins: Part 2. Quantitative structure-activity relationships of 2-heteroaryl-4-chromanone derivatives.

    PubMed

    Yang, Guangfu; Jiang, Xiaohua; Yang, Huazheng

    2002-10-01

    Phytoalexins are low-molecular-weight chemicals that immune systems of plants produce and accumulate in response to infections, especially those of fungal origin. Although their content is not high in plants, yet they have shown unique fungicidal activity and played an important role in the defence system of plants. In searching for novel environmentally benign fungicides with high activity, the structures of flavanone derivatives, one of the most important phytoalexins groups, have been modified via bioisosteric substitution and a series of 2-heteroaryl-4-chromanones were designed and synthesized. They showed good fungicidal activities against rice blast disease, Pyricularia grisea (Sacc). Their IC50 values were tested in vitro and the relationship between structure and fungicidal activity was analyzed quantitatively using a Hansch-Fujita approach. The results showed that hydrophobicity was very important for fungicidal activity and there is apparently an optimum hydrophobic property for the molecules at a log Pow value of about 2.7. In addition, the results indicated that electronic effects played an important role in binding with the receptor and that the C=O group was probably a electron-accepting site. The quantitative structure-retention correlative equation of the title compounds was also established. PMID:12400447

  7. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase

    PubMed Central

    Bourne, Christina R.; Wakeham, Nancy; Nammalwar, Baskar; Tseitin, Vladimir; Bourne, Philip C.; Barrow, Esther W.; Mylvaganam, Shankari; Ramnarayan, Kal; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2012-01-01

    Background Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. Methods We have characterized inhibitors of Bacillus anthracis dihydrofolate reductase by measuring the Ki and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. Results We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. Conclusions These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents. PMID:22999981

  8. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-01-01

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models. PMID:26703557

  9. Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes.

    PubMed

    Rárová, Lucie; Steigerová, Jana; Kvasnica, Miroslav; Bartůněk, Petr; Křížová, Kateřina; Chodounská, Hana; Kolář, Zdeněk; Sedlák, David; Oklestkova, Jana; Strnad, Miroslav

    2016-05-01

    Structure-activity relationship analysis and profiling of a library of AB-functionalized cholestane derivatives closely related to brassinosteroids (BRs) were performed to examine their antiproliferative activities and activities on steroid hormone receptors. Some of the compounds were found to have strong cytotoxic activity in several human normal and cancer cell lines. The presence of a 3-hydroxy or 3-oxo group and 2,3-vicinal diol or 3,4-vicinal diol moiety were found to be necessary for optimum biological activity, as well as a six-membered B ring. According to the profiling of all steroid receptors in both agonist and antagonist mode, the majority of the cholestanes were weakly active or inactive compared to the natural ligands. Estrogenic activity was detected for two compounds, two compounds possessed antagonistic properties on estrogen receptors and seven compounds showed agonistic activity. Two active cholestane derivatives were shown to strongly influence cell viability, proliferation, cell cycle distribution, apoptosis and molecular pathways responsible for these processes in hormone-sensitive/insensitive (MCF7/MDA-MB-468) breast cancer cell lines. PMID:26976651

  10. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system.

    PubMed

    Linnewiel, Karin; Ernst, Hansgeorg; Caris-Veyrat, Catherine; Ben-Dor, Anat; Kampf, Arie; Salman, Hagar; Danilenko, Michael; Levy, Joseph; Sharoni, Yoav

    2009-09-01

    Induction of phase II detoxifying enzymes is a major cellular strategy for reducing the risk of cancer. We previously reported that carotenoids activate the electrophile/antioxidant response element (EpRE/ARE) transcription system and induced the expression of phase II enzymes. Various electrophilic phytonutrients have been shown to induce the EpRE/ARE system by disrupting the inhibitory activity of Keap1 on Nrf2, the major EpRE/ARE activating transcription factor. However, hydrophobic carotenoids such as lycopene lack any electrophilic group and, thus, are unlikely to directly activate Nrf2 and the EpRE/ARE system. Here we demonstrate that carotenoid oxidation products are the active mediators in the stimulation of the EpRE/ARE system by carotenoids. Two lines of evidence support this conclusion. (A) The oxidized derivatives, extracted by ethanol from partially oxidized lycopene, transactivated EpRE/ARE with a potency similar to that of the unextracted lycopene mixture, whereas the intact carotenoid showed a nonsignificant effect. (B) Using a series of characterized mono- and diapocarotenoids that potentially can be derived from in vivo metabolism of carotenoids we defined the following structure-activity rules for activation of EpRE/ARE: (I) aldehydes and not acids are the active molecules; (II) the activity depends on the relative position of the methyl group to the terminal aldehyde which determines the reactivity of the conjugated double bond; (III) the optimal length of a dialdehyde derivative is 12 carbons in the main chain of the molecule. The apocarotenals inhibited breast and prostate cancer cell growth with a similar order of potency to the activation of EpRE/ARE. These results may provide a mechanistic explanation for the cancer preventive activity of carotenoids. PMID:19524036

  11. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  12. Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization.

    PubMed

    Candice, Soares de Melo; Feng, Tzu-Shean; van der Westhuyzen, Renier; Gessner, Richard K; Street, Leslie J; Morgans, Garreth L; Warner, Digby F; Moosa, Atica; Naran, Krupa; Lawrence, Nina; Boshoff, Helena I M; Barry, Clifton E; Harris, C John; Gordon, Richard; Chibale, Kelly

    2015-11-15

    Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified. PMID:26522089

  13. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    PubMed

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. PMID:26916437

  14. Structure-activity relationship of N-benzenesulfonyl matrinic acid derivatives as a novel class of coxsackievirus B3 inhibitors.

    PubMed

    Wang, Sheng-Gang; Kong, Lan-Ying; Li, Ying-Hong; Cheng, Xin-Yue; Su, Feng; Tang, Sheng; Bi, Chong-Wen; Jiang, Jian-Dong; Li, Yu-Huan; Song, Dan-Qing

    2015-09-01

    A novel series of N-benzenesulfonyl matrinic amine/amide and matrinic methyl ether analogues were designed, synthesized and evaluated for their in vitro anti-coxsackievirus B3 (CVB3) activities. The structure-activity relationship (SAR) studies revealed that introduction of a suitable amide substituent on position 4' could greatly enhance the antivirus potency. Compared to the lead compounds, the newly synthesized matrinic amide derivatives 21c-d and 21j exhibited stronger anti-CVB3 activities with lower micromolar IC50 from 2.5 ?M to 2.7 ?M, and better therapeutic properties with improved selectivity index (SI) from 63 to 67. The SAR results provided powerful information for further strategic optimization, and these top compounds were selected for the next evaluation as novel enterovirus inhibitors. PMID:26112440

  15. New imidazo[1,2-b]pyrazoles as anticancer agents: synthesis, biological evaluation and structure activity relationship analysis.

    PubMed

    Grosse, Sandrine; Mathieu, Véronique; Pillard, Christelle; Massip, Stéphane; Marchivie, Mathieu; Jarry, Christian; Bernard, Philippe; Kiss, Robert; Guillaumet, Gérald

    2014-09-12

    Synthesis and functionalization strategies of the imidazo[1,2-b]pyrazole core were developed giving a rapid access to three series of novel imidazo[1,2-b]pyrazole type derivatives: C-2/C-6/C-7 trisubstituted, C-2/C-3/C-6 tri(hetero)arylated and C-2/C-3/C-6/C-7 tetrasubstituted imidazo[1,2-b]pyrazoles. 39 of the synthetized products were evaluated for in vitro anticancer activity using the MTT colorimetric assay against 5 human and 1 murine cancer cell lines. Promising in vitro growth inhibitory activities were exhibited by some of the target compounds. Of the 39 evaluated products, 4 displayed an IC50 ≤ 10 μM in the 6 cell lines analyzed (compounds 4d, 4g, 9a, 11a). A structure activity relationship analysis is also reported in this paper. PMID:25064349

  16. [Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship].

    PubMed

    Cao, Man; Yu, He-Shui; Song, Xin-Bo; Ma, Bai-Ping

    2012-07-01

    Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multidrug resistance of tumor. Therefore ginsenoside derivatives are promising as antitumor active compounds and drugs. In this review, the derivatization methods, ginsenoside derivatives and their anti-tumor structure-activity relationship have been summarized for providing useful information for the research and development of novel antitumor drugs. PMID:22993845

  17. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain.

    PubMed

    Espíndola, José Wanderlan Pontes; Cardoso, Marcos Veríssimo de Oliveira; Filho, Gevanio Bezerra de Oliveira; Oliveira E Silva, Dayane Albuquerque; Moreira, Diogo Rodrigo Magalhaes; Bastos, Tanira Matutino; Simone, Carlos Alberto de; Soares, Milena Botelho Pereira; Villela, Filipe Silva; Ferreira, Rafaela Salgado; Castro, Maria Carolina Accioly Brelaz de; Pereira, Valéria Rego Alves; Murta, Silvane Maria Fonseca; Sales Junior, Policarpo Ademar; Romanha, Alvaro José; Leite, Ana Cristina Lima

    2015-08-28

    The discovery of new antiparasitic compounds against Trypanosoma cruzi, the etiological agent of Chagas disease, is necessary. Novel aryloxy/aryl thiosemicarbazone-based conformationally constrained analogs of thiosemicarbazones (1) and (2) were developed as potential inhibitors of the T. cruzi protease cruzain, using a rigidification strategy of the iminic bond of (1) and (2). A structure-activity relationship analysis was performed in substituents attached in both aryl and aryloxy rings. This study indicated that apolar substituents or halogen atom substitution at the aryl position improved cruzain inhibition and antiparasitic activity in comparison to unsubstituted thiosemicarbazone. Two of these compounds displayed potent inhibitory antiparasitic activity by inhibiting cruzain and consequently were able to reduce the parasite burden in infected cells and cause parasite cell death through necrosis. In conclusion, we demonstrated that conformational restriction is a valuable strategy in the development of antiparasitic thiosemicarbazones. PMID:26231082

  18. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  19. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGESBeta

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  20. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  1. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China

    NASA Astrophysics Data System (ADS)

    Huang, Jinli; Zhao, Dapeng; Zheng, Sihua

    2002-10-01

    The Sichuan-Yunnan region in southwest China is located in the boundary area between the active Tibetan Plateau to the west and the stable South China platform to the east. This region is characterized by complex Cenozoic structures and active seismotectonics. In this study, we have used over 30,000 arrival times from 1315 local earthquakes recorded by 172 seismic stations to determine a detailed three-dimensional (3-D) P wave velocity structure of the lithosphere down to 85 km depth in this region. We have taken into account the complex morphology of the Moho discontinuity to conduct the tomographic inversions, which leads to a better result than that with a flat Moho as in the previous studies. Our results show that large velocity variations of up to 7% exist in the crust and upper mantle in the Sichuan-Yunnan region. The velocity image of the upper crust correlates with the surface geological features. The Sichuan basin is imaged as a prominent low-velocity zone, while the Panzhihua mining district is imaged as a high-velocity feature. Velocity changes are visible across some of the large fault zones, and the faults and some large crustal earthquakes seem to occur at the boundary areas between slow and fast velocity anomalies. Some of the faults, such as the Red River fault, may have cut through the crust and reached up to the upper mantle. Under the Tengchong volcanic area, strong low-velocity zones are visible down to 85 km depth, with a lateral extent of about 100 km, suggesting the existence of magma chambers under the volcano. It is unclear how the Tengchong intraplate volcanism was generated. It may be related to the collision processes between the Indian plate, Burma microplate and the Eurasian plate, and the possible subduction of the Burma microplate under the Eurasian plate. Another possibility is that it was caused by the extensional fractures of the lithosphere and the upward intrusion of the hot asthenospheric materials. It is also possible that the Tengchong volcanism represents a hot spot with a lower mantle origin.

  2. Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents.

    PubMed

    Sivakumar, Ponnurengam Malliappan; Priya, Sobana; Doble, Mukesh

    2009-04-01

    Forty-eight chalcone analogs were synthesized and their in vitro antibacterial activity against Staphylococcus aureus NCIM 5021, Bacillus subtilis NCIM 2718, Phaseolus vulgaris NCIM 2813, Escherichia coli NCIM 2931, Salmonella typhi 2501 and Enterobacter aerogenes NCIM 5139 were evaluated by microdilution broth assay. Quantitative structure-activity relationships were developed for all the cases (r(2) = 0.68-0.79; r(2)(adj) = 0.58-0.78; q(2) = 0.51-0.68; F = 13.02-61.51). Size, polarizability, electron-donating/withdrawing and hydrophilic nature of the molecule determine the activity against these Gram-positive and Gram-negative bacteria. Staphylococcus aureus was the most and S. typhi was the least hydrophobic of these organisms. These chalcones act better against more hydrophobic organisms. The more active chalcones have log P between 1.5 and 3. Compound 24, one of the most active compounds, was found to act by damaging the cell wall of S. aureus. Slimicidal activity of five of the most active compounds (24, 31, 32, 34 and 37) was found to be in the range of 48-60% against S. aureus and 40-54% against E. coli. A correlation was observed among the hydrophobicity of the compounds, hydrophobicity of the bacterial cell surface and the antibacterial activity of the compound. PMID:19291103

  3. Structure Activity Relationships of Monocyte Chemoattractant Proteins in Complex with a Blocking Antibody

    SciTech Connect

    Reid,C.; Rushe, M.; Jarpe, M.; Van Vlijmen, H.; Dolinski, B.; Qian, F.; Cachero, T.; Cuervo, H.; Yanachkova, M.; et al.

    2006-01-01

    Monocyte chemoattractant proteins (MCPs) are cytokines that direct immune cells bearing appropriate receptors to sites of inflammation or injury and are therefore attractive therapeutic targets for inhibitory molecules. 11K2 is a blocking mouse monoclonal antibody active against several human and murine MCPs. A 2.5 Angstroms structure of the Fab fragment of this antibody in complex with human MCP-1 has been solved. The Fab blocks CCR2 receptor binding to MCP-1 through an adjacent but distinct binding site. The orientation of the Fab indicates that a single MCP-1 dimer will bind two 11K2 antibodies. Several key residues on the antibody and on human MCPs were predicted to be involved in antibody selectivity. Mutational analysis of these residues confirms their involvement in the antibody- chemokine interaction. In addition to mutations that decreased or disrupted binding, one antibody mutation resulted in a 70-fold increase in affinity for human MCP-2. A key residue missing in human MCP-3, a chemokine not recognized by the antibody, was identified and engineering the preferred residue into the chemokine conferred binding to the antibody.

  4. Choline-Containing Phospholipids: Structure-Activity Relationships Versus Therapeutic Applications.

    PubMed

    Tayebati, S K; Marucci, G; Santinelli, C; Buccioni, M; Amenta, F

    2015-01-01

    Choline is a quaternary ammonium salt, and being an essential component of different membrane phospholipids (PLs) contributes to the structural integrity of cell membranes. Choline-containing phospholipids (CCPLs) include phosphatidylcholine (PC), sphingomyelin (SM), and choline alphoscerate (GPC). PC is the major phospholipid in most eukaryotic cells. It is involved in SM synthesis, choline/choline metabolite re-generation, and fatty acid/GPC formation. This paper has reviewed chemical, biological and therapeutic features of CCPLs by analyzing: a) effects of exogenous CCPLs, b) influence of GPC treatment on brain cholinergic neurotransmission, and c) neuroprotective effects of GPC alone or in association with acetylcholinesterase inhibitors in animal models of brain vascular injury, d) synthesis of the choline analogs, containing a short alkyl chain instead of a methyl group. Cytidine-diphosphocholine and GPC, protect cell membranes and could be helpful in the sequelae of cerebrovascular accident treatment. Moreover, cellular membrane breakdown is suggested as a feature of neurodegeneration both in acute (stroke) and in chronic (Alzheimer and vascular dementia) brain disorders. Published data were focused to a larger extent on the biosynthesis, relevant role in cell life, and crucial involvement of CCPLs in cholinergic neurotransmission. The possibility of their use in the treatment of cerebrovascular and neurodegenerative disorders is suggested by published clinical studies. In line with these potential practical applications in pharmacotherapy, the need of further research in the field of the synthesis of new choline derivatives with possible activity in nervous system diseases characterized by cholinergic impairment is discussed. PMID:26511472

  5. Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase.

    PubMed

    Yoshimori, Atsushi; Oyama, Takahiro; Takahashi, Satoshi; Abe, Hideaki; Kamiya, Takanori; Abe, Takehiko; Tanuma, Sei-ichi

    2014-11-01

    Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner. PMID:25288494

  6. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    TOXLINE Toxicology Bibliographic Information

    Lu Z; Reif R; Gan J

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP???a/b, NP???a and NP??? in the effluent. Moreover, biodegradability was related to the bulkiness of ?-substituents and followed ?-dimethyl > ?-ethyl-?-methyl > ?-methyl-?-n-propyl > ?-iso-propyl-?-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R = 0.76). Decrease of temperature to 10 C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.

  7. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Reif, Rubn; Gan, Jay

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP???a/b, NP???a and NP??? in the effluent. Moreover, biodegradability was related to the bulkiness of ?-substituents and followed ?-dimethyl > ?-ethyl-?-methyl > ?-methyl-?-n-propyl > ?-iso-propyl-?-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R = 0.76). Decrease of temperature to 10 C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP. PMID:25462736

  8. Structure-activity relationship of C5-curcuminoids and synthesis of their molecular probes thereof.

    PubMed

    Yamakoshi, Hiroyuki; Ohori, Hisatsugu; Kudo, Chieko; Sato, Atsuko; Kanoh, Naoki; Ishioka, Chikashi; Shibata, Hiroyuki; Iwabuchi, Yoshiharu

    2010-02-01

    A series of novel analogues of 1,5-bis(4-hydroxy-3-methoxyphenyl)-penta-(1E,4E)-1,4-dien-3-one (C(5)-curcumin), which is a natural analogue of curcumin isolated from the rhizomes of Curcuma domestica Val. (Zingiberacea), were synthesized and evaluated for their cytotoxicities against human colon cancer cell line HCT-116 to conclude the SAR of C(5)-curcuminoids for further development of their use in cancer chemotherapy: (1) Bis(arylmethylidene)acetone serves as a promising skeleton for eliciting cytotoxicity. (2) The 3-oxo-1,4-pentadiene structure is essential for eliciting cytotoxicity. (3) As for the extent of the aromatic substituents, hexasubstituted compounds exhibit strong activities, in which 3,4,5-hexasubstitution results in the highest potency. (5) The symmetry between two aryl rings is not an essential requirement for bis(arylmethylidene)acetones to elicit cytotoxicity. (6) para-Positions allows the installation of additional functional groups for use as molecular probes. By taking advantage of the SAR diagram, we have elaborated several advanced derivatives having GI(50) of single-digit micromolar potencies that will function as molecular probes to target and/or report key biomolecules interacting with curcumin and C(5)-curcumin. PMID:20060305

  9. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  10. Mammary Carcinogen-Protein Binding Potentials: Novel and Biologically Relevant Structure-Activity Relationship Model Descriptors

    PubMed Central

    Cunningham, A.R.; Qamar, S.; Carrasquer, C.A.; Holt, P.A.; Maguire, J.M.; Cunningham, S.L.; Trent, J.O.

    2010-01-01

    Previously, SAR models for carcinogenesis used descriptors that are essentially chemical descriptors. Herein we report the development of models with the cat-SAR expert system using biological descriptors (i.e., ligand-receptor interactions) rat mammary carcinogens. These new descriptors are derived from the virtual screening for ligand-receptor interactions of carcinogens, non-carcinogens, and mammary carcinogens to a set of 5494 target proteins. Leave-one-out validations of the ligand mammary carcinogen non-carcinogen model had a concordance between experimental and predicted results of 71% and the mammary carcinogen non-mammary carcinogen model was 72% concordant. The development of a hybrid fragment-ligand model improved the concordances to 85 and 83%, respectively. In a separate external validation exercise, hybrid fragment-ligand models had concordances of 81 and 76%. Analyses of example rat mammary carcinogens including the food mutagen and estrogenic compound PhIP, the herbicide atrazine, and the drug indomethacin, the ligand model identified a number of proteins associated with each compound that had previously been referenced in Medline in conjunction with the test chemical and separately with association to breast cancer. This new modelling approach can enhance model predictivity and help bridge the gap between chemical structure and carcinogenic activity by descriptors that are related to biological targets. PMID:20818582

  11. Isolation of Insecticidal Constituent from Ruta graveolens and Structure-Activity Relationship Studies against Stored-Food Pests (Coleoptera).

