Science.gov

Sample records for structure-guided mutational analysis

  1. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase

    PubMed Central

    Bhan, Namita; Li, Lingyun; Cai, Chao; Xu, Peng; Linhardt, Robert J; Koffas, Mattheos A G

    2015-01-01

    A novel C17 resorcylic acid was synthesized by a structure-guided Vitis vinifera stilbene synthase (STS) mutant, in which threonine 197 was replaced with glycine (T197G). Altering the architecture of the coumaroyl binding and cyclization pocket of the enzyme led to the attachment of an extra acetyl unit, derived from malonyl-CoA, to p-coumaroyl-CoA. The resulting novel pentaketide can be produced strictly by STS-like enzymes and not by Chalcone synthase-like type III polyketide synthases; due to the unique thioesterase like activity of STS-like enzymes. We utilized a liquid chromatography mass spectrometry-based data analysis approach to directly compare the reaction products of the mutant and wild type STS. The findings suggest an easy to employ platform for precursor-directed biosynthesis and identification of unnatural polyketides by structure-guided mutation of STS-like enzymes. PMID:25402946

  2. Protein-structure-guided discovery of functional mutations across 19 cancer types.

    PubMed

    Niu, Beifang; Scott, Adam D; Sengupta, Sohini; Bailey, Matthew H; Batra, Prag; Ning, Jie; Wyczalkowski, Matthew A; Liang, Wen-Wei; Zhang, Qunyuan; McLellan, Michael D; Sun, Sam Q; Tripathi, Piyush; Lou, Carolyn; Ye, Kai; Mashl, R Jay; Wallis, John; Wendl, Michael C; Chen, Feng; Ding, Li

    2016-08-01

    Local concentrations of mutations are well known in human cancers. However, their three-dimensional spatial relationships in the encoded protein have yet to be systematically explored. We developed a computational tool, HotSpot3D, to identify such spatial hotspots (clusters) and to interpret the potential function of variants within them. We applied HotSpot3D to >4,400 TCGA tumors across 19 cancer types, discovering >6,000 intra- and intermolecular clusters, some of which showed tumor and/or tissue specificity. In addition, we identified 369 rare mutations in genes including TP53, PTEN, VHL, EGFR, and FBXW7 and 99 medium-recurrence mutations in genes such as RUNX1, MTOR, CA3, PI3, and PTPN11, all mapping within clusters having potential functional implications. As a proof of concept, we validated our predictions in EGFR using high-throughput phosphorylation data and cell-line-based experimental evaluation. Finally, mutation-drug cluster and network analysis predicted over 800 promising candidates for druggable mutations, raising new possibilities for designing personalized treatments for patients carrying specific mutations. PMID:27294619

  3. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium.

    PubMed

    Martinelli, Luca; García-Morales, Luis; Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M

    2016-04-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  4. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium

    PubMed Central

    Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M.

    2016-01-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  5. Structure-guided redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation.

    PubMed

    Gutierrez, Mariana; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2011-05-28

    Structure-guided re-design of the acceptor binding site of D-fructose-6-phosphate aldolase from E. coli leads to the construction of FSA A129S/A165G double mutant with an activity between 5- to >900-fold higher than that of wild-type towards N-Cbz-aminoaldehyde derivatives. PMID:21499643

  6. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. PMID:11180592

  7. Hemophilia B: Molecular Pathogenesis and Mutation Analysis

    PubMed Central

    Goodeve, Anne C.

    2015-01-01

    Summary Hemophilia B is an X-chromosome-linked inherited bleeding disorder primarily affecting males, while those carrier females having reduced factor IX:C levels may also experience some bleeding issues. Genetic analysis has been undertaken for hemophilia B since the mid-1980s, both through linkage analysis to track inheritance of an affected allele and to enable determination of the familial mutation. Mutation analysis using PCR and Sanger sequencing along with dosage analysis for detection of large deletions/duplications enables mutation detection in more than 97% of hemophila B patients. Risk of inhibitory antibodies, reported in ~2% of hemophilia B patients can be predicted, especially in patients with large deletions and these individuals are also at risk of anaphylaxis, and nephrotic syndrome if they receive immune tolerance induction. Inhibitors also occur in patients with nonsense mutations, occasionally with small insertions/deletions, splice mutations and rarely with missense mutations (p.Gln237Lys and p.Gln241His). Hemophilia B results from several different mechanisms and those associated with hemophilia B Leyden, ribosome readthrough of nonsense mutations and apparently "silent" changes that do not alter amino acid coding are explored. Large databases of genetic variants in healthy individuals and patients with a range of disorders including hemophilia B are yielding useful information on sequence variant frequency to help establish possible variant pathogenicity whilst a growing range of algorithms is available to help predict pathogenicity for previously unreported variants. PMID:25851415

  8. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  9. Analysis of SDHD promoter mutations in various types of melanoma

    PubMed Central

    Scholz, Simone L.; Horn, Susanne; Murali, Rajmohan; Möller, Inga; Sucker, Antje; Sondermann, Wiebke; Stiller, Mathias; Schilling, Bastian; Livingstone, Elisabeth; Zimmer, Lisa; Reis, Henning; Metz, Claudia H.; Zeschnigk, Michael; Paschen, Annette; Steuhl, Klaus-Peter; Schadendorf, Dirk; Westekemper, Henrike; Griewank, Klaus G.

    2015-01-01

    Objectives Recently, recurrent mutations in regulatory DNA regions, such as promoter mutations in the TERT gene were identified in melanoma. Subsequently, Weinhold et al. reported SDHD promoter mutations occurring in 10% of melanomas and being associated with a lower overall survival rate. Our study analyzes the mutation rate and clinico-pathologic associations of SDHD promoter mutations in a large cohort of different melanoma subtypes. Methods 451 melanoma samples (incl. 223 non-acral cutaneous, 38 acral, 33 mucosal, 43 occult, 43 conjunctival and 51 uveal melanoma) were analyzed for the presence of SDHD promoter mutations by Sanger-sequencing. Statistical analysis was performed to screen for potential correlations of SDHD promoter mutation status with various clinico-pathologic criteria. Results The SDHD promoter was successfully sequenced in 451 tumor samples. ETS binding site changing SDHD promoter mutations were identified in 16 (4%) samples, of which 5 mutations had not been described previously. Additionally, 5 point mutations not located in ETS binding elements were identified. Mutations in UV-exposed tumors were frequently C>T. One germline C>A SDHD promoter mutation was identified. No statistically significant associations between SDHD promoter mutation status and various clinico-pathologic variables or overall patient survival were observed. Conclusions Melanomas harbor recurrent SDHD promoter mutations, which occur primarily as C>T alterations in UV-exposed melanomas. In contrast to the initial report and promoter mutations in the TERT gene, our analysis suggests that SDHD promoter mutations are a relatively rare event in melanoma (4% of tumors) of unclear clinical and prognostic relevance. PMID:26327518

  10. Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations.

    PubMed

    Yaoita, Masako; Niihori, Tetsuya; Mizuno, Seiji; Okamoto, Nobuhiko; Hayashi, Shion; Watanabe, Atsushi; Yokozawa, Masato; Suzumura, Hiroshi; Nakahara, Akihiko; Nakano, Yusuke; Hokosaki, Tatsunori; Ohmori, Ayumi; Sawada, Hirofumi; Migita, Ohsuke; Mima, Aya; Lapunzina, Pablo; Santos-Simarro, Fernando; García-Miñaúr, Sixto; Ogata, Tsutomu; Kawame, Hiroshi; Kurosawa, Kenji; Ohashi, Hirofumi; Inoue, Shin-Ichi; Matsubara, Yoichi; Kure, Shigeo; Aoki, Yoko

    2016-02-01

    RASopathies are autosomal dominant disorders caused by mutations in more than 10 known genes that regulate the RAS/MAPK pathway. Noonan syndrome (NS) is a RASopathy characterized by a distinctive facial appearance, musculoskeletal abnormalities, and congenital heart defects. We have recently identified mutations in RIT1 in patients with NS. To delineate the clinical manifestations in RIT1 mutation-positive patients, we further performed a RIT1 analysis in RASopathy patients and identified 7 RIT1 mutations, including two novel mutations, p.A77S and p.A77T, in 14 of 186 patients. Perinatal abnormalities, including nuchal translucency, fetal hydrops, pleural effusion, or chylothorax and congenital heart defects, are observed in all RIT1 mutation-positive patients. Luciferase assays in NIH 3T3 cells demonstrated that the newly identified RIT1 mutants, including p.A77S and p.A77T, and the previously identified p.F82V, p.T83P, p.Y89H, and p.M90I, enhanced Elk1 transactivation. Genotype-phenotype correlation analyses of previously reported NS patients harboring RIT1, PTPN11, SOS1, RAF1, and KRAS revealed that hypertrophic cardiomyopathy (56 %) was more frequent in patients harboring a RIT1 mutation than in patients harboring PTPN11 (9 %) and SOS1 mutations (10 %). The rates of hypertrophic cardiomyopathy were similar between patients harboring RIT1 mutations and patients harboring RAF1 mutations (75 %). Short stature (52 %) was less prevalent in patients harboring RIT1 mutations than in patients harboring PTPN11 (71 %) and RAF1 (83 %) mutations. These results delineate the clinical manifestations of RIT1 mutation-positive NS patients: high frequencies of hypertrophic cardiomyopathy, atrial septal defects, and pulmonary stenosis; and lower frequencies of ptosis and short stature. PMID:26714497

  11. Gigaxonin mutation analysis in patients with NIFID.

    PubMed

    Dequen, Florence; Cairns, Nigel J; Bigio, Eileen H; Julien, Jean-Pierre

    2011-08-01

    Neuronal intermediate filament inclusion disease (NIFID) is a frontotemporal lobar degeneration (FTLD) characterized by frontotemporal dementia (FTD), pyramidal and extrapyramidal signs. The disease is histologically characterized by the presence of abnormal neuronal cytoplasmic inclusions (NCIs) which contain α-internexin and other neuronal intermediate filament (IF) proteins. Gigaxonin (GAN) is a cytoskeletal regulating protein and the genetic cause of giant axonal neuropathy. Since the immunoreactive profile of NCIs in NIFID is similar to that observed in brain sections from Gan(Δex1/Δex1) mice, we speculated that GAN could be a candidate gene causing NIFID. Therefore, we performed a mutation analysis of GAN in NIFID patients. Although the NCIs of NIFID and Gan(Δex1/Δex1) mice were immunohistochemically similar, no GAN variant was identified in DNA obtained from well-characterized cases of NIFID. PMID:19782434

  12. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  13. Mutational analysis of patients with neurofibromatosis 2

    SciTech Connect

    MacCollin, M.; Ramesh, V.; Pulaski, K.; Trofatter, J.A.; Short, M.P.; Bove, C.; Jacoby, L.B.; Louis, D.N.; Rubio, M.P.; Eldridge, R.

    1994-08-01

    Neurofibromatosis 2 (NF2) is a genetic disorder characterized by the development of multiple nervous-system tumors in young adulthood. The NF2 gene has recently been isolated and found to encode a new member, merlin, of the protein 4.1 family of cytoskeleton-associated proteins. To define the molecular basis of NF2 in affected individuals, the authors have used SSCP analysis to scan the exons of the NF2 gene from 33 unrelated patients with NF2. Twenty unique SSCP variants were seen in 21 patients; 10 of these individuals were known to be the only affected person in their kindred, while 7 had at least one other known affected relative. In all cases in which family members were available, the SSCP variant segregated with the disease; comparison of sporadic cases with their parents confirmed the de novo variants. DNA sequence analysis revealed that 19 of the 20 variants observed are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal RNA splicing. A single patient carried a 3-bp deletion removing a phenylalanine residue. The authors conclude that the majority of NF2 patients carry an inactivating mutation of the NF2 gene and that neutral polymorphism in the gene is rare. 18 refs., 3 figs., 2 tabs.

  14. Mutational Analysis of TARDBP in Neurodegenerative Diseases

    PubMed Central

    Ticozzi, Nicola; LeClerc, Ashley Lyn; Van-Blitterswijk, Marka; Keagle, Pamela; McKenna-Yasek, Diane M.; Sapp, Peter C.; Silani, Vincenzo; Wills, Anne-Marie; Brown, Robert H.; Landers, John E.

    2010-01-01

    Neurodegenerative diseases are often characterized by the presence of aggregates of misfolded proteins. TDP-43 is a major component of these aggregates in Amyotrophic Lateral Sclerosis (ALS), but has also been observed in Alzheimer's (AD) and Parkinson's Diseases (PD). In addition, mutations in the TARDBP gene, encoding TDP-43, have been found to be a significant cause of familial ALS (FALS). All mutations, except for one, have been found in exon 6. To confirm this observation in ALS and to investigate whether TARDBP may play a role in the pathogenesis of AD and PD, we screened for mutations in exon 6 of the TARDBP gene in three cohorts composed of 376 AD, 463 PD (18% familial PD) and 376 ALS patients (50% FALS). We found mutations in ∼7% of FALS and ∼0.5% of sporadic ALS (SALS) patients, including two novel mutations, p.N352T and p.G384R. In contrast, we did not find TARDBP mutations in our cohort of AD and PD patients. These results suggest that mutations in TARDBP are not a significant cause of AD and PD. PMID:20031275

  15. Mutation Analysis in Chinese Patients with Cornelia de Lange Syndrome

    PubMed Central

    Zhong, Qiulian; Liang, Desheng; Liu, Jing; Xue, Jinjie

    2012-01-01

    Aims: Cornelia de Lange syndrome (CdLS) is a dominant multisystem developmental disorder and related to mutations of the NIPBL, SMC1A, and SMC3 genes. So far, there has been no report of a mutation analysis in Chinese patients with CdLS, while 12 cases have been clinically described. In the present study, we tried to search for pathogenic mutations of the NIPBL, SMC1A, and SMC3 genes in four patients with CdLS from four unrelated Chinese families. Results: The mutational analysis of the NIPBL, SMC1A, and SMC3 genes by direct sequencing revealed a heterozygous splice-site mutation c.4321G>T(p.V1441L) at exon 20 of NIPBL in proband 2 and a novel heterozygous splice-site mutation c.6589+5G>C at intron 38 of NIPBL in proband 3, which was showed by reverse transcription polymerase chain reaction to generate both the full-length and an alternatively spliced transcript with an exon 38 deletion. Conclusions: This is the first report of the mutation analysis of NIPBL in China and our findings both expand the mutation spectrum of NIPBL and provide data for further understanding of the diverse and variable effects of NIPBL mutations. PMID:22857006

  16. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience

    PubMed Central

    Dias-Santagata, Dora; Wistuba, Ignacio I.; Chen, Heidi; Fujimoto, Junya; Kugler, Kelly; Franklin, Wilbur A.; Iafrate, A. John; Ladanyi, Marc; Kris, Mark G.; Johnson, Bruce E.; Bunn, Paul A.; Minna, John D.; Kwiatkowski, David J.

    2015-01-01

    Introduction Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented. Methods Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions. Results 1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET. Conclusion Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations. PMID:25738220

  17. Structure-guided Mutational Analysis of Gene Regulation by the Bacillus subtilis pbuE Adenine-responsive Riboswitch in a Cellular Context*

    PubMed Central

    Marcano-Velázquez, Joan G.; Batey, Robert T.

    2015-01-01

    Riboswitches are a broadly distributed form of RNA-based gene regulation in Bacteria and, more rarely, Archaea and Eukarya. Most often found in the 5′-leader sequence of bacterial mRNAs, they are generally composed of two functional domains: a receptor (aptamer) domain that binds an effector molecule and a regulatory domain (or expression platform) that instructs the expression machinery. One of the most studied riboswitches is the Bacillus subtilis adenine-responsive pbuE riboswitch, which regulates gene expression at the transcriptional level, up-regulating expression in response to increased intracellular effector concentrations. In this work, we analyzed sequence and structural elements that contribute to efficient ligand-dependent regulatory activity in a co-transcriptional and cellular context. Unexpectedly, we found that the P1 helix, which acts as the antitermination element of the switch in this RNA, supported ligand-dependent activation of a reporter gene over a broad spectrum of lengths from 3 to 10 bp. This same trend was also observed using a minimal in vitro single-turnover transcription assay, revealing that this behavior is intrinsic to the RNA sequence. We also found that the sequences at the distal tip of the terminator not directly involved in alternative secondary structure formation are highly important for efficient regulation. These data strongly support a model in which the switch is highly localized to the P1 helix adjacent to the ligand-binding pocket that likely presents a local kinetic block to invasion of the aptamer by the terminator. PMID:25550163

  18. Identification and functional analysis of novel THAP1 mutations.

    PubMed

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-02-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n = 461), segmental (n = 68), or generalized dystonia (n = 38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  19. Identification and functional analysis of novel THAP1 mutations

    PubMed Central

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-01-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n=461), segmental (n=68), or generalized dystonia (n=38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  20. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  1. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  2. Mutational Analysis of Merkel Cell Carcinoma

    PubMed Central

    Erstad, Derek J.; Cusack, James C.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge. PMID:25329450

  3. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers

    PubMed Central

    Xiang, Libing; Li, Jiajia; Jiang, Wei; Shen, Xuxia; Yang, Wentao; Wu, Xiaohua; Yang, Huijuan

    2015-01-01

    Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy. PMID:25669975

  4. IDH Mutation Analysis in Ewing Sarcoma Family Tumors

    PubMed Central

    Na, Ki Yong; Noh, Byeong-Joo; Sung, Ji-Youn; Kim, Youn Wha; Santini Araujo, Eduardo; Park, Yong-Koo

    2015-01-01

    Background: Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG) with production of reduced nicotinamide adenine dinucleotide (NADH). Dysfunctional IDH leads to reduced production of α-KG and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis. Methods: This study investigated IDH mutations in 61 Ewing sarcoma family tumors (ESFTs), using a pentose nucleic acid clamping method and direct sequencing. Results: We identified four cases of ESFTs harboring IDH mutations. The number of IDH1 and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results. Conclusions: This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs. PMID:26018518

  5. RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection

    PubMed Central

    Radenbaugh, Amie J.; Ma, Singer; Ewing, Adam; Stuart, Joshua M.; Collisson, Eric A.; Zhu, Jingchun; Haussler, David

    2014-01-01

    The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual’s DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA. PMID:25405470

  6. RADIA: RNA and DNA integrated analysis for somatic mutation detection.

    PubMed

    Radenbaugh, Amie J; Ma, Singer; Ewing, Adam; Stuart, Joshua M; Collisson, Eric A; Zhu, Jingchun; Haussler, David

    2014-01-01

    The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA. PMID:25405470

  7. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis

    PubMed Central

    Gu, Huiqiong; Yoshinari, Shigeo; Ghosh, Raka; Ignatochkina, Anna V.; Gollnick, Paul D.; Murakami, Katsuhiko S.; Ho, C. Kiong

    2016-01-01

    An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex. PMID:26896806

  8. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  9. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  10. FRAXE mutation analysis in three Spanish families

    SciTech Connect

    Carbonell, P.; Lopez, I.; Gabarron, J.