    PubMed

    Jeon, Ju-Hyun; Lee, Sang-Guei; Lee, Hoi-Seon

    2015-08-01

    Isolates from essential oil extracted from the flowers and leaves of Ruta graveolens and commercial phenolic analogs were evaluated using fumigant and contact toxicity bioassays against adults of the stored-food pests Sitophilus zeamais, Sitophilus oryzae, and Lasioderma serricorne. The insecticidal activity of these compounds was then compared with that of the synthetic insecticide dichlorvos. To investigate the structure-activity relationships, the activity of 2-isopropyl-5-methylphenol and its analogs was examined against these stored-food pests. Based on the 50% lethal dose, the most toxic compound against S. zeamais was 3-isopropylephenol, followed by 2-isopropylphenol, 4-isopropylphenol, 5-isopropyl-2-methylphenol, 2-isopropyl-5-methylphenol, 3-methylphenol, and 2-methylphenol. Similar results were observed with phenolic compounds against S. oryzae. However, when 2-isopropyl-5-methylphenol isolated from R. graveolens oil and its structurally related analogs were used against L. serricorne, little or no insecticidal activity was found regardless of bioassay. These results indicate that introducing and changing the positions of functional groups in the phenol skeleton have an important effect on insecticidal activity of these compounds against stored-food pests. PMID:26219367

  12. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species

    PubMed Central

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P.; Sinnaeve, Davy; Ongena, Marc; Martins, José C.; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  13. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species.

    PubMed

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P; Sinnaeve, Davy; Ongena, Marc; Martins, José C; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  14. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells

    PubMed Central

    Quan, Kai; Liu, Qun; Wan, Jin-Yi; Zhao, Yi-Jing; Guo, Ru-Zhou; Alolga, Raphael N.; Li, Ping; Qi, Lian-Wen

    2015-01-01

    The anticancer activities of ginsenosides are widely reported. The structure-activity relationship of ginsenosides against cancer is not well elucidated because of the unavailability of these compounds. In this work, we developed a transformation method to rapidly produce rare dehydroxylated ginsenosides by acid treatment. The optimized temperature, time course, and concentration of formic acid were 120°C, 4 h and 0.01%, respectively. From 100 mg of Rh1, 8.3 mg of Rk3 and 18.7 mg of Rh4 can be produced by acid transformation. Similarly, from 100 mg of Rg3, 7.4 mg of Rk1 and 15.1 mg of Rg5 can be produced. From 100 mg of Rh2, 8.3 mg of Rk2 and 12.7 mg of Rh3 can be generated. Next, the structure-activity relationships of 23 ginsenosides were investigated by comparing their cytotoxic effects on six human cancer cells, including HCT-116, HepG2, MCF-7, Hela, PANC-1, and A549. The results showed that: (1) the cytotoxic effect of ginsenosides is inversely related to the sugar numbers; (2) sugar linkages rank as C-3 > C-6 > C-20; (3) the protopanaxadiol-type has higher activities; (4) having the double bond at the terminal C20-21 exhibits stronger activity than that at C20-22; and (5) 20(S)-ginsenosides show stronger effects than their 20(R)-stereoisomers. PMID:25716943

  15. Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties

    PubMed Central

    Potůčková, Eliška; Hrušková, Kateřina; Bureš, Jan; Kovaříková, Petra; Špirková, Iva A.; Pravdíková, Kateřina; Kolbabová, Lucie; Hergeselová, Tereza; Hašková, Pavlína; Jansová, Hana; Macháček, Miloslav; Jirkovská, Anna; Richardson, Vera; Lane, Darius J. R.; Kalinowski, Danuta S.; Richardson, Des R.; Vávrová, Kateřina; Šimůnek, Tomáš

    2014-01-01

    Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects. PMID:25393531

  16. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships.

    PubMed

    Jung, Yearam; Shin, Soon Young; Yong, Yeonjoong; Jung, Hyeryoung; Ahn, Seunghyun; Lee, Young Han; Lim, Yoongho

    2015-05-01

    Although several plant-derived flavones inhibit aurora B kinase (aurB), quantitative relationships between the structural properties of plant-derived flavones and their inhibitory effects on aurB remain unclear. In this report, these quantitative structure-activity relationships were obtained. For quercetagetin, found in the Eriocaulon species, showing the best IC50 value among the flavone derivatives tested in this report, further biological tests were performed using cell-based assays, including Western blot analysis, flow cytometry, and immunofluorescence microscopy. In vitro cellular experiments demonstrated that quercetagetin inhibits aurB. The molecular-binding mode between quercetagetin and aurB was elucidated using in silico docking. Quercetagetin binds to aurB, aurA, and aurC and prevents the active phosphorylation of all three aurora kinases. In addition, quercetagetin triggers mitotic arrest and caspase-mediated apoptosis. These observations suggest that quercetagetin is an aurora kinase inhibitor. Induction of mitosis-associated tumor cell death by quercetagetin is a promising strategy for developing novel chemotherapeutic anticancer agents. PMID:25298094

  17. Synthesis of 2,4-diaryl chromenopyridines and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship.

    PubMed

    Thapa, Uttam; Thapa, Pritam; Karki, Radha; Yun, Minho; Choi, Jae Hun; Jahng, Yurngdong; Lee, Eunyoung; Jeon, Kyung-Hwa; Na, Younghwa; Ha, Eun-Mi; Cho, Won-Jea; Kwon, Youngjoo; Lee, Eung-Seok

    2011-08-01

    Designed and synthesized were a series of 5H-chromeno[4,3-b]pyridines with substitution at 2- and 4-positions with various 5- or 6-membered heteroaromatics as antitumor agents. They were evaluated for topoisomerase I and II inhibitory activities as well as cytotoxicities against several human cancer cell lines. Structure-activity relationship study showed that 2-furyl or 2-thienyl at 2- or 4-position of central pyridine is crucial in displaying topo I or II inhibitory activity and cytotoxicity. PMID:21601964

  18. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. PMID:26004577

  19. Structure-Activity Relationships for DNA Damage by Alkenylbenzenes in Turkey Egg Fetal Liver.

    PubMed

    Kobets, Tetyana; Duan, Jian-Dong; Brunnemann, Klaus D; Etter, Sylvain; Smith, Benjamin; Williams, Gary M

    2016-04-01

    Certain alkenylbenzenes (AB), flavoring chemicals naturally occurring in spices and herbs, are established to be cytotoxic and hepatocarcinogenic in rodents. The purpose of the present study was to determine the DNA damaging potential of key representatives of this class using the Turkey Egg Genotoxicity Assay. Medium white turkey eggs with 22- to 24-day-old fetuses received three injections of nine AB with different carcinogenic potentials: safrole (1, 2 mg/egg), methyl eugenol (2, 4 mg/egg), estragole (20, 40 mg/egg), myristicin (25, 50 mg/egg), elemicin (20, 50 mg/egg), anethole (5, 10 mg/egg), methyl isoeugenol (40, 80 mg/egg), eugenol (1, 2.5 mg/egg), and isoeugenol (1, 4 mg/egg). Three hours after the last injection, fetal livers were harvested for measurement of DNA strand breaks, using the comet assay and DNA adducts formation, using the nucleotide(3) (2)P-postlabeling assay. Estragole, myristicin, and elemicin induced DNA stand breaks. These compounds as well as safrole, methyl eugenol and anethole, at the highest doses tested, induced DNA adduct formation. Methyl isoeugenol, eugenol, and isoeugenol did not induce genotoxicity. The genotoxic AB all had the structural features of either a double bond in the alkenyl side chain at the terminal 2',3'-position, favorable to formation of proximate carcinogenic 1'-hydroxymetabolite or terminal epoxide, or the absence of a free phenolic hydroxyl group crucial for formation of a nontoxic glucuronide conjugate. In contrast, methyl isoeugenol, eugenol and isoeugenol, which were nongenotoxic, possessed chemical features, unfavorable to activation. PMID:26719370

  20. Amide-Modified Prenylcysteine based Icmt Inhibitors: Structure Activity Relationships, Kinetic Analysis and Cellular Characterization

    PubMed Central

    Majmudar, Jaimeen D.; Hodges-Loaiza, Heather B.; Hahne, Kalub; Donelson, James L.; Song, Jiao; Shrestha, Liza; Harrison, Marietta L.; Hrycyna, Christine A.; Gibbs, Richard A.

    2012-01-01

    Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-termimal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng – Prusoff method, the Ki values were determined from the IC50 values. Analog 1a has a KIC of 1.4 ± 0.2 μM and a KIU of 4.8 ± 0.5 μM while 1b has a KIC of 0.5 ± 0.07 μM and a KIU of 1.9 ± 0.2 μM. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells. PMID:22142613

  1. Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, StructureActivity Relationship, and Anticancer Activities

    PubMed Central

    2013-01-01

    Cancer cells often have a high demand for antiapoptotic proteins in order to resist programmed cell death. CDK9 inhibition selectively targets survival proteins and reinstates apoptosis in cancer cells. We designed a series of 4-thiazol-2-anilinopyrimidine derivatives with functional groups attached to the C5-position of the pyrimidine or to the C4-thiazol moiety and investigated their effects on CDK9 potency and selectivity. One of the most selective compounds, 12u inhibits CDK9 with IC50 = 7 nM and shows over 80-fold selectivity for CDK9 versus CDK2. X-ray crystal structures of 12u bound to CDK9 and CDK2 provide insights into the binding modes. This work, together with crystal structures of selected inhibitors in complex with both enzymes described in a companion paper,34 provides a rationale for the observed SAR. 12u demonstrates potent anticancer activity against primary chronic lymphocytic leukemia cells with a therapeutic window 31- and 107-fold over those of normal B- and T-cells. PMID:23301767

  2. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.

    PubMed

    Yang, Lei; Wang, Peng; Jiang, Yilin; Chen, Jian

    2005-01-01

    Although artificial neural networks (ANNs) have been shown to exhibit superior predictive power in the study of quantitative structure-activity relationships (QSARs), they have also been labeled a "black box" because they provide little explanatory insight into the relative influence of the independent variables in the predictive process so that little information on how and why compounds work can be obtained. Here, we have turned our interests to their explanatory capacities; therefore, a method was proposed for assessing the relative importance of variables indicating molecular structure, on the basis of axon connection weights and partial derivatives of the ANN output with respect to its input, which can identify variables that significantly contribute to network predictions, and providing a variable selection method for ANNs. We show that, by extending this approach to ANNs, the "black box" mechanics of ANNs can be greatly illuminated, thereby making it very useful in understanding environmental chemical QSAR models. PMID:16309287

  3. Structure-activity relationships of non-opioid [des-Arg(7)]-dynorphin A analogues for bradykinin receptors.

    PubMed

    Lee, Yeon Sun; Rankin, David; Hall, Sara M; Ramos-Colon, Cyf; Ortiz, Jose Juan; Kupp, Robert; Porreca, Frank; Lai, Josephine; Hruby, Victor J

    2014-11-01

    In our earlier studies, bradykinin receptors (BRs) were identified as a potential target for the neuroexcitatory effects of dynorphin A (Dyn A) in the central nervous system (CNS), and [des-Arg(7)]-Dyn A-(4-11) (6) was discovered as a lead ligand to modulate Dyn A-(2-13) induced neuroexcitatory effects in the CNS as an antagonist. In an effort to gain insights into key structural features of the Dyn A for the BRs, we pursued further structure-activity relationships (SAR) study on the [des-Arg(7)]-Dyn A analogs and confirmed that all of the [des-Arg(7)]-Dyn A analogues showed good binding affinities at the BRs. PMID:25282551

  4. Structure-activity relationships of non-opioid [des-Arg7]-dynorphin A analogues for bradykinin receptors

    PubMed Central

    Lee, Yeon Sun; Rankin, David; Hall, Sara M.; Ramos-Colon, Cyf; Ortiz, Jose Juan; Kupp, Robert; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2014-01-01

    In our earlier studies, bradykinin receptors (BRs) were identified as a potential target for the neuroexcitatory effects of dynorphin A (Dyn A) in the central nervous system (CNS), and [des-Arg7]-Dyn A-(4-11) (6) was discovered as a lead ligand to modulate Dyn A-(2-13) induced neuroexcitatory effects in the CNS as an antagonist. In an effort to gain insights into key structural features of the Dyn A for the BRs, we pursued further structure-activity relationships (SAR) study on the [des-Arg7]-Dyn A analogs and confirmed that all of the [des-Arg7]-Dyn A analogues showed good binding affinities at the BRs. PMID:25282551

  5. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies.

    PubMed

    Nuzzi, Andrea; Fiasella, Annalisa; Ortega, Jose Antonio; Pagliuca, Chiara; Ponzano, Stefano; Pizzirani, Daniela; Bertozzi, Sine Mandrup; Ottonello, Giuliana; Tarozzo, Glauco; Reggiani, Angelo; Bandiera, Tiziano; Bertozzi, Fabio; Piomelli, Daniele

    2016-03-23

    4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the β-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation. PMID:26866968

  6. Synthesis and structure-activity relationships of 2-acylamino-4,6-diphenylpyridine derivatives as novel antagonists of GPR54.

    PubMed

    Kobayashi, Toshitake; Sasaki, Satoshi; Tomita, Naoki; Fukui, Seiji; Kuroda, Noritaka; Nakayama, Masaharu; Kiba, Atsushi; Takatsu, Yoshihiro; Ohtaki, Tetsuya; Itoh, Fumio; Baba, Atsuo

    2010-06-01

    GPR54 is a G protein-coupled receptor (GPCR) which was formerly an orphan receptor. Recent functional study of GPR54 revealed that the receptor has an essential role to modulate sex-hormones including GnRH. Though antagonists of GPR54 are expected to be novel drugs for sex-hormone dependent diseases such as prostate cancer or endometriosis, small molecule GPR54 antagonists have not been reported. We have synthesized a series of 2-acylamino-4,6-diphenylpyridines to identify potent GPR54 antagonists. Detailed structure-activity relationship studies led to compound 9l with an IC(50) value of 3.7nM in a GPR54 binding assay, and apparent antagonistic activity in a cellular functional assay. PMID:20457527

  7. Discovery and Structure-Activity Relationship of a Bioactive Fragment of ELABELA that Modulates Vascular and Cardiac Functions.

    PubMed

    Murza, Alexandre; Sainsily, Xavier; Coquerel, David; Côté, Jérôme; Marx, Patricia; Besserer-Offroy, Élie; Longpré, Jean-Michel; Lainé, Jean; Reversade, Bruno; Salvail, Dany; Leduc, Richard; Dumaine, Robert; Lesur, Olivier; Auger-Messier, Mannix; Sarret, Philippe; Marsault, Éric

    2016-04-14

    ELABELA (ELA) was recently discovered as a novel endogenous ligand of the apelin receptor (APJ), a G protein-coupled receptor. ELA signaling was demonstrated to be crucial for normal heart and vasculature development during embryogenesis. We delineate here ELA's structure-activity relationships and report the identification of analogue 3 (ELA(19-32)), a fragment of ELA that binds to APJ, activates the Gαi1 and β-arrestin-2 signaling pathways, and induces receptor internalization similarly to its parent endogenous peptide. An alanine scan performed on 3 revealed that the C-terminal residues are critical for binding to APJ and signaling. Finally, using isolated-perfused hearts and in vivo hemodynamic and echocardiographic measurements, we demonstrate that ELA and 3 both reduce arterial pressure and exert positive inotropic effects on the heart. Altogether, these results present ELA and 3 as potential therapeutic options in managing cardiovascular diseases. PMID:26986036

  8. Inactivation of leukocyte elastase by aryl azolides and sulfonate salts. Structure-activity relationship studies.

    PubMed

    Groutas, W C; Brubaker, M J; Zandler, M E; Mazo-Gray, V; Rude, S A; Crowley, J P; Castrisos, J C; Dunshee, D A; Giri, P K

    1986-07-01

    The inhibitory activity of a series of aryl azolides and sulfonate salts toward human leukocyte elastase is reported. Several of the compounds were found to be potent inhibitors of the enzyme. Active compounds were obtained only when the specificity group and the reactive moiety were separated by a two-carbon chain. The introduction of hydrophobic groups enhanced the inhibitory activity of these compounds, with the exception of the sulfonate salts. The nature of the leaving group had a profound effect on inhibitory activity, with compounds 23 and 26 being the most active (kobsd/[I] = 11,722 and 13,500 M-1 s-1, respectively). PMID:3643283

  9. Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders--A Review of Structure-Activity Relationships.

    PubMed

    Gunia-Krzyżak, Agnieszka; Pańczyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk

    2015-08-01

    The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ-aminobutyric acid type A (GABAA ) receptors, N-methyl-D-aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage-gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target-based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure-activity relationships discussed. PMID:26083325

  10. Structure-activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors.

    PubMed

    Nguyen, Son T; Kwasny, Steven M; Ding, Xiaoyuan; Cardinale, Steven C; McCarthy, Courtney T; Kim, Hong-Suk; Nikaido, Hiroshi; Peet, Norton P; Williams, John D; Bowlin, Terry L; Opperman, Timothy J

    2015-05-01

    Recently we described a novel pyranopyridine inhibitor (MBX2319) of RND-type efflux pumps of the Enterobacteriaceae. MBX2319 (3,3-dimethyl-5-cyano-8-morpholino-6-(phenethylthio)-3,4-dihydro-1H-pyrano[3,4-c]pyridine) is structurally distinct from other known Gram-negative efflux pump inhibitors (EPIs), such as 1-(1-naphthylmethyl)-piperazine (NMP), phenylalanylarginine-β-naphthylamide (PAβN), D13-9001, and the pyridopyrimidine derivatives. Here, we report the synthesis and biological evaluation of 60 new analogs of MBX2319 that were designed to probe the structure activity relationships (SARs) of the pyranopyridine scaffold. The results of these studies produced a molecular activity map of the scaffold, which identifies regions that are critical to efflux inhibitory activities and those that can be modified to improve potency, metabolic stability and solubility. Several compounds, such as 22d-f, 22i and 22k, are significantly more effective than MBX2319 at potentiating the antibacterial activity of levofloxacin and piperacillin against Escherichia coli. PMID:25818767

  11. Novel 4-substituted phenyl-2,2'-bichalcophenes and aza-analogs as antibacterial agents: a structural activity relationship.

    PubMed

    Hussin, Warda A; Ismail, Mohamed A; El-Sayed, Wael M

    2013-01-01

    Antibiotic resistance is a major health problem; therefore, new antibacterial agents will need to be continuously developed. A series of novel bichalcophenes has been tested and found to have antimicrobial activity against selected bacteria. Due to the promising antimicrobial effects of these 4-substituted phenyl bichalcophene derivatives, the study reported here was launched to examine the interaction between novel bichalcophenes and tetracycline. The minimum inhibitory concentration values for all bichalcophenes were between 8 and 64 μM. Many of the bichalcophenes had synergistic activity that increased the inhibitory effect of tetracycline against bacterial growth, as indicated by the fractional inhibitory concentration index. The post-antibiotic effects of the novel bichalcophenes were determined. Many bichalcophenes were able to elongate the period required for bacteria to recover and grow after a brief exposure to tetracycline. Escherichia coli did not develop resistance to many bichalcophenes over a period of 7 days. A structural activity relationship could be characterized, as monocationic derivatives were more active than the corresponding mononitriles. The presence of a pyridyl group and/or furan ring reduced the activity, while the presence of a phenyl or thiophene ring enhanced the antibacterial activity. Our results suggest that bichalcophenes could be useful to elevate the shelf life of many antibiotics. PMID:23662048

  12. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.

    PubMed

    Pieroni, Marco; Wan, Baojie; Cho, Sanghyun; Franzblau, Scott G; Costantino, Gabriele

    2014-01-24

    Tuberculosis (TB) is one of the deadliest infectious diseases of all times, and its recent resurgence is a supreme matter of concern. Co-infection with HIV and, in particular, the continuous isolation of new resistant strains, makes the discovery of novel anti-TB agents a strategic priority. The research of novel agents should be driven by the accessibility of the synthetic procedure and, in particular, by the lack of cross-resistance with the drugs already marketed. Moreover, in order to shorten the duration of the therapy, and therefore decrease the rate of resistance, these molecules should be active also against the nonreplicating persistent form (NRP-TB) of the infection. The availability of an in-house small library of compounds prompted us to investigate their anti-TB activity. Two compounds, embodying a 2-aminothiazole scaffold, were found to possess a certain inhibitory activity toward Mycobacterium tuberculosis H37Rv, and therefore a medicinal chemistry campaign was initiated in order to increase the activity of the hit compounds and, especially, construct a plausible body of structure-activity relationships. The potency of the hit compound was successfully improved, and, much more importantly, some of the molecules synthesized were found to be active toward the persistent phenotype, and, also, toward a panel of resistant strains. These findings encourage further investigations around this interesting antitubercular chemotype. PMID:24333612

  13. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose. PMID:26988873

  14. Structure-Based Design, Synthesis and Structure-Activity Relationship Studies of HIV-1 Protease Inhibitors Incorporating Phenyloxazolidinones

    PubMed Central

    Ali, Akbar; Kiran Kumar Reddy, G. S.; Nalam, Madhavi N. L.; Anjum, Saima Ghafoor; Cao, Hong; Schiffer, Celia A.; Rana, Tariq M.

    2010-01-01

    A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different phenyloxazolidinone P2 ligands were designed and synthesized. Variation of phenyl substitutions at the P2 and P2′ moieties significantly affected the inhibitors’ binding affinity and antiviral potency. In general, compounds with 2- and 4-substituted phenyloxazolidinones at P2 exhibited lower binding affinities than 3-substituted analogues. Crystal structure analyses of ligand-enzyme complexes revealed different binding modes for 2- and 3-substituted P2 moieties in the protease S2 binding pocket, which may explain the compounds’ different binding affinities. Several compounds with 3-substituted P2 moieties demonstrated pM binding affinity, low nM antiviral potency against patient-derived viruses from HIV-1 clades A, B and C, and most retained potency against drug-resistant viruses. Further optimization of these compounds using structure-based design may lead to the development of novel protease inhibitors with improved activity against drug-resistant strains of HIV-1. PMID:20958050

  15. Structure-Activity Relationship Studies on the Mosquito Toxicity and Biting Deterrency of Callicarpenal Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Callicarpenal (13,14,15,16-tetranor-3-cleroden-12-al) has previously demonstrated significant mosquito bite-deterring activity against Aedes aegypti and Anopheles stephensi in addition to repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis. In the present study...

  16. Structure-activity relationship study of 4-substituted piperidines at Leu26 moiety of novel p53-hDM2 inhibitors.

    PubMed

    Tian, Yuan; Ma, Yao; Gibeau, Craig R; Lahue, Brian R; Shipps, Gerald W; Strickland, Corey; Bogen, Stéphane L

    2016-06-01

    Led by the structural information of the screening hit with mDM2 protein, a structure modification of Leu26 moiety of the novel p53-hDM2 inhibitors was conducted. A structure-activity relationship study of 4-substituted piperidines revealed compound 20t with good potencies and excellent CYP450 profiles. PMID:27080185

  17. Three-dimensional quantitative structure-activity relationship study on antioxidant capacity of curcumin analogues

    NASA Astrophysics Data System (ADS)

    Chen, Bohong; Zhu, Zhibo; Chen, Min; Dong, Wenqi; Li, Zhen

    2014-03-01

    A comparative molecular similarity indices analysis (CoMSIA) was performed on a set of 27 curcumin-like diarylpentanoid analogues with the radical scavenging activities. A significant cross-validated correlation coefficient Q2 (0.784), SEP (0.042) for CoMSIA were obtained, indicating the statistical significance of the correlation. Further we adopt a rational approach toward the selection of substituents at various positions in our scaffold,and finally find the favored and disfavoured regions for the enhanced antioxidative activity. The results have been used as a guide to design compounds that, potentially, have better activity against oxidative damage.

  18. Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure-activity relationship analysis and molecular dynamics simulations.

    PubMed

    Chuang, Yu-Chung; Chang, Ching-Hsun; Lin, Jen-Tai; Yang, Chia-Ning

    2015-03-01

    Sirtuin 2 (SIRT2) is a nicotinamide-adenine-dinucleotide-dependent histone deacetylase that plays a vital role in various biological processes related to DNA regulation, metabolism, and longevity. Recent studies on SIRT2 have indicated its therapeutic potential for neurodegenerative diseases such as Parkinson's disease. In this study, a series of SIRT2 inhibitors with a 2-anilinobenzamide core was analysed using a combination of molecular modelling techniques. A three-dimensional structure-activity relationship (3D-QSAR) model adopting a comparative molecular field analysis (CoMFA) method with a non-cross-validated correlation coefficient R(2) = 0.992 (for training set) and a correlation coefficient Rtest(2) = 0.804 (for test set) was generated to determine the structural requirements for inhibitory activity. Furthermore, we employed molecular dynamics (MD) simulations and the molecular mechanics/generalized Born surface area (MM/GBSA) method to compare the binding modes of a potent and selective compound interacting with SIRT1, SIRT2, and SIRT3 and also their binding free energies to shed light on the selectivity of the footing of structural and energetic investigations. The steric and electrostatic contour maps from the 3D-QSAR analysis identified several key interactions also observed in the MD simulations. According to these results, we provide guidelines for developing novel potent and selective SIRT2 inhibitors. PMID:25502412

  19. Structure Activity Relationship and Mechanism of Action Studies of Manzamine Analogues for the Control of Neuroinflammation and Cerebral Infections

    PubMed Central

    Peng, Jiangnan; Kudrimoti, Sucheta; Prasanna, Sivaprakasam; Odde, Srinivas; Doerksen, Robert J.; Pennaka, Hari K; Choo, Yeun-Mun; Rao, Karumanchi V.; Tekwani, Babu L.; Madgula, Vamsi; Khan, Shabana I.; Wang, Bin; Mayer, Alejandro M. S.; Jacob, Melissa R.; Tu, Lan Chun; Gertsch, Jürg; Hamann, Mark T.

    2010-01-01

    Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinol isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g. Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3β (GSK-3β), which is a putative target of manzamines. Based on the results presented here it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases. PMID:20017491

  20. Benzoxazolone Carboxamides as Potent Acid Ceramidase Inhibitors: Synthesis and Structure-Activity Relationship (SAR) Studies.

    PubMed

    Bach, Anders; Pizzirani, Daniela; Realini, Natalia; Vozella, Valentina; Russo, Debora; Penna, Ilaria; Melzig, Laurin; Scarpelli, Rita; Piomelli, Daniele

    2015-12-10

    Ceramides are lipid-derived intracellular messengers involved in the control of senescence, inflammation, and apoptosis. The cysteine amidase, acid ceramidase (AC), hydrolyzes these substances into sphingosine and fatty acid and, by doing so, regulates their signaling activity. AC inhibitors may be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic administration. The results expand our arsenal of AC inhibitors, thereby facilitating the use of these compounds as pharmacological tools and their potential development as drug leads. PMID:26560855

  1. Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors.

    PubMed

    Wang, Hui; Yang, Chunying; Doherty, Joanne R; Roush, William R; Cleveland, John L; Bannister, Thomas D

    2014-09-11

    Novel substituted pteridine-derived inhibitors of monocarboxylate transporter 1 (MCT1), an emerging target for cancer therapy, are reported. The activity of these compounds as inhibitors of lactate transport was confirmed using a (14)C-lactate transport assay, and their potency against MCT1-expressing human tumor cells was established using MTT assays. The four most potent compounds showed substantial anticancer activity (EC50 37-150 nM) vs MCT1-expressing human Raji lymphoma cells. PMID:25068893

  2. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  3. Dihydro-β-agarofuran sesquiterpenes from celastraceae species as anti-tumour-promoting agents: Structure-activity relationship.

    PubMed

    Núñez, Marvin J; Jiménez, Ignacio A; Mendoza, Cristina R; Chavez-Sifontes, Marvin; Martinez, Morena L; Ichiishi, Eiichiro; Tokuda, Ryo; Tokuda, Harukuni; Bazzocchi, Isabel L

    2016-03-23

    Inhibition of tumour promotion in multistage chemical carcinogenesis is considered a promising strategy for cancer chemoprevention. In an ongoing investigation of bioactive secondary metabolites from Celastraceae species, five new dihydro-β-agarofuran sesquiterpenes (1-5), named Chiapens A-E, and seventeen known ones, were isolated from Maytenus chiapensis. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric techniques, and their absolute configurations were determined by circular dichroism studies, chemical correlations and biogenic means. The isolated compounds, along with twenty known sesquiterpenes, previously isolated from Zinowiewia costaricensis, have been tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorpol-13-acetate (TPA). Thirty three compounds from this series showed stronger effects than that of β-carotene, the reference inhibitor. The structure-activity relationship (SAR) analysis revealed that the type of substituent, in particular at the C-1 position of the sesquiterpene scaffold, was able to modulate the anti-tumour promoting activity. Compounds 3, 6, and 33 showed significant effects in an in vivo two-stage mouse-skin carcinogenesis model. PMID:26854381

  4. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids. PMID:26080741

  5. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  6. Structure-Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists.

    PubMed

    Selfridge, Brandon R; Wang, Xiaohui; Zhang, Yingning; Yin, Hang; Grace, Peter M; Watkins, Linda R; Jacobson, Arthur E; Rice, Kenner C

    2015-06-25

    Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-Naltrexone acts as a Toll-like receptor 4 (TLR4) antagonist and has been shown to reverse neuropathic pain in rat studies. We designed and synthesized compounds based on (+)-naltrexone and (+)-noroxymorphone and evaluated their TLR4 antagonist activities by their effects on inhibiting lipopolysaccharide (LPS) induced TLR4 downstream nitric oxide (NO) production in microglia BV-2 cells. Alteration of the N-substituent in (+)-noroxymorphone gave us a potent TLR4 antagonist. The most promising analog, (+)-N-phenethylnoroxymorphone ((4S,4aR,7aS,12bR)-4a,9-dihydroxy-3-phenethyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 1j) showed ∼75 times better TLR-4 antagonist activity than (+)-naltrexone, and the ratio of its cell viability IC50, a measure of its toxicity, to TLR-4 antagonist activity (140 μM/1.4 μM) was among the best of the new analogs. This compound (1j) was active in vivo; it significantly increased and prolonged morphine analgesia. PMID:26010811

  7. Structure-Function Relationship of a Novel PR-5 Protein with Antimicrobial Activity from Soy Hulls.

    PubMed

    Liu, Chun; Cheng, Fenfen; Sun, Yingen; Ma, Hongyu; Yang, Xiaoquan

    2016-02-01

    An alkaline isoform of the PR-5 protein (designated GmOLPc) has been purified from soybean hulls and identified by MALDI-TOF/TOF-MS. GmOLPc effectively inhibited in vitro the growth of Phytophthora soja spore and Pseudomonas syringae pv glycinea. The antimicrobial activity of GmOLPc should be mainly ascribed to its high binding affinity with vesicles composed of DPPG, (1,3)-β-d-glucans, and weak endo-(1,3)-β-d-glucanase activity. From the 3D models, predicted by the homology modeling, GmOLPc contains an extended negatively charged cleft. The cleft was proved to be a prerequisite for endo-(1,3)-β-d-glucanase activity. Molecular docking revealed that the positioning of linear (1,3)-β-d-glucans in the cleft of GmOLPc allowed an interaction with Glu83 and Asp101 that were responsible for the hydrolytic cleavage of glucans. Interactions of GmOLPc with model membranes indicated that GmOLPc possesses good surface activity which could contribute to its antimicrobial activity, as proved by the behavior of perturbing the integrity of membranes through surface hydrophobic amino acid residues (Phe89 and Phe94). PMID:26753535

  8. Curcumin bioconjugates: studies on structure-activity relationship and antibacterial properties against clinically isolated strains.

    PubMed

    Rai, Diwakar; Kumari, Garima; Singh, Anuradha; Singh, Ramendra K

    2013-11-01

    Curcumin bioconjugates, with folic acid, fatty acids and dipeptide, have shown much lower MIC than curcumin against clinically isolated Gram-positive, S.viridians, and Gram-negative bacterial strains, E. coli, P. mirabilis and K. pneumoniae. Polynomial regression analysis was performed to establish a correlation between lipophilicity (logP) and antibacterial activity (pMIC), which showed the efficacy of these molecules against the bacterial strains in the following order: E. coli > S viridans = K. pneumoniae > P. mirabilis. The regression coefficients (R(2) = 0.62 to 0.91) derived for each strain were correlated significantly and led to a conclusion that it was the amphiphilic nature that governed the antibacterial activity. Thus, the bioconjugate 2, having folic acid attached at active methylene site of curcumin with free phenolic hydroxyls, showed the best result. PMID:23189999

  9. Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptes cuniculi: synthesis, bioactivity and structure-activity relationship.

    PubMed

    Zhang, Bingyu; Lv, Chao; Li, Weibo; Cui, Zhiming; Chen, Dongdong; Cao, Fangjun; Miao, Fang; Zhou, Le

    2015-01-01

    This paper reported the synthesis, structure-activity relationship (SAR) and acaricidal activity in vitro against Psoroptes cuniculi, a mange mite, of 25 ethyl cinnamate derivatives. All target compounds were synthesized and elucidated by means of MS, (1)H- and (13)C-NMR analysis. The results showed that 24 out of 25 tested compounds at 1.0 mg/mL demonstrated acaricidal activity in varying degrees. Among them, 6, 15, 26, 27 and 30 showed significant activity with median lethal concentration values (LC50) of 89.3, 119.0, 39.2, 29.8 and 41.2 µg/mL, respectively, which were 2.1- to 8.3-fold the activity of ivermectin (LC50=247.4 µg/mL), a standard drug in the treatment of Psoroptes cuniculi. Compared with ivermectin, with a median lethal time value (LT50) of 8.9 h, 27 and 30 showed smaller LT50 values of 7.9 and 1.3 h, respectively, whereas 6, 15 and 26 showed slightly larger LT50 values of 10.6, 11.0 and 10.4 h at 4.5 µmol/mL. SARs showed that the presence of o-NO2 or m-NO2 on the benzene ring significantly improved the activity, whereas the introduction of a hydroxy, methoxy, acetoxy, methylenedioxy, bromo or chloro group reduced the activity. (E)-Cinnamates were more effective than their (Z)-isomer. Nevertheless, the carbon-carbon double bond in the acrylic ester moiety was proven not to be essential to improve the activity of cinnamic acid esters. Thus, the results strongly indicate that cinnamate derivatives, especially their dihydro derivatives, should be promising candidates or lead compounds for the development of novel acaricides for the effective control of animal or human acariasis. PMID:25739666

  10. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship.

    PubMed

    Liu, Changhui; Chang, Victor W C; Gin, Karina Y H

    2014-10-01

    Concerns regarding perfluorinated chemicals (PFCs) have risen in recent years because of their ubiquitous presence and high persistency. However, data on the environmental impacts of PFCs on marine organisms are very limited. Oxidative toxicity has been suggested to be one of the major toxic pathways for PFCs to induce adverse effects on organisms. To investigate PFC-induced oxidative stress and oxidative toxicity, a series of antioxidant enzyme activities and oxidative damage biomarkers were examined to assess the adverse effects of the following 4 commonly detected compounds: perfluoro-octanesulfonate, perfluoro-ocanoic acid, perfluorononanoic acid, and perfluorodecanoic acid, on green mussel (Perna viridis). Quantitative structure-activity relationship (QSAR) models were also established. The results showed that all the tested PFCs are able to induce antioxidant response and oxidative damage on green mussels in a dose-dependent manner. At low exposure levels (0 µg/L-100 µg/L), activation of antioxidant enzymes (catalase [CAT] and superoxide dismutase [SOD]) was observed, which is an adaptive response to the excessive reactive oxygen species induced by PFCs, while at high exposure levels (100 µg/L-10 000 µg/L), PFCs were found to inhibit some enzyme activity (glutathione S-transferase and SOD) where the organism's ability to respond in an adaptive manner was compromised. The oxidative stress under high PFC exposure concentration also led to lipid and DNA damage. PFC-induced oxidative toxicity was found to be correlated with the bioaccumulation potential of PFCs. Based on this relationship, QSAR models were established using the bioaccumulation factor (BAF) as the molecular descriptor for the first time. Compared with previous octanol-water partition coefficient-dependent QSAR models, the BAF-dependent QSAR model is more suitable for the impact assessment of PFCs and thus provides a more accurate description of the toxic behavior of these compounds. PMID:24995545

  11. Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis of chalcones and 2-pyrazoline derivatives has been an active field of research due to the established pharmacological effects of these compounds. In this study, a series of chalcone (1a-i), 2-pyrazoline-1-carbothioamides (2a-i) and 2-pyrazoline-1-carboxamide derivatives (3a-g) were synthes...

  12. Inuloxins A-D and derivatives as antileishmanial agents: structure-activity relationship study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inuloxins A-D (1-4) and a-costic acid (5), the phytotoxic compounds previously isolated from Inula viscosa, as well as synthetic derivatives of inuloxin A (compounds 6-10), inuloxin C (compound 11) and inuloxin D (compound 12) were tested in vitro for their activity against Leishmania donovani, the ...

  13. Antitumor sulfonylhydrazines: design, structure-activity relationships, resistance mechanisms, and strategies for improving therapeutic utility.

    PubMed

    Shyam, Krishnamurthy; Penketh, Philip G; Baumann, Raymond P; Finch, Rick A; Zhu, Rui; Zhu, Yong-Lian; Sartorelli, Alan C

    2015-05-14

    1,2-Bis(sulfonyl)-1-alkylhydrazines (BSHs) were conceived as more specific DNA guanine O-6 methylating and chloroethylating agents lacking many of the undesirable toxicophores contained in antitumor nitrosoureas. O(6)-Alkylguanine-DNA alkyltransferase (MGMT) is the sole repair protein for O(6)-alkylguanine lesions in DNA and has been reported to be absent in 5-20% of most tumor types. Many BSHs exhibit highly selective cytotoxicity toward cells deficient in MGMT activity. The development of clinically useful MGMT assays should permit the identification of tumors with this vulnerability and allow for the preselection of patient subpopulations with a high probability of responding. The BSH system is highly versatile, permitting the synthesis of many prodrug types with the ability to incorporate an additional level of tumor-targeting due to preferential activation by tumor cells. Furthermore, it may be possible to expand the spectrum of activity of these agents to include tumors with MGMT activity by combining them with tumor-targeted MGMT inhibitors. PMID:25612194

  14. Structure-Activity Relationships among the Kanamycin Aminoglycosides: Role of Ring I Hydroxyl and Amino Groups

    PubMed Central

    Salian, Sumantha; Matt, Tanja; Akbergenov, Rashid; Harish, Shinde; Meyer, Martin; Duscha, Stefan; Shcherbakov, Dmitri; Bernet, Bruno B.; Vasella, Andrea; Westhof, Eric

    2012-01-01

    The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2′ and 6′ substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2′ forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6′-OH substituent is present. PMID:22948879

  15. Structure-activity relationships of 2'-modified-4'-selenoarabinofuranosyl-pyrimidines as anticancer agents.

    PubMed

    Kim, Jin-Hee; Yu, Jinha; Alexander, Varughese; Choi, Jung Hee; Song, Jayoung; Lee, Hyuk Woo; Kim, Hea Ok; Choi, Jungwon; Lee, Sang Kook; Jeong, Lak Shin

    2014-08-18

    Based on the potent anticancer activity of the D-arabino-configured cytosine nucleoside ara-C, novel 2'-substituted-4'-selenoarabinofuranosyl pyrimidines 3a-3u, comprising azido, fluoro, and hydroxyl substituents at C-2' were designed, synthesized, and evaluated for anticancer activity. The 2'-azido group was stereoselectively introduced by the Mitsunobu reaction using diphenylphosphoryl azide (DPPA), and the 2'-fluoro group was stereoselectively introduced through the double inversions of stereochemistry via the episelenium intermediate, which was formed by the participation of the selenium atom. Among the compounds tested, the 2'-fluoro derivative 3t (X=NH2, Y=H, R=F) was found to be the most potent anticancer agent and showed more potent anticancer activity than the control, ara-C in all tested human cancer cell lines (HCT116, A549, SNU638, T47D, and PC-3) except the leukemia cell lines (K562). The anticancer activity of the 2'-substituted-4'-selenonucleosides is in the following order: 2'-F>2'-OH>2'-N3. PMID:24956556

  16. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    SciTech Connect

    Thompson, M.R. ); Ebner, J.R. )

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account for the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.

  17. Quantitative structure-activity relationships for skin sensitization potential of urushiol analogues.

    PubMed

    Roberts, D W; Benezra, C

    1993-08-01

    The relative alkylation index (RAI), a theoretically derived parameter intended to quantify the relative extent of carrier haptenation resulting from a given dose of a given sensitizer, has previously been successfully applied to the analysis of relative sensitization potential and dose-response data for a variety of contact allergens which are directly electrophilic. Here the RAI concept is applied to analysis of data on compounds related to urushiol (i.e., 3-substituted catechols), the naturally occurring mixture of allergens responsible for contact allergy to poison ivy and poison oak. These allergens are believed to act as pro-electrophiles, being oxidized to electrophilic orthoquinones in vivo. It is found that the various types of urushiol derivatives fit the same sort of RAI-sensitization relationships as expected theoretically and as found previously with direct acting electrophiles. There is evidence that in many cases, the test conditions were such that overload effects, whereby the degree of sensitization induced decreases with increasing carrier haptenation, applied. It is also concluded that the question as to the relative sensitization potencies of the naturally occurring urushiols remains open. The commonly held view that with these materials, sensitization potential increases with increasing unsaturation in the 3-hydrocarbyl chain of the 3-hydrocarbyl catechols, is based on evidence that is capable of alternative interpretation. PMID:8365181

  18. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.

    PubMed

    Yan, Fangyou; Shang, Qiaoyan; Xia, Shuqian; Wang, Qiang; Ma, Peisheng

    2015-04-01

    As environmentally friendly solvents, ionic liquids (ILs) are unlikely to act as air contaminants or inhalation toxins resulting from their negligible vapor pressure and excellent thermal stability. However, they can be potential water contaminants because of their considerable solubility in water; therefore, a proper toxicological assessment of ILs is essential. The environmental fate of ILs is studied by quantitative structure-activity relationship (QSAR) method. A multiple linear regression (MLR) model is obtained by topological method using toxicity data of 157 ILs on Vibrio fischeri, which are composed of 74 cations and 22 anions. The topological index developed in our research group is used for predicting the V. fischeri toxicity for the first time. The MLR model is precise for estimating LogEC50 of ILs on V. fischeri with square of correlation coefficient (R(2)) = 0.908 and the average absolute error (AAE) = 0.278. PMID:25603290

  19. Discovery and Structure-Activity Relationship Study of 4-Phenoxythiazol-5-carboxamides as Highly Potent TGR5 Agonists.