    1996-08-09

    Very little is known about the phenotype of FRAXE-positive individuals and the relation between the genotype/phenotype and genotype/cytogenetic expression. We describe three families with normal and mildly affected individuals and a severely retarded male expressing fragility at the FRAXE locus or presenting different expansions at the CGG FRAXE triplet. In addition, we analyze the FRAXE mutation in sperm DNA from a retarded male carrier with a handicapped daughter expressing fragility at the FRAXE locus. Mental status in FRAXE individuals is highly variable and, although mild mental retardation is observed in most cases, several carrier males are apparently normal. It seems that methylation is not as strictly associated with size of CGG triplets in the FRAXE locus as in FRAXA, and it is possible that normal carrier individuals with fully methylated increments in lymphocytes have a certain proportion of unmethylated alleles in the critical (i.e., neural) tissues. FRAXE mutation is apparently similar to FRAXA in that males with somatic large methylated increments are carriers of small unmethylated ones in germinal cells. 12 refs., 2 figs., 1 tab.

  11. Structure-guided sequence specificity engineering of the modification-dependent restriction endonuclease LpnPI

    PubMed Central

    Sasnauskas, Giedrius; Zagorskaitė, Evelina; Kauneckaitė, Kotryna; Tamulaitiene, Giedre; Siksnys, Virginijus

    2015-01-01

    The eukaryotic Set and Ring Associated (SRA) domains and structurally similar DNA recognition domains of prokaryotic cytosine modification-dependent restriction endonucleases recognize methylated, hydroxymethylated or glucosylated cytosine in various sequence contexts. Here, we report the apo-structure of the N-terminal SRA-like domain of the cytosine modification-dependent restriction enzyme LpnPI that recognizes modified cytosine in the 5′-C(mC)DG-3′ target sequence (where mC is 5-methylcytosine or 5-hydroxymethylcytosine and D = A/T/G). Structure-guided mutational analysis revealed LpnPI residues involved in base-specific interactions and demonstrated binding site plasticity that allowed limited target sequence degeneracy. Furthermore, modular exchange of the LpnPI specificity loops by structural equivalents of related enzymes AspBHI and SgrTI altered sequence specificity of LpnPI. Taken together, our results pave the way for specificity engineering of the cytosine modification-dependent restriction enzymes. PMID:26001968

  12. Analysis of 16 cystic fibrosis mutations in Mexican patients

    SciTech Connect

    Villalobos-Torres, C.; Rojas-Martinez, A.; Barrera-Saldana, H.A.

    1997-04-14

    We carried out molecular analysis of 80 chromosomes from 40 unrelated Mexican patients with a diagnosis of cystic fibrosis. The study was performed in two PCR steps: a preliminary one to identify mutation AF508, the most frequent cause of cystic fibrosis worldwide, and the second a reverse dot-blot with allele-specific oligonucleotide probes to detect 15 additional common mutations in the Caucasian population. A frequency of 45% for AF508 was found, making it the most common in our sample of Mexican patients. Another five mutations (G542X, 3849 + 10 kb C{r_arrow}T, N1303K, S549N, and 621 + 1 G{r_arrow}T) were detected, and these accounted for 11.25%. The remaining mutations (43.75%) were undetectable with the methodology used. 20 refs., 2 tabs.

  13. Molecular analysis of mutations in the human HPRT gene.

    PubMed

    Keohavong, Phouthone; Xi, Liqiang; Grant, Stephen G

    2014-01-01

    The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene. PMID:24623237

  14. Genetic Analysis of thr Mutations in Salmonella typhimurium

    PubMed Central

    Stuttard, Colin

    1973-01-01

    Previous workers divided threonine-requiring (Thr−) strains of Salmonella into three phenotypes with mutations in four complementation groups. The mutations were deemed to define four genes in the order thrD-C-A-B at minute zero on the Salmonella linkage map. In the present study 12 of these mutants were reexamined together with eight new Thr− strains. The three phenotypes were: homoserine-requiring (Hom−); Thr−, feeders of Hom− strains; Thr−, nonfeeders. Exact correlation between these phenotypic groups and three complementation groups was confirmed by abortive transduction. No evidence was found for intergenic complementation between mutations in Hom− strains. It is proposed that thr mutations define three genes rather than four and that these be renamed thrA (Hom−), thrB (Thr− feeders), and thrC (Thr− nonfeeders) to correspond with the sequence of reactions in threonine biosynthesis. Double mutant trpRthr strains were used in reciprocal three-point transduction tests to establish the order of thr mutation sites. Although revisions were made in the classification or location of several mutations, there was an overall correlation of complementation group, phenotype, and map position. The present data provide a basis for further correlation of threonine genes and biosynthetic enzymes, and analysis of cross regulation in aspartate amino acid biosynthesis in Salmonella. PMID:4583208

  15. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

    PubMed Central

    Newton, C R; Graham, A; Heptinstall, L E; Powell, S J; Summers, C; Kalsheker, N; Smith, J C; Markham, A F

    1989-01-01

    We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products. Images PMID:2785681

  16. Atypical distal renal tubular acidosis confirmed by mutation analysis.

    PubMed

    Weber, S; Soergel, M; Jeck, N; Konrad, M

    2000-12-01

    In autosomal dominant distal renal tubular acidosis type I (dRTA) impaired hydrogen ion secretion is associated with metabolic acidosis, hyperchloremic hypokalemia, hypercalciuria, nephrocalcinosis, and/or nephrolithiasis. A retardation of growth is commonly observed. In this report we present a family with autosomal dominant dRTA with an atypical and discordant clinical picture. The father presented with severe nephrocalcinosis, nephrolithiasis, and isosthenuria but metabolic acidosis was absent. His 6-year-old daughter, however, suffered from metabolic acidosis, hypokalemia, and hypercalciuria. In addition, sonography revealed multiple bilateral renal cysts but no nephrocalcinosis. Mutation analysis of the AE1 gene coding for the renal Cl-/HCO3(-)-exchanger AE1 displayed a heterozygous Arg589Cys exchange in both patients but not in the healthy family members. This point mutation is frequently associated with autosomal dominant dRTA. Diagnosis of autosomal dominant dRTA is supported in this family by results of AE1 mutation analysis. PMID:11149111

  17. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype. PMID:27065015

  18. Linkage and mutation analysis of Thomsen and Becker myotonia families

    SciTech Connect

    Koty, P.P.; Pegoraro, E.; Hoffman, E.P.

    1994-09-01

    Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.

  19. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  20. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  1. Mutation analysis in patients with Wilson disease: identification of 4 novel mutations. Mutation in brief no. 250. Online.

    PubMed

    Haas, R; Gutierrez-Rivero, B; Knoche, J; Böker, K; Manns, M P; Schmidt, H H

    1999-01-01

    In order to obtain novel mutations in the recently discovered Wilson disease gene, we screened 5 unrelated German individuals for mutations in the 21 exons and their flanking intronic sequences. We detected 9 mutations affecting the Wilson disease gene. Four of those, designated 802-808delTGTAAGT, 2008-2013delTATATG, Cys985Thr, and Ile1148Thr have not yet been reported. One patient had a homozygous mutation whereas the remaining four subjects were compound heterozygous. Therefore these data confirm, that mutations causing Wilson disease are frequently found in affected subjects and they are very heterogenous. PMID:10447265

  2. Biomedical Mutation Analysis (BMA): A software tool for analyzing mutations associated with antiviral resistance

    PubMed Central

    Salvatierra, Karina; Florez, Hector

    2016-01-01

    Introduction: Hepatitis C virus (HCV) is considered a major public health problem, with 200 million people infected worldwide. The treatment for HCV chronic infection with pegylated interferon alpha plus ribavirin inhibitors is unspecific; consequently, the treatment is effective in only 50% of patients infected. This has prompted the development of direct-acting antivirals (DAA) that target virus proteins. These DAA have demonstrated a potent effect in vitro and in vivo; however, virus mutations associated with the development of resistance have been described. Objective: To design and develop an online information system for detecting mutations in amino acids known to be implicated in resistance to DAA. Materials and methods:    We have used computer applications, technological tools, standard languages, infrastructure systems and algorithms, to analyze positions associated with resistance to DAA for the NS3, NS5A, and NS5B genes of HCV. Results: We have designed and developed an online information system named Biomedical Mutation Analysis (BMA), which allows users to calculate changes in nucleotide and amino acid sequences for each selected sequence from conventional Sanger and cloning sequencing using a graphical interface. Conclusion: BMA quickly, easily and effectively analyzes mutations, including complete documentation and examples. Furthermore, the development of different visualization techniques allows proper interpretation and understanding of the results. The data obtained using BMA will be useful for the assessment and surveillance of HCV resistance to new antivirals, and for the treatment regimens by selecting those DAA to which the virus is not resistant, avoiding unnecessary treatment failures. The software is available at: http://bma.itiud.org. PMID:27547378

  3. Genetic Analysis of 63 Mutations Affecting Maize Kernel Development Isolated from Mutator Stocks

    PubMed Central

    Scanlon, M. J.; Stinard, P. S.; James, M. G.; Myers, A. M.; Robertson, D. S.

    1994-01-01

    Sixty-three mutations affecting development of the maize kernel were isolated from active Robertson's Mutator (Mu) stocks. At least 14 previously undescribed maize gene loci were defined by mutations in this collection. Genetic mapping located 53 of these defective kernel (dek) mutations to particular chromosome arms, and more precise map determinations were made for 21 of the mutations. Genetic analyses identified 20 instances of allelism between one of the novel mutations and a previously described dek mutation, or between new dek mutations identified in this study; phenotypic variability was observed in three of the allelic series. Viability testing of homozygous mutant kernels identified numerous dek mutations with various pleiotropic effects on seedling and plant development. The mutations described here presumably arose by insertion of a Mu transposon within a dek gene; thus, many of the affected loci are expected to be accessible to molecular cloning via transposon-tagging. PMID:8138165

  4. Netherton syndrome: mutation analysis of two Taiwanese families.

    PubMed

    Lin, Shuan-Pei; Huang, Shu-Yi; Tu, Mei-Eng; Wu, Yu-Hung; Lin, Cheng-Yueh; Lin, Hsiang-Yu; Lee-Chen, Guey-Jen

    2007-06-01

    Netherton syndrome (NS) is a severe autosomal recessive skin disorder characterized by congenital ichthyosiform erythroderma, hair shaft abnormalities, and atopic diathesis. Recently, pathogenic mutations were identified in serine protease inhibitor Kazal-type 5 (SPINK5), the gene that encodes lympho-epithelial Kazal-type related inhibitor (LEKTI), a type of serine protease inhibitor involved in the regulation of skin barrier formation and immunity. In the present report, we describe the mutation analysis of two Taiwanese patients with NS. Patient 1 has heterozygous mutations; the maternal allele has novel T808I (C-T transition in codon 808) and the paternal allele has recurrent R790X (C-T transition in codon 790). Patient 2 is homozygous for a novel polymorphism R267Q (G-A transition in codon 267). The change was not detected in the patient's father. Haplotype analysis revealed that the patient was homozygous for the 5 single nucleotide polymorphisms in the genomic sequence of SPINK5 as well as the flanking (GT)(17) and D5S413, in addition to the discrepancy of R267Q. Nevertheless real-time quantitative PCR analysis revealed no microdeletion in the genomic sequence of SPINK5. Thus uniparental disomy of maternal SPINK5 allele was indicated. PMID:17415575

  5. Efficient production of enantiomerically pure D-phenyllactate from phenylpyruvate by structure-guided design of an engineered D-lactate dehydrogenase.

    PubMed

    Wang, Min; Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Yin, Ruochun; Yu, Bo

    2016-09-01

    3-Phenyllactic acid (PLA) is an antimicrobial compound with broad-spectrum activity against bacteria and fungi that could be widely used in the food industry and livestock feeds. Notably, D-PLA exhibits higher antibacterial activity, which gains more attention than L-PLA. In this report, the D-lactate dehydrogenase DLDH744 from Sporolactobacillus inulinus CASD was engineered to increase the enzymatic activities toward phenylpyruvate by protein structure-guided modeling analysis. The phenylpyruvate molecule was first docked in the active center of DLDH744. The residues that might tightly pack around the benzene ring of phenylpyruvate were all selected for mutation. The single site mutant M307L showed the highest increased activity toward bulkier substrate phenylpyruvate than the wild type. By using the engineered D-lactate dehydrogenase M307L expressed in Escherichia coli strains, without coexpression of the cofactor regeneration system, 21.43 g/L D-PLA was produced from phenylpyruvate with a productivity of 1.58 g/L/h in the fed-batch biotransformation process, which ranked in the list as the highest production titer of D-PLA by D-lactate dehydrogenase. The enantiomeric excess value of produced D-PLA in the broth was higher than 99.7 %. Additionally, the structure-guided design of this enzyme will also provide referential information for further engineering other 2-hydroxyacid dehydrogenases, which are useful for a wide range of fine chemical synthesis. PMID:27020295

  6. Mutation analysis in primary immunodeficiency diseases: case studies

    PubMed Central

    Hsu, Amy P.; Fleisher, Thomas A.; Niemela, Julie E.

    2009-01-01

    Purpose of review The application of mutation analysis is becoming an integral part of the complete evaluation of patients with primary immunodeficiencies, and as such, clinicians caring for these patients must develop a better understanding of the utility and challenges of this important laboratory technology. Recent findings Genomic DNA sequencing is currently the standard approach used to characterize a possible gene mutation causing a specific primary immunodeficiency. There are clinical situations in which this approach is revealing of a genetic defect and other circumstances in which this generates a false-positive or false-negative result. One case study is presented that reviews a straightforward analysis that clarifies the genetic basis of a primary immunodeficiency, and four cases are presented that required additional studies to clarify the underlying basis of the immunodeficiency. In the latter circumstances, the rationale for additional studies is outlined and the outcome of these is presented. Summary The identification of a gene mutation as the underlying basis of a primary immunodeficiency begins with the evaluation of the clinical presentation focusing on the infection history so as to develop a differential diagnosis including potential genetic causes. The next step is to obtain specific laboratory studies, including immunologic function evaluation, and, based on these findings, to proceed with DNA sequencing of one or several selected candidate genes. Genomic DNA sequencing has certain limitations, and alternative follow-up approaches may be necessary to establish the molecular basis of the primary immunodeficiency in a given patient. PMID:19841577

  7. Somatic DNA mutation analysis in targeted therapy of solid tumours

    PubMed Central

    O’Toole, Sandra A.; Trent, Ronald J.

    2015-01-01

    Cancer is a disease of the genome with diverse aetiologies including the accumulation of acquired mutations throughout the genome. There has been a flood of knowledge improving our understanding of the biology and molecular genetics of melanoma, lung and colorectal cancer since the genomics era started. Translation of this knowledge into a better understanding of cell proliferation, survival and apoptosis has produced a paradigm shift in medical oncology enabling gene-based cancer treatment (called personalised or precision medicine). Somatic mutation analysis is crucial for a genomics approach since it can identify driver mutations—the “Achilles’ heel” of cancer, and support clinical decision-making through targeted therapy. Nevertheless, the applications of somatic DNA testing in cancer face many challenges such as obtaining comprehensive coverage of the cancer genome with limited DNA being available, and delivering an accurate report in a timely fashion without false-negative and false-positive results. Further advances in DNA technologies and bioinformatics will overcome these issues and maximise opportunities for targeted therapy. Somatic mutation analysis will then become an integral part of cancer management for all malignancies. PMID:26835368

  8. High-Throughput Mutational Analysis of a Twister Ribozyme.

    PubMed

    Kobori, Shungo; Yokobayashi, Yohei

    2016-08-22

    Recent discoveries of new classes of self-cleaving ribozymes in diverse organisms have triggered renewed interest in the chemistry and biology of ribozymes. Functional analysis and engineering of ribozymes often involve performing biochemical assays on multiple ribozyme mutants. However, because each ribozyme mutant must be individually prepared and assayed, the number and variety of mutants that can be studied are severely limited. All of the single and double mutants of a twister ribozyme (a total of 10 296 mutants) were generated and assayed for their self-cleaving activity by exploiting deep sequencing to count the numbers of cleaved and uncleaved sequences for every mutant. Interestingly, we found that the ribozyme is highly robust against mutations such that 71 % and 30 % of all single and double mutants, respectively, retain detectable activity under the assay conditions. It was also observed that the structural elements that comprise the ribozyme exhibit distinct sensitivity to mutations. PMID:27461281

  9. Mutational Analysis of the Cyanobacterial Nitrogen Regulator PipX

    PubMed Central

    Laichoubi, Karim Boumediene; Espinosa, Javier; Castells, Miguel Angel; Contreras, Asunción

    2012-01-01

    PipX provides a functional link between the cyanobacterial global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as integrators of signals of the nitrogen and carbon balance. PipX, which is toxic in the absence of PII, can form alternative complexes with NtcA and PII and these interactions are respectively stimulated and inhibited by 2-oxoglutarate, providing a mechanism by which PII can modulate expression at the NtcA regulon. Structural information on PipX-NtcA complexes suggests that PipX coactivates NtcA controlled genes by stabilizing the active conformation of NtcA bound to 2-oxoglutarate and by possibly helping recruit RNA polymerase. To get insights into PipX functions, we perform here a mutational analysis of pipX informed by the structures of PipX-PII and PipX-NtcA complexes and evaluate the impact of point mutations on toxicity and gene expression. Two amino acid substitutions (Y32A and E4A) were of particular interest, since they increased PipX toxicity and activated NtcA dependent genes in vivo at lower 2-oxoglutarate levels than wild type PipX. While both mutations impaired complex formation with PII, only Y32A had a negative impact on PipX-NtcA interactions. PMID:22558239

  10. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  11. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  12. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers

    PubMed Central

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis. PMID:27625789

  13. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers.

    PubMed

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis. PMID:27625789

  14. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1.

    PubMed

    Rajendran, Vidya

    2016-06-21

    Arginine to histidine mutation at position 132 (R132H) in isocitrate dehydrogenase 1 (IDH1) led to reduced affinity of the respective enzymes for isocitrate and increased affinity for α-ketoglutarate (AKG) and NADPH. This phenomenon retarded oxidative decarboxylation of isocitrate to AKG and conferred a novel enzymatic activity that facilitated the reduction of AKG to d-2-hydroxyglutarate (d-2HG). The loss of isocitrate utilization and gain of 2HG production from IDH1 R132H had been taken up as a fundamental problem and to solve this, structural biology approaches were adopted. Interaction analysis was carried out to investigate the IDH1 substrate binding environment. The altered behaviour of mutant and native IDH1 in interaction analysis was explored by performing long-term molecular dynamics simulations (∼300 ns). This study reports a comprehensive atomic behaviour of the gain-of-function mutation (R132H) in the IDH1 enzyme which in turn provides a direction towards new therapeutics. PMID:27194485

  15. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.

    PubMed

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-04-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering. PMID:25833378

  16. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering

    PubMed Central

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-01-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering. PMID:25833378

  17. Functional classification and mutation analysis of a synpolydactyly kindred.

    PubMed

    Zhou, Jianda; Chen, Yao; Cao, Ke; Zou, Yonghua; Zhou, Haiyan; Hu, Feng; Ni, Bin; Chen, Yong

    2014-11-01

    The aim of the present study was to analyze a congenital syndactyly/polydactyly kindred and propose a new functional classification method of clinical significance. The modes of inheritance and mutational mechanisms were also determined using genetic analyses. Hand and foot anatomy and functions were measured using photographic images, X-ray imaging and grip ability tests. Genetic analysis comprised the genotyping of polymorphic microsatellite markers at known polydactyly-associated loci and the sequencing of the candidate gene. A functional classification system was devised to divide the clinical features into three types, which included mild, moderate or severe deformity. The family was concluded to have syndactyly type II with autosomal dominant inheritance. The microsatellites, D2S2310 and D2S2314, at the 2q31-32 chromosome, which have previously been associated with synpolydactyly type I, were found to be associated with the disorder in the current family. A 27-bp insertion mutation was identified in the affected individuals in the HOXD13 gene at this locus. The insertion added a further nine alanine residues to the polyalanine stretch within the encoded protein. In conclusion, the functional classification method described in the present study may be used to guide surgical approaches to treatment. A family was identified in whom expansion of the polyalanine tract in the HOXD13 gene causes autosomal dominant hereditary synpolydactyly. PMID:25289061

  18. Functional diversity and mutational analysis of Agrobacterium 6B oncoproteins.

    PubMed

    Helfer, A; Pien, S; Otten, L

    2002-07-01

    Many Agrobacterium T-DNA genes belong to a diverse family of T-DNA genes, the rolB family. These genes cause various growth abnormalities but their modes of action remain largely unknown. So far, none of the RolB-like proteins has been subjected to mutational analysis. The RolB-like oncoprotein 6B, which induces tumours on species such as Nicotiana glauca and Kalanchoe tubiflora, was chosen to investigate the role of the most conserved amino acid residues within the RolB family. We first determined which of the natural 6B variants had the strongest oncogenic activity; to this end, six 6b coding sequences (A- 6b, AB- 6b, C- 6b, CG- 6b, S- 6b and T- 6b) were placed under the control of the strong constitutive 2x35S promoter and compared for tumour induction on N. glauca, N. tabacum and K. daigremontiana. Oncogenicity increased in the order C- 6b/CG- 6b, A- 6b/AB- 6b, and S- 6b/T- 6b. The most conserved amino acid residues in the strongly oncogenic T-6B protein were mutated and shown to be required for oncogenicity and accumulation of the T-6B protein in planta but not in bacteria. Hybrids between T-6B and the weakly oncogenic A-6B protein revealed an additional oncogenic determinant required for the formation of large tumours. PMID:12172796

  19. Progranulin mutation analysis: Identification of one novel mutation in exon 12 associated with frontotemporal dementia.

    PubMed

    Aswathy, Peethambaran Mallika; Jairani, Pushparajan Sulajamani; Raghavan, Sheela Kumari; Verghese, Joe; Gopala, Srinivas; Srinivas, Priya; Mathuranath, Pavagada Sivasankara

    2016-03-01

    Progranulin (PGRN) mutations account for an average of 15% of familial frontotemporal dementia (FTD) cases and 20% of total FTD cases worldwide. Here, we investigated the frequency of PGRN mutations in FTD patients (n = 116) from a clinical cohort of south India and detected one novel mutation located on exon 12 in a familial behavioral variant FTD patient (accounting for ∼1% of total FTD cases and 6% of familial FTD cases). This mutation was found to introduce a premature termination codon and the prematurely terminated messenger RNA may probably undergo nonsense-mediated decay. In enzyme-linked immunosorbent assay, the proband showed significantly reduced level of plasma PGRN (28 ng/mL) compared with controls (150 ± 38 ng/mL), which implicates haploinsufficiency as the pathogenic mechanism. PMID:26724960

  20. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    PubMed

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. PMID:26321041

  1. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants

    PubMed Central

    Gundry, Michael; Vijg, Jan

    2011-01-01

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5,000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a

  2. Analysis of the Tyrosine Kinome in Melanoma Reveals Recurrent Mutations in ERBB4

    PubMed Central

    Prickett, Todd D.; Agrawal, Neena S.; Wei, Xiaomu; Yates, Kristin E.; Lin, Jimmy C.; Wunderlich, John; Cronin, Julia C.; Cruz, Pedro; Rosenberg, Steven A.; Samuels, Yardena

    2010-01-01

    Tyrosine phosphorylation is important in signaling pathways underlying tumorigenesis. A mutational analysis of the Protein Tyrosine Kinase (PTK) gene family in cutaneous metastatic melanoma identified 30 somatic mutations in the kinase domain of 19 PTKs. The whole of the coding region of these 19 PTKs was further evaluated for somatic mutations in a total of 79 melanoma samples. This analysis revealed novel ERBB4 mutations in 19% of melanoma patients and that an additional two kinases (FLT1 and PTK2B) are mutated in 10% of melanomas. Seven missense mutations in the most commonly altered PTK (ERBB4) were examined and found to increase kinase activity and transformation ability. Melanoma cells expressing mutant ERBB4 had reduced cell growth after shRNA–mediated knockdown of ERBB4 or treatment with the ERBB inhibitor lapatinib. These studies might lead to personalized therapeutics specifically targeting the kinases that are mutationally altered in individual melanomas. PMID:19718025

  3. Analysis of Dominant Mutations Affecting Muscle Excitation in Caenorhabditis Elegans

    PubMed Central

    Reiner, D. J.; Weinshenker, D.; Thomas, J. H.

    1995-01-01

    We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations. PMID:8582640

  4. PKU in Minas Gerais State, Brazil: mutation analysis.

    PubMed

    Santos, L L; Castro-Magalhães, M; Fonseca, C G; Starling, A L P; Januário, J N; Aguiar, M J B; Carvalho, M R S

    2008-11-01

    This work was undertaken in order to ascertain the PKU mutational spectrum in Minas Gerais, Brazil, the relative frequency of the mutations in the State and the origin of these mutations by haplotype determination. Minas Gerais is a trihybrid population formed by miscegenation from Europeans, Africans and Amerindians. All 13 exons of the PAH gene from 78 PKU patients were analyzed, including splicing sites and the promoter region. We identified 30 different mutations and 98% of the PAH alleles were established. A new mutation (Q267X) was identified as well. The most common mutations found were V388M (21.2), R261Q (16.0%), IVS10-11G>A (15.3%), I65T (5.8%), IVS2+5G>C (5.8%), R252W (5.1%), IVS2+5G>A (4.5%), P281L (3.8%) and L348V (3.2%). These nine mutations correspond to 80% of the PKU alleles in the state. Haplotypes were determined to characterize the origin of the PAH alleles. The majority of the mutations found, with respective haplotypes, are frequent in the Iberian Peninsula. However, there were some mutations that are rare in Europe and four previously unreported mutation-haplotype associations. I65T and Q267X were found in association with haplotype 38 and may be African in origin or the result of miscegenation in the Brazilian population. PMID:18798839

  5. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  6. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications. PMID:26477713

  7. Conversion Analysis for Mutation Detection in MLH1 and MSH2 in Patients With Colorectal Cancer

    PubMed Central

    Casey, Graham; Lindor, Noralane M.; Papadopoulos, Nickolas; Thibodeau, Stephen N.; Moskow, John; Steelman, Scott; Buzin, Carolyn H.; Sommer, Steve S.; Collins, Christine E.; Butz, Malinda; Aronson, Melyssa; Gallinger, Steven; Barker, Melissa A.; Young, Joanne P.; Jass, Jeremy R.; Hopper, John L.; Diep, Anh; Bapat, Bharati; Salem, Michael; Seminara, Daniela; Haile, Robert

    2010-01-01

    Context The accurate identification and interpretation of germline mutations in mismatch repair genes in colorectal cancer cases is critical for clinical management. Current data suggest that mismatch repair mutations are highly heterogeneous and that many mutations are not detected when conventional DNA sequencing alone is used. Objective To evaluate the potential of conversion analysis compared with DNA sequencing alone to detect heterogeneous germline mutations in MLH1, MSH2, and MSH6 in colorectal cancer patients. Design, Setting, and Participants Multicenter study with patients who participate in the Colon Cancer Family Registry. Mutation analyses were performed in participant samples determined to have a high probability of carrying mismatch repair germline mutations. Samples from a total of 64 hereditary nonpolyposis colorectal cancer cases, 8 hereditary nonpolyposis colorectal cancer–like cases, and 17 cases diagnosed prior to age 50 years were analyzed from June 2002 to June 2003. Main Outcome Measures Classification of family members as carriers or noncarriers of germline mutations in MLH1, MSH2, or MSH6; mutation data from conversion analysis compared with genomic DNA sequencing. Results Genomic DNA sequencing identified 28 likely deleterious exon mutations, 4 in-frame deletion mutations, 16 missense changes, and 22 putative splice site mutations. Conversion analysis identified all mutations detected by genomic DNA sequencing—plus an additional exon mutation, 12 large genomic deletions, and 1 exon duplication mutation—yielding an increase of 33% (14/42) in diagnostic yield of deleterious mutations. Conversion analysis also showed that 4 of 16 missense changes resulted in exon skipping in transcripts and that 17 of 22 putative splice site mutations affected splicing or mRNA transcript stability. Conversion analysis provided an increase of 56% (35/63) in the diagnostic yield of genetic testing compared with genomic DNA sequencing alone. Conclusions

  8. Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis.

    PubMed

    Smit, D L; Mensenkamp, A R; Badeloe, S; Breuning, M H; Simon, M E H; van Spaendonck, K Y; Aalfs, C M; Post, J G; Shanley, S; Krapels, I P C; Hoefsloot, L H; van Moorselaar, R J A; Starink, T M; Bayley, J-P; Frank, J; van Steensel, M A M; Menko, F H

    2011-01-01

    Heterozygous fumarate hydratase (FH) germline mutations cause hereditary leiomyomatosis and renal cell cancer (HLRCC), an autosomal dominant syndrome characterized by multiple cutaneous piloleiomyomas, uterine leiomyomas and papillary type 2 renal cancer. The main objective of our study was to evaluate clinical and genetic data from families suspected of HLRCC on a nationwide level. All families referred for FH mutation analysis in the Netherlands were assessed. We performed FH sequence analysis and multiplex ligation-dependent probe amplification. Families with similar FH mutations were examined for haplotype sharing. In 14 out of 33 families, we identified 11 different pathogenic FH germline mutations, including 4 novel mutations and 1 whole-gene deletion. Clinical data were available for 35 FH mutation carriers. Cutaneous leiomyomas were present in all FH mutation carriers older than 40 years of age. Eleven out of 21 female FH mutation carriers underwent surgical treatment for symptomatic uterine leiomyomas at an average of 35 years. Two FH mutation carriers had papillary type 2 renal cancer and Wilms' tumour, respectively. We evaluated the relevance of our findings for clinical practice and have proposed clinical diagnostic criteria, indications for FH mutation analysis and recommendations for management. PMID:20618355

  9. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    SciTech Connect

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R. )

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted.

  10. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    PubMed Central

    Zahary, Mohd Nizam; Kaur, Gurjeet; Abu Hassan, Muhammad Radzi; Singh, Harjinder; Naik, Venkatesh R; Ankathil, Ravindran

    2012-01-01

    AIM: To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations. METHODS: Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein. Germline mutation screening was carried out on peripheral blood samples. The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction, screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations. RESULTS: Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry, indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells, respectively. dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene. However, no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene, but we were able to identify MLH1 promoter polymorphism, -93G > A (rs1800734), in 21 out of 34 patients (61.8%). We identified one novel mutation, transversion mutation c.2005G > C, which resulted in a missense mutation (Gly669Arg), a transversion mutation in exon 1, c.142G > T, which resulted in a nonsense mutation (Glu48Stop) and splice-site mutation, c.2006-6T > C, which was adjacent to exon 13 of MSH2 gene. CONCLUSION: Germline mutations were identified in four Malaysian Lynch syndrome patients. Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes. PMID:22371642

  11. Analysis of mutation of the c-Kit gene and PDGFRA in gastrointestinal stromal tumors

    PubMed Central

    XU, CHUN-WEI; LIN, SHAN; WANG, WU-LONG; GAO, WEN-BIN; LV, JIN-YAN; GAO, JING-SHAN; ZHANG, LI-YING; LI, YANG; WANG, LIN; ZHANG, YU-PING; TIAN, YU-WANG

    2015-01-01

    The aim of the present study was to investigate mutation status of the c-Kit gene (KIT) and PDGFRA in patients with a gastrointestinal stromal tumor (GIST). In total, 93 patients with a GIST were included in the study, in which polymerase chain reaction amplification and gene sequencing were used to detect the sequences of exons 9, 11, 13 and 17 in KIT and exons 12 and 18 in PDGFRA. KIT mutations were detected in 64 cases (68.82%), of which exon 11 mutations were detected in 56 cases (60.22%), exon 13 mutations were detected in three cases (3.23%) and one case (1.08%) was shown to have a mutation in exon 17. The most common mutation in exon 11 was a deletion, which accounted for 55.36% (31/56) of the cases, followed by a point mutation observed in 26.79% (15/56) of the cases, while an insertion (tandem repeats) was identified in 14.29% (8/56) of the cases, and 3.57% (2/56) of the exon 11 mutations were deletions associated with a point mutation. The majority of the mutations were heterozygous, with only a few homozygous mutations. Mutational analysis revealed the mutations to be more concentrated in the classic hot zone at the 5′-end, followed by the tandem repeat frame at the 3′-end. In four cases, a mutation was detected in exon 18 of PDGFRA, of which one was associated with a mutation in KIT. The remaining three cases (10.34%, 3/29) were not associated with mutations in KIT and accounted for 37.5% (3/8) of the CD117-negative GIST cases. Therefore, the majority of the GIST cases were characterized by mutations in KIT or PDGFRA, which were directly associated with the disease. Pairs of different mutations in the same exon of KIT, or KIT mutations coupled with pairs of mutations in PDGFRA, were detected in a small number of patients. Imatinib is a small molecule tyrosine kinase inhibitor and is the first line targeted treatment for GIST, resulting in markedly improved survival rates. Thus, gene mutation genotyping may provide inspiration and guidance for

  12. Mutational analysis of STK11 gene in ovarian carcinomas.

    PubMed

    Nishioka, Y; Kobayashi, K; Sagae, S; Sugimura, M; Ishioka, S; Nagata, M; Terasawa, K; Tokino, T; Kudo, R

    1999-06-01

    Recently STK11, the causative gene of Peutz-Jeghers syndrome (PJS) was identified on chromosome 19p13.3. PJS is often accompanied by several malignancies, including breast tumor, adenoma malignum of the uterine cervix, and ovarian tumor. To investigate the involvement of STK11 gene in the development of ovarian carcinomas, we analyzed 30 ovarian carcinomas for loss of heterozygosity (LOH) and STK11 gene mutations. We found one missense mutation (codon 281, Pro to Leu) with heterozygous and somatic status. This mutation occurred at codon 281, which lies within the mutational hot spot (codon 279-281) of STK11 gene previously reported in PJS. We also detected LOH in 2 (11%) of 19 informative ovarian carcinomas. Our results suggest that mutations of the STK11 gene may play a limited role in the development of ovarian carcinomas. PMID:10429654

  13. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  14. Combined SSCP/heteroduplex analysis in the screening for PAX6 mutations.

    PubMed

    Axton, R A; Hanson, I M; Love, J; Seawright, A; Prosser, J; van Heyningen, V

    1997-08-01

    We demonstrate the use of combined SSCP and heteroduplex analysis in the detection of PAX6 mutations using non-radioactive silver staining. A panel of aniridia patients was screened by this approach and we show that a greater number of mutations was detected than would have been found by running each technique alone. Six previously unreported aniridia mutations in PAX6 are also described.. PMID:9281415

  15. Hotspot-Mutation Analysis of the EGFR/KRAS/BRAF Pathway Using Mutation Surveyor® Software

    PubMed Central

    Hulce, D.; LeVan, K.; Shouyong, N.; Liu, J.

    2011-01-01

    Hotspot-mutation analysis of the EGFR/KRAS/BRAF pathway (or other clinically relevant pathway) can quickly genotype patients as candidates who may respond favorably to specific drug treatments and therapies or into other groups where treatment options are limited and less favorable. Sanger sequencing analysis using Mutation Surveyor software provides high-throughput, high-sensitivity variation detection. Increased efficiency can be achieved using flexible and customizable reporting-sequencing results can be organized by patient identifiers, variation type (reported or unreported, pathogenic or benign or drug sensitive), by gene/exon/amplicon, or quality metrics, and other options. GenBank sequence files from NCBI for EGFR exons 18, 19, 20, and 21; KRAS exons 2 and 3; and BRAF exon 15 were edited to contain reported variations. These reported variations included polymorphisms from dbSNP (downloaded with the GenBank file), pathogenic and drug-sensitivity variations for EGFR (obtained from http://www.egfr.org/), activating mutations for KRAS, and constitutive mutations for BRAF. Bidirectional sequencing data for twelve, simulated (mutations obtained from sequencing reports in the scientific literature), patients were developed and compared to the customized GenBank sequences. Sequencing analysis results were grouped by patient-specific identifiers. Any unmatched or low quality data files are identified in the report, indicating which samples require resequencing. Mutations that match reported variations added to the GenBank sequences are highlighted-SNP identifiers or color coding of SNP type quickly indicate which variations are pathogenic or drug-sensitive or reported in dbSNP. Unreported variations are not highlighted and may be benign or variations of unknown significance. The gene column displays the gene and accession number for that gene used for the analysis. The exon column displays the exon number of the gene, and accession numbers of the mRNA and protein

  16. Novel mutation in SUCLA2 identified on sequencing analysis.

    PubMed

    Güngör, Olcay; Özkaya, Ahmet Kağan; Güngör, Gülay; Karaer, Kadri; Dilber, Cengiz; Aydin, Kürşad

    2016-07-01

    Succinate-CoA ligase, ADP-forming, beta subunit (SUCLA2)-related mitochondrial DNA depletion syndrome is caused by mutations affecting the ADP-using isoform of the beta subunit in succinyl-CoA synthase, which is involved in the Krebs cycle. The SUCLA2 protein is found mostly in heart, skeletal muscle, and brain tissues. SUCLA2 mutations result in a mitochondrial disorder that manifests as deafness, lesions in the basal ganglia, and encephalomyopathy accompanied by dystonia. Such mutations are generally associated with mildly increased plasma methylmalonic acid, increased plasma lactate, elevated plasma carnitine esters, and the presence of methylmalonic acid in urine. In this case report, we describe a new mutation in a patient with a succinyl-CoA synthase deficiency caused by an SUCLA2 defect. PMID:26952923

  17. Mutations Affecting Sexual Conjugation and Related Processes in SACCHAROMYCES CEREVISIAE. II. Genetic Analysis of Nonmating Mutants

    PubMed Central

    Mackay, Vivian; Manney, Thomas R.