    PubMed

    Chen, Zhixiang; Ning, Mengmeng; Zou, Qingan; Cao, Hua; Ye, Yangliang; Leng, Ying; Shen, Jianhua

    2016-04-01

    A novel therapy that stimulates endogenous glucagon-like peptide-1 (GLP-1) secretion by Takeda G-protein-coupled receptor 5 (TGR5) agonists might be a superior alternative for the treatment of type 2 diabetes mellitus. A series of 4-phenoxythiazol-5-carboxamides were developed as highly potent TGR5 agonists using a bioisosteric replacement strategy based on the scaffold of 4-phenoxynicotinamides. The structure-activity relationship on the bottom phenyl ring and the thiazole ring was extensively studied, and the 2-methyl-thiazole derivatives 30c and e displayed the best in vitro potency toward human TGR5, with EC50 values of approximately 1 nM. While endowed with excellent in vitro potency, the 2-methyl-thiazoles were flawed with high microsomal clearance. PMID:26843013

  20. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships.

    PubMed

    Kovacic, Peter; Pozos, Robert S; Somanathan, Ratnasamy; Shangari, Nandita; O'Brien, Peter J

    2005-01-01

    The biology of the mitochondrial electron transport chain is summarized. Our approach to the mechanism of uncouplers, inhibitors, and toxins is based on electron transfer (ET) and reactive oxygen species (ROS). Extensive supporting evidence, which is broadly applicable, is cited. ROS can be generated either endogenously or exogenously. Generally, the reactive entities arise via redox cycling by ET functionalities, such as, quinones (or precursors), metal compounds, imines (or iminiums), and aromatic nitro compounds (or reduced metabolites). In most cases, the ET functions are formed metabolically. The toxic substances belong to many categories, e.g., medicinals, industrial chemicals, abused drugs, and pesticides. Structure-activity relationships are presented from the ET-ROS perspective, and also quantitatively. Evidence for the theoretical framework is provided by the protective effect of antioxidants. Among other topics addressed are proton flux, membrane pores, and apoptosis. There is support for the thesis that mitochondrial insult may contribute to illnesses and aging. PMID:16248817

  1. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-01

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles. PMID:25526675

  2. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship.

    PubMed

    Wang, Hong-Jaan; Pao, Li-Heng; Hsiong, Cheng-Huei; Shih, Tung-Yuan; Lee, Meei-Shyuan; Hu, Oliver Yoa-Pu

    2014-03-01

    This study aims to improve the drug oral bioavailability by co-administration with flavonoid inhibitors of the CYP2C isozyme and to establish qualitative and quantitative (QSAR) structure-activity relationships (SAR) between flavonoids and CYP2C. A total of 40 naturally occurring flavonoids were screened in vitro for CYP2C inhibition. Enzyme activity was determined by measuring conversion of tolbutamide to 4-hydroxytolbutamide by rat liver microsomes. The percent inhibition and IC50 of each flavonoid were calculated and used to develop SAR and QSAR. The most effective flavonoid was orally co-administered in vivo with a cholesterol-reducing drug, fluvastatin, which is normally metabolized by CYP2C. The most potent CYP2C inhibitor identified in vitro was tamarixetin (IC50 = 1.4 μM). This flavonoid enhanced the oral bioavailability of fluvastatin in vivo, producing a >2-fold increase in the area under the concentration-time curve and in the peak plasma concentration. SAR analysis indicated that the presence of a 2,3-double bond in the C ring, hydroxylation at positions 5, 6, and 7, and glycosylation had important effects on flavonoid-CYP2C interactions. These findings should prove useful for predicting the inhibition of CYP2C activity by other untested flavonoid-like compounds. In the present study, tamarixetin significantly inhibited CYP2C activity in vitro and in vivo. Thus, the use of tamarixetin could improve the therapeutic efficacy of drugs with low bioavailability. PMID:24431079

  3. Insights into the structure activity relationship of mPGES-1 inhibitors: Hints for better inhibitor design.

    PubMed

    Gupta, Ashish; Aparoy, Polamarasetty

    2016-07-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is a membrane protein which plays crucial role in arachidonic acid metabolism, in the catalysis of PGH2 to PGE2. It is a potential drug target involved in variety of human cancers and inflammatory disorders. In the present study we made an attempt to identify crucial amino acid residues involved in the effective binding of its inhibitors at the active site. Molecular docking and Structure Activity Relationship (SAR) studies were performed. In the present study 127 inhibitors having significant variability in parent scaffold were considered. The results clearly indicated that in the GSH and PGH2 binding site Arg70, Arg73, Asn74, Glu77, His113, Tyr117, Arg126, Ser127, Tyr130, Thr131 and Ala138 consistently form crucial interactions with inhibitors of different classes/scaffolds. These findings are consistent with that of existing reports on the active site residues pivotal at mPGES-1 active site. Further analysis suggested that out of all important amino acid residues identified; Arg73, Asn74, His113, Tyr117, Arg126, Ser127, Tyr130, Thr131 and Ala138 play a crucial role in hydrogen and π-π interactions. The identified amino acid residues can act as target sites for the design and development of drug candidates against mPGES-1. PMID:27012893

  4. In Silico Screening, Structure-Activity Relationship, and Biologic Evaluation of Selective Pteridine Reductase Inhibitors Targeting Visceral Leishmaniasis▿ †

    PubMed Central

    Kaur, Jaspreet; Kumar, Pranav; Tyagi, Sargam; Pathak, Richa; Batra, Sanjay; Singh, Prashant; Singh, Neeloo

    2011-01-01

    In this study we utilized the concept of rational drug design to identify novel compounds with optimal selectivity, efficacy and safety, which would bind to the target enzyme pteridine reductase 1 (PTR1) in Leishmania parasites. Twelve compounds afforded from Baylis-Hillman chemistry were docked by using the QUANTUM program into the active site of Leishmania donovani PTR1 homology model. The biological activity for these compounds was estimated in green fluorescent protein-transfected L. donovani promastigotes, and the most potential analogue was further investigated in intracellular amastigotes. Structure-activity relationship based on homology model drawn on our recombinant enzyme was substantiated by recombinant enzyme inhibition assay and growth of the cell culture. Flow cytometry results indicated that 7-(4-chlorobenzyl)-3-methyl-4-(4-trifluoromethyl-phenyl)-3,4,6,7,8,9-hexahydro-pyrimido[1,2-a]pyrimidin-2-one (compound 7) was 10 times more active on L. donovani amastigotes (50% inhibitory concentration [IC50] = 3 μM) than on promastigotes (IC50 = 29 μM). Compound 7 exhibited a Ki value of 0.72 μM in a recombinant enzyme inhibition assay. We discovered that novel pyrimido[1,2-a]pyrimidin-2-one systems generated from the allyl amines afforded from the Baylis-Hillman acetates could have potential as a valuable pharmacological tool against the neglected disease visceral leishmaniasis. PMID:21115787

  5. Structure-Activity Relationship Study of the Neuritogenic Potential of the Glycan of Starfish Ganglioside LLG-3 ‡

    PubMed Central

    Yamagishi, Megumi; Hosoda-Yabe, Ritsuko; Tamai, Hideki; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Yabe, Tomio; Ando, Hiromune; Kiso, Makoto

    2015-01-01

    LLG-3 is a ganglioside isolated from the starfish Linchia laevigata. To clarify the structure-activity relationship of the glycan of LLG-3 toward rat pheochromocytoma PC12 cells in the presence of nerve growth factor, a series of mono- to tetrasaccharide glycan derivatives were chemically synthesized and evaluated in vitro. The methyl group at C8 of the terminal sialic acid residue was crucial for neuritogenic activity, and the terminal trisaccharide moiety was the minimum active motif. Furthermore, the trisaccharide also stimulated neuritogenesis in human neuroblastoma SH-SY5Y cells via mitogen-activated protein kinase (MAPK) signaling. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was rapidly induced by adding 1 or 10 nM of the trisaccharide. The ratio of phosphorylated ERK to ERK reached a maximum 5 min after stimulation, and then decreased gradually. However, the trisaccharide did not induce significant Akt phosphorylation. These effects were abolished by pretreatment with the MAPK inhibitor U0126, which inhibits enzymes MEK1 and MEK2. In addition, U0126 inhibited the phosphorylation of ERK 1/2 in response to the trisaccharide dose-dependently. Therefore, we concluded that the trisaccharide promotes neurite extension in SH-SY5Y cells via MAPK/ERK signaling, not Akt signaling. PMID:26690179

  6. Structure-Activity Relationship Study of the Neuritogenic Potential of the Glycan of Starfish Ganglioside LLG-3 (‡).

    PubMed

    Yamagishi, Megumi; Hosoda-Yabe, Ritsuko; Tamai, Hideki; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Yabe, Tomio; Ando, Hiromune; Kiso, Makoto

    2015-12-01

    LLG-3 is a ganglioside isolated from the starfish Linchia laevigata. To clarify the structure-activity relationship of the glycan of LLG-3 toward rat pheochromocytoma PC12 cells in the presence of nerve growth factor, a series of mono- to tetrasaccharide glycan derivatives were chemically synthesized and evaluated in vitro. The methyl group at C8 of the terminal sialic acid residue was crucial for neuritogenic activity, and the terminal trisaccharide moiety was the minimum active motif. Furthermore, the trisaccharide also stimulated neuritogenesis in human neuroblastoma SH-SY5Y cells via mitogen-activated protein kinase (MAPK) signaling. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was rapidly induced by adding 1 or 10 nM of the trisaccharide. The ratio of phosphorylated ERK to ERK reached a maximum 5 min after stimulation, and then decreased gradually. However, the trisaccharide did not induce significant Akt phosphorylation. These effects were abolished by pretreatment with the MAPK inhibitor U0126, which inhibits enzymes MEK1 and MEK2. In addition, U0126 inhibited the phosphorylation of ERK 1/2 in response to the trisaccharide dose-dependently. Therefore, we concluded that the trisaccharide promotes neurite extension in SH-SY5Y cells via MAPK/ERK signaling, not Akt signaling. PMID:26690179

  7. Phosphonopeptides as Antibacterial Agents: Rationale, Chemistry, and Structure-Activity Relationships

    PubMed Central

    Atherton, Frank R.; Hali, Michael J.; Hassall, Cedric H.; Lambert, Robert W.; Ringrose, Peter S.

    1979-01-01

    Peptide mimetics with C-terminal residues simulating natural amino acids have been designed as inhibitors of bacterial cell wall biosynthesis. The phosphonopeptide series consisting of various l and d residues of natural amino acids combined with 1-aminoalkyl (and aryl-alkyl-) phosphonic acid residues had the most interesting antibacterial properties when the C-terminal residue was l-1-aminoethylphosphonic acid. The in vitro antibacterial activities of representative phosphonodi- to phosphonohexapeptides were investigated. The antibacterial action of the active compounds has been explained in terms of transport into the bacterial cell and intracellular release of the alanine mimetic, which interferes with the biosynthesis of the peptidoglycan of the bacterial cell wall. PMID:525986

  8. Structure-activity relationships of two Rhodnius prolixus calcitonin-like diuretic hormone analogs.

    PubMed

    Zandawala, Meet; Poulos, Constantine; Orchard, Ian

    2015-06-01

    The calcitonin-like diuretic hormone (CT/DH) in Rhodnius prolixus influences various tissues associated with feeding-related physiological events. The receptors for this peptide have also been identified and shown to be expressed in these tissues. In the present study, we have investigated the effects of two R. prolixus CT/DH analogs (full-length form and N-terminal truncated form) on hindgut contractions and in a heterologous receptor expression system. The analogs contained the amino acid methyl-homoserine in place of methionine in order to prevent them from being oxidized and thus increase their stability. The full-length form of the analog retained all of its activity in our assays when compared to the endogenous peptide. Truncated analog displayed no activity in our assays. PMID:24703964

  9. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera.

    PubMed

    Bílikova, Katarina; Huang, Sheng-Chang; Lin, I-Ping; Šimuth, Jozef; Peng, Chi-Chung

    2015-06-01

    Royalisin is a 5.5-kDa antibacterial peptide isolated from the royal jelly of the honeybee (Apis mellifera). The antimicrobial activity of royalisin against fungi, Gram-positive and Gram-negative bacteria has been revealed. Compared with another insect antibacterial peptide, there is an extra stretch of 11 amino acid residues at the C-terminus of royalisin. In this study, a recombinant shortened form of royalisin named as royalisin-D, was constructed without the 11 amino acid residues at the C-terminal of royalisin and linked to the C-terminal of oleosin by an inteinS fragment. The recombinant protein was overexpressed in Escherichia coli, purified by artificial oil body system and subsequently released through self-splicing of inteinS induced by the changes of temperature. The antibacterial activity of royalisin-D was compared with royalisin via minimal inhibitory concentration (MIC) assay, minimal bactericidal concentration (MBC) assay, microbial adhesion to solvents (MATS) methods, and cell membrane permeability. Furthermore, the recombinant royalisin and royalisin-D have also been treated with the reducing agent of disulfide bonds, dithiothreitol (DTT), to investigate the importance of the intra-disulfide bond in royalisin. In our results, royalisin-D exhibited similar antimicrobial activity to royalisin. Royalisin and royalisin D lost their antimicrobial activities when the intra-disulfide bonds were reduced by DDT. The intra-disulfide bond plays a more important role than the extra stretch of 11 amino acid residues at the C-terminus of royalisin in terms of the antimicrobial properties of the native royalisin. PMID:25784287

  10. Structure-activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors.

    PubMed

    Lin, Edward Yin-Shiang; Guckian, Kevin M; Silvian, Laura; Chin, Donovan; Boriack-Sjodin, P Ann; van Vlijmen, Herman; Friedman, Jessica E; Scott, Daniel M

    2008-10-01

    LFA-1 ICAM inhibitors based on ortho- and meta-phenol templates were designed and synthesized by Mitsunobu chemistry. The selection of targets was guided by X-ray co-crystal data, and led to compounds which showed an up to 30-fold increase in potency over reference compound 1 in the LFA-1/ICAM1-Ig assay. The most active compound exploited a new hydrogen bond to the I-domain and exhibited subnanomolar potency. PMID:18783948

  11. Synthesis and structure-activity relationship of trisubstituted thiazoles as Cdc7 kinase inhibitors.

    PubMed

    Reichelt, Andreas; Bailis, Julie M; Bartberger, Michael D; Yao, Guomin; Shu, Hong; Kaller, Matthew R; Allen, John G; Weidner, Margaret F; Keegan, Kathleen S; Dao, Jennifer H

    2014-06-10

    The Cell division cycle 7 (Cdc7) protein kinase is essential for DNA replication and maintenance of genome stability. We systematically explored thiazole-based compounds as inhibitors of Cdc7 kinase activity in cancer cells. Our studies resulted in the identification of a potent, selective Cdc7 inhibitor that decreased phosphorylation of the direct substrate MCM2 in vitro and in vivo, and inhibited DNA synthesis and cell viability in vitro. PMID:24793884

  12. Structure-activity relationships of eighteen somatostatin analogues on gastric secretion.

    PubMed Central

    Brown, M P; Coy, D H; Gomez-Pan, A; Hirst, B H; Hunter, M; Meyers, C; Reed, J D; Schally, A V; Shaw, B

    1978-01-01

    1. The effect of somatostatin and eighteen somatostatin analogues on pentagastrin-stimulated gastric acid and pepsin secretion was investigated in the conscious vagotomized cat prepared with chronic gastric fistulae. The majority of the analogues are peptides where D-amino acids are incorporated into the molecule instead of the natural L-isomers. 2. The ID50 for cyclic-somatostatin inhibition of near-maximal gastric acid secretion stimulated by pentagastrin 8 microgram kg-1 hr-1 was found to be 1.29 +/- 0.13 n-mole kg-1 hr-1. Pentagastrin-stimulated pepsin secretion had a lower threshold to somatostatin inhibition than did acid secretion. 3. D-Phe6, D-Phe7, D-Thr10, D-Thr12 and D-Phe6-D-Trp8 analogues all show low biological activity against the secretion of gastric acid and pepsin, growth hormone, insulin and glucagon. None of these analogues are antagonists of the cyclic-somatostatin inhibition of gastric secretion, suggesting that they have low affinity for this somatostatin receptor. 4. The analogues under investigation show parallel changes in activity against gastric and growth hormone secretion, suggesting a similarity between the gastric and growth hormone receptors for somatostatin. 5. D-Cys14 analogues are equipotent with or have a greater potency than cyclic-simatostatin in inhibiting the secretion of gastric acid, growth hormone and glucagon but show low insulin inhibiting activity. PMID:349135

  13. Relationships between structure, retention and biological activity of some Schiff base ligands and their complexes.

    PubMed

    Baosić, Rada; Radojević, Ana; Radulović, Milanka; Miletić, Srdan; Natić, Maja; Tesić, Zivoslav

    2008-04-01

    The lipophilicity of a series of Schiff base ligands and their complexes with nickel(II) and copper(II) has been determined by reversed-phase thin-layer chromatography using binary dioxane-water mobile phase. Chelate ligands were prepared by condensation of diamine and the corresponding beta-diketone. Copper(II) and nickel(II) complexes with chelate ligands containing ethane-1,2-diamine or propane-1,2-diamine as the amine part and pentane-2,4-dione and/or 1-phenylbutane-1,3-dione, pentane-2,4-dione and/or 1,1,1-trifluoropentane-2,4-dione, or 1,1,1-trifluoropentane-2,4-dione and/or 1-phenylbutane-1,3-dione as the beta-diketone part were synthesized. Some of investigated compounds were screened for their in vitro antifungal activity against Sacharomyces cerevisiae and antibacterial activity against Escherichia coli. Chromatographically obtained lipophilicity parameters were correlated both with calculated n-octanol-water partition coefficient C log P and antimicrobial activities. Satisfactory correlations were obtained. Chromatographic data proved to be reliable parameters for describing the lipophilic properties of the investigated compounds. Additionally, the principal components analysis was performed on the data chromatographically obtained. This statistical method was useful for distinguishing compounds and objective comparison of their lipophilicity parameters. PMID:18059055

  14. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    SciTech Connect

    Bello, A.; Konforte, D; Poduch, E; Furlonger, C; Wei, L; Liu, Y; Lewis, M; Pai, E; Paige, C; Kotra, L

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro, 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.

  15. Structure-Activity Relationships of Benzbromarone Metabolites and Derivatives as EYA Inhibitory Anti-Angiogenic Agents

    PubMed Central

    Pandey, Ram Naresh; Wang, Tim Sen; Tadjuidje, Emmanuel; McDonald, Matthew G.; Rettie, Allan E.; Hegde, Rashmi S.

    2013-01-01

    The tyrosine phosphatase activity of the phosphatase-transactivator protein Eyes Absent (EYA) is angiogenic through its roles in endothelial cell migration and tube formation. Benzbromarone, a known anti-gout agent, was previously identified as an inhibitor of EYA with anti-angiogenic properties. Here we show that the major metabolite of BBR, 6-hydroxy benzbromarone, is a significantly more potent inhibitor of cell migration, tubulogenesis and angiogenic sprouting. In contrast, other postulated metabolites of BBR such as 5-hydroxy benzbromaorne and 1’-hydroxy benzbromarone are less potent inhibitors of EYA tyrosine phosphatase activity as well as being less effective in cellular assays for endothelial cell migration and angiogenesis. Longer substituents at the 2 position of the benzofuran ring promoted EYA3 binding and inhibition, but were less effective in cellular assays, likely reflecting non-specific protein binding and a resulting reduction in free, bio-available inhibitor. The observed potency of 6-hydroxy benzbromarone is relevant in the context of the potential re-purposing of benzbromarone and its derivatives as anti-angiogenic agents. 6-hydroxy benzbromarone represents a metabolite with a longer half-life and greater pharmacological potency than the parent compound, suggesting that biotransformation of benzbromarone could contribute to its therapeutic activity. PMID:24367676

  16. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    SciTech Connect

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D.

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  17. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    PubMed

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives. PMID:26758798

  18. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    PubMed

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators. PMID:25797163

  19. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources.

    PubMed

    Chen, Baiyang; Zhang, Tian; Bond, Tom; Gan, Yiqun

    2015-12-15

    Quantitative structure-activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application. PMID:26142156

  20. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  1. Structure-activity relationships of tea compounds against human cancer cells.