    1974-01-01

    Rare diploids formed by sterile mutants have been studied by tetrad analysis. Sixteen classes of mutants representing at least five distinct genetic loci have been defined. One group of mutations, isolated only in α, maps at the mating-type locus, while none of the others shows any linkage to mating type. Some of the mutations are nonspecific for mating type, while others act only on a or α. In addition, mutations were found that prevent sporulation when heterozygous in diploids. These appear to be mutations of the mating-type alleles. PMID:4595644

  18. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease

    PubMed Central

    Sidransky, Ellen; Nalls, Michael A.; Aasly, Jan O.; Aharon-Peretz, Judith; Annesi, Grazia; Barbosa, Egberto Reis; Bar-Shira, Anat; Berg, Daniela; Bras, Jose; Brice, Alexis; Chen, Chiung-Mei; Clark, Lorraine N.; Condroyer, Christel; De Marco, Elvira Valeria; Dürr, Alexandra; Eblan, Michael J.; Fahn, Stanley; Farrer, Matthew; Fung, Hon-Chung; Gan-Or, Ziv; Gasser, Thomas; Gershoni-Baruch, Ruth; Giladi, Nir; Griffith, Alida; Gurevich, Tanya; Januario, Cristina; Kropp, Peter; Lang, Anthony E.; Lee-Chen, Guey-Jen; Lesage, Suzanne; Marder, Karen; Mata, Ignacio F.; Mirelman, Anat; Mitsui, Jun; Mizuta, Ikuko; Nicoletti, Giuseppe; Oliveira, Catarina; Ottman, Ruth; Orr-Urtreger, Avi; Pereira, Lygia V.; Quattrone, Aldo; Rogaeva, Ekaterina; Rolfs, Arndt; Rosenbaum, Hanna; Rozenberg, Roberto; Samii, Ali; Samaddar, Ted; Schulte, Claudia; Sharma, Manu; Singleton, Andrew; Spitz, Mariana; Tan, Eng-King; Tayebi, Nahid; Toda, Tatsushi; Troiano, André; Tsuji, Shoji; Wittstock, Matthias; Wolfsberg, Tyra G.; Wu, Yih-Ru; Zabetian, Cyrus P.; Zhao, Yi; Ziegler, Shira G.

    2010-01-01

    Background Recent studies indicate an increased frequency of mutations in the gene for Gaucher disease, glucocerebrosidase (GBA), among patients with Parkinson disease. An international collaborative study was conducted to ascertain the frequency of GBA mutations in ethnically diverse patients with Parkinson disease. Methods Sixteen centers participated, including five from the Americas, six from Europe, two from Israel and three from Asia. Each received a standard DNA panel to compare genotyping results. Genotypes and phenotypic data from patients and controls were analyzed using multivariate logistic regression models and the Mantel Haenszel procedure to estimate odds ratios (ORs) across studies. The sample included 5691 patients (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews). Results All 16 centers could detect GBA mutations, L444P and N370S, and the two were found in 15.3% of Ashkenazi patients with Parkinson disease (ORs = 4.95 for L444P and 5.62 for N370S), and in 3.2% of non-Ashkenazi patients (ORs = 9.68 for L444P and 3.30 for N370S). GBA was sequenced in 1642 non-Ashkenazi subjects, yielding a frequency of 6.9% for all mutations, demonstrate that limited mutation screens miss half the mutant alleles. The presence of any GBA mutation was associated with an OR of 5.43 across studies. Clinically, although phenotypes varied, subjects with a GBA mutation presented earlier, and were more likely to have affected relatives and atypical manifestations. Conclusion Data collected from sixteen centers demonstrate that there is a strong association between GBA mutations and Parkinson disease. PMID:19846850

  19. Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations.

    PubMed

    Kraytsberg, Yevgenya; Khrapko, Konstantin

    2005-09-01

    A critical review of the clone-by-clone approach to the analysis of complex spectra of somatic mutations is presented. The study of a priori unknown somatic mutations requires painstaking analysis of complex mixtures of multiple mutant and non-mutant DNA molecules. If mutant fractions are sufficiently high, these mixtures can be dissected by the cloning of individual DNA molecules and scanning of the individual clones for mutations (e.g., by sequencing). Currently, the majority of such cloning is performed using PCR fragments. However, post-PCR cloning may result in various PCR artifacts - PCR errors and jumping PCR - and preferential amplification of certain mutations. This review argues that single-molecule PCR is a simple alternative that promises to evade the disadvantages inherent to post-PCR cloning and enhance mutational analysis in the future. PMID:16149882

  20. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  1. Mutation detection in autosomal dominant Hirschsprung disease: SSCP analysis of the RET proto-oncogene

    SciTech Connect

    Angrist, M.; Bolk, S.; Chakravarti, A.

    1994-09-01

    Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction, with an incidence of 1 in 5000. Recently, linkage of an incompletely penetrant, dominant form of HSCR to the pericentromeric region of chromosome 10 was reported, followed by identification of mutations in the RET proto-oncogene in HSCR patients. RET mutations have also been reported in both sporadic and familial forms of three neuroendrocrine tumor syndromes. Unlike the clustered RET mutations observed in these syndromes, the 18 reported HSCR mutations are distributed throughout the extracellular and tryosine kinase domains of RET. In an effort to determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have begun to screen for mutations among 80 HSCR probands representing a wide range of phenotypes and pedigree structures. Non-isotopic single strand conformation of polymorphism (SSCP) analysis was carried out using the Pharmacia PhastSystem{trademark}. Initial screening of exons 2 through 6 detected variants in 11 patients not seen in 24 controls. One additional band shift in exon 6 has been observed in both patients and controls. Preliminary sequence analysis has revealed two putative familial mutations in exon 2: a single base pair deletion (49Pro del C 296) and a point mutation that leads to a conservative amino acid substitution (93Gly{r_arrow}Ser). These results suggest that HSCR may be associated with a range of alterations in the coding sequence of the RET extracellular domain. Additional mutations will be described.

  2. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis.

    PubMed

    Jahn, Stephan W; Kashofer, Karl; Halbwedl, Iris; Winter, Gerlinde; El-Shabrawi-Caelen, Laila; Mentzel, Thomas; Hoefler, Gerald; Liegl-Atzwanger, Bernadette

    2015-07-01

    Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway. PMID:25769001

  3. Molecular analysis of the APC gene in 71 Israeli families: 17 novel mutations.

    PubMed

    Gavert, Nancy; Yaron, Yuval; Naiman, Tova; Bercovich, Dani; Rozen, Paul; Shomrat, Ruth; Legum, Cyril; Orr-Urtreger, Avi

    2002-06-01

    Familial adenomatous polyposis (FAP) is caused by germline mutations in the APC gene. This study included 71 Israeli families referred for molecular analysis of the APC gene. Analysis was performed by the protein truncation test (PTT) of exon 15, and if negative, by direct sequencing of exon 1 to 14. Mutations were found in 36 (50.7%) probands. Mutation detection rates depended on the pattern of referral, such that among the 40 probands referred from the Service for Hereditary Cancer the mutation detection rate was 70%, whereas among the 31 probands referred by other gastroenterologists detection rate was significantly lower (25.8%). Of the 36 mutations detected, 21 were within exon 15, 13 within exons 1 to 14 and 2 were newly-described splicing mutations in introns 9 and 14. A relatively high proportion of the mutations was detected in exon 9 (6/36), five of them newly described. Altogether, we describe here 17 new mutations. Within the two major ethnic groups in Israel, patients of Ashkenazi and non-Ashkenazi origin, there was no significant differences in the mutation detection rate or the distribution of mutations within the APC gene. No founder mutation was detected in any of these populations. Our data confirm that higher detection rates may be expected in patients referred by clinical services specializing in hereditary colon cancer. These results further underscore the importance of complete analysis of all exons and exon/intron boundaries, in order to achieve maximal detection rate in patients suspected of FAP. PMID:12007223

  4. Analysis of mutations in Menkes and X-linked cutis laxa patients

    SciTech Connect

    Das, S.; Levinson, B.; Gitschier, J.

    1994-09-01

    Menkes disease is an X-linked disorder of copper metabolism. The complex clinical phenotype is attribute to a deficiency of copper-containing enzymes resulting from a defect in copper transport. X-linked cutis laxa (XLCL), a mild, connective tissues disease may also be an allele of Menkes disease. A gene for the Menkes disease locus (MNK) has been isolated and found to code for a copper-transportion ATPase. Deletions in this gene have been observed in only 15-20% of patients by Southern blot analysis. We have analysed the MNK gene for mutations by RT-PCR and chemical cleavage mismatch detection in a group of 12 patients with severe Menkes phenotype and who were normal by Southern analysis. Mutations were observed in ten patients, and in each case, a different, debilitating mutation was present. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice site changes, a nonsense mutation, a missense mutation, a small duplication and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one nonsense mutation, two adjacent 5 bp deletions and one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of large deletions in {approx}15% of patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. To date, no mutations have been found in 4 XLCL patients in the MNK coding region by chemical cleavage. However in 2 patients Southern blot changes have been detected with a 5{prime} UTR probe, suggesting mutations affecting regulatory elements.

  5. Mutation analysis of type II Gaucher disease in five Taiwanese children: identification of two novel mutations.

    PubMed

    Tsai, F J; Lee, C C; Wu, M C; Lin, S P; Lin, C Y; Tsai, C H; Kodama, H; Wu, J Y

    2001-01-01

    Gaucher disease (GD), one of the most prevalent lysosomal storage diseases, is caused by deficiency of lysosomal acid beta-glucosidase (GBA). It is divided into three types according to the presence and progression of neurologic symptoms. Of those, type II is relatively rare and most severe; patients usually die before the age of two years. Using polymerase chain reaction (PCR) and direct sequencing of GBA gene in five Taiwanese type II GD patients, we identified two novel mutations: G355D and three-nucleotide insertion in exon 7 of GBA. The latter resulted in an in-frame insertion of a methionine residue between Leu241 and Ser242. L444P, the second most common GD allele among non-Jewish Caucasian population, was found in all five type II GD patients (50%). Overall, 9 out of 10 GD alleles were identified in this study. Direct sequencing of all PCR products led to high detection rate of GD alleles and identification of the RecNci 1 alleles. In the future, high throughput sequencing will make it possible identifying more rare mutations in type II GD patients. PMID:11550412

  6. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    PubMed Central

    2012-01-01

    Background Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease. PMID:22401137

  7. The age of human mutation: genealogical and linkage disequilibrium analysis of the CLN5 mutation in the Finnish population.

    PubMed Central

    Varilo, T.; Savukoski, M.; Norio, R.; Santavuori, P.; Peltonen, L.; Järvelä, I.

    1996-01-01

    Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1 in 1500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20 to 30 generations ago (i.e., approximately 500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie approximately 200 - 400 kb (total range 30 - 1360 kb) from the closest marker D13S162. Images Figure 1 PMID:8644710

  8. Mutational Analysis of Oculocutaneous Albinism: A Compact Review

    PubMed Central

    Kamaraj, Balu

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients. PMID:25093188

  9. Mutational analysis of oculocutaneous albinism: a compact review.

    PubMed

    Kamaraj, Balu; Purohit, Rituraj

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients. PMID:25093188

  10. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  11. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy

    PubMed Central

    Fei, Ping; Zhu, Xiong; Jiang, Zhilin; Ma, Shi; Li, Jing; Zhang, Qi; Zhou, Yu; Xu, Yu; Tai, Zhengfu; Zhang, Lin; Huang, Lulin; Yang, Zhenglin; Zhao, Peiquan; Zhu, Xianjun

    2015-01-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease characterized by defects in the development of retinal vessels. However, known genetic mutations can only explain approximately 50% of FEVR patients. To assess the mutation frequency of Frizzled 4 (FZD4) in Chinese patients, we analysed patients with FEVR from 61 families from China to identify mutations in FZD4 and to study the effects of identified mutations on FZD4 function. All coding exons and adjacent intronic regions of FZD4 were amplified by polymerase chain reaction and subjected to Sanger sequencing analysis. Three mutations in the FZD4 gene were identified in these families. Of these, two were novel mutations: p.E134* and p.T503fs. Both mutations involve highly conserved residues and were not present in 800 normal individuals. Each of these two novel FZD4 mutations was introduced into wild-type FZD4 cDNA by site-directed mutagenesis. Wild-type and mutant FZD4 DNAs were introduced into HEK293 cells to analyse the function of FZD4 in Norrin-dependent activation of the Norrin/β-catenin pathway using luciferase reporter assays. Both the p.E134* and p.T503fs mutants failed to induce luciferase reporter activity in response to Norrin. Our study identified two novel FZD4 mutations in Chinese patients with FEVR. PMID:26530129

  12. Laminin-5 mutational analysis in an Italian cohort of patients with junctional epidermolysis bullosa.

    PubMed

    Posteraro, Patrizia; De Luca, Naomi; Meneguzzi, Guerrino; El Hachem, May; Angelo, Corrado; Gobello, Tommaso; Tadini, Gianluca; Zambruno, Giovanna; Castiglia, Daniele

    2004-10-01

    Junctional epidermolysis bullosa (JEB) is a rare genodermatosis characterized by dermal-epidermal separation that is caused by mutations in the genes encoding hemidesmosomal components and laminin-5, the major epithelial adhesion ligand. Here, we report on the mutational analysis of LAMA3, LAMB3, and LAMC2 genes encoding laminin-5 chains in 19 Italian patients, 11 affected with the severe Herlitz (H JEB) and eight with the mild non-Herlitz variant of JEB (non-H JEB). Eighteen mutations, seven of which were novel, were identified and their consequences analyzed at the mRNA and protein level. Premature termination codon mutations in both alleles of LAMB3 or LAMC2 genes were found in nine of the 11 H JEB patients, with a prevalence of mutations in LAMC2. In one case, a homozygous frameshift mutation in LAMB3 was associated to illegitimate splicing leading to non-H JEB. One H JEB patient showed a large intragenic duplication within LAMC2, a genetic defect so far uncovered in laminin-5 genes. Splicing or missense mutations, were prevalent in non-H JEB patients. Collectively, five mutations appeared to be frequent in laminin-5 JEB patients: R635X, 29insC, E210K, W143X in LAMB3 and R95X in LAMC2. These recurrent mutations account for approximately 44% of laminin-5 JEB alleles in Italian patients. PMID:15373767

  13. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors

    PubMed Central

    Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen

    2016-01-01

    Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754

  14. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations

    PubMed Central

    Johnston, Jennifer J.; Sapp, Julie C.; Turner, Joyce T.; Amor, David; Aftimos, Salim; Aleck, Kyrieckos A.; Bocian, Maureen; Bodurtha, Joann N.; Cox, Gerald F.; Curry, Cynthia J.; Day, Ruth; Donnai, Dian; Field, Michael; Fujiwara, Ikuma; Gabbett, Michael; Gal, Moran; Graham, John M.; Hedera, Peter; Hennekam, Raoul C.M.; Hersh, Joseph H.; Hopkin, Robert J.; Kayserili, Hülya; Kidd, Alexa M.J.; Kimonis, Virginia; Lin, Angela E.; Lynch, Sally Ann; Maisenbacher, Melissa; Mansour, Sahar; McGaughran, Julie; Mehta, Lakshmi; Murphy, Helen; Raygada, Margarita; Robin, Nathaniel H.; Rope, Alan F.; Rosenbaum, Kenneth N.; Schaefer, G. Bradley; Shealy, Amy; Smith, Wendy; Soller, Maria; Sommer, Annmarie; Stalker, Heather J.; Steiner, Bernhard; Stephan, Mark J.; Tilstra, David; Tomkins, Susan; Trapane, Pamela; Tsai, Anne Chun-Hui; Van Allen, Margot I.; Vasudevan, Pradeep C.; Zabel, Bernhard; Zunich, Janice; Black, Graeme C.M.; Biesecker, Leslie G.

    2010-01-01

    A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining ninety-three probands here. This includes nineteen probands (twelve mutations) who fulfilled clinical criteria for GCPS or PHS, forty-eight probands (sixteen mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), twenty-one probands (six mutations) with features of PHS or GCPS and oral-facial-digital syndrome and five probands (one mutation) with non-syndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the phenotype-genotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria. PMID:20672375

  15. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  16. nfxB as a Novel Target for Analysis of Mutation Spectra in Pseudomonas aeruginosa

    PubMed Central

    Miguel, Virginia; Argaraña, Carlos E.

    2013-01-01

    nfxB encodes a negative regulator of the mexCD-oprJ genes for drug efflux in the opportunistic pathogen Pseudomonas aeruginosa. Inactivating mutations in this transcriptional regulator constitute one of the main mechanisms of resistance to ciprofloxacin (Cipr). In this work, we evaluated the use of nfxB/Cipr as a new test system to study mutation spectra in P. aeruginosa. The analysis of 240 mutations in nfxB occurring spontaneously in the wild-type and mutator backgrounds or induced by mutagens showed that nfxB/Cipr offers several advantages compared with other mutation detection systems. Identification of nfxB mutations was easy since the entire open reading frame and its promoter region were sequenced from the chromosome using a single primer. Mutations detected in nfxB included all transitions and transversions, 1-bp deletions and insertions, >1-bp deletions and duplications. The broad mutation spectrum observed in nfxB relies on the selection of loss-of-function changes, as we confirmed by generating a structural model of the NfxB repressor and evaluating the significance of each detected mutation. The mutation spectra characterized in the mutS, mutT, mutY and mutM mutator backgrounds or induced by the mutagenic agents 2-aminopurine, cisplatin and hydrogen peroxide were in agreement with their predicted mutational specificities. Additionally, this system allowed the analysis of sequence context effects since point mutations occurred at 85 different sites distributed over the entire nfxB. Significant hotspots and preferred sequence contexts were observed for spontaneous and mutagen-induced mutation spectra. Finally, we demonstrated the utility of a luminescence-based reporter for identification of nfxB mutants previous to sequencing analysis. Thus, the nfxB/Cipr system in combination with the luminescent reporter may be a valuable tool for studying mutational processes in Pseudomonas spp. wherein the genes encoding the NfxB repressor and the associated efflux

  17. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers.