    PubMed

    Friedman, Mendel; Mackey, Bruce E; Kim, Hyun-Jeong; Lee, In-Seon; Lee, Kap-Rang; Lee, Seung-Un; Kozukue, Etsuko; Kozukue, Nobuyuki

    2007-01-24

    The content of the biologically active amino acid theanine in 15 commercial black, green, specialty, and herbal tea leaves was determined as the 2,4-dinitrophenyltheanine derivative (DNP-theanine) by a validated HPLC method. To define relative anticarcinogenic potencies of tea compounds and teas, nine green tea catechins, three black tea theaflavins, and theanine as well as aqueous and 80% ethanol/water extracts of the same tea leaves were evaluated for their ability to induce cell death in human cancer and normal cells using a tetrazolium microculture (MTT) assay. Compared to untreated controls, most catechins, theaflavins, theanine, and all tea extracts reduced the numbers of the following human cancer cell lines: breast (MCF-7), colon (HT-29), hepatoma (liver) (HepG2), and prostate (PC-3) as well as normal human liver cells (Chang). The growth of normal human lung (HEL299) cells was not inhibited. The destruction of cancer cells was also observed visually by reverse phase microscopy. Statistical analysis of the data showed that (a) the anticarcinogenic effects of tea compounds and of tea leaf extracts varied widely and were concentration dependent over the ranges from 50 to 400 microg/mL of tea compound and from 50 to 400 microg/g of tea solids; (b) the different cancer cells varied in their susceptibilities to destruction; (c) 80% ethanol/water extracts with higher levels of flavonoids determined by HPLC were in most cases more active than the corresponding water extracts; and (d) flavonoid levels of the teas did not directly correlate with anticarcinogenic activities. The findings extend related observations on the anticarcinogenic potential of tea ingredients and suggest that consumers may benefit more by drinking both green and black teas. PMID:17227049

  2. HLA-A3 supermotif defined by quantitative structure-activity relationship analysis.

    PubMed

    Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2003-01-01

    Activation of a cytotoxic T cell requires specific binding of antigenic peptides to major histocompatibility complex (MHC) molecules. This paper reports a study of peptides binding to members of the HLA-A3 superfamily using a recently developed 2D-QSAR method, called the additive method. Four alleles with high phenotype frequency were included in the study: A*0301, A*1101, A*3101 and A*6801. The influence of each of the 20 amino acids at each position of the peptide on binding was studied. A refined A3 supertype motif was defined in the study. PMID:12646688

  3. Structure-olfactory activity relationship in a group of substituted phenols.

    PubMed

    Kaliszan, R; Pankowski, M; Szymula, L; Lamparczyk, H; Nasal, A; Tomaszewska, B; Grzybowski, J

    1982-07-01

    Using phenol as the standard relative olfactory thresholds have been determined for a series of substituted phenols in experiments with 8--10 human subjects. Significant relations have been obtained describing the activity as a square function of the hydrophobicity parameter corrected for ionization. Chromatographic measurement of phenol polarity has been proposed based on retention indices determined on phases of different polarity. The human sense of smell system has been discussed as a model for studies on drug-receptor interactions involving the living organism as a whole. PMID:7134257

  4. Antimicrobial effectiveness of six paradols. 1: A structure-activity relationship study.

    PubMed

    Oloke, J K; Kolawole, D O; Erhun, W O

    1989-02-01

    The pattern of antimicrobial effectiveness of (0)-, (2)-, (3)-, (4)-, (8)- and (9)-paradols was studied. (3)- Paradol was more active than the other homologues with a minimum inhibitory concentration (MIC) of 1 mg/ml when tested against Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus and Botryodiplodia theobromae. At 0.2 mg/ml, (3)-paradol completely inhibited the spore germination of Trichophyton mentagrophytes and after 3 h of exposure at 0.5 mg/ml, it inhibited the growth of a heavy inoculum of Staphylococcus aureus (1 X 10(9) cells/ml). PMID:2497275

  5. Synthesis and StructureActivity Relationship Study of 5a-Carbasugar Analogues of SL0101

    PubMed Central

    2014-01-01

    The Ser/Thr protein kinase, RSK, is associated with oncogenesis, and therefore, there are ongoing efforts to develop RSK inhibitors that are suitable for use in vivo. SL0101 is a natural product that demonstrates selectivity for RSK inhibition. However, SL0101 has a short biological half-life in vivo. To address this issue we designed a set of eight cyclitol analogues, which should be resistant to acid catalyzed anomeric bond hydrolysis. The analogues were synthesized and evaluated for their ability to selectively inhibit RSK in vitro and in cell-based assays. All the analogues were prepared using a stereodivergent palladium-catalyzed glycosylation/cyclitolization for installing the aglycon. The l-cyclitol analogues were found to inhibit RSK2 in in vitro kinase activity with a similar efficacy to that of SL0101, however, the analogues were not specific for RSK in cell-based assays. In contrast, the d-isomers showed no RSK inhibitory activity in in vitro kinase assay. PMID:25589938

  6. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-01

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases. PMID:25602735

  7. Structure-activity relationships for dipeptide prodrugs of acyclovir: implications for prodrug design.

    PubMed

    Santos, Cledir R; Capela, Rita; Pereira, Cláudia S G P; Valente, Emília; Gouveia, Luís; Pannecouque, Christophe; De Clercq, Erik; Moreira, Rui; Gomes, Paula

    2009-06-01

    A series of water-soluble dipeptide ester prodrugs of the antiviral acyclovir (ACV) were evaluated for their chemical stability, cytotoxicity, and antiviral activity against several strains of Herpes Simplex-1 and -2, vaccinia, vesicular stomatitis, cytomegalovirus and varicella zoster viruses. ACV dipeptide esters were very active against herpetic viruses, independently of the rate at which they liberate the parent drug. Their minimum cytotoxic concentrations were above 100 microM and the resulting MCC/EC(50) values were lower than those of ACV. When comparing the reactivity of Phe-Gly esters and amides (ACV, zidovudine, paracetamol, captopril and primaquine) in pH 7.4 buffer it was found that the rate of drug release increases with drug's leaving group ability. Release of the parent drug from Phe-Gly in human plasma is markedly faster than in pH 7.4 buffer, thus suggesting that the dipeptide-based prodrug approach can be successfully applied to bioactive agents containing thiol, phenol and amine functional groups. PMID:18848738

  8. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation.

    PubMed

    Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A; Patnaik, Debasis; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2016-02-15

    Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease. PMID:26804233

  9. In Vitro Structure-Activity Relationship of Re-cyclized Octreotide Analogues

    PubMed Central

    Dannoon, Shorouk F.; Bigott-Hennkens, Heather M.; Ma, Lixin; Gallazzi, Fabio; Lewis, Michael R.; Jurisson, Silvia S.

    2010-01-01

    Introduction Development of radiolabeled octreotide analogues is of interest for targeting somatostatin receptor-positive tumors for diagnostic and therapeutic purposes. We are investigating a direct labeling approach for incorporation of a Re ion into octreotide analogues, where the peptide sequences are cyclized via coordination to Re rather than through a disulfide bridge. Methods Various octreotide analogue sequences and coordination systems (e.g., S2N2 and S3N) were synthesized and cyclized with non-radioactive Re. In vitro competitive binding assays with 111In-DOTA-Tyr3-octreotide in AR42J rat pancreatic tumor cells yielded IC50 values as a measure of somatostatin receptor affinity of the Re-cyclized analogues. Three-dimensional structures of Re-cyclized Tyr3-octreotate and its disulfide-bridged analogue were calculated from two-dimensional NMR experiments to visualize the effect of metal cyclization on the analogues pharmacophore. Results Only two of the eleven Re-cyclized analogues investigated showed moderate in vitro binding affinity toward somatostatin subtype 2 receptors. Three-dimensional molecular structures of Re- and disulfide-cyclized Tyr3-octreotate were calculated, and both of their pharmacophore turns appear to be very similar with minor differences due to metal coordination to the amide nitrogen of one of the pharmacophore amino acids. Conclusions Various Re-cyclized analogues were developed and analogue 4 had moderate affinity toward somatostatin subtype 2 receptors. In vitro stable studies that are in progress showed stable radiometal-cyclization of octreotide analogues via NS3 and N2S2 coordination forming 5- and 6- membered chelate rings. In vivo biodistribution studies are underway of 99m Tc- cyclized analogue 4. PMID:20610157

  10. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. PMID:21642011

  11. Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns.

    PubMed

    Ali, Ahmad; Assimopoulou, Andreana Nikolaos; Papageorgiou, Vassilios Peter; Kolodziej, Herbert

    2011-12-01

    A series of naphthoquinones was tested for activity against both extracellular promastigote and intracellular amastigote Leishmania major GFP in vitro. In parallel, the compounds were evaluated for cytotoxic effects against bone marrow-derived macrophages (BMM Φ) as a mammalian host cell control. Most of the compounds noticeably inhibited the growth of extracellular parasites (IC (50) 0.5 to 6 µM) and the intracellular survival of L. major GFP amastigotes (IC (50) 1 to 7 µM) when compared with the antileishmanial drug amphotericin B (IC (50) of 2.5 and 0.2 µM, respectively). In general, antiprotozoal activity and host cell cytotoxicity seemed to increase in parallel. Conspicuously, the cytotoxic effect was less pronounced on infected host cells when compared with that on noninfected cells. Concerning structure/activity relationships for the tested naphthoquinones, some interesting structural features emerged from this study. Introduction of a methyl or methoxyl group at C-2 of the parent 1,4-naphthoquinone slightly increased the antileishmanial activity against clinically relevant amastigotes, while the presence of a hydroxyl function in this position dramatically reduced the effectiveness. In contrast, hydroxylation at C-5 and dihydroxy substitution at C-5 and C-8 significantly enhanced the antiprotozoal activity. Similarly, the presence of a side chain hydroxyl group PERI to a carbonyl function as represented in the series of shikonin/alkannin derivatives increased the activity when compared with substituted analogs. Within the series of naphthoquinones tested, the dimeric mixture of vaforhizin and isovaforhizin showed the highest activity IN VITRO against the clinically relevant intracellular amastigote with an IC (50) of 1.1 µM. With IC (50) values mostly in the range of 1-3 µM, the shikonin/alkannin derivatives proved to be similarly considerably leishmanicidal. None of the compounds tested was capable to induce NO production known to play a crucial role in the host resistance against intracellular pathogens, excluding activation of microbicidal mechanisms in macrophages. The mode of action apparently depended on the substitution pattern, associated with the electrophilicity of the naphthoquinone or the efficiency of redox cycling. Conspicuously, members oxygenated in the quinone ring proved to be leishmanicidal when coincubated with glutathione, while the majority of the remaining compounds lost activity. PMID:21800278

  12. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factoractivity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structureactivity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  13. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test

    SciTech Connect

    Hermens, J.; Busser, F.; Leeuwangh, P.; Musch, A.

    1985-02-01

    Quantitative structure-activity relationships were calculated for the inhibition of bioluminescence of Photobacterium phosphoreum by 22 nonreactive organic chemicals. The inhibition was measured using the Microtox test and correlated with the partition coefficient between n-octanol and water (Poct), molar refractivity (MR), and molar volume (MW/d). At log Poct less than 1 and greater than 3, deviations from linearity were observed. Introduction of MR and MW/d improved the quality of the relationships. The influences of MR or MW/d may be related with an interaction of the tested chemicals to the enzyme system which produces the light emission. The sensitivity of the Microtox test to the 22 tested compounds is comparable to a 14-day acute mortality test with guppies for chemicals with log Poct less than 4. The inhibition of bioluminescence by a mixture of the tested compounds was slightly less than was expected in case of concentration addition. The Microtox test can give a good estimate of the total aspecific minimum toxicity of polluted waters. When rather lipophilic compounds or pollutants with more specific modes of action are present, this test will underestimate the toxicity to other aquatic life.

  14. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds.

    PubMed

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois; Dymock, Brian W; Tan, Kevin S W

    2016-05-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria. PMID:26953199

  15. Structure-Activity Relationships (SAR) studies of benzoxazinones, their degradation products and analogues. phytotoxicity on standard target species (STS).

    PubMed

    Macías, Francisco A; Marín, David; Oliveros-Bastidas, Alberto; Castellano, Diego; Simonet, Ana M; Molinillo, José M G

    2005-02-01

    Benzoxazinones 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) have been considered key compounds for understanding allelopathic phenomena in Gramineae crop plants such as corn (Zea mays L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.). The degradation processes in the environment observed for these compounds, in which soil microbes are directly involved, could affect potential allelopathic activity of these plants. We present in this work a complete structure-activity relationships study based on the phytotoxic effects observed for DIMBOA, DIBOA, and their main degradation products, in addition to several synthetic analogues of them. Their effects were evaluated on standard target species (STS), which include Triticum aestivum L. (wheat) and Allium cepa L. (onion) as monocots and Lepidium sativum L. (cress), Lactuca sativa L. (lettuce), and Lycopersicon esculentum Will. (tomato) as dicots. This permitted us to elucidate their ecological role and to propose new herbicide models based on their structures. The best phytotoxicity results were shown by the degradation chemical 2-aminophenoxazin-3-one (APO) and several 2-deoxy derivatives of natural benzoxazinones, including 4-acetoxy-(2H)-1,4-benzoxazin-3(4H)-one (ABOA), 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), and 4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIMBOA). They showed high inhibitory activity over almost all species growth. The fact that APO is a degradation product from DIBOA with high phytotoxicity and stability makes it possible to assign an important ecological role regarding plant defense mechanisms. 2-Deoxy derivatives of natural benzoxazinones display a wide range of activities that allow proposing them as new leads for natural herbicide models with a 1,4-benzoxazine skeleton. PMID:15686399

  16. Synthesis and quantitative structure-activity relationship (QSAR) study of novel isoxazoline and oxime derivatives of podophyllotoxin as insecticidal agents.

    PubMed

    Wang, Yi; Shao, Yonghua; Wang, Yangyang; Fan, Lingling; Yu, Xiang; Zhi, Xiaoyan; Yang, Chun; Qu, Huan; Yao, Xiaojun; Xu, Hui

    2012-08-29

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, 33 isoxazoline and oxime derivatives of podophyllotoxin modified in the C and D rings were synthesized and their structures were characterized by Proton nuclear magnetic resonance ((1)H NMR), high-resolution mass spectrometry (HRMS), electrospray ionization-mass spectrometry (ESI-MS), optical rotation, melting point (mp), and infrared (IR) spectroscopy. The stereochemical configurations of compounds 5e, 5f, and 9f were unambiguously determined by X-ray crystallography. Their insecticidal activity was evaluated against the pre-third-instar larvae of northern armyworm, Mythimna separata (Walker), in vivo. Compounds 5e, 9c, 11g, and 11h especially exhibited more promising insecticidal activity than toosendanin, a commercial botanical insecticide extracted from Melia azedarach . A genetic algorithm combined with multiple linear regression (GA-MLR) calculation is performed by the MOBY DIGS package. Five selected descriptors are as follows: one two-dimensional (2D) autocorrelation descriptor (GATS4e), one edge adjacency indice (EEig06x), one RDF descriptor (RDF080v), one three-dimensional (3D) MoRSE descriptor (Mor09v), and one atom-centered fragment (H-052) descriptor. Quantitative structure-activity relationship studies demonstrated that the insecticidal activity of these compounds was mainly influenced by many factors, such as electronic distribution, steric factors, etc. For this model, the standard deviation error in prediction (SDEP) is 0.0592, the correlation coefficient (R(2)) is 0.861, and the leave-one-out cross-validation correlation coefficient (Q(2)loo) is 0.797. PMID:22891988

  17. Biomolecular recognition of antagonists by α7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies.

    PubMed

    Peng, Wei; Ding, Fei

    2015-08-30

    As the key constituent of ligand-gated ion channels in the central nervous system, nicotinic acetylcholine receptors (nAChRs) and neurodegenerative diseases are strongly coupled in the human species. In recently years the developments of selective agonists by using nAChRs as the drug target have made a large progress, but the studies of selective antagonists are severely lacked. Currently these antagonists rest mainly on the extraction of partly natural products from some animals and plants; however, the production of these crude substances is quite restricted, and artificial synthesis of nAChR antagonists is still one of the completely new research fields. In the context of this manuscript, our primary objective was to comprehensively analyze the recognition patterns and the critical interaction descriptors between target α7 nAChR and a series of the novel compounds with potentially antagonistic activity by means of virtual screening, molecular docking and molecular dynamics simulation, and meanwhile these recognition reactions were also compared with the biointeraction of α7 nAChR with a commercially natural antagonist - methyllycaconitine. The results suggested clearly that there are relatively obvious differences of molecular structures between synthetic antagonists and methyllycaconitine, while the two systems have similar recognition modes on the whole. The interaction energy and the crucially noncovalent forces of the α7 nAChR-antagonists are ascertained according to the method of Molecular Mechanics/Generalized Born Surface Area. Several amino acid residues, such as B/Tyr-93, B/Lys-143, B/Trp-147, B/Tyr-188, B/Tyr-195, A/Trp-55 and A/Leu-118 played a major role in the α7 nAChR-antagonist recognition processes, in particular, residues B/Tyr-93, B/Trp-147 and B/Tyr-188 are the most important. These outcomes tally satisfactorily with the discussions of amino acid mutations. Based on the explorations of three-dimensional quantitative structure-activity relationships, the structure-antagonistic activity relationships of antagonists and the characteristics of α7 nAChR-ligand recognitions were received a reasonable summary as well. These attempts emerged herein would not only provide helpful guidance for the design of α7 nAChR antagonists, but shed new light on the subsequent researches in antagonistic mechanism. PMID:25963024

  18. Structures, Biological Activities and Phylogenetic Relationships of Terpenoids from Marine Ciliates of the Genus Euplotes

    PubMed Central

    Guella, Graziano; Skropeta, Danielle; Di Giuseppe, Graziano; Dini, Fernando

    2010-01-01

    In the last two decades, large scale axenic cell cultures of the marine species comprising the family Euplotidae have resulted in the isolation of several new classes of terpenoids with unprecedented carbon skeletons including the (i) euplotins, highly strained acetylated sesquiterpene hemiacetals; (ii) raikovenals, built on the bicyclo[3.2.0]heptane ring system; (iii) rarisetenolides and focardins containing an octahydroazulene moiety; and (iv) vannusals, with a unique C30 backbone. Their complex structures have been elucidated through a combination of nuclear magnetic resonance spectroscopy, mass spectrometry, molecular mechanics and quantum chemical calculations. Despite the limited number of biosynthetic experiments having been performed, the large diversity of ciliate terpenoids has facilitated the proposal of biosynthetic pathways whereby they are produced from classical linear precursors. Herein, the similarities and differences emerging from the comparison of the classical chemotaxonomy approach based on secondary metabolites, with species phylogenesis based on genetic descriptors (SSU-rDNA), will be discussed. Results on the interesting ecological and biological properties of ciliate terpenoids are also reported. PMID:20714425

  19. Synthesis and Structure Activity Relationship Investigation of Adenosine-containing Inhibitors of Histone Methyltransferase DOT1L

    PubMed Central

    Anglin, Justin L.; Deng, Lisheng; Yao, Yuan; Cai, Guobin; Liu, Zhen; Jiang, Hong; Cheng, Gang; Chen, Pinhong; Dong, Shuo; Song, Yongcheng

    2012-01-01

    Histone3-lysine79 (H3K79) methyltransferase DOT1L has been found to be a drug target for acute leukemia with MLL (mixed lineage leukemia) gene translocations. A total of 55 adenosine-containing compounds were designed and synthesized, among which several potent DOT1L inhibitors were identified with Ki values as low as 0.5 nM. These compounds also show high selectivity (>4,500-fold) over three other histone methyltransferases. Structure activity relationships (SAR) of these compounds for their inhibitory activities against DOT1L are discussed. Potent DOT1L inhibitors exhibit selective activity against the proliferation of MLL-translocated leukemia cell lines MV4;11 and THP1 with EC50 values of 4–11 μM. Isothermal titration calorimetry studies showed two representative inhibitors bind with a high affinity to the DOT1L:nucleosome complex, and only compete with the enzyme cofactor SAM (S-adenosyl-L-methionine), but not the substrate nucleosome. PMID:22924785

  20. Novel hinge-binding motifs for Janus kinase 3 inhibitors: a comprehensive structure-activity relationship study on tofacitinib bioisosteres.

    PubMed

    Gehringer, Matthias; Forster, Michael; Pfaffenrot, Ellen; Bauer, Silke M; Laufer, Stefan A

    2014-11-01

    The Janus kinases (JAKs) are a family of cytosolic tyrosine kinases crucially involved in cytokine signaling. JAKs have been demonstrated to be valid targets in the treatment of inflammatory and myeloproliferative disorders, and two inhibitors, tofacitinib and ruxolitinib, recently received their marketing authorization. Despite this success, selectivity within the JAK family remains a major issue. Both approved compounds share a common 7H-pyrrolo[2,3-d]pyrimidine hinge binding motif, and little is known about modifications tolerated at this heterocyclic core. In the current study, a library of tofacitinib bioisosteres was prepared and tested against JAK3. The compounds possessed the tofacitinib piperidinyl side chain, whereas the hinge binding motif was replaced by a variety of heterocycles mimicking its pharmacophore. In view of the promising expectations obtained from molecular modeling, most of the compounds proved to be poorly active. However, strategies for restoring activity within this series of novel chemotypes were discovered and crucial structure-activity relationships were deduced. The compounds presented may serve as starting point for developing novel JAK inhibitors and as a valuable training set for in silico models. PMID:25139757

  1. Structure-Activity Relationships of Bacillus cereus and Bacillus anthracis Dihydrofolate Reductase: toward the Identification of New Potent Drug Leads

    PubMed Central

    Joska, Tammy M.; Anderson, Amy C.

    2006-01-01

    New and improved therapeutics are needed for Bacillus anthracis, the etiological agent of anthrax. To date, antimicrobial agents have not been developed against the well-validated target dihydrofolate reductase (DHFR). In order to address whether DHFR inhibitors could have potential use as clinical agents against Bacillus, 27 compounds were screened against this enzyme from Bacillus cereus, which is identical to the enzyme from B. anthracis at the active site. Several 2,4-diamino-5-deazapteridine compounds exhibit submicromolar 50% inhibitory concentrations (IC50s). Four of the inhibitors displaying potency in vitro were tested in vivo and showed a marked growth inhibition of B. cereus; the most potent of these has MIC50 and minimum bactericidal concentrations at which 50% are killed of 1.6 μg/ml and 0.09 μg/ml, respectively. In order to illustrate structure-activity relationships for the classes of inhibitors tested, each of the 27 inhibitors was docked into homology models of the B. cereus and B. anthracis DHFR proteins, allowing the development of a rationale for the inhibition profiles. A combination of favorable interactions with the diaminopyrimidine and substituted phenyl rings explains the low IC50 values of potent inhibitors; steric interactions explain higher IC50 values. These experiments show that DHFR is a reasonable antimicrobial target for Bacillus anthracis and that there is a class of inhibitors that possess sufficient potency and antibacterial activity to suggest further development. PMID:17005826

  2. Structure-activity relationships in the inhibition of serine beta-lactamases by phosphonic acid derivatives.

    PubMed Central

    Rahil, J; Pratt, R F

    1993-01-01

    A new series of phosphonyl derivatives has been prepared and tested for inhibition of serine (classes A and C) beta-lactamases. The results were compared with those previously acquired with aryl phosphonate monoesters and with alkaline hydrolysis rates. A methyl p-nitrophenyl phosphate monoanion was markedly poorer as an inhibitor of the class C beta-lactamase of Enterobacter cloacae P99 than a comparable p-nitrophenyl phosphonate. Phosphonyl fluorides, thiophenyl esters, N-phenylphosphonamidates and a p-nitrophenyl thionophosphonate were, in general, comparable with p-nitrophenyl phosphonates in inhibitory power. The incorporation of a specific amino side chain led to an increase in the rates of inhibition of around 10(4)-fold. Apparently unresponsive to the addition of the side chain to the enzyme was N-phenyl methylphosphonamidate, where binding of the side chain may interfere with access of the leaving group to a proton which is necessary to active-site phosphonylation and inhibition. Typical class A beta-lactamases were significantly more refractory than the class C enzyme to all of these reagents. PMID:8257429

  3. Identification and Structure-Activity Relationships of Diarylhydrazides as Novel Potent and Selective Human Enterovirus Inhibitors.

    PubMed

    Han, Xin; Sun, Ningyuan; Wu, Haoming; Guo, Deyin; Tien, Po; Dong, Chune; Wu, Shuwen; Zhou, Hai-Bing

    2016-03-10

    Enterovirus 71 (EV71) plays an important role in hand-foot-and-mouth disease. In this study, a series of diarylhydrazide analogues was synthesized, and the systematic exploration of SAR led to potent enterovirus inhibitors, of which compound 15 exhibits significant improvements in inhibition potency with an EC50 value of 0.02 μM against EV71. It is very interesting that this class of diarylhydrazides exhibits activities against a series of human enteroviruses at the picomolar level, including EV71 and Coxsackieviruses B1 (CVB1), CVB2, CVB3, CVB4, CVB5, and CVB6 (EC50 as low as 0.5 nM). Compared with the reference antienterovirus drug 1 (enviroxime) and known inhibitor 5 (WIN 51711), the four highly selective compounds 15, 27, 41 and 47 inhibited EV71 replication with EC50 values of 0.17-0.02 μM and SI values in a range of 978.4-12338. A preliminary mechanistic study indicated that VP1 might be the target site for this type of compound. PMID:26885567

  4. Structure-activity relationships and mechanism of action of macrolides derived from erythromycin as antibacterial agents.

    PubMed

    Liang, Jian-Hua; Han, Xu

    2013-01-01

    Enormous efforts were focused on the 3-descladinosyl erythromycin derivatives which led to 3-keto (ketolides), 3-O-acyl (acylides), 3-O-carbamate (carbamolides), and 3-O-alkyl (alkylides) and cladinosyl-containing erythromycin derivatives such as 4"-O-acyl, 4"-O-carbamate, and 4"-O-alkyl derivatives as recently exemplified by macrolones (macrolide-quinolone hybrids). Ketolides acquire activity against MLSB-resistant pathogens via a featured arylalkyl extension suspended on the macrolide core, which interacts with a base pair formed by A752Ec and U2609Ec located in the nascent peptide release tunnel of the bacterial rRNA. A base pair formed by C2610Ec and G2505Ec probably is another novel binding site for 3-descladinosyl non-ketolides. It is believed that 4"-derived compounds perhaps interfere with the formation of polypeptide because the extension oriented into peptidyl transferase center (PTC) region. Although macrolones are hybrids of macrolides and quinolones, they do not have dual modes of action, and serve only as protein synthesis inhibitors. PMID:24200358

  5. Structure-activity relationships of ruthenium Fischer-Tropsch catalysts (metal particle size effects)

    SciTech Connect

    White, M.W. Jr.

    1989-01-01

    In the group VIII transition metal catalytic conversion of hydrogen/carbon monoxide mixtures to hydrocarbons, it is known that certain catalysts catalyze the production of a narrow boiling range (C{sub 6}-C{sub 12}) product which does not fit the traditional Anderson-Schulz-Flory (ASF) chain growth model. Among the proposed explanations for this selectivity is one based on control of hydrocarbon chain propagation by metal particle size. The focus of this work was to study the effect of metal particle size on catalytic activity for the F-T synthesis. The silica-supported and unsupported Ru catalysts catalyzed the production of a hydrocarbon product which followed the ASF chain growth model and which consisted primarily of n-aklanes and linear 1-alkenes. An equation was derived relating the weight fraction of alkenes and alkanes to the residence times of the alkenes in the reactor and this equation produced a reasonable fit to the experimental data. It was observed that hydrocarbon, CO{sub 2} and CH{sub 4} production increased with time apparently reaching steady state after {approximately}200H. It was also found that increasing reactant gas space velocities (SHSV's) increased the steady state turnover numbers for hydrocarbon, CO{sub 2} and CH{sub 4} production, while at the same time, the AFS probabilities of chain growth and alkene/alkane ratios remained effectively constant.

  6. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis

    PubMed Central

    Meissner, Anja; Boshoff, Helena I.; Vasan, Mahalakshmi; Duckworth, Benjamin P.; Barry, Clifton E.; Aldrich, Courtney C.

    2013-01-01

    A series of 2-aminothiazoles was synthesized based on a HTS scaffold from a whole-cell screen against Mycobacterium tuberculosis (Mtb). The SAR shows the central thiazole moiety and the 2-pyridyl moiety at C-4 of the thiazole are intolerant to modification. However, the N-2 position of the aminothiazole exhibits high flexibility and we successfully improved the antitubercular activity of the initial hit by more than 128-fold through introduction of substituted benzoyl groups at this position. N-(3-Chlorobenzoyl)-4-(2-pyridinyl)-1,3-thiazol-2-amine (55) emerged as one of the most promising analogues with a MIC of 0.024 μM or 0.008 μg/mL in 7H9 media and therapeutic index of nearly ~300. However, 55 is rapidly metabolized by human liver microsomes (t1/2 = 28 min) with metabolism occurring at the invariant aminothiazole moiety and Mtb develops spontaneous resistance with a high frequency of ~10−5. PMID:24075144

  7. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals

    SciTech Connect

    Venkatapathy, Raghuraman Wang Chingyi; Bruce, Robert Mark; Moudgal, Chandrika

    2009-01-15

    Determining the carcinogenicity and carcinogenic potency of new chemicals is both a labor-intensive and time-consuming process. In order to expedite the screening process, there is a need to identify alternative toxicity measures that may be used as surrogates for carcinogenic potency. Alternative toxicity measures for carcinogenic potency currently being used in the literature include lethal dose (dose that kills 50% of a study population [LD{sub 50}]), lowest-observed-adverse-effect-level (LOAEL) and maximum tolerated dose (MTD). The purpose of this study was to investigate the correlation between tumor dose (TD{sub 50}) and three alternative toxicity measures as an estimator of carcinogenic potency. A second aim of this study was to develop a Classification and Regression Tree (CART) between TD{sub 50} and estimated/experimental predictor variables to predict the carcinogenic potency of new chemicals. Rat TD{sub 50}s of 590 structurally diverse chemicals were obtained from the Cancer Potency Database, and the three alternative toxicity measures considered in this study were estimated using TOPKAT, a toxicity estimation software. Though poor correlations were obtained between carcinogenic potency and the three alternative toxicity (both experimental and TOPKAT) measures for the CPDB chemicals, a CART developed using experimental data with no missing values as predictor variables provided reasonable estimates of TD{sub 50} for nine chemicals that were part of an external validation set. However, if experimental values for the three alternative measures, mutagenicity and logP are not available in the literature, then either the CART developed using missing experimental values or estimated values may be used for making a prediction.

  8. Structure activity relationships in alkylammonium C12-gemini surfactants used as dermal permeation enhancers.

    PubMed

    Silva, Sérgio M C; Sousa, João J S; Marques, Eduardo F; Pais, Alberto A C C; Michniak-Kohn, Bozena B

    2013-10-01

    The purpose of this study was to determine the ability and the safety of a series of alkylammonium C12-gemini surfactants to act as permeation enhancers for three model drugs, namely lidocaine HCl, caffeine, and ketoprofen. In vitro permeation studies across dermatomed porcine skin were performed over 24 h, after pretreating the skin for 1 h with an enhancer solution 0.16 M dissolved in propylene glycol. The highest enhancement ratio (enhancement ratio (ER)=5.1) was obtained using G12-6-12, resulting in a cumulative amount of permeated lidocaine HCl of 156.5 μg cm−2. The studies with caffeine and ketoprofen revealed that the most effective gemini surfactant was the one with the shorter spacer, G12-2-12. The use of the latter resulted in an ER of 2.4 and 2.2 in the passive permeation of caffeine and ketoprofen, respectively. However, Azone was found to be the most effective permeation enhancer for ketoprofen, attaining a total of 138.4 μg cm−2 permeated, 2.7-fold over controls. This work demonstrates that gemini surfactants are effective in terms of increasing the permeation of drugs, especially in the case of hydrophilic ionized compounds, that do not easily cross the stratum corneum. Skin integrity evaluation studies did not indicate the existence of relevant changes in the skin structure after the use of the permeation enhancers, while the cytotoxicity studies allowed establishing a relative cytotoxicity profile including this class of compounds, single chain surfactants, and Azone. A dependence of the toxicity to HEK and to HDF cell lines on the spacer length of the various gemini molecules was found. PMID:23959685

  9. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    SciTech Connect

    Prouillac, Caroline; Lecoeur, Sylvaine

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as a potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.

  10. A quantitative structure activity relationships (QSAR) analysis of triarylmethane dye tracers

    NASA Astrophysics Data System (ADS)

    Mon, Jarai; Flury, Markus; Harsh, James B.

    2006-01-01

    Dyes are important hydrological tracers. Many different dyes have been proposed as optimal tracers, but none of these dyes can be considered an ideal water tracer. Some dyes are toxic and most sorb to subsurface materials. The objective of this study was to find the molecular structure of an optimal water tracer. We used QSAR to screen a large number of hypothetical molecules, belonging to the class of triarylmethane dyes, in regard to their sorption characteristics to a sandy soil. The QSAR model was based on experimental sorption data obtained from four triarylmethane dyes: C.I. Food Blue 2 (C.I. 42090; Brilliant Blue FCF), C.I. Food Green 3 (C.I. 42053; FD&C Green No. 3), C.I. Acid Blue 7 (C.I. 42080; ORCOacid Blue A 150%), and C.I. Acid Green 9 (C.I. 42100; ORCOacid Fast Green B). Sorption characteristics of the dyes to the sandy soil were expressed with the Langmuir isotherm. Our premise was that dye sorption can be reduced by attachment of sulfonic acid (SO 3) groups to the triarylmethane template. About 70 hypothetical dyes were created and QSAR were used to estimate sorption characteristics. The results indicated that both the position and the number of SO 3 groups affected dye sorption. Sorption decreased with increasing number of SO 3 groups attached to the molecule. Increasing the number of sulfonic acid groups also decreases the toxicity of the compounds. An optimal triarylmethane water tracer contains 4 to 6 SO 3 groups.

  11. Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies

    PubMed Central

    Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    Multi-Site λ-dynamics (MSλD) is a new free energy simulation method that is based on λ-dynamics. It has been developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free energies assessed. The efficacy of MSλD for estimating relative hydration free energies and relative binding affinties is demonstrated using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene and dimethoxybenzene molecules show total combined MSλD trajectory lengths of ~1.5 ns are sufficient to reliably achieve relative hydration free energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for hybrid ligands that contain up to ten substituents modeled at a single site or five substituents modeled at each of two sites. Relative hydration free energies among six benzene derivatives calculated from MSλD simulations are in very good agreement with those from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2=0.991) and experiment (with average unsigned errors of 1.8 kcal/mol and R2=0.959). Estimates of the relative binding affinities among 14 inhibitors of HIV-1 reverse transcriptase obtained from MSλD simulations are in reasonable agreement with those from traditional free energy simulations and experiment (average unsigned errors of 0.9 kcal/mol and R2=0.402). For the same level of accuracy and precision MSλD simulations are achieved ~20–50 times faster than traditional free energy simulations and thus with reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design applications. PMID:22125476

  12. Structure-activity relationships of seco-prezizaane terpenoids in gamma-aminobutyric acid receptors of houseflies and rats.

    PubMed

    Kuriyama, Tadahiko; Schmidt, Thomas J; Okuyama, Emi; Ozoe, Yoshihisa

    2002-06-01

    Thirteen seco-prezizaane terpenoids isolated from star anise species (Illcium floridanum, Illcium parviflorum, and Illcium verum) were investigated for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist of gamma-aminobutyric acid (GABA) receptors, to housefly-head and rat-brain membranes. Veranisatin A was found to be the most potent inhibitor in both membranes, with an IC(50)(fly) of 78.5 nM and an IC(50)(rat) of 271 nM, followed by anisatin (IC(50)(fly)=123 nM; IC(50)(rat)=282 nM). Six of the other 11 tested compounds were effective only in housefly-head membranes. Pseudoanisatin proved to display a high (>26-fold) selectivity for housefly versus rat GABA receptors (IC(50)(fly)=376 nM; IC(50)(rat) >10,000 nM). Although pseudoanisatin does not structurally resemble EBOB, Scatchard plots indicated that the two compounds bind to the same site in housefly receptors. Anisatin and pseudoanisatin exhibited moderate insecticidal activity against German cockroaches. Comparative molecular field analysis (CoMFA), a method of three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, demonstrated that seco-prezizaane terpenoids can bind to the same site as do picrotoxane terpenoids such as picrotoxinin and picrodendrins, and the CoMFA maps allowed us to identify the parts of the molecules essential to high activity in housefly GABA receptors. PMID:11937345

  13. An advanced application of the quantitative structure-activity relationship concept in electrokinetic chromatography of metal complexes.

    PubMed

    Oszwałdowski, Sławomir; Timerbaev, Andrei R

    2008-02-01

    The relevance of the quantitative structure-activity relationship (QSAR) principle in MEKC and microemulsion EKC (MEEKC) of metal-ligand complexes was evaluated for a better understanding of analyte migration mechanism. A series of gallium chelates were applied as test solutes with available experimental migration data in order to reveal the molecular properties that govern the separation. The QSAR models operating with n-octanol-water partition coefficients or van der Waals volumes were found to be valid for estimation of the retention factors (log k') of neutral compounds when using only an aqueous MEEKC electrolyte. On the other hand, consistent approximations of log k' for both uncharged and charged complexes in either EKC mode (and also with hydro-organic BGEs) were achievable with two-parametric QSARs in which the dipole moment is additionally incorporated as a structural descriptor, reflecting the electrostatic solute-pseudostationary phase interaction. The theoretical analysis of significant molecular parameters in MEKC systems, in which the micellar BGE is modified with an organic solvent, confirmed that concomitant consideration of hydrophobic, electrostatic, and solvation factors is essential for explaining the migration behavior of neutral metal complexes. PMID:18219650

  14. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals.

    PubMed

    Bradbury, Steven P; Russom, Christine L; Ankley, Gerald T; Schultz, T Wayne; Walker, John D

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) in assessing potential toxic effects of organic chemicals on aquatic organisms continues to evolve as computational efficiency and toxicological understanding advance. With the ever-increasing production of new chemicals, and the need to optimize resources to assess thousands of existing chemicals in commerce, regulatory agencies have turned to QSARs as essential tools to help prioritize tiered risk assessments when empirical data are not available to evaluate toxicological effects. Progress in designing scientifically credible QSARs is intimately associated with the development of empirically derived databases of well-defined and quantified toxicity endpoints, which are based on a strategic evaluation of diverse sets of chemical structures, modes of toxic action, and species. This review provides a brief overview of four databases created for the purpose of developing QSARs for estimating toxicity of chemicals to aquatic organisms. The evolution of QSARs based initially on general chemical classification schemes, to models founded on modes of toxic action that range from nonspecific partitioning into hydrophobic cellular membranes to receptor-mediated mechanisms is summarized. Finally, an overview of expert systems that integrate chemical-specific mode of action classification and associated QSAR selection for estimating potential toxicological effects of organic chemicals is presented. PMID:12924578

  15. Structure-activity relationship study of alkynyl ether insecticide synergists and the development of MB-599 (verbutin).

    PubMed

    Bertók, Béla; Pap, László; Arvai, Géza; Bakonyvári, Ildikó; Kuruczné Ribai, Zsuzsanna

    2003-04-01

    Structure-activity relationships of aryl alkynyl synergists of the general formula of Ar-Q-R, where Q represents a bridging structure, were studied using a standardised testing system and Relative Potency values. Ethers, esters, oxime ethers, amides and amines were prepared and evaluated. The length of the R-alkynyl chain, the role of the bridge and the substitution of the aromatic ring were examined systematically. The most potent compounds possessed an aromatic ring connected via a bridge of three atoms to an alkynyl chain, forming together a linear side-chain of six atoms. Several highly potent compounds were synthesised of which one (MB-599; proposed common name verbutin) was selected for development as a selective insecticide synergist in crop protection. Its high potential at practical insecticide:synergist ratios makes possible the reduction of the total amount of insect-control chemicals applied, and its use as an additive to produce new formulations of existing insecticides makes it highly advantageous in resistance management, giving a new tool to sustain the effectiveness of a wide range of insecticides. A product containing a (1+1) mixture of verbutin and beta-cypermethrin was launched in Hungary in 2002. PMID:12701698

  16. Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid.

    PubMed

    Albertshofer, Klaus; Siwkowski, Andrew M; Wancewicz, Edward V; Esau, Christine C; Watanabe, Tanya; Nishihara, Kenji C; Kinberger, Garth A; Malik, Leila; Eldrup, Anne B; Manoharan, Muthiah; Geary, Richard S; Monia, Brett P; Swayze, Eric E; Griffey, Richard H; Bennett, C Frank; Maier, Martin A

    2005-10-20

    Improving cellular uptake and biodistribution remains one of the major obstacles for a successful and broad application of peptide nucleic acids (PNAs) as antisense therapeutics. Recently, we reported the identification and functional characterization of an antisense PNA, which redirects splicing of murine CD40 pre-mRNA. In this context, it was discovered that a simple octa(l-lysine) peptide covalently linked to the PNA is capable of promoting free uptake of the conjugate into BCL1 cells as well as primary murine macrophages. On the basis of this peptide motif, the present study aimed at identifying the structural features, which define effective peptide carriers for cellular delivery of PNA. While the structure-activity relationship study revealed some clear correlations, only a few modifications actually led to an overall improvement as compared to the parent octa(l-lysine) conjugate. In a preliminary PK/tissue distribution study in healthy mice, the parent conjugate exhibited relatively broad tissue distribution and only modest elimination via excretion within the time frame of the study. PMID:16220989

  17. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation

    SciTech Connect

    Kincaid, R.L.; Kemdner, E.; Manganiello, V.C.; Osborne, J.C.; Vaughan, M.

    1981-11-01

    The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approx.60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approx.105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiation destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity.

  18. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid should be a high hydrophobic and low electronic amino acid (such as Ala, Gly, Val, and Leu); the center amino acid would be an amino acid that possesses high hydrogen bond property (such as base amino acid Arg, Lys, and His). The structural characteristics of antioxidative peptide be found in this paper may contribute to the further research of antioxidative mechanism.