    PubMed

    Kang, Mi Ran; Kim, Min Sung; Oh, Ji Eun; Kim, Yoo Ri; Song, Sang Yong; Seo, Seong Il; Lee, Ji Youl; Yoo, Nam Jin; Lee, Sug Hyung

    2009-07-15

    Missense somatic mutations in IDH1 gene affecting codon 132 have recently been reported in glioblastoma multiforme (GBM) and other gliomas. The recurrent nature of the IDH1 mutations in the same amino acid strongly suggests that the mutations may play important roles in the pathogenesis of glial tumors. The aim of this study was to see whether the IDH1 codon 132 mutations occur in other human cancers besides glial tumors. We also attempted to confirm the occurrence of the IDH1 mutations in GBM of Korean patients. We have analyzed 1,186 cancer tissues from various origins, including carcinomas from breast, colon, lung, stomach, esophagus, liver, prostate, urinary bladder, ovary, uterine cervix, skin and kidney, and malignant mesotheliomas, primary GBM, malignant meningiomas, multiple myelomas and acute leukemias by single-strand conformation polymorphism analysis. We found four IDH1 codon 132 mutations in the GBM (4/25; 16.0%), two in the prostate carcinomas (2/75; 2.7%) and one in the B-acute lymphoblastic leukemias (B-ALL) (1/60; 1.7%), but none in other cancers. The IDH1 mutations consisted of five p.R132H and two p.R132C mutations. The data indicate that IDH1 codon 132 mutations occur not only in GBM, but also in prostate cancers and B-ALL. This study suggests that despite the infrequent incidence of the IDH1 mutations in prostate cancers and B-ALL, mutated IDH1 could be therapeutically targeted in these cancers and in glial tumors with the IDH1 mutations. PMID:19378339

  18. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations

    PubMed Central

    Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan

    2013-01-01

    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ∼2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ∼5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750–1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ∼650 years ago, and into the Iraqi–Jewish community ∼450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381

  19. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations.

    PubMed

    Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan

    2013-02-01

    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ~2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ~5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750-1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ~650 years ago, and into the Iraqi-Jewish community ~450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381

  20. Mutation analysis and molecular genetics of epidermolysis bullosa.

    PubMed

    Pulkkinen, L; Uitto, J

    1999-02-01

    Cutaneous basement membrane zone (BMZ) consists of a number of attachment structures that are critical for stable association of the epidermis to the underlying dermis. These include hemidesmosomes, anchoring filaments and anchoring fibrils which form an interconnecting network extending from the intracellular milieu of basal keratinocytes across the dermal-epidermal basement membrane to the underlying dermis. Aberrations in this network structure, e.g. due to genetic lesions in the corresponding genes, can result in fragility of the skin at the level of the cutaneous BMZ. The prototype of such diseases is epidermolysis bullosa (EB), a heterogeneous group of genodermatoses characterized by fragility and blistering of the skin, often associated with extracutaneous manifestations, and inherited either in an autosomal dominant or autosomal recessive manner. Based on constellations of the phenotypic manifestations, severity of the disease, and the level of tissue separation within the cutaneous BMZ, EB has been divided into clinically distinct subcategories, including the simplex, hemidesmosomal, junctional and dystrophic variants. Elucidation of BMZ gene/protein systems and development of mutation detection strategies have allowed identification of mutations in 10 different BMZ genes which can explain the clinical heterogeneity of EB. These include mutations in the type VII collagen gene (COL7A1) in the dystrophic (severely scarring) forms of EB; mutations in the laminin 5 genes (LAMA3, LAMB3 and LAMC2) in a lethal (Herlitz) variant of junctional EB; aberrations in the type XVII collagen gene (COL17A1) in non-lethal forms of junctional EB; mutations in the alpha6 and beta4 integrin genes in a distinct hemidesmosomal variant of EB with congenital pyloric atresia; and mutations in the plectin gene (PLEC1) in a form of EB associated with late-onset muscular dystrophy. Identification of mutations in these gene/protein systems attests to their critical importance in the

  1. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data

    PubMed Central

    Chen, Zhe; Guo, Jiayi; Zhang, Kun; Guo, Yanxing

    2016-01-01

    Several research groups have examined the association between TP53 mutations and prognosis in human osteosarcoma. However, the results were controversial. The purpose of this study was to evaluate the prognostic value of TP53 mutations in osteosarcoma patients. A meta-analysis was conducted with all eligible studies which quantitatively evaluated the relationship between TP53 mutations and clinical outcome of osteosarcoma patients. Eight studies with a total of 210 patients with osteosarcoma were included in this meta-analysis. The risk ratio (RR) with a 95% confidence interval (95% CI) was calculated to assess the effect of TP53 mutations on 2-year overall survival. The quantitative synthesis of 8 published studies showed that TP53 mutations were associated with 2-year overall survival in osteosarcoma patients. These data suggested that TP53 mutations had an unfavorable impact on 2-year overall survival when compared to the counterparts with wild type (WT) TP53 (RR: 1.79; 95% CI: 1.12 to 2.84; P = 0.01; I2 = 0%). There was no between-study heterogeneity. TP53 mutations are an effective prognostic marker for survival of patients with osteosarcoma. However, further large-scale prospective trials should be performed to clarify the prognostic value of TP53 mutations on 3- or 5-year survival in osteosarcoma patients. PMID:27239089

  2. Mutational analysis of Btk, the defective gene in X-linked agammaglobulinemia

    SciTech Connect

    Conley, M.E.; Fitch-Hilgenberg, M.E.; Rohrer, J.

    1994-09-01

    Recent studies have shown that X-linked agammaglobulinemia (XLA), a disorder of B cell development, is due to mutations in an scr-like cytoplasmic tyrosine kinase, Btk. Thus far, mutations in this gene have been identified by sequencing of cDNA. To permit the detection of mutations in genomic DNA, we determined the structure of Btk and identified 19 exons in 37 kb of DNA. PCR primers were designed to amplify each exon with its splice sites. Two overlapping PCR products were employed for exons longer than 230 base pairs. Single strand conformation polymorphism (SSCP) analysis was used to screen genomic DNA from 30 unrelated families presumed to carry a mutation in Btk. It was possible to amplify DNA in every reaction from every patient. None of the DNA samples demonstrated more than one aberrant SSCP pattern. Twenty three mutations were detected in 25 families. Seven point mutations resulting in amino acid substitutions were seen. An additional 7 base pair substitutions gave rise to premature stop codons. Two splice defects were noted. Small insertions or deletions, all resulting in frameshifts and premature stop codons were seen in eight patients. One patient had an A to G transition in the ATG start codon. Two mutations, both at CpG dinucleotides, were seen in more than one family. Haplotype analysis, using CA repeats closely linked to Btk, demonstrated that the mutations in these families arose independently. We conclude from these studies that the mutations in Btk in patients with XLA are highly variable. Large deletions are uncommon, although small 1 to 4 bp insertions or deletions constitute as many as one third of the mutations. Further analysis of patients with amino acid substitutions will permit structure/function correlations.

  3. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  4. NOVEL MASS SPECTROMETRY MUTATION SCREENING FOR CONTAMINANT IMPACT ANALYSIS

    EPA Science Inventory

    This research addresses the DNA mutation due to the exposure to contaminated media and to promote a better understanding of the relationship between exposure and health impact which are among the top priorities in the Environmental Management Science Program (EMSP). The capabilit...

  5. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  6. Genetic heterogeneity in five Italian regions: analysis of PAH mutations and minihaplotypes.

    PubMed

    Giannattasio, S; Dianzani, I; Lattanzio, P; Spada, M; Romano, V; Calì, F; Andria, G; Ponzone, A; Marra, E; Piazza, A

    2001-01-01

    Molecular analysis of 289 chromosomes has been performed in a cohort of phenylketonuria (PKU) patients whose ancestors lived in five Italian regions, Calabria, Campania, Piemonte, Puglia/Basilicata and Sicilia. Phenylalaninehydroxylase (PAH) gene mutations and minihaplotypes (combinations of PAH gene STR and VNTR systems) have been determined for 78.5 and 64%, respectively, of the chromosomes studied. 21 different minihaplotypes and 24 PKU mutations were found. Heterogeneity tests carried out for the frequencies of mutations and minihaplotypes show that the distribution of eight mutations and four minihaplotypes is statistically heterogeneous in the five Italian regions. Although the evolutionary rate of microsatellites or the age of these mutations is difficult to estimate with accuracy, our findings taken together show a genetic stratification of the Italian population. These results rule out allelic homogeneity of PKU at the molecular level between regions of Italy, yet minihaplotype data may be of practical use for a multistep approach to PAH gene genotyping. PMID:11588399

  7. Predictive and Prognostic Analysis of PIK3CA Mutation in Stage III Colon Cancer Intergroup Trial

    PubMed Central

    Liao, Xiaoyun; Imamura, Yu; Yamauchi, Mai; McCleary, Nadine J.; Ng, Kimmie; Niedzwiecki, Donna; Saltz, Leonard B.; Mayer, Robert J.; Whittom, Renaud; Hantel, Alexander; Benson, Al B.; Mowat, Rex B.; Spiegelman, Donna; Goldberg, Richard M.; Bertagnolli, Monica M.; Meyerhardt, Jeffrey A.; Fuchs, Charles S.

    2013-01-01

    Background Somatic mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphonate 3-kinase [PI3K], catalytic subunit alpha gene) activate the PI3K-AKT signaling pathway and contribute to pathogenesis of various malignancies, including colorectal cancer. Methods We examined associations of PIK3CA oncogene mutation with relapse, survival, and treatment efficacy in 627 stage III colon carcinoma case subjects within a randomized adjuvant chemotherapy trial (5-fluorouracil and leucovorin [FU/LV] vs irinotecan [CPT11], fluorouracil and leucovorin [IFL]; Cancer and Leukemia Group B 89803 [Alliance]). We detected PIK3CA mutation in exons 9 and 20 by polymerase chain reaction and pyrosequencing. Cox proportional hazards model was used to assess prognostic and predictive role of PIK3CA mutation, adjusting for clinical features and status of routine standard molecular pathology features, including KRAS and BRAF mutations and microsatellite instability (mismatch repair deficiency). All statistical tests were two-sided. Results Compared with PIK3CA wild-type cases, overall status of PIK3CA mutation positivity or the presence of PIK3CA mutation in either exon 9 or 20 alone was not statistically significantly associated with recurrence-free, disease-free, or overall survival (log-rank P > .70; P > .40 in multivariable regression models). There was no statistically significant interaction between PIK3CA and KRAS (or BRAF) mutation status in survival analysis (P interaction > .18). PIK3CA mutation status did not appear to predict better or worse response to IFL therapy compared with FU/LV therapy (P interaction > .16). Conclusions Overall tumor PIK3CA mutation status is not associated with stage III colon cancer prognosis. PIK3CA mutation does not appear to serve as a predictive tumor molecular biomarker for response to irinotecan-based adjuvant chemotherapy. PMID:24231454

  8. Functional analysis of 'a' determinant mutations associated with occult HBV in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Boyce, Ceejay L; Gededzha, Maemu P; Selabe, Selokela G; Mphahlele, M Jeffrey; Blackard, Jason T

    2016-07-01

    Occult hepatitis B is defined by the presence of hepatitis B virus (HBV) DNA in the absence of hepatitis B surface antigen (HBsAg). Occult HBV is associated with the development of hepatocellular carcinoma, reactivation during immune suppression, and virus transmission. Viral mutations contribute significantly to the occult HBV phenotype. Mutations in the 'a' determinant of HBsAg are of particular interest, as these mutations are associated with immune escape, vaccine escape and diagnostic failure. We examined the effects of selected occult HBV-associated mutations identified in a population of HIV-positive South Africans on HBsAg production in vitro. Mutations were inserted into two different chronic HBV backbones and transfected into a hepatocyte-derived cell line. HBsAg levels were quantified by enzyme-linked immunosorbent assay (ELISA), while the detectability of mutant HBsAg was determined using an HA-tagged HBsAg expression system. Of the seven mutations analysed, four (S132P, C138Y, N146D and C147Y) resulted in decreased HBsAg expression in one viral background but not in the second viral background. One mutation (N146D) led to a decrease in HBsAg detected as compared to HA-tag, indicating that this mutation compromises the ability of the ELISA to detect HBsAg. The contribution of occult-associated mutations to the HBsAg-negative phenotype of occult HBV cannot be determined adequately by testing the effect of the mutation in a single viral background, and rigorous analysis of these mutations is required. PMID:27031988

  9. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  10. GNE Myopathy and Cell Apoptosis: A Comparative Mutation Analysis.

    PubMed

    Singh, Reema; Arya, Ranjana

    2016-07-01

    In a number of genetic disorders such as GNE myopathy, it is not clear how mutations in target genes result in disease phenotype. GNE myopathy is a progressive neuro-degenerative disorder associated with homozygous or compound heterozygous missense mutations in either epimerase or kinase domain of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). This bifunctional enzyme catalyses the rate limiting step in sialic acid biosynthesis. Many mechanisms have been suggested as possible cause of muscle degeneration. These include hyposialylation of critical proteins, defects in cytoskeletal network, sarcomere organization and apoptosis. In order to elucidate the role of GNE in cell apoptosis, we have used HEK cell-based model system overexpressing pathologically relevant GNE mutations. These cells display a reduction in the levels of sialic acid-bound glycoconjugates. These mutants GNE overexpressing cells have defect in cell proliferation as compared to vector or wild-type GNE (wtGNE) controls. Moreover, effect of different GNE mutations on cell apoptosis was also observed using staining with annexin V-FITC and TUNEL assay. The downstream apoptosis signalling pathway involving activation of caspases and increased PARP cleavage were observed in all GNE mutant cell lines. In addition, morpho-structural changes in mitochondria in cells overexpressing different GNE mutants were noticed by transmission electron microscopy, and mitochondrial transmembrane potential was found to be altered in absence of functional GNE. Our results clearly indicate role of GNE in mitochondria-dependent cell apoptosis and provide insights into the pathomechanism of GNE myopathy. PMID:25976366

  11. Molecular analysis of rice plant mutated after space flight

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Li, C.; Wei, L.; Xu, D.; Gu, D.; Guan, S.; Zhao, H.; Xin, P.; Sun, Y.

    We have obtained several rice mutants planted from seeds flown on recoverable satellites. Some new traits, such as good yields, diseases resistances and higher nutrient values, have been identified, putatively as consequences of the space environment. Radiation inside the Chinese recoverable satellite was composed of low flux of high energy particles (>40 Mev/u). To study the mechanisms of plant mutations induced by the space environment, we used dry rice seeds as a model to identify the phenotype of mutations, and used the wealth of the rice genome to identify the mutated genes in the mutants. The research included collecting rice plant mutants in the seeds flown on the satellites, identifying the nature of genomic and proteomic alterations, modifications and identifying the functional changes of the specific genes. The study showed that the rice seeds are a good model for exploring biological effect of space environment since 1) it is easy fly the seeds without specific hardware and crew work, 2) it is easy to obtain pure mutant breed lines for cloning DNA sequence in order to compare with the sequence in the wild type, and 3) it is easy to quantitatively analyze genetics using advanced molecular techniques.

  12. The DCC gene: Structural analysis and mutations in colorectal carcinomas

    SciTech Connect

    Cho, K.R.; Oliner, J.D.; Simons, J.W.; Hedrick, L.; Preisinger, A.C.; Vogelstein, B. ); Fearon, E.R. ); Hedge, P. ); Silverman, G.A. )

    1994-02-01

    DCC is a candidate tumor-suppressor gene encoding a protein with sequence similarity to cell adhesion molecules such as N-CAM. A set of overlapping YAC clones that contains the entire DCC coding region was isolated. Studies of this YAC contig showed that the DCC gene spans approximately 1.4 Mb. For elucidation of exon-intron structure, lambda phage clones containing all known coding sequences were isolated from a genomic library. These clones were used to demonstrate the existence of 29 DCC exons, and the sequences of the exon-intron boundaries were determined for each. Twenty-three polymorphic markers from chromosome 18 were then studied in a panel of primary colorectal tumors that had lost some, but not all, of chromosome 18. In most of these tumors, the region that was lost included DCC. Finally, Southern blot and PCR-based approaches were used to search for subtle mutations in several DCC exons. One tumor that had a point mutation in exon 28 was found, resulting in a proline to histidine substitution. A second tumor with a point mutation in intron 13 was also found. The regional map and genomic structure of DCC should provide the means to more extensively study DCC gene alterations and protein function in normal and neoplastic cells. 23 refs., 4 figs., 1 tab.

  13. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. PMID:26811072

  14. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  15. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples

    PubMed Central

    2010-01-01

    Background We have compared mutation analysis by DNA sequencing and Amplification Refractory Mutation System™ (ARMS™) for their ability to detect mutations in clinical biopsy specimens. Methods We have evaluated five real-time ARMS assays: BRAF 1799T>A, [this includes V600E and V600K] and NRAS 182A>G [Q61R] and 181C>A [Q61K] in melanoma, EGFR 2573T>G [L858R], 2235-2249del15 [E746-A750del] in non-small-cell lung cancer, and compared the results to DNA sequencing of the mutation 'hot-spots' in these genes in formalin-fixed paraffin-embedded tumour (FF-PET) DNA. Results The ARMS assays maximised the number of samples that could be analysed when both the quality and quantity of DNA was low, and improved both the sensitivity and speed of analysis compared with sequencing. ARMS was more robust with fewer reaction failures compared with sequencing and was more sensitive as it was able to detect functional mutations that were not detected by DNA sequencing. DNA sequencing was able to detect a small number of lower frequency recurrent mutations across the exons screened that were not interrogated using the specific ARMS assays in these studies. Conclusions ARMS was more sensitive and robust at detecting defined somatic mutations than DNA sequencing on clinical samples where the predominant sample type was FF-PET. PMID:20925915

  16. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  17. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  18. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.

    PubMed

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-04-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  19. A Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of SHOX gene.