  19. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)

    PubMed Central

    Baqi, Younis; Weyler, Stefanie; Iqbal, Jamshed; Zimmermann, Herbert

    2008-01-01

    Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM). PMID:18528783

  20. Syntheses and Structure-Activity Relationships of Novel 3′-Difluoromethyl and 3′-Trifluoromethyl-Taxoids

    PubMed Central

    Kuznetsova, Larissa V.; Pepe, Antonella; Ungureanu, Ioana M.; Pera, Paula; Bernacki, Ralph J.; Ojima, Iwao

    2009-01-01

    A series of novel 3′-difluoromethyl-taxoids and 3′-trifluoromethyl-taxoids with modifications at the C2 and C10 positions were synthesized and evaluated for their in vitro cytotoxicities against human breast carcinoma (MCF7-S, MCF7-R, LCC6-WT, LCC6-MDR), non-small cell lung carcinoma (H460) and colon adenocarcinoma (HT-29) cell lines. These second-generation fluoro-taxoids exhibited several times to more than 20 times better potency than paclitaxel against drug-sensitive cancer cell lines, MCF7-S, LCC6-WT, H460, and HT-29. These fluoro-taxoids also possess two orders of magnitude higher potency than paclitaxel against drug-resistant cancer cell lines, MCF7-R and LCC6-MDR. Structure-activity relationship study shows the importance of the C10 modification for increasing the activity against multidrug-resistant cancer cell lines. Effects of the C2-benzoate modifications on the potency in the 3-difluoromethyl-taxoid series are very clear (i.e., F < MeO < Cl < N3), while those in the 3-trifluoromethyl-taxoid series are less obvious. Also, different trends in the sensitivity to the C2-substitution are observed between drug-sensitive cell lines and drug-resistant cancer cell lines that overexpress efflux pumps. PMID:19448839

  1. TRANSFORMATION OF DEVELOPMENTAL NEUROTOXICITY DATA INTO STRUCTURE-SEARCHABLE TOXML DATABASE IN SUPPORT OF STRUCTURE-ACTIVITY RELATIONSHIP (SAR) WORKFLOW.

    EPA Science Inventory

    Early hazard identification of new chemicals is often difficult due to lack of data on the novel material for toxicity endpoints, including neurotoxicity. At present, there are no structure searchable neurotoxicity databases. A working group was formed to construct a database to...

  2. Structural and spectroscopic characterisation of C4 oxygenates relevant to structure/activity relationships of the hydrogenation of α,β-unsaturated carbonyls

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Silverwood, Ian P.; Hamilton, Neil G.; Lennon, David

    2016-01-01

    In the present work, we have investigated the conformational isomerism and calculated the vibrational spectra of the C4 oxygenates: 3-butyne-2-one, 3-butene-2-one, 2-butanone and 2-butanol using density functional theory. The calculations are validated by comparison to structural data where available and new, experimental inelastic neutron scattering and infrared spectra of the compounds. We find that for 3-butene-2-one and 2-butanol the spectra show clear evidence for the presence of conformational isomerism and this is supported by the calculations. Complete vibrational assignments for all four molecules are provided and this provides the essential information needed to generate structure/activity relationships for the sequential catalytic hydrogenation of 3-butyne-2-one to 2-butanol.

  3. Structural and spectroscopic characterisation of C4 oxygenates relevant to structure/activity relationships of the hydrogenation of α,β-unsaturated carbonyls.

    PubMed

    Parker, Stewart F; Silverwood, Ian P; Hamilton, Neil G; Lennon, David

    2016-01-15

    In the present work, we have investigated the conformational isomerism and calculated the vibrational spectra of the C4 oxygenates: 3-butyne-2-one, 3-butene-2-one, 2-butanone and 2-butanol using density functional theory. The calculations are validated by comparison to structural data where available and new, experimental inelastic neutron scattering and infrared spectra of the compounds. We find that for 3-butene-2-one and 2-butanol the spectra show clear evidence for the presence of conformational isomerism and this is supported by the calculations. Complete vibrational assignments for all four molecules are provided and this provides the essential information needed to generate structure/activity relationships for the sequential catalytic hydrogenation of 3-butyne-2-one to 2-butanol. PMID:26318704

  4. Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure-activity relationships of nitroxoline derivatives.

    PubMed

    Sosič, Izidor; Mirković, Bojana; Arenz, Katharina; Stefane, Bogdan; Kos, Janko; Gobec, Stanislav

    2013-01-24

    Human cathepsin B has many house-keeping functions, such as protein turnover in lysosomes. However, dysregulation of its activity is associated with numerous diseases, including cancers. We present here the structure-based design and synthesis of new cathepsin B inhibitors using the cocrystal structure of 5-nitro-8-hydroxyquinoline in the cathepsin B active site. A focused library of over 50 compounds was prepared by modifying positions 5, 7, and 8 of the parent compound nitroxoline. The kinetic parameters and modes of inhibition were characterized, and the selectivities of the most promising inhibitors were determined. The best performing inhibitor 17 was effective in cell-based in vitro models of tumor invasion, where it significantly abrogated invasion of MCF-10A neoT cells. These data show that we have successfully explored the structure-activity relationships of nitroxoline derivatives to provide new inhibitors that could eventually lead to compounds with clinical usefulness against the deleterious effects of cathepsin B in cancer progression. PMID:23252745

  5. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors.

    PubMed

    Chandra De, Utpal; Debnath, Tanusree; Sen, Debanjan; Debnath, Sudhan

    2015-01-01

    Aldose reductase (AR) plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux). A model with partial least squares factor 5, standard deviation 0.2482, R(2) = 0.9502 and variance ratio of regression 122 has been found as the best statistical model. PMID:25709964

  6. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea.

    PubMed

    Dolan, Niamh; Gavin, Declan P; Eshwika, Ahmed; Kavanagh, Kevin; McGinley, John; Stephens, John C

    2016-01-15

    We report the synthesis, antibacterial evaluation of a series of thiourea-containing compounds. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)-((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea 5, was the most active against a range of Gram-positive and Gram-negative bacteria, and exhibited bacteriostatic activity against methicillin resistant Staphylococcus aureus (MRSA) comparable to that of the well-known antibacterial agent vancomycin. Quinoline thiourea 5 was subjected to a detailed structure-activity relationship study, with 5 and its derivatives evaluated for their bacteriostatic activity against both Gram-negative and Gram-positive bacteria. A number of structural features important for the overall activity of quinoline thiourea 5 have been identified. A selection of compounds, including 5, was also evaluated for their in vivo toxicity using the larvae of the Greater wax moth, Galleria mellonella. Compound 5, and a number of derivatives, were found to be non-toxic to the larvae of Galleria mellonella. A new class of antibiotic can result from the further development of this family of compounds. PMID:26639761

  7. 6-Substituted benzimidazoles as new nonpeptide angiotensin II receptor antagonists: synthesis, biological activity, and structure-activity relationships.

    PubMed

    Ries, U J; Mihm, G; Narr, B; Hasselbach, K M; Wittneben, H; Entzeroth, M; van Meel, J C; Wienen, W; Hauel, N H

    1993-12-10

    Starting from the recently reported nonpeptidic angiotensin II (AII) receptor antagonists DuP753 (1) and Exp 7711 (2), we have designed and investigated novel substituted benzimidazoles. Systemic variation of several substituents at the benzimidazole ring positions 4-7 led to the finding that substitution in position 6 with acylamino groups results in highly active AII antagonists. Compounds with 6-membered lactam or sultam substituents in position 6 of benzimidazole showed receptor activities in the low nanomolar range but were only weakly active when given orally to rats. In contrast, analogous substitution of the benzimidazole moiety with basic heterocycles resulted in potent AII antagonists which were also well absorbed after oral application. The most active compound of this series, 33 (BIBR 277), was selected as a candidate for clinical development. On the basis of molecular modeling studies a binding model of this new class of AII antagonists to the AT1 receptor is proposed. PMID:8258826

  8. Synthesis, structure-activity, and structure-stability relationships of 2-substituted-N-(4-oxo-3-oxetanyl) N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Vitale, Romina; Ottonello, Giuliana; Petracca, Rita; Bertozzi, Sine Mandrup; Ponzano, Stefano; Armirotti, Andrea; Berteotti, Anna; Dionisi, Mauro; Cavalli, Andrea; Piomelli, Daniele; Bandiera, Tiziano; Bertozzi, Fabio

    2014-02-01

    N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator-activated receptor-α (PPAR-α). Compounds that feature an α-amino-β-lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti-inflammatory effects that are mediated through FAE-dependent activation of PPAR-α. We synthesized and tested a series of racemic, diastereomerically pure β-substituted α-amino-β-lactones, as either carbamate or amide derivatives, investigating the structure-activity and structure-stability relationships (SAR and SSR) following changes in β-substituent size, relative stereochemistry at the α- and β-positions, and α-amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β-position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability. PMID:24403170

  9. Structure-activity relationship study using peptide arrays to optimize Api137 for an increased antimicrobial activity against Pseudomonas aeruginosa.

    PubMed

    Bluhm, Martina E C; Knappe, Daniel; Hoffmann, Ralf

    2015-10-20

    The opportunistic Gram-negative bacterium Pseudomonas aeruginosa has a low susceptibility to common antibiotics. Additionally, around 15% of all clinical isolates bear acquired resistance genes. Thus, the development of new antibiotics to combat this pathogen in pneumonia, urinary tract infections, and bacteremia, represents an urgent task. The activity spectrum of the proline-rich antimicrobial peptide apidaecin 1b, originally isolated from honeybees (Apis mellifera), was extended in previous studies to further human pathogens including P. aeruginosa. However, the in vitro activity of the optimized peptide Api137 is limited to diluted medium conditions. Thus, we synthesized 323 analogs of Api137 on cellulose membranes using the SPOT strategy by substituting each residue individually by 19 other amino acids or deleting the residue. The peptides were deprotected with trifluoroacetic acid and cleaved with aqueous trimethylamine as C-terminal acids providing around 30 μg crude peptide per spot. This amount allowed determining the minimal inhibitory concentrations in a microdilution broth assay. The most promising substitutions were selected to synthesize 44 doubly and triply substituted Api137 analogs on the membrane. The 19 best peptides were synthesized at a larger scale and purified. Eight triply substituted Api137 analogs were up to 16-fold more active against P. aeruginosa at high medium concentrations without losing activities against Klebsiella pneumoniae and Acinetobacter baumannii and only slightly against Escherichia coli. The eight most active Api137 analogs were non-hemolytic to human erythrocytes and non-toxic to HeLa cells. PMID:26408816

  10. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  11. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    PubMed

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. PMID:23719281

  12. Structure-Activity Relationship Studies of Isomeric 2,4-Diaminoquinazolines on β-Amyloid Aggregation Kinetics.

    PubMed

    Mohamed, Tarek; Shakeri, Arash; Tin, Gary; Rao, Praveen P N

    2016-05-12

    A library of isomeric 2,4-diaminoquinazoline (DAQ) derivatives were synthesized and evaluated for antiaggregation potential toward Aβ40/42. Structure-activity relationship data identified compound 3k (N (4)-(4-bromobenzyl)quinazoline-2,4-diamine) with a 4-bromobenzyl substituent as the most potent inhibitor (Aβ40 IC50 = 80 nM) and was almost 18-fold more potent compared to the reference agent curcumin (Aβ40 IC50 = 1.5 μM). The corresponding N (2)-isomer 4k (N (2)-(4-bromobenzyl)quinazoline-2,4-diamine) was also able to prevent Aβ aggregation (Aβ40 IC50 = 1.7 μM). However, compound 4k exhibited superior inhibition of Aβ42 aggregation (Aβ42 IC50 = 1.7 μM) compared to compound 3k (Aβ42 IC50 = 14.8 μM) and was ∼1.8-fold more potent compared to curcumin (Aβ42 IC50 = 3.1 μM). These results were supported by Aβ aggregation kinetics investigations and transmission electron microscopy studies, which demonstrate the suitability of DAQ ring system to develop antiamyloid agents as pharmacological tools to study Aβ aggregation. PMID:27190601

  13. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. PMID:24881546

  14. Discovery and Structure Activity Relationship of Small Molecule Inhibitors of Toxic β-Amyloid-42 Fibril Formation*

    PubMed Central

    Kroth, Heiko; Ansaloni, Annalisa; Varisco, Yvan; Jan, Asad; Sreenivasachary, Nampally; Rezaei-Ghaleh, Nasrollah; Giriens, Valérie; Lohmann, Sophie; López-Deber, María Pilar; Adolfsson, Oskar; Pihlgren, Maria; Paganetti, Paolo; Froestl, Wolfgang; Nagel-Steger, Luitgard; Willbold, Dieter; Schrader, Thomas; Zweckstetter, Markus; Pfeifer, Andrea; Lashuel, Hilal A.; Muhs, Andreas

    2012-01-01

    Increasing evidence implicates Aβ peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aβ aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aβ42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the β-sheet conformation of Aβ42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aβ42. The efficacy of these compounds on inhibiting Aβ fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aβ42 leading to decreased cell toxicity. PMID:22891248

  15. Quantitative Structure-Activity Relationships Study on the Rate Constants of Polychlorinated Dibenzo-p-Dioxins with OH Radical

    PubMed Central

    Qi, Chuansong; Zhang, Chenxi; Sun, Xiaomin

    2015-01-01

    The OH-initiated reaction rate constants (kOH) are of great importance to measure atmospheric behaviors of polychlorinated dibenzo-p-dioxins (PCDDs) in the environment. The rate constants of 75 PCDDs with the OH radical at 298.15 K have been calculated using high level molecular orbital theory, and the rate constants (kα, kβ, kγ and kOH) were further analyzed by the quantitative structure-activity relationships (QSAR) study. According to the QSAR models, the relations between rate constants and the numbers and positions of Cl atoms, the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), the difference ΔEHOMO-LUMO between EHOMO and ELUMO, and the dipole of oxidizing agents (D) were discussed. It was found that EHOMO is the main factor in the kOH. The number of Cl atoms is more effective than the number of relative position of these Cl atoms in the kOH. The kOH decreases with the increase of the substitute number of Cl atoms. PMID:26274950

  16. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  17. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. PMID:26513561

  18. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study

    PubMed Central

    Satpathy, Raghunath; Guru, R. K.; Behera, R.; Nayak, B.

    2015-01-01

    Context: Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. Aims: To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. Materials and Methods: In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Statistical Analysis Used: Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. Results: From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Conclusions: Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. PMID:25709332

  19. Structure-Activity Relationship of Indole-Tethered Pyrimidine Derivatives that Concurrently Inhibit Epidermal Growth Factor Receptor and Other Angiokinases

    PubMed Central

    Song, Jiho; Yoo, Jakyung; Kwon, Ara; Kim, Doran; Nguyen, Hong Khanh; Lee, Bong-Yong; Suh, Wonhee; Min, Kyung Hoon

    2015-01-01

    Antiangiogenic agents have been widely investigated in combination with standard chemotherapy or targeted cancer agents for better management of advanced cancers. Therapeutic agents that concurrently inhibit epidermal growth factor receptor and other angiokinases could be useful alternatives to combination therapies for epidermal growth factor receptor-dependent cancers. Here, we report the synthesis of an indole derivative of pazopanib using a bioisosteric replacement strategy, which was designated MKP101. MKP101 inhibited not only the epidermal growth factor receptor with an IC50 value of 43 nM but also inhibited angiokinases as potently as pazopanib. In addition, MKP101 effectively inhibited vascular endothelial growth factor-induced endothelial proliferation, tube formation, migration of human umbilical vein endothelial cells and proliferation of HCC827, an epidermal growth factor receptor-addicted cancer cell line. A docking model of MKP101 and the kinase domain of the epidermal growth factor receptor was generated to predict its binding mode, and validated by synthesizing and evaluating MKP101 derivatives. Additionally, a study of structure-activity relationships of indolylamino or indolyloxy pyrimidine analogues derived from MKP101 demonstrated that selectivity for epidermal growth factor receptor and other angiokinases, especially vascular endothelial growth factor receptor 2 depends on the position of substituents on pyrimidine and the type of link between pyrimidine and the indole moiety. We believe that this study could provide a basis for developing angiokinase inhibitors having high affinity for the epidermal growth factor receptor, from the pyrimidine scaffold. PMID:26401847

  20. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. PMID:26507430

  1. Quantitative structure-activity relationship modeling of growth hormone secretagogues agonist activity of some tetrahydroisoquinoline 1-carboxamides.

    PubMed

    Caballero, Julio; Zampini, Fabio M; Collina, Simona; Fernández, Michael

    2007-01-01

    Growth hormone secretagogue agonist activities for a data set of 45 tetrahydroisoquinoline 1-carboxamides were modeled using several kinds of molecular descriptors from dragon software. A linear model with six variables selected from a large pool of two-dimensional descriptors described 80% of cross-validation data variance. Similar results were found for a model obtained from a pool of three-dimensional descriptors. Size and hydrophilicity-related atomic properties such as mass, polarizability, and van der Waals volume were determined to be the most relevant for the differential growth hormone secretagogue agonist activities of the compounds studied. In addition, Artificial Neural Networks were trained using optimum variables from the linear models; however, they were found to overfit the data and resulted in similar or lower predictive power. PMID:17313457

  2. Structure-activity relationship of hybrids of Cinchona alkaloids and bile acids with in vitro antiplasmodial and antitrypanosomal activities.

    PubMed

    Leverrier, Aurélie; Bero, Joanne; Cabrera, Julián; Frédérich, Michel; Quetin-Leclercq, Joëlle; Palermo, Jorge A

    2015-07-15

    In this work, a series of hybrid compounds were tested as antiparasitic substances. These hybrids were prepared from bile acids and a series of antiparasitic Cinchona alkaloids by the formation of a covalent C-C bond via a decarboxylative Barton-Zard reaction between the two entities. The bile acids showed only weak antiparasitic properties, but all the hybrids exhibited high in vitro activities (IC50: 0.48-5.39 μM) against Trypanosoma brucei. These hybrids were more active than their respective parent alkaloids (up to a 135 fold increase in activity), and displayed good selectivity indices. Aditionally, all these compounds inhibited the in vitro growth of a chloroquine-sensitive strain of Plasmodium falciparum (3D7: IC50: 36.1 nM to 8.72 μM), and the most active hybrids had IC50s comparable to that of artemisinin (IC50: 36 nM). Some structure-activity relationships among the group of 48 hybrids are discussed. The increase in antiparasitic activity may be explained by an improvement in bioavailability, since the more lipophilic derivatives showed the lowest IC50s. PMID:26063305

  3. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii

    SciTech Connect

    Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen; Lenglet, Gaelle; Depauw, Sabine; Van Goietsenoven, Gwendoline; Bury, Marina; Vurro, Maurizio; Herphelin, Francoise; Andolfi, Anna; Zonno, Maria Chiara; Mathieu, Veronique; Dufrasne, Francois; Van Antwerpen, Pierre; Poumay, Yves

    2011-07-01

    The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA as part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.

  4. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships

    PubMed Central

    Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G.; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Šimůnek, Tomáš; Richardson, Des R.; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  5. Derivation of structure-activity relationships from the anticancer properties of ruthenium(II) arene complexes with 2-aryldiazole ligands.

    PubMed

    Martínez-Alonso, Marta; Busto, Natalia; Jalón, Félix A; Manzano, Blanca R; Leal, José M; Rodríguez, Ana M; García, Begoña; Espino, Gustavo

    2014-10-20

    The ligands 2-pyridin-2-yl-1H-benzimidazole (HL(1)), 1-methyl-2-pyridin-2-ylbenzimidazole (HL(2)), and 2-(1H-imidazol-2-yl)pyridine (HL(3)) and the proligand 2-phenyl-1H-benzimidazole (HL(4)) have been used to prepare five different types of new ruthenium(II) arene compounds: (i) monocationic complexes with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL)]Y [HL = HL(1), HL(2), or HL(3); Y = Cl or BF4; arene = 2-phenoxyethanol (phoxet), benzene (bz), or p-cymene (p-cym)]; (ii) dicationic aqua complexes of the formula [(η(6)-arene)Ru(OH2)(κ(2)-N,N-HL(1))](Y)2 (Y = Cl or TfO; arene = phoxet, bz, or p-cym); (iii) the nucleobase derivative [(η(6)-arene)Ru(9-MeG)(κ(2)-N,N-HL(1))](PF6)2 (9-MeG = 9-methylguanine); (iv) neutral complexes consistent with the formulation [(η(6)-arene)RuCl(κ(2)-N,N-L(1))] (arene = bz or p-cym); (v) the neutral cyclometalated complex [(η(6)-p-cym)RuCl(κ(2)-N,C-L(4))]. The cytototoxic activity of the new ruthenium(II) arene compounds has been evaluated in several cell lines (MCR-5, MCF-7, A2780, and A2780cis) in order to establish structure-activity relationships. Three of the compounds with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL(1))]Cl differing in the arene moiety have been studied in depth in terms of thermodynamic dissociation constants, aquation kinetic constants, and DNA binding measurements. The biologically most active compound is the p-cym derivative, which strongly destabilizes the DNA double helix, whereas those with bz and phoxet have only a small effect on the stability of the DNA double helix. Moreover, the inhibitory activity of several compounds toward CDK1 has also been evaluated. The DNA binding ability of some of the studied compounds and their CDK1 inhibitory effect suggest a multitarget mechanism for their biological activity. PMID:25302401

  6. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations. PMID:27105149

  7. SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways

    PubMed Central

    Tovmasyan, Artak; Roberts, Emily R. H.; Vujaskovic, Zeljko; Leong, Kam W.; Spasojevic, Ivan

    2014-01-01

    Abstract Significance: Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·−; no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. Recent Advances: Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·−) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. Critical Issues: Although log kcat(O2·−) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. Future Directions: Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs. Antioxid. Redox Signal. 20, 2372–2415. PMID:23875805

  8. Structure-activity relationship of miltirone, an active central benzodiazepine receptor ligand isolated from Salvia miltiorrhiza Bunge (Danshen)

    SciTech Connect

    Chang, H.M.; Chui, K.Y.; Tan, F.W.; Yang, Y.; Zhong, Z.P.; Lee, C.M.; Sham, H.L.; Wong, H.N. )

    1991-05-01

    Twenty one o-quinonoid-type compounds and one coumarin-type compound related to miltirone (1) have been synthesized with the aim to identify the key structural elements involved in miltirone's interaction with the central benzodiazepine receptor. On the basis of their inhibition of ({sup 3}H)flunitrazepam binding to bovine cerebral cortex membranes, it is apparent that ring A of miltirone is essential for affinity. Although increasing the size of ring A from six-membered to seven- and eight-membered is well-tolerated, the introduction of polar hydroxyl groups greatly reduces binding affinity. The presence of 1,1-dimethyl groups on ring A is, however, not essential. On the other hand, the isopropyl group on ring C appears to be critical for binding as its removal decreases affinity by more than 30-fold. It can, however, be replaced with a methyl group with minimal reduction in affinity. Finally, linking ring A and B with a -CH{sub 2}CH{sub 2}- bridge results in analogue 89, which is 6 times more potent than miltirone at the central benzodiazepine receptor (IC50 = 0.05 microM).