    PubMed

    Choi, Won Bok; Seo, Seung Hyeon; Yoo, Woo Hyun; Kim, Su Young; Kwak, Min Jung

    2015-09-01

    Leri-Weill dyschondrosteosis is characterized by SHOX deficiency, Madelung deformity, and mesomelic short stature. In addition, SHOX deficiency is associated with idiopathic short stature, Turner syndrome, and Langer mesomelic dysplasia. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by SHOX gene mutation analysis in Korea. The patient, who was a 7-year-old female, showed short stature. Her height and weight were 108.9 cm (<3rd percentile) and 19.7 kg (5th-10th percentile), respectively. Her arm span, height of trunk, leg length, and sitting length were 100.5 cm, 58 cm, 50.9 cm, and 62.5 cm, respectively. Her body proportion was 1.13:1. Extremities to trunk ratio was 2.61. Her hand radiograph showed Madelung deformity. And the growth hormone stimulation test showed a normal response. Furthermore, because of Madelung deformity with idiopathic short stature, she was suspected of SHOX deficiency. We performed SHOX gene mutation analysis and found a c.491G>A (p.W164X) mutation of the SHOX gene. Accordingly, this patient was diagnosed with Leri-Weill dyschondrosteosis. Recently, many mutations have been reported in the SHOX gene. However, to date, mutation analysis of the SHOX gene for Leri-Weill dyschondrosteosis has not been reported in Korea as yet. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of the SHOX gene. PMID:26512353

  20. A Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of SHOX gene

    PubMed Central

    Choi, Won Bok; Seo, Seung Hyeon; Yoo, Woo Hyun; Kim, Su Young

    2015-01-01

    Leri-Weill dyschondrosteosis is characterized by SHOX deficiency, Madelung deformity, and mesomelic short stature. In addition, SHOX deficiency is associated with idiopathic short stature, Turner syndrome, and Langer mesomelic dysplasia. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by SHOX gene mutation analysis in Korea. The patient, who was a 7-year-old female, showed short stature. Her height and weight were 108.9 cm (<3rd percentile) and 19.7 kg (5th-10th percentile), respectively. Her arm span, height of trunk, leg length, and sitting length were 100.5 cm, 58 cm, 50.9 cm, and 62.5 cm, respectively. Her body proportion was 1.13:1. Extremities to trunk ratio was 2.61. Her hand radiograph showed Madelung deformity. And the growth hormone stimulation test showed a normal response. Furthermore, because of Madelung deformity with idiopathic short stature, she was suspected of SHOX deficiency. We performed SHOX gene mutation analysis and found a c.491G>A (p.W164X) mutation of the SHOX gene. Accordingly, this patient was diagnosed with Leri-Weill dyschondrosteosis. Recently, many mutations have been reported in the SHOX gene. However, to date, mutation analysis of the SHOX gene for Leri-Weill dyschondrosteosis has not been reported in Korea as yet. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of the SHOX gene. PMID:26512353

  1. Prognostic role of IDH mutations in gliomas: a meta-analysis of 55 observational studies

    PubMed Central

    Fu, Zhiquan; Feng, Fang; Qiao, Enqi; Li, Qinglin; Sun, Caixing; Ge, Minghua

    2015-01-01

    Background IDH (Isocitrate dehydrogenase) mutations occur frequently in gliomas, but their prognostic impact has not been fully assessed. We performed a meta-analysis of the association between IDH mutations and survival in gliomas. Methods Pubmed and EMBASE databases were searched for studies reporting IDH mutations (IHD1/2 and IDH1) and survival in gliomas. The primary outcome was overall survival (OS); the secondary outcome was progression-free survival (PFS). Hazard ratios (HR) with 95% confidence interval (CI) were determined using the Mantel-Haenszel random-effect modeling. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Results Fifty-five studies (9487 patients) were included in the analysis. Fifty-four and twenty-seven studies investigated the association between IDH1/2 mutations and OS/PFS respectively in patients with glioma. The results showed that patients possessing an IDH1/2 mutation had significant advantages in OS (HR = 0.39, 95%CI: 0.34–0.45; P < 0.001) and PFS (HR = 0.42, 95% CI: 0.35–0.51; P < 0.001). Subgroup analysis showed a consistent result with pooled analysis, and patients with glioma of WHO grade III or II-III had better outcomes. Conclusions These findings provide further indication that patients with glioma harboring IDH mutations have improved OS and PFS, especially for patients with WHO grade III and grade II-III. PMID:26220714

  2. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    PubMed

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  3. Mutational analysis of ATP7B in Chinese Wilson disease patients

    PubMed Central

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11th, and 18th exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  4. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  5. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10-4) and oncogenes (Odds Ratio 1.17, P-value < 10-3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10-8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes

  6. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces

    PubMed Central

    Engin, H. Billur; Kreisberg, Jason F.; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  7. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients.

    PubMed

    Alavi, Afagh; Nafissi, Shahriar; Rohani, Mohammad; Zamani, Babak; Sedighi, Behnaz; Shamshiri, Hosein; Fan, Jian-Bing; Ronaghi, Mostafa; Elahi, Elahe

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, and the most common in European populations. Results of genetic analysis and mutation screening of SOD1 in a cohort of 60 Iranian ALS patients are here reported. Initially, linkage analysis in 4 families identified a disease-linked locus that included the known ALS gene, SOD1. Screening of SOD1 identified homozygous p.Asp90Ala causing mutations in all the linked families. Haplotype analysis suggests that the p.Asp90Ala alleles in the Iranian patients might share a common founder with the renowned Scandinavian recessive p.Asp90Ala allele. Subsequent screening in all the patients resulted in identification of 3 other mutations in SOD1, including p.Leu84Phe in the homozygous state. Phenotypic features of the mutation-bearing patients are presented. SOD1 mutations were found in 11.7% of the cohort, 38.5% of the familial ALS probands, and 4.25% of the sporadic ALS cases. SOD1 mutations contribute significantly to ALS among Iranians. PMID:23062701

  8. Analysis of mutations using PCR and denaturing gradient gel electrophoresis

    SciTech Connect

    Cariello, N.F.; Swenberg, J.A. Duke Univ., Durham, NC ); DeBellis, A.; Skopek, T.R. )

    1991-01-01

    Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on primary sequence. Under the appropriate conditions, all base pair (bp) substitutions, frameshifts, and deletions less than about 10 bp can be resolved from the wild type sequence using DGGE. Polymerase chain reaction (PCR) permits facile amplification of a given region of the genome. The authors have combined PCR and DGGE to: (1) localize mutations in the X-linked human androgen receptor gene; (2) analyze thousands of thioguanine-resistant mutants simultaneously; (3) examine the fidelity of several DNA polymerases used in PCR.

  9. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    PubMed Central

    Shukla, Sachet A.; Rooney, Michael S.; Rajasagi, Mohini; Tiao, Grace; Dixon, Philip M.; Lawrence, Michael S.; Stevens, Jonathan; Lane, William J.; Dellagatta, Jamie L.; Steelman, Scott; Sougnez, Carrie; Cibulskis, Kristian; Kiezun, Adam; Brusic, Vladimir; Wu, Catherine J.; Getz, Gad

    2015-01-01

    Detection of somatic mutations in HLA genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, -B and -C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 non-silent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these ‘hotspot’ sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer. PMID:26372948

  10. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia.

    PubMed

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K; Lookene, Aivar; Martín-Campos, Jesús M; Roig, Rosa; Lechuga-Sancho, Alfonso M; Sloan, John H; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-03-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  11. Mutation analysis of PALB2 gene in French breast cancer families.

    PubMed

    Damiola, Francesca; Schultz, Inès; Barjhoux, Laure; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Gauthier-Villars, Marion; de Pauw, Antoine; Luporsi, Elisabeth; Berthet, Pascaline; Delnatte, Capucine; Bonadona, Valérie; Maugard, Christine; Pujol, Pascal; Lasset, Christine; Longy, Michel; Bignon, Yves-Jean; Fricker, Jean-Pierre; Andrieu, Nadine; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Muller, Danièle

    2015-12-01

    Several population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population. PMID:26564480

  12. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    PubMed

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. PMID:26683280

  13. Structure-guided development of heterodimer-selective GPCR ligands

    PubMed Central

    Hübner, Harald; Schellhorn, Tamara; Gienger, Marie; Schaab, Carolin; Kaindl, Jonas; Leeb, Laurin; Clark, Timothy; Möller, Dorothee; Gmeiner, Peter

    2016-01-01

    Crystal structures of G protein-coupled receptor (GPCR) ligand complexes allow a rational design of novel molecular probes and drugs. Here we report the structure-guided design, chemical synthesis and biological investigations of bivalent ligands for dopamine D2 receptor/neurotensin NTS1 receptor (D2R/NTS1R) heterodimers. The compounds of types 1–3 consist of three different D2R pharmacophores bound to an affinity-generating lipophilic appendage, a polyethylene glycol-based linker and the NTS1R agonist NT(8-13). The bivalent ligands show binding affinity in the picomolar range for cells coexpressing both GPCRs and unprecedented selectivity (up to three orders of magnitude), compared with cells that only express D2Rs. A functional switch is observed for the bivalent ligands 3b,c inhibiting cAMP formation in cells singly expressing D2Rs but stimulating cAMP accumulation in D2R/NTS1R-coexpressing cells. Moreover, the newly synthesized bivalent ligands show a strong, predominantly NTS1R-mediated β-arrestin-2 recruitment at the D2R/NTS1R-coexpressing cells. PMID:27457610

  14. Novel Aromatase Inhibitors by Structure-Guided Design

    PubMed Central

    Ghosh, Debashis; Lo, Jessica; Morton, Daniel; Valette, Damien; Xi, Jingle; Griswold, Jennifer; Hubbell, Susan; Egbuta, Chinaza; Jiang, Wenhua; An, Jing; Davies, Huw M. L.

    2012-01-01

    Human cytochrome P450 aromatase catalyzes with high specificity the synthesis of estrogens from androgens. Aromatase inhibitors (AIs) such as exemestane, 6-methylideneandrosta-1,4-diene-3,17-dione, are preeminent drugs for the treatment of estrogen-dependent breast cancer. The crystal structure of human placental aromatase has shown an androgen-specific active site. By utilization of the structural data, novel C6-substituted androsta-1,4-diene-3,17-dione inhibitors have been designed. Several of the C6-substituted 2-alkynyloxy compounds inhibit purified placental aromatase with IC50 values in the nanomolar range. Antiproliferation studies in a MCF-7 breast cancer cell line demonstrate that some of these compounds have EC50 values better than 1 nM, exceeding that for exemestane. X-ray structures of aromatase complexes of two potent compounds reveal that, per their design, the novel side groups protrude into the opening to the access channel unoccupied in the enzyme–substrate/exemestane complexes. The observed structure–activity relationship is borne out by the X-ray data. Structure-guided design permits utilization of the aromatase-specific interactions for the development of next generation AIs. PMID:22951074

  15. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198*

    PubMed Central

    Santhanam, M.; Rajagopal, K.; Sugumar, L. K.; Balaji, V.

    2016-01-01

    Objectives To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520. PMID:27436824

  16. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    SciTech Connect

    Liu, W.; Qian, C.; Comeau, K.; Francke, U.

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  17. High-Resolution Melting Analysis of MED12 Mutations in Uterine Leiomyomas in Chinese Patients

    PubMed Central

    Wang, Hua; Qian, Hua; Zhou, Ruifang; Jiang, Jun; Ye, Lihua

    2015-01-01

    Objectives: Somatic mutations in mediator complex subunit 12 (MED12) have emerged as a critical genetic change in the development of uterine leiomyomas. Studies, however, have focused largely on cohorts consisting of Caucasian patients. In this study, uterine leiomyomas from Chinese patients were examined for MED12 mutations. In addition, polymerase chain reaction (PCR)-based high-resolution melting analysis (HRMA) was compared with direct sequencing as a potentially more sensitive method for the detection of MED12 mutations. Methods: Tissue samples with the pathologies of uterine leiomyoma (n=181) and other endometrial diseases (n=157) were collected from Chinese patients at the Taizhou People's Hospital and Taizhou Polytechnic College (Taizhou City, China). Genomic DNA was prepared from all samples. Both PCR-based HRMA and PCR-based direct sequencing were used to detect MED12 mutations. Results: PCR-based HRMA and direct sequencing revealed MED12 mutations in 95/181 (52.5%) and 93/181 (51.4%) uterine leiomyomas, respectively. Nearly half of these mutations (46/93) were found in a single codon, codon 131. The coincidence rate between the two methods was 98.9% (179/181) so that no statistically significant difference was evident in the application of the methodologies (χ2=0.011, p=0.916). In addition, MED12 mutations were identified in 1/157 (4.17%) case of other endometrial pathologies by both methods. Conclusions: MED12 mutations were closely associated with the development of uterine leiomyomas, as opposed to other uterine pathologies in Chinese patients, and PCR-based HRMA was found to be a reliable method for the detection of MED12 mutations. PMID:25615570

  18. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  19. Histopathologic and mutational analysis of a case of blue nevus-like melanoma.

    PubMed

    Dai, Julia; Tetzlaff, Michael T; Schuchter, Lynn M; Elder, David E; Elenitsas, Rosalie

    2016-09-01

    Blue nevi are a heterogeneous group of dermal melanocytic proliferations that share a common clinical appearance but remain controversial in their histopathologic and biologic distinction. While common blue nevi and cellular blue nevi are well-defined entities that are classified without significant controversy, the distinction between atypical cellular blue nevi and blue nevus-like melanoma remains diagnostically challenging. We report a case of a 46-year-old female with recurrent blue nevus-like melanoma of the scalp with liver metastases; mutational analysis showed GNA11 Q209L and BAP1 Q393 mutations. To our knowledge, this is the first case of blue nevus-like melanoma with GNA11 and BAP1 mutations. These particular mutations and the predilection for liver metastases in our patient's case underscore a fundamental biological relationship between blue nevi and uveal melanoma and suggest the two entities may prove amenable to similar diagnostic and prognostic testing and targeted therapies. PMID:27152652

  20. The use of selection in recovery of transgenic targets for mutation analysis.

    PubMed

    Lundberg, K S; Kretz, P L; Provost, G S; Short, J M

    1993-02-01

    Transgenic animal mutagenesis assays using lambda shuttle vectors have recently been described for isolation and characterization of spontaneous and chemical induced DNA mutations. Extensive information on lambda and E. coli genetics provides a wealth of techniques to allow selection of mutant target genes. Here we describe the modification of an E. coli host which permits two methods for the direct selection of mutant genes. These methods reduce the number of plates needed to be screened for a comparable amount of frequency data by 20-100-fold and thus provide a significant savings of the materials and time required for the screening of mutations. In addition, mutants selected by these approaches described here may alter or broaden the spectrum of mutations that are recoverable. Ultimately, a combination of selective and nonselective techniques may prove valuable for the analysis of mutations produced in vivo in transgenic animals. PMID:7678177

  1. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identified in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism. PMID:26167114

  2. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  3. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  4. Frequency of Calreticulin (CALR) Mutation and Its Clinical Prognostic Significance in Essential Thrombocythemia and Primary Myelofibrosis: A Meta-analysis.

    PubMed

    Kong, Hao; Liu, Yancheng; Luo, Sai; Li, Qiaoqiao; Wang, Qinglu

    2016-01-01

    Objective As the calreticulin (CALR) mutation frequency is significantly associated with essential thrombocythemia (ET) and primary myelofibrosis (PMF), this mutation may be an important biomarker in patients with ET and PMF. Methods We performed a literature search until April 2015 and obtained 21 relevant studies. The outcome was pooled as the effect size by using the Stata software program. Results The CALR mutation frequencies in patients with ET and PMF were 19% and 22%, respectively. The CALR mutation ratio in Asian patients with ET was 23% and higher than that in European-American patients (16%). Moreover, the mutation ratio in Asian patients with PMF was lower (21%) than that in European-American patients (23%). A slight trend toward fibrotic transformation was found in ET with CALR mutations, whereas leukemic transformation was not significant in patients with ET or PMF with CALR mutations. Conclusion CALR mutations significantly influence the incident of ET as demonstrated by the meta-analysis. PMID:27477402

  5. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis.

    PubMed

    Woolthuis, Carolien M; Mulder, André B; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M; Huls, Gerwin

    2013-10-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis. PMID:23716555

  6. TP53 Mutational Analysis Enhances the Prognostic Accuracy of IHC4 and PAM50 Assays

    PubMed Central

    Lin, Ching-Hung; Chen, I-Chiun; Huang, Chiun-Sheng; Hu, Fu-Chang; Kuo, Wen-Hung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Wu, Pei-Fang; Chang, Dwan-Ying; Wang, Ming-Yang; Chang, Chin-Hao; Chen, Wei-Wu; Lu, Yen-Shen; Cheng, Ann-Lii

    2015-01-01

    IHC4 and PAM50 assays have been shown to provide additional prognostic information for patients with early breast cancer. We evaluated whether incorporating TP53 mutation analysis can further enhance their prognostic accuracy. We examined TP53 mutation and the IHC4 score in tumors of 605 patients diagnosed with stage I–III breast cancer at National Taiwan University Hospital (the NTUH cohort). We obtained information regarding TP53 mutation and PAM50 subtypes in 699 tumors from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. We found that TP53 mutation was significantly associated with high-risk IHC4 group and with luminal B, HER2-enriched, and basal-like subtypes. Despite the strong associations, TP53 mutation independently predicted shorter relapse-free survival (hazard ratio [HR] = 1.63, P = 0.007) in the NTUH cohort and shorter breast cancer-specific survival (HR = 2.35, P = <0.001) in the METABRIC cohort. TP53 mutational analysis added significant prognostic information in addition to the IHC4 score (∆ LR-χ2 = 8.61, P = 0.002) in the NTUH cohort and the PAM50 subtypes (∆ LR-χ2 = 18.9, P = <0.001) in the METABRIC cohort. We conclude that incorporating TP53 mutation analysis can enhance the prognostic accuracy of the IHC4 and PAM50 assays. PMID:26671300

  7. Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA).

    PubMed

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    Although CRISPR technology allows specific genome alterations to be created with relative ease, detection of these events can be problematic. For example, CRISPR-induced double-strand breaks are often repaired imprecisely to generate unpredictable short indel mutations. Detection of these events requires the use of molecular screening techniques such as endonuclease assays, restriction profiling, or high-resolution melt analysis (HRMA). Here, we provide detailed protocols for HRMA-based mutation screening in Drosophila and analysis of the resulting data using the online tool HRMAnalyzer. PMID:27587781

  8. A cautionary lesson on the use of targeted methods for EGFR mutation analysis: a case report.

    PubMed

    Walsh, K; Wallace, W A; Butler, R; Mackean, M J; Harrison, D J; Stirling, D; Oniscu, A

    2014-08-01

    Epidermal growth factor receptor (EGFR) mutation analysis is recommended for lung cancer patients prior to the prescription of first-line EGFR tyrosine kinase inhibitors in order to predict response to treatment. There are many methods available to identify mutations in the EGFR gene; a large number of clinical laboratories use the therascreen EGFR RGQ PCR kit (Qiagen). We report a case where this kit detected an exon 19 deletion, predicting sensitivity to tyrosine kinase inhibitors (TKIs), which on further analysis was found to be a 2 bp indel (c.2239_2240delinsCC, p.(Leu747Pro)). Two of four published cases with this mutation were found to be associated with resistance to EGFR TKI. The sample was also tested using two other commercial kits, one of which indicated a deletion. This is a rare mutation making the erroneous detection of a deletion unlikely; however, it is important that clinical laboratories are aware of the potential failings of two commercial kits for EGFR mutation analysis. PMID:24811487

  9. Identification of eight point mutations in protein S deficiency type I--analysis of 15 pedigrees.

    PubMed

    Gómez, E; Poort, S R; Bertina, R M; Reitsma, P H

    1995-05-01

    We described molecular genetic studies of 15 patients with protein S deficiency type I (i.e. reduced total protein S antigen). All the exons of the PROS 1 gene were analyzed both by PCR and direct sequencing in all 15 probands. This analysis led to the identification of point mutations affecting eight individuals. One of these mutations (codon-25, insertion of T) has been described previously in a Dutch pedigree. The other mutations are novel and all are located in exons that code for the protein S domain that is homologous to the steroid hormone binding globulins. They include two amino acid replacements (one individual with 340 Gly--> Val, and two individuals with 467 Val --> Gly), and four frameshift mutations due to either one bp deletions (in codon 261 deletion of T and in codon 267 deletion of G) or insertions (in codon 565 insertion T and after codon 578 insertions of C). Studies performed in six families (totalling 43 subjects) showed cosegregation of the genetic abnormality with reduced plasma protein S levels, and provided genetic evidence for a heterozygous protein S deficiency in 25 of them. The yield of mutations in this study (53%) confirms that the percentage of protein S deficient cases in which a point mutation is found remains low. PMID:7482398

  10. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  11. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts.

    PubMed

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  12. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts

    PubMed Central

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  13. Mutational analysis of human T-cell leukemia virus type 2 Tax.

    PubMed Central

    Ross, T M; Minella, A C; Fang, Z Y; Pettiford, S M; Green, P L

    1997-01-01

    A mutational analysis of human T-cell leukemia virus type 2 (HTLV-2) Tax (Tax-2) was performed to identify regions within Tax-2 important for activation of promoters through the CREB/ATF or NF-kappaB/Rel signaling pathway. Tax-2 mutations within the putative zinc-binding region as well as mutations at the carboxy terminus disrupted CREB/ATF transactivation. A single mutation within the central proline-rich region of Tax-2 disrupted the transactivation of the NF-kappaB/Rel pathway. Surprisingly, this mutation, which is thought to be in a separate activation domain, was suppressed by mutations within or around the putative zinc-binding region, suggesting an interaction between these two regions. These analyses indicate that the functional regions or domains important for transactivation through the CREB/ATF or NF-kappaB/Rel signaling pathway are similar, but not identical, in Tax-1 and Tax-2. Identification of these distinct Tax-2 mutants should facilitate comparative biological studies of HTLV-1 and HTLV-2 and ultimately lead to the determination of the functional importance of Tax trans-acting capacities in T-lymphocyte transformation by HTLV. PMID:9343258

  14. IGF1R mutation analysis in short children with Silver-Russell syndrome features

    PubMed Central

    Soellner, Lukas; Spengler, Sabrina; Begemann, Matthias; Wollmann, Hartmut A.; Binder, Gerhard; Eggermann, Thomas

    2013-01-01

    The insulin-like growth factor 1 receptor (IGF1R) is a key factor in intrauterine and postnatal growth by mediating the biological function of IGF-I. Mutations of IGF1R gene are usually associated with growth retardation, but the clinical picture of IGF1R mutation carriers is heterogeneous. Indeed, these patients show clinical signs compatible with Silver-Russell syndrome (SRS), and some IGF1R mutation carriers have been identified in SRS cohorts. We therefore investigated deoxyribonucleic acid samples of 19 growth-retarded patients with SRS features. Apart from 8 non-pathogenic variants, we detected heterozygosity for the unknown duplication, c.1056_1057dup, leading to a premature termination in one patient and his growth retarded sister. Due to its nature, we assumed that this variant is probably pathogenic. However, the patient and his sister exhibited spontaneous catch-up growth in later life. We therefore hypothesize that the c.1056_1057dup does not result in a significant disruption to the GH-IGFI axis. Thus, this IGF1R mutation without obvious clinical consequence might challenge the actual concept of IGF1R haploinsufficiency as a general cause for disturbed growth in IGF1R mutation carriers. In the future, mutation analysis of IGF1R should be considered in growth-retarded patients with microcephaly and minor SRS features, but not in probands with the characteristic SRS phenotype including macrocephaly.

  15. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  16. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic.

    PubMed

    Borecka, M; Zemankova, P; Vocka, M; Soucek, P; Soukupova, J; Kleiblova, P; Sevcik, J; Kleibl, Z; Janatova, M

    2016-05-01

    Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among common solid cancer diagnoses. It has been shown that up to 10% of PDAC cases have a familial component. Characterization of PDAC-susceptibility genes could reveal high-risk individuals and patients that may benefit from tailored therapy. Hereditary mutations in PALB2 (Partner and Localizer of BRCA2) gene has been shown to predispose, namely to PDAC and breast cancers; however, frequencies of mutations vary among distinct geographical populations. Using the combination of sequencing, high-resolution melting and multiplex ligation-dependent probe amplification analyses, we screened the entire PALB2 gene in 152 unselected Czech PDAC patients. Truncating mutations were identified in three (2.0%) patients. Genotyping of found PALB2 variants in 1226 control samples revealed one carrier of PALB2 truncating variant (0.08%; P = 0.005). The mean age at PDAC diagnosis was significantly lower among PALB2 mutation carriers (51 years) than in non-carriers (63 years; P = 0.016). Only one patient carrying germline PALB2 mutation had a positive family breast cancer history. Our results indicate that hereditary PALB2 mutation represents clinically considerable genetic factor increasing PDAC susceptibility in our population and that analysis of PALB2 should be considered not only in PDAC patients with familial history of breast or pancreatic cancers but also in younger PDAC patients without family cancer history. PMID:27106063

  17. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis.

    PubMed

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  18. Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases.

    PubMed

    Choi, Byung-Ok; Hwang, Jung Hee; Cho, Eun Min; Jeong, Eun Hye; Hyun, Young Se; Jeon, Hyeon Jeong; Seong, Ki Min; Cho, Nam Soo; Chung, Ki Wha

    2010-06-30

    Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make the exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mtDNA mutations in 61 Korean unrelated families (or isolated patients) with MELAS or MERRF. In particular, the mtDNA sequences were completely determined for 49 patients. From the mutational analysis of mtDNA obtained from blood, 5 confirmed pathogenic mutations were identified in 17 families, and 4 unreported pathogenically suspected mutations were identified in 4 families. The m.3243A>G in the tRNA(Leu(UUR))was predominantly observed in 10 MELAS families, and followed by m.8344A>G in the tRNA(Lys) of 4 MERRF families. Most pathogenic mutations showed heteroplasmy, and the rates were considerably different within the familial members. Patients with a higher rate of mutations showed a tendency of having more severe clinical phenotypes, but not in all cases. This study will be helpful for the molecular diagnosis of mitochondrial diseases, as well as establishment of mtDNA database in Koreans. PMID:20440095

  19. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis

    PubMed Central

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  20. Mutation Analysis of the CYP21A2 Gene in the Iranian Population

    PubMed Central

    Rabbani, Bahareh; Mahdieh, Nejat; Ashtiani, Mohammad Tahgi Haghi; Larijani, Bagher; Akbari, Mohammad Taghi; New, Maria; Parsa, Alan; Schouten, Jan P.

    2012-01-01

    Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene. Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions. Results: The most frequent mutations detected were gene deletions and chimera (31.8%). Other mutation frequencies were as follows: Q318X, 15.9%; I2G, 14.8%; I172N, 5.8%; gene duplication, 5.7%; R356W, 8%; and E6 cluster mutations, 2.3%. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3%, 85.7%, 100%, and 0, respectively. Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans. PMID:22017335

  1. High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations

    PubMed Central

    Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin

    2009-01-01

    JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136

  2. MECP2 mutations in Czech patients with Rett syndrome and Rett-like phenotypes: novel mutations, genotype-phenotype correlations and validation of high-resolution melting analysis for mutation scanning.

    PubMed

    Zahorakova, Daniela; Lelkova, Petra; Gregor, Vladimir; Magner, Martin; Zeman, Jiri; Martasek, Pavel

    2016-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder characterized by developmental regression with loss of motor, communication and social skills, onset of stereotypic hand movements and often seizures. RTT is primarily caused by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). We established a high-resolution melting (HRM) technique for mutation scanning of the MECP2 gene and performed analyses in Czech patients with RTT, autism spectrum conditions and intellectual disability with Rett-like features. In the cases with confirmed MECP2 mutations, we determined X-chromosome inactivation (XCI), examined the relationships between genotype and clinical severity and evaluated the modifying influence of XCI. Our results demonstrate that HRM analysis is a reliable method for the detection of point mutations, small deletions and duplications in the MECP2 gene. We identified 29 pathogenic mutations in 75 girls, including four novel mutations: c.155_1189del1035;909_932inv;insC, c.573delC, c.857_858dupAA and c.1163_1200del38. Skewed XCI (ratio >75%) was found in 19.3% of the girls, but no gross divergence in clinical severity was observed. Our findings confirm a high mutation frequency in classic RTT (92%) and a correlation between the MECP2 mutation type and clinical severity. We also demonstrate limitations of XCI in explaining all of the phenotypic differences in RTT. PMID:26984561

  3. Structural analysis of thermostabilizing mutations of cocaine esterase

    SciTech Connect

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  4. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    PubMed Central

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618

  5. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit.

    PubMed

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C; Peltoketo, Hellevi; Christiansen, Ole B; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T; Laan, Maris

    2012-08-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ~50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618

  6. Mutation analysis of the CYP21A2 gene in congenital adrenal hyperplasia.

    PubMed

    Forouzanfar, K; Seifi, M; Hashemi-Gorji, F; Karimi, N; Estiar, M A; Karimoei, M; Sakhinia, E; Karimipour, M; Ghergherehchi, R

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive enzymatic disorder involving the synthesis of adrenal corticosteroids. 21-Hydroxylase deficiency (21-OHD) is the most common form of the disease which is observed in more than 90% of patients with CAH. Early identification of mutations in the genes involved in this disease is critical. A marker of the disease, errors in the CYP21A2 gene, is thought to be part of the pathophysiology of CAH. Therefore, the identification of gene mutations would be very beneficial in the early detection of CAH. This research was a descriptive epidemiological study conducted on individuals elected by the inclusion criteria whom were referred to the Genetic Diagnosis Center of Tabriz during 2012 to 2013. After sampling and DNA extraction, PCR for the detection of mutations in the CYP21A2 gene was performed followed by sequencing. For data analysis, the results of sequencing were compared with the reference gene by blast, Gene Runner and MEGA-5 software. Obtained changes were compared with NCBI databases. The analysis of the sequencing determined the mutations located in Exons 6, 7, 8 and 10. The most frequent findings were Q318X (53%) and R356W (28%). Exon 6 cluster (7%), E431k (4%), V237E (2%), V281L (2%), E351K (2%), R426C (2%) were also frequent in our patients. The most frequent genotype was compound heterozygote, Q318X/R356W. Three rare mutations in our study were E431K, E351K and R426C. Observed mutation frequencies in this study were much higher than those reported in previous studies in Iranian populations. Thus, it seems that it is necessary to follow-up screening programs and use sequencing methods to better identify mutations in the development of the disease. PMID:26278268

  7. Structural Analysis of Mitochondrial Mutations Reveals a Role for Bigenomic Protein Interactions in Human Disease

    PubMed Central

    Lloyd, Rhiannon E.; McGeehan, John E.

    2013-01-01

    Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy. PMID

  8. Congenital central hypoventilation syndrome: Mutation analysis of the receptor tyrosine kinase RET

    SciTech Connect

    Bolk, S.; Angrist, M.; Schwartz, S.; Chakravarti, A.

    1996-06-28

    Congenital central hypoventilation syndrome (CCHS) usually occurs as an isolated phenotype. However, 16% of the index cases are also affected with Hirschsprung disease (HSCR). Complex segregation analysis suggests that CCHS is familial and has the same inheritance pattern with or without HSCR. We postulate that alteration of normal function of the receptor tyrosine kinase, RET, may contribute to CCHS based on RET`s expression pattern and the identification of RET mutations in HSCR patients. To further explore the nature of the inheritance of CCHS, we have undertaken two main routes of investigation: cytogenetic analysis and mutation detection. Cytogenetic analysis of metaphase chromosomes showed normal karyotypes in 13 of the 14 evaluated index cases; one index case carried a familial pericentric inversion on chromosome 2. Mutation analysis showed no sequence changes unique to index cases, as compared to control individuals, and as studied by single strand conformational polymorphism (SSCP) analysis of the coding region of RET. We conclude that point mutations in the RET coding region cannot account for a substantial fraction of CCHS in this patient population, and that other candidate genes involved in neural crest cell differentiation and development must be considered. 54 refs.

  9. Mutational analysis of the monopartite geminivirus beet curly top virus.

    PubMed

    Stanley, J; Latham, J R; Pinner, M S; Bedford, I; Markham, P G

    1992-11-01

    Mutants of the monopartite geminivirus beet curly top virus have been screened for infectivity and symptom development in Nicotiana benthamiana and Beta vulgaris, for replication competence in N. benthamiana leaf discs, and for transmission by the leafhopper Circulifer tenellus. Disruption of open reading frame (ORF) V2 by the introduction of a termination codon resulted in symptomless infection of N. benthamiana associated with low levels of virus and reduced single-stranded (ss) DNA and prevented systemic infection of B. vulgaris. Reduced levels of ssDNA were produced by the mutant in N. benthamiana leaf discs, suggesting that V2 affects the synthesis or accumulation of this viral DNA form. Mutants in which ORF C2 had been truncated by the introduction of termination codons or by frame-shifting remained highly infectious and induced severe symptoms in both N. benthamiana and B. vulgaris. Similarly, a mutant containing a termination codon within ORF C3 was highly infectious and induced severe symptoms in N. benthamiana although infectivity in B. vulgaris was greatly reduced, symptoms were extremely mild, and virus levels were low. A synergistic effect of a double mutation in ORFs C2 and C3, manifested by the inability of mutants to systemically infect N. benthamiana and the production of reduced amounts of ssDNA in N. benthamiana leaf discs, suggests that both ORFs are functional in this host. A mutant containing a termination codon within the 5' terminus of ORF C4 produced severe symptoms in both N. benthamiana and B. vulgaris resembling those induced by wild-type virus. Comparison with the phenotypes of previously characterized ORF C4 mutants suggests that a conserved core sequence of this ORF is an important symptom determinant. ORF C2, C3, and C4 mutants produced virus particles and were transmitted by C. tenellus, eliminating agroinoculation as a contributory factor to the mutant phenotypes. Our results are compared with those derived from mutagenesis studies

  10. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  11. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  12. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis

    PubMed Central

    Han, Feng; Hu, Rong; Yang, Hua; Liu, Jian; Sui, Jianmei; Xiang, Xin; Wang, Fan; Chu, Liangzhao; Song, Shibin

    2016-01-01

    Background We conducted this meta-analysis based on eligible trials to investigate the relationship between phosphatase and tensin homolog (PTEN) genetic mutation and glioma patients’ survival. Methods PubMed, Web of Science, and EMBASE were searched for eligible studies regarding the relationship between PTEN genetic mutation and glioma patients’ survival. The primary outcome was the overall survival of glioma patient with or without PTEN genetic mutation, and second outcome was prognostic factors for the survival of glioma patient. A fixed-effects or random-effects model was used to pool the estimates according to the heterogeneity among the included studies. Results Nine cohort studies, involving 1,173 patients, were included in this meta-analysis. Pooled results suggested that glioma patients with PTEN genetic mutation had a significant shorter overall survival than those without PTEN genetic mutation (hazard ratio [HR] =2.23, 95% confidence interval [CI]: 1.35, 3.67; P=0.002). Furthermore, subgroup analysis indicated that this association was only observed in American patients (HR =2.19, 95% CI: 1.23, 3.89; P=0.008), but not in Chinese patients (HR =1.44, 95% CI: 0.29, 7.26; P=0.657). Histopathological grade (HR =1.42, 95% CI: 0.07, 28.41; P=0.818), age (HR =0.94, 95% CI: 0.43, 2.04; P=0.877), and sex (HR =1.28, 95% CI: 0.55, 2.98; P=0.564) were not significant prognostic factors for the survival of patients with glioma. Conclusion Current evidence indicates that PTEN genetic mutation is associated with poor prognosis in glioma patients. However, this finding is derived from data in observational studies, potentially subject to selection bias, and hence well conducted, high-quality randomized controlled trials are warranted. PMID:27366085

  13. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  14. A Performance Analysis of Evolutionary Pattern Search with Generalized Mutation Steps

    SciTech Connect

    Hart, W.; Hunter, K.

    1999-02-10

    Evolutionary pattern search algorithms (EPSAs) are a class of evolutionary algorithms (EAs) that have convergence guarantees on a broad class of nonconvex continuous problems. In previous work we have analyzed the empirical performance of EPSAs. This paper revisits that analysis and extends it to a more general model of mutation. We experimentally evaluate how the choice of the set of mutation offsets affects optimization performance for EPSAs. Additionally, we compare EPSAs to self-adaptive EAs with respect to robustness and rate of optimization. All experiments employ a suite of test functions representing a range of modality and number of multiple minima.

  15. Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis.