  9. Synthesis and structure-activity relationship studies of novel 3,9-substituted α-carboline derivatives with high cytotoxic activity against colorectal cancer cells.

    PubMed

    Lin, Yi-Chien; Chen, Yi-Fong; Tseng, Li-Shin; Lee, Yueh-Hsuan; Morris-Natschke, Susan L; Kuo, Sheng-Chu; Yang, Ning-Sun; Lee, Kuo-Hsiung; Huang, Li-Jiau

    2016-03-01

    In our continued focus on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we synthesized a novel series of 3,9-substituted α-carboline derivatives and evaluated the new compounds for antiproliferactive effects. Structure activity relationships revealed that a COOCH3 or CH2OH group at position-3 and substituted benzyl group at position-9 of the α-carboline nucleus were crucial for maximal activity. The most active compound, 11, showed high levels of cytotoxicity against HL-60, COLO 205, Hep 3B, and H460 cells with IC50 values of 0.3, 0.49, 0.7, and 0.8 μM, respectively. The effect of compound 11 on the cell cycle distribution demonstrated G2/M arrest in COLO 205 cells. Furthermore, mechanistic studies indicated that compound 11 induced apoptosis by activating death receptor and mitochondria dependent apoptotic signaling pathways in COLO 205 cells. The new 3,9-substituted α-carboline derivatives exhibited excellent anti-proliferative activities, and compound 11 can be used as a promising pro-apoptotic agent for future development of new antitumor agents. PMID:26820553

  10. Evaluation of Cancer Preventive Activity and Structure-Activity Relationships of 3-Demethylubiquinone Q2, Isolated from the Ascidian Aplidium glabrum, and its Synthetic Analogues

    PubMed Central

    Fedorov, Sergey N.; Radchenko, Oleg S.; Shubina, Larisa K.; Balaneva, Nadezhda N.; Bode, Ann M.; Stonik, Valentin A.; Dong, Zigang

    2006-01-01

    Purpose 3-Demethylubiquinone Q2 (1) was isolated from the ascidian Aplidium glabrum. The cancer preventive properties and the structure-activity relationship for 3-demethylubiquinone Q2 (1) and 12 of its synthetic analogues (3–14) are reported. Methods Compounds 3–14, having one or several di- or triprenyl substitutions and quinone moieties with methoxyls in different positions, were synthesized. The cancer preventive properties of compounds 1 and 3–14 were tested in JB6 Cl41 mouse skin cells, using a variety of assessments, including the MTS assay, flow cytometry, and soft agar assay. Statistical nonparametric methods were used to confirm statistical significance. Results All quinones tested were shown to inhibit JB6 Cl41 cell transformation, to induce apoptosis, AP-1 and NF-κB activity, and to inhibit p53 activity. The most promising effects were indicated for compounds containing two isoprene units in a side chain and a methoxyl group at the para-position to a polyprenyl substitution. Conclusions Quinones 1 and 3–14 demonstrated cancer preventive activity in JB6 Cl41 cells, which may be attributed to the induction of p53-independent apoptosis. These activities depended on the length of side chains and on the positions of the methoxyl groups in the quinone part of the molecule. PMID:16320003

  11. Structure-activity relationships in new polycationic molecules based on two 1,4-diazabicyclo[2.2.2]octanes as artificial ribonucleases.

    PubMed

    Burakova, E; Kovalev, N; Zenkova, M; Vlassov, V; Silnikov, V

    2014-12-01

    In the present study, we designed and synthesised new polycationic molecules based on two 1,4-diazabicyclo[2.2.2]octane (DABCO) moieties with hydrophobic groups connected by different linkers. The structure and the RNA-cleavage activity relationships of this novel series of artificial ribonucleases (aRNases) were investigated. PMID:25462988

  12. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase.

    PubMed

    LaPorte, Matthew G; Draper, Tandy L; Miller, Lori E; Blackledge, Charles W; Leister, Lara K; Amparo, Eugene; Hussey, Alison R; Young, Dorothy C; Chunduru, Srinivas K; Benetatos, Christopher A; Rhodes, Gerry; Gopalsamy, Ariamala; Herbertz, Torsten; Burns, Christopher J; Condon, Stephen M

    2010-05-01

    We describe the structure-activity relationship of the C1-group of pyrano[3,4-b]indole based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compound 12. PMID:20347591

  13. The discovery and structure-activity relationships of pyrano[3,4-b]indole-based inhibitors of hepatitis C virus NS5B polymerase.

    PubMed

    Jackson, Randy W; LaPorte, Matthew G; Herbertz, Torsten; Draper, Tandy L; Gaboury, Janet A; Rippin, Susan R; Patel, Ravi; Chunduru, Srinivas K; Benetatos, Christopher A; Young, Dorothy C; Burns, Christopher J; Condon, Stephen M

    2011-06-01

    We describe the structure-activity relationship of the C7-position of pyrano[3,4-b]indole-based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compounds 13 and 14. PMID:21550237

  14. Pseudocyanides of sanguinarine and chelerythrine and their series of structurally simple analogues as new anticancer lead compounds: Cytotoxic activity, structure-activity relationship and apoptosis induction.

    PubMed

    Cao, Fang-Jun; Yang, Rui; Lv, Chao; Ma, Qun; Lei, Ming; Geng, Hui-Ling; Zhou, Le

    2015-01-25

    6-Cyano dihydrosanguinarine (CNS) and 6-cyano dihydrochelerythrine (CNC) are respectively artificial derivatives of sanguinarine and chelerythrine, two anticancer quaternary benzo[c]phenanthridine alkaloids (QBAs) while 1-cyano-2-aryl-1,2,3,4-tetrahydroisoquinolines (CATHIQs) are a class of structurally simple analogues of CNS or CNC. This study investigated the inhibition activity of CNS, CNC and CATHIQs on cancer cells, apoptosis induction as well as their preliminary SAR. The results showed that CNS and 18 out of CATHIQs showed IC50 values of 0.53 and 0.62-2.24μM against NB4 and 1.53 and 2.99-11.17μM against MKN-45 cells, respectively, superior to a standard anticancer drug cis-platinum with IC50 of 2.39 and 11.36μM. CNC showed a higher activity against NB4 cells (IC50=1.85μM) and a moderate activity against MKN-45 cells (IC50=12.72μM). Among all CATHIQs, 2 and 17 gave the highest activity against NB4 cells and MKN-45 cells (IC50=0.62 and 2.99μM), respectively. DAPI staining, AO/EB staining and ultrastructure analysis of cells demonstrated that CATHIQs were able to induce apoptosis of the cells in a concentration-dependent manner. SAR showed that substitution patterns on the N-aromatic ring significantly influenced the activity of CATHIQs. The general trend was that the introduction of electron-withdrawing substituents like halogen atom, nitro, trifluoromethyl led to a significant improvement of the activity, while the presence of electron-donating groups like methyl, methoxyl caused a reduction of the activity. In most cases, the 2' site was the most favorable substitution position for the improvement of the activity. Thus, the present results strongly suggested that QBA-type pseudocyanides may serve as potential alternatives of anticancer QBAs while CATHIQs should be a class of promising lead compounds for the development of new QBA-like-type anticancer drugs. CNS exhibited the highest cytotoxicities with IC50 values of 0.53μM on NB4 cells and 1.53μM on MKN-45 cells. PMID:25444843

  15. Structure-activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model

    NASA Astrophysics Data System (ADS)

    Wong, O. Andrea; Hansen, Ryan J.; Ni, Thomas W.; Heinecke, Christine L.; Compel, W. Scott; Gustafson, Daniel L.; Ackerson, Christopher J.

    2013-10-01

    The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR)44 nanoclusters with different (SR) ligand shells. To rationalize unexpected distribution and excretion properties observed for several clusters in this study and others, we defined a set of atomistic structure-activity relationships (SAR) for nanoparticles, which includes previously investigated parameters such as particle hydrodynamic diameter and net charge, and new parameters such as hydrophobic surface area and surface charge density. Overall we find that small changes in particle formulation can provoke dramatic yet potentially predictable changes in ADME/PK.The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR)44 nanoclusters with different (SR) ligand shells. To rationalize unexpected distribution and excretion properties observed for several clusters in this study and others, we defined a set of atomistic structure-activity relationships (SAR) for nanoparticles, which includes previously investigated parameters such as particle hydrodynamic diameter and net charge, and new parameters such as hydrophobic surface area and surface charge density. Overall we find that small changes in particle formulation can provoke dramatic yet potentially predictable changes in ADME/PK. Electronic supplementary information (ESI) available: The polyacrylamide gel that shows the purity of Au102pMBA44, excretion graphs for compounds 1-5, atomistic models of the Au25 and Au102-based compounds, the zoomed in versions of Fig. 3 and 6, 1H NMR of compound 5, information on the Au102 1 : 1 exchange compound, and blood drug concentration vs. time curves of Au102-based compounds. See DOI: 10.1039/c3nr03121g

  16. FISH ACUTE TOXICITY SYNDROMES AND THEIR USE IN THE QSAR (QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP) APPROACH TO HAZARD ASSESSMENT

    EPA Science Inventory

    Implementation of the Toxic Substances Control Act of 1977 creates the need to reliably establish testing priorities because laboratory resources are limited and the number of industrial chemicals requiring evaluation is overwhelming. The use of quantitative structure activity re...

  17. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations. PMID:26206368

  18. Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure-activity relationship study.

    PubMed

    Lau, Qiu Ying; Ng, Fui Mee; Cheong, Jin Wei Darryl; Yap, Yi Yong Alvin; Tan, Yoke Yan Fion; Jureen, Roland; Hill, Jeffrey; Chia, Cheng San Brian

    2015-11-13

    The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections. PMID:26489599

  19. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2) ) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw ) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. PMID:26648584

  20. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship.

    PubMed

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Fernández-Gutiérrez, Mar; Parra, Juan; Sánchez-Rodríguez, Carolina; Sanz-Fernández, Ricardo; Rodrigáñez, Laura; Román, Julio San

    2015-05-11

    α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring. The corresponding families of copolymers (poly(VP-co-MVE), poly(VP-co-SPHY), and poly(VP-co-MPHY)) were synthesized and characterized, and their biological activity was compared to poly(VP-co-MTOS). Both poly(VP-co-MTOS) and poly(VP-co-MVE) presented triple action: reduced cell viability of cancer cells with little or no harm to normal cells (anticancer), reduced viability of proliferating endothelial cells with little or no harm to quiescent endothelial cells (antiangiogenic), and efficiently encapsulated hydrophobic molecules (nanocarrier). The anticancer and antiangiogenic activity of the synthesized copolymers is demonstrated as the active compound (vitamin E or α-tocopheryl succinate) do not need to be cleaved to trigger the biological action targeting ubiquinone binding sites of complex II. Poly(VP-co-SPHY) and poly(VP-co-MPHY) also formed surfactant-free NP that were also endocyted by the assayed cells; however, these NP did not selectively reduce cell viability of cancer cells. Therefore, the chromanol ring of the vitamin E analogues has an important role in the biological activity of the copolymers. Moreover, when succinate moiety is substituted and vitamin E is directly linked to the macromolecular chain through an ester bond, the biological activity is maintained. PMID:25848887

  1. Novel acid-type cyclooxygenase-2 inhibitors: Design, synthesis, and structure-activity relationship for anti-inflammatory drug.

    PubMed

    Hayashi, Shigeo; Ueno, Naomi; Murase, Akio; Nakagawa, Yoko; Takada, Junji

    2012-04-01

    Cyclooxygenase (COX) is a key rate-limiting enzyme for prostaglandin (PG) production cascades in the human body. The mechanisms of both the anti-inflammation effects and the side-effects of traditional COX inhibitors are associated with the existence of two COX isoforms. Thus while COX-1 is predominantly expressed ubiquitously and constitutively, and it serves a housekeeping role in processes such as gastrointestinal (GI) mucosa protection, COX-2 is absent or exhibits a low level of expression in most tissues, and is highly upregulated in response to endotoxin, virus, inflammatory or tissue-injury stimuli/signals, and tumour promoter in the various types of organs, tissues, and cells. Furthermore, COX-2 contribution to PGE(2) and PGI(2) production evokes and sustains systemic or peripheral inflammatory disease, but it is not involved in the COX-1-mediated GI tract events. Also, hypersensitivity of aspirin owing to its inhibitory action against COX-1 is a significant concern clinically. Consequently, highly selective COX-2 inhibitors have been needed for the treatment of inflammatory- and inflammation related-diseases that include pyrexia, inflammation, pain, rheumatoid arthritis, osteoarthritis, and cancers. In this study, a series of novel [2-{[(4-substituted or 4,5-disubstituted)-pyridin-2-yl]carbonyl}-(5- or 6-substituted or 5,6-disubstituted)-1H-indol-3-yl]acetic acid analogues was designed, synthesized, and evaluated to identify potent and selective COX-2 inhibitors as potential agents against inflammatory diseases. As significant findings, the present study clarified unique structure-activity relationship of the analogues toward potent and selective COX-2 inhibition in vitro, and identified 2-{6-fluoro-2-[4-methyl-2-pridinyl)carbonyl]-1H-indol-3-yl}acetic acid as a potent and selective COX-2 inhibitor in vitro that demonstrated orally potent anti-inflammation efficacy against carrageenan-induced oedema formation in the foot of SPF/VAF male SD rats as a peripheral inflammation model in vivo. PMID:22373734

  2. Structure-Activity Relationship and Substrate-Dependent Phenomena in Effects of Ginsenosides on Activities of Drug-Metabolizing P450 Enzymes

    PubMed Central

    Hao, Miao; Zhao, Yuqing; Chen, Peizhan; Huang, He; Liu, Hong; Jiang, Hualiang; Zhang, Ruiwen; Wang, Hui

    2008-01-01

    Ginseng, a traditional herbal medicine, may interact with several co-administered drugs in clinical settings, and ginsenosides, the major active components of ginseng, may be responsible for these ginseng-drug interactions (GDIs). Results from previous studies on ginsenosides' effects on human drug-metabolizing P450 enzymes are inconsistent and confusing. Herein, we first evaluated the inhibitory effects of fifteen ginsenosides and sapogenins on human CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes by using commercially available fluorescent probes. The structure-activity relationship of their effects on the P450s was also explored and a pharmacophore model was established for CYP3A4. Moreover, substrate-dependent phenomena were found in ginsenosides' effects on CYP3A4 when another fluorescent probe was used, and were further confirmed in tests with conventional drug probes and human liver microsomes. These substrate-dependent effects of the ginsenosides may provide an explanation for the inconsistent results obtained in previous GDI reports. PMID:18628990

  3. Bioactive peptides derived from the Limulus anti-lipopolysaccharide factor: structure-activity relationships and formation of mixed peptide/lipid complexes.

    PubMed

    Mora, Puig; López De La Paz, Manuela; Pérez-Payá, Enrique

    2008-08-01

    The design of peptides that would interact and neutralise bacterial endotoxins or LPS could have benefited from the analysis of comparative structure-activity relationships among close-related analogues. Here, we present a comparative structural characterisation of selected peptides derived from the LALF obtained by single-amino-acid replacement, which differ in biological activity. The peptides were characterised in solution using nuclear magnetic resonance, circular dichroism and fluorescence spectroscopies. Membrane mimetic peptide interactions were studied using fluorescence resonance energy transfer with the aid of extrinsic fluorescent probes that allowed the identification of mixed peptide/lipid complexes. PMID:18383433

  4. Dopaminergic structure-activity relationships of 2-aminoindans and cardiovascular action and dopaminergic activity of 4-hydroxy, 5-methyl, 2-di-n-propylaminoindan (RD-211).

    PubMed

    Ma, S X; Long, J P; Flynn, J R; Leonard, P A; Cannon, J G

    1991-02-01

    Dopaminergic structure-activity relationships of 2-aminoindans were evaluated for their ability to inhibit responses to stimulation of cardioaccelerator nerves in cats. The major observations were as follows: 1) Unsubstituted di-n-propyl- and diethyl 2-aminoindan derivatives do not inhibit responses to stimulation of cardioaccelerator nerve, although previous studies identified stimulation of DA2-receptors. 2) 4-Hydroxy, 4,7-dimethoxy and 4-hydroxy, 5-CH3, -CH2OH or -H substitutions on selected indan derivatives produce dopaminergic activity in the cardioaccelerator nerve preparation. 3) 4-Hydroxy-2-di-n-propylaminoindan is stereoselective with the R-isomer being more potent than the S-isomer. One derivative, 4-hydroxy-5-methyl-di-n-propyl-2-aminoindan (RD-211) produced dose-dependent decreases in heart rate and mean arterial pressure. Larger doses also inhibited cardiac responses to stimulation of cardioaccelerator nerve in vivo and in isolated right atria of cats. All of the above responses were significantly inhibited by the dopamine-receptor antagonist sulpiride and not by the alpha 2-adrenoceptor antagonist yohimbine. RD-211 also possesses high affinity for 5-hydroxytryptamine1A receptors as revealed by radioligand binding studies. Results suggest that RD-211 stimulates dopamine DA2-receptors and may also activate 5-hydroxytryptamine1A receptors, but is inactive at alpha 2-adrenoceptors. RD-211 appears not to require metabolic activation even though it has the same chemical moiety as the aminotetralin homolog, which is a dopaminergic prodrug (5-hydroxy-6-methyl-2-di-n-propylaminotetralin). PMID:1671601

  5. Relationship between chemical structure and biological activity of alkali metal o-, m- and p-anisates. FT-IR and microbiological studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Lewandowski, W.

    2011-11-01

    In this work we investigated relationship between molecular structure of alkali metal o-, m-, p-anisate molecules and their antimicrobial activity. For this purpose FT-IR spectra for lithium, sodium, potassium, rubidium and caesium anisates in solid state and solution were recorded, assigned and analysed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. In order to evaluate the dependency between chemical structure and biological activity of alkali metal anisates the statistical analysis (multidimensional regression and principal component) was performed for selected wavenumbers from FT-IR spectra and parameters that describe microbial activity of anisates. The obtained statistical equations show the existence of correlation between molecular structure of anisates and their biological properties.

  6. Docking and quantitative structure-activity relationship studies for sulfonyl hydrazides as inhibitors of cytosolic human branched-chain amino acid aminotransferase.

    PubMed

    Caballero, Julio; Vergara-Jaque, Ariela; Fernndez, Michael; Coll, Deysma

    2009-11-01

    We have performed the docking of sulfonyl hydrazides complexed with cytosolic branched-chain amino acid aminotransferase (BCATc) to study the orientations and preferred active conformations of these inhibitors. The study was conducted on a selected set of 20 compounds with variation in structure and activity. In addition, the predicted inhibitor concentration (IC(50)) of the sulfonyl hydrazides as BCAT inhibitors were obtained by a quantitative structure-activity relationship (QSAR) method using three-dimensional (3D) vectors. We found that three-dimensional molecule representation of structures based on electron diffraction (3D-MoRSE) scheme contains the most relevant information related to the studied activity. The statistical parameters [cross-validate correlation coefficient (Q(2) = 0.796) and fitted correlation coefficient (R(2) = 0.899)] validated the quality of the 3D-MoRSE predictive model for 16 compounds. Additionally, this model adequately predicted four compounds that were not included in the training set. PMID:19350404

  7. STRUCTURE-GENOTOXIC ACTIVITY RELATIONSHIPS OF PESTICIDES: COMPARISON OF THE RESULTS FROM SEVERAL SHORT-TERM ASSAYS

    EPA Science Inventory

    The Computer-Automated Structure Evaluation (CASE) program has been applied to the analysis of the genotoxic activity of 54 pesticides (31 insecticides, 15 herbicides and 8 fungicides), in 5 different short-term test systems measuring point-gene mutation and DNA damage. The datab...

  8. Structure—activity relationships for insecticidal carbamates*

    PubMed Central

    Metcalf, Robert L.

    1971-01-01

    Carbamate insecticides are biologically active because of their structural complementarity to the active site of acetylcholinesterase (AChE) and their consequent action as substrates with very low turnover numbers. Carbamates behave as synthetic neurohormones that produce their toxic action by interrupting the normal action of AChE so that acetylcholine accumulates at synaptic junctions. The necessary properties for a suitable insecticidal carbamate are lipid solubility, suitable structural complementarity to AChE, and sufficient stability to multifunction-oxidase detoxification. The relationships between the structure and the