    PubMed

    Damerla, Rama Rao; Chatterjee, Bishwanath; Li, You; Francis, Richard J B; Fatakia, Sarosh N; Lo, Cecilia W

    2014-04-01

    Mutation mapping in mice can be readily accomplished by genome wide segregation analysis of polymorphic DNA markers. In this study, we showed the efficacy of Ion Torrent next generation sequencing for conducting genome-wide scans to map and identify a mutation causing congenital heart disease in a mouse mutant, Bishu, recovered from a mouse mutagenesis screen. The Bishu mutant line generated in a C57BL/6J (B6) background was intercrossed with another inbred strain, C57BL/10J (B10), and the resulting B6/B10 hybrid offspring were intercrossed to generate mutants used for the mapping analysis. For each mutant sample, a panel of 123 B6/B10 polymorphic SNPs distributed throughout the mouse genome was PCR amplified, bar coded, and then pooled to generate a single library used for Ion Torrent sequencing. Sequencing carried out using the 314 chip yielded >600,000 usable reads. These were aligned and mapped using a custom bioinformatics pipeline. Each SNP was sequenced to a depth >500×, allowing accurate automated calling of the B6/B10 genotypes. This analysis mapped the mutation in Bishu to an interval on the proximal region of mouse chromosome 4. This was confirmed by parallel capillary sequencing of the 123 polymorphic SNPs. Further analysis of genes in the map interval identified a splicing mutation in Dnaic1(c.204+1G>A), an intermediate chain dynein, as the disease causing mutation in Bishu. Overall, our experience shows Ion Torrent amplicon sequencing is high throughput and cost effective for conducting genome-wide mapping analysis and is easily scalable for other high volume genotyping analyses. PMID:24306492

  16. Analysis of KRAS and BRAF genes mutation in the central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Krawczyk, Paweł; Jarosz, Bożena; Sawicki, Marek; Szumiłło, Justyna; Trojanowski, Tomasz; Milanowski, Janusz

    2016-05-01

    KRAS mutations are associated with tumor resistance to EGFR TKIs (erlotinib, gefitinib) and to monoclonal antibody against EGFR (cetuximab). Targeted treatment of mutated RAS patients is still considered as a challenge. Inhibitors of c-Met (onartuzumab or tiwantinib) and MEK (selumetinib-a dual inhibitor of MEK1 and MEK2) signaling pathways showed activity in patients with mutations in KRAS that can became an effective approach in carriers of such disorders. BRAF mutation is very rare in patients with NSCLC, and its presence is associated with sensitivity of tumor cells to BRAF inhibitors (vemurafenib, dabrafenib). In the present study, the frequency and type of KRAS and BRAF mutation were assessed in 145 FFPE tissue samples from CNS metastases of NSCLC. In 30 patients, material from the primary tumor was simultaneously available. Real-time PCR technique with allele-specific molecular probe (KRAS/BRAF Mutation Analysis Kit, Entrogen, USA) was used for molecular tests. KRAS mutations were detected in 21.4 % of CNS metastatic lesions and in 23.3 % of corresponding primary tumors. Five mutations were identified both in primary and in metastatic lesions, while one mutation only in primary tumor and one mutation only in the metastatic tumor. Most of mutations were observed in codon 12 of KRAS; however, an individual patient had diagnosed a rare G13D and Q61R substitutions. KRAS mutations were significantly more frequent in adenocarcinoma patients and smokers. Additional analysis indicated one patient with rare coexistence of KRAS and DDR2 mutations. BRAF mutation was not detected in the examined materials. KRAS frequency appears to be similar in primary and CNS. PMID:25902737

  17. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics.

    PubMed

    Gatto, Francesco; Schulze, Almut; Nielsen, Jens

    2016-07-19

    Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. PMID:27396332

  18. Analysis of recoverin mutations in a Leber`s congenital amaurosis pedigree

    SciTech Connect

    Freud, C.L.; Sunness, J.; Goldberg, M.; Valle, D.

    1994-09-01

    Recoverin is a calcium binding protein abundantly and specifically expressed in photoreceptors. There are four EF hand Ca2+ binding domains but only two, the second and third, are thought to be functional. We have analyzed the structural gene for recoverin in patients with autosomal dominant retinitis pigmentosa and Leber`s congenital amaurosis. We found one patient with Leber`s congenital amaurosis who is a genetic compound for mutations at the recoverin locus. The patient is a 17-year-old product of a nonconsanguineous union who was blind from birth but is otherwise normal. Her ocular fundi are pale with {open_quotes}punched out{close_quotes} maculae, and her ERG is extinguished. One of the recoverin mutations, G113S, changes the third EF hand, which is the only one of the four in recoverin that binds calcium in the crystal structure. The location of this substitution suggests a possible disruption of the calcium binding properties of the mutant protein. We did not find the G113S mutation in 60 controls, or 67 other Leber`s congenital amaurosis patients. The second mutation, -374 G{yields}A, is in the putative promoter region of the recoverin gene, approximately 370 base pairs 5{prime} of the transcriptional start site. We did not find this mutation in 150 normal controls, or in 67 other Leber`s congenital amaurosis patients. Analysis of the possible consequences of -374 G{yields}A on promoter function is under investigation.

  19. AB036. Analysis of human mitochondrial genome mutations of Vietnamese patients tentatively diagnosed with encephalomyopathy

    PubMed Central

    Nghia, Phan Tuan; Thai, Trinh Hong; Hue, Truong Thi; Van Minh, Nguyen; Khanh, Phung Bao; Hiep, Tran Duc; Anh, Tran Kieu; Loan, Nguyen Thi Hong; Van, Nguyen Thi Hong; Anh, Pham Van; Hung, Cao Vu; Anh, Le Ngoc

    2015-01-01

    Human mitochondrial genome consists of 16,569 bp, and replicates independently from the nuclear genome. Mutations in mitochondrial genome are usually causative factors of various metabolic disorders, especially those of encephalomyopathy. DNA analysis is the most reliable method for detection of mitochondrial genome mutations, and accordingly an excellent diagnostic tool for mitochondrial mutation-related diseases. In this study, 19 different mitochondrial genome mutations including A3243G, A3251G, T3271C and T3291C (MELAS); A8344G, T8356C and G8363A (MERRF); G3460A, G11778A and T14484C (LHON); T8993G/C and T9176G (Leigh); A1555G (deafness) and A4225G, G4298A, T10010C, T14727C, T14728C, T14709C (encephalomyopathy in general) were analyzed using PCR-RFLP in combination with DNA sequencing. In addition, a real-time PCR method using locked nucleic acid (LNA) Taqman probe was set up for heteroplasmy determination. Screening of 283 tentatively diagnosed encephalomyopathy patients revealed 7 cases of A3243G, 1 case of G11778A, 1 case of A1555G, 1 case of A4225G, 1 case G4298A, and 1 case of 6 bp (ACTCCT/CTCCTA) deletion. Using the LNA Taqman probe real-time PCR, the heteroplasmy of some point mutations was determined and the results support a potential relationship between heteroplasmy level and severity of the disease.

  20. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    SciTech Connect

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT/sup -/ human lymphoblast colonies induced by eight repetitive 150 ..mu..M HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism.

  1. Mutation analysis of the polycystic kidney disease 1 (PKD1) gene

    SciTech Connect

    Peral, B.; Ward, C.J.; Thomas, S.

    1994-09-01

    The gene which is mutated in most cases of autosomal dominant polycystic kidney disease (ADPKD), PKD1, has recently been identified on chromosome 16. Three quarters of this gene lies in a region of genomic DNA that is duplicated elsewhere on chromosome 16. Consequently, the search for mutations has proved difficult and our efforts so far have concentrated on screening the single copy 3{prime} region of the gene. We have employed the methods of field inversion gel electrophoresis, conventional Southern blotting, RT-PCR and heteroduplex analysis. From the examination of DNA of approximately 300 PKD1 patients, two deletions have been identified. One is a 5.5 kb genomic deletion, which is transmitted with the disease and results in a 3 kb deletion of the PKD1 transcript. The other is a de novo genomic deletion of 2 kb which removes {approximately}500 bp of the transcript. In addition, analysis of lymphoblast RNA by RT-PCR from 50 patients has revealed one splicing mutation resulting in the removal of a 135 bp exon. Further analysis of the single copy region of this gene is underway and strategies to screen the duplicated area of the gene for mutations are being explored.

  2. Screening two mutations in the dysferlin gene by exon capture and sequence analysis: A case report

    PubMed Central

    WANG, XUEYAN; YANG, YUN; ZHOU, RONG

    2016-01-01

    A patient with progressive muscular atrophy was assessed for the disease-associated genes by next-generation sequencing technology and exon trap and sequence analysis. The results of the investigation identified 399 genes, covering all exons in addition to 10 bp on either side, which are specific to 659 types of neuromuscular disorders, including hypotypes. Exon capture and sequence analysis revealed that the patient possessed two splice site mutations in the dysferlin (DYSF) gene, c.144+1G>A and c.342+1G>T, and the presence of the mutations was confirmed by Sanger sequencing. The patient's mother and sister were also assessed and confirmed to have mutations within the DYSF gene, the mother with c.342+1G>T and the sister with c.144+1G>A. The two splice site mutations in the DYSF gene, c.144+1G>A and c.342+1G>T, have not previously been reported. Therefore, exon capture and sequence analysis is able to rapidly and efficiently screen for genetic alterations in neuromuscular disorders.

  3. Mutational analysis of COQ2 in patients with MSA in Italy.

    PubMed

    Ronchi, Dario; Di Biase, Ernesto; Franco, Giulia; Melzi, Valentina; Del Sorbo, Francesca; Elia, Antonio; Barzaghi, Chiara; Garavaglia, Barbara; Bergamini, Christian; Fato, Romana; Mora, Gabriele; Del Bo, Roberto; Fortunato, Francesco; Borellini, Linda; Trezzi, Ilaria; Compagnoni, Giacomo Monzio; Monfrini, Edoardo; Frattini, Emanuele; Bonato, Sara; Cogiamanian, Filippo; Ardolino, Gianluca; Priori, Alberto; Bresolin, Nereo; Corti, Stefania; Comi, Giacomo Pietro; Di Fonzo, Alessio

    2016-09-01

    COQ2 mutations have been implicated in the etiology of multiple system atrophy (MSA) in Japan. However, several genetic screenings have not confirmed the role of its variants in the disease. We performed COQ2 sequence analysis in 87 probable MSA. A homozygous change p.A43G was found in an MSA-C patient. Cosegregation analysis and the evaluation of CoQ10 content in muscle and fibroblasts did not support the pathogenic role of this variant. PMID:27394078

  4. Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas

    PubMed Central

    Pinto, Pedro; Peixoto, Ana; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Pinheiro, Manuela; Leça, Luís; Martins, Ana Teresa; Ferreira, Verónica; Bartosch, Carla

    2016-01-01

    BRCA1 and BRCA2 mutations are responsible for hereditary breast and ovarian cancer, but they also confer an increased risk for the development of rarer cancers associated with this syndrome, namely, cancer of the pancreas, male breast, peritoneum, and fallopian tube. The objective of this work was to quantify the contribution of the founder mutations BRCA2 c.156_157insAlu and BRCA1 c.3331_3334del for cancer etiology in unselected hospital-based cohorts of Portuguese patients diagnosed with these rarer cancers, by using a strategy that included testing of archival tumor tissue. A total of 102 male breast, 68 pancreatic and 33 peritoneal/fallopian tube carcinoma cases were included in the study. The BRCA2 c.156_157insAlu mutation was observed with a frequency of 7.8% in male breast cancers, 3.0% in peritoneal/fallopian tube cancers, and 1.6% in pancreatic cancers, with estimated total contributions of germline BRCA2 mutations of 14.3%, 5.5%, and 2.8%, respectively. No carriers of the BRCA1 c.3331_3334del mutation were identified. During our study, a patient with an ampulla of Vater carcinoma was incidentally found to carry the BRCA2 c.156_157insAlu mutation, so we decided to test a consecutive series of additional 15 ampullary carcinomas for BRCA1/BRCA2 mutations using a combination of direct founder mutation testing and full gene analysis with next generation sequencing. BRCA2 mutations were observed with a frequency of 14.3% in ampulla of Vater carcinomas. In conclusion, taking into account the implications for both the individuals and their family members, we recommend that patients with these neoplasias should be offered BRCA1/BRCA2 genetic testing and we here show that it is feasible to test for founder mutations in archival tumor tissue. Furthermore, we identified for the first time a high frequency of germline BRCA2 mutations in ampullary cancers. PMID:27532258

  5. Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas.

    PubMed

    Pinto, Pedro; Peixoto, Ana; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Pinheiro, Manuela; Leça, Luís; Martins, Ana Teresa; Ferreira, Verónica; Bartosch, Carla; Teixeira, Manuel R

    2016-01-01

    BRCA1 and BRCA2 mutations are responsible for hereditary breast and ovarian cancer, but they also confer an increased risk for the development of rarer cancers associated with this syndrome, namely, cancer of the pancreas, male breast, peritoneum, and fallopian tube. The objective of this work was to quantify the contribution of the founder mutations BRCA2 c.156_157insAlu and BRCA1 c.3331_3334del for cancer etiology in unselected hospital-based cohorts of Portuguese patients diagnosed with these rarer cancers, by using a strategy that included testing of archival tumor tissue. A total of 102 male breast, 68 pancreatic and 33 peritoneal/fallopian tube carcinoma cases were included in the study. The BRCA2 c.156_157insAlu mutation was observed with a frequency of 7.8% in male breast cancers, 3.0% in peritoneal/fallopian tube cancers, and 1.6% in pancreatic cancers, with estimated total contributions of germline BRCA2 mutations of 14.3%, 5.5%, and 2.8%, respectively. No carriers of the BRCA1 c.3331_3334del mutation were identified. During our study, a patient with an ampulla of Vater carcinoma was incidentally found to carry the BRCA2 c.156_157insAlu mutation, so we decided to test a consecutive series of additional 15 ampullary carcinomas for BRCA1/BRCA2 mutations using a combination of direct founder mutation testing and full gene analysis with next generation sequencing. BRCA2 mutations were observed with a frequency of 14.3% in ampulla of Vater carcinomas. In conclusion, taking into account the implications for both the individuals and their family members, we recommend that patients with these neoplasias should be offered BRCA1/BRCA2 genetic testing and we here show that it is feasible to test for founder mutations in archival tumor tissue. Furthermore, we identified for the first time a high frequency of germline BRCA2 mutations in ampullary cancers. PMID:27532258

  6. Analysis of factor VIII gene inversion mutations in 166 unrelated haemophilia A families: frequency and utility in genetic counselling.

    PubMed

    Vnencak-Jones, C L; Iii, J A; Janco, R L; Cohen, M P; Dupont, W D; Kazazian, H H; Rossiter, J P

    1996-01-01

    Haemophilia A is an X-linked recessive bleeding disorder of variable severity that is caused by a deficiency of coagulation factor VIII (FVIII). The disease results from mutations in the FVIII gene which are heterogenous both in type and position within the gene. Recently, however, inversion mutations were found to be common to patients with severe disease (Lakich et al., 1993). These mutations result from intrachromosomal recombinations between DNA sequences in the A gene (located in intron 22 of the FVIII gene) and one of two A genes upstream to the FVIII gene. To determine the frequency of these inversions we performed Southern blot analysis on banked DNA from 166 consecutive, unrelated haemophilia A families previously referred for carrier or prenatal testing. In 57/166 (34%) families an inversion or other unique mutation was detected. The distal and proximal A genes lying upstream to the FVIII gene were involved in 79% and 18% of the mutations, respectively, but in 3% of the families the sequences involved in the mutation have not been identified. In 20/38 (53%) families with severe disease a mutation was detected. Interestingly, the relative risk of developing inhibitors in patients with FVIII gene inversions or other 3° mutations detected by this assay, as compared to patients with no detectable mutation by this assay, was 3.8. In families for which a mutation is detected, direct DNA testing is an accurate and inexpensive alternative to linkage analysis for prenatal or haemophilia A carrier testing. PMID:27213900

  7. Mutations analysis of C1 inhibitor coding sequence gene among Portuguese patients with hereditary angioedema.

    PubMed

    Martinho, A; Mendes, J; Simões, O; Nunes, R; Gomes, J; Dias Castro, E; Leiria-Pinto, P; Ferreira, M B; Pereira, C; Castel-Branco, M G; Pais, L

    2013-04-01

    Mutations that modify the amino acid sequence of C1-INH (except Val458Met) are associated with HAE. More than 200 different mutations scattering the entire C1-INH gene have been reported. The main objective of this study was to report the mutational findings in a HAE cohort of 138 Portuguese patients followed in specialized consultation all over the country. DNA was extracted from peripheral blood with QiaSymphony BioRobot (QIAGEN Portugal). The sequence reactions were performed by using a DNA sequencing kit (Big Dye terminator cycle sequencing v1.1/v3.1 from Applied Biosystems) and sequencing products were immediately submitted to direct sequencing on an Applied Biosystem 3130 DNA Analyser. DNA sequences were analyzed at four different stages. Raw data and sequence alignments of all 8 exons and intron-exon boundaries were performed for each patient individually with SeqScape software and using SERPING1 gene NG_009625 of 24,300 bp (12-March-2011) as reference sequence. Sequence comparisons among patients and controls were performed with software CodonCode Aligner v.3.7 from CodonCode Corp and with Geneious 4.5 from Biomatters Lda. A total of 94 point mutations were observed among patients, and 67% of them were located on exon 8. In addition, we noticed one not described stop codon at position c.1459 C>T in three different patients. Translation termination was also found on exon 3 and 7, as a result of mutations at positions c.481A>7, c.1174C>T. In this population, the prevalence of the missense mutation p.Arg444Cys was 39 out of 42. Mutational analysis revealed 22 different pathogenic mutations, of which 64% were not described on HAE database. Although identification of disease causing mutations is not necessary to establish HAE diagnosis, studies on gene expression and characterization of rearrangements in SERPING1 gene are suggested in order to get new insights on function and genetic tests of C1 inhibitor. PMID:23123409

  8. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations

    PubMed Central

    2012-01-01

    Background Poikiloderma with Neutropenia (PN) is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. Results We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding. Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. Conclusions In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the main cutaneous and

  9. Mutation analysis of TMC1 identifies four new mutations and suggests an additional deafness gene at locus DFNA36-DFNB7/11

    PubMed Central

    Hilgert, Nele; Alasti, Fatemeh; Dieltjens, Nele; Pawlik, Barbara; Wollnik, Bernd; Uyguner, Oya; Delmaghani, Sedigheh; Weil, Dominique; Petit, Christine; Danis, Evi; Yang, Tao; Pandelia, Efthimia; Petersen, Michael B.; Goossens, Dirk; Favero, Jurgen Del; Sanati, Mohammad Hossein; Smith, Richard JH; Van Camp, Guy

    2016-01-01

    Hearing loss is the most frequent sensorineural disorder, affecting 1 in 1000 newborns. In more than half of these babies, the hearing loss is inherited. Hereditary hearing loss is a very heterogeneous trait, with about 100 gene localizations and 44 gene identifications for nonsyndromic hearing loss. TMC1 has been identified as the disease-causing gene for autosomal dominant and autosomal recessive nonsyndromic hearing loss at the DFNA36 and DFNB7/11 loci, respectively. To date, two dominant and 18 recessive TMC1 mutations have been reported as the cause of hearing loss in 34 families. In this report, we describe linkage to DFNA36 and DFNB7/11 in one family with dominant and 10 families with recessive nonsyndromic sensorineural hearing loss. In addition, mutation analysis of TMC1 was performed in 51 familial Turkish patients with autosomal recessive hearing loss. TMC1 mutations were identified in seven of the families segregating recessive hearing loss. The pathogenic variants we found included two known mutations, c.100C>T and c.1165C>T, and four new mutations, c.2350C>T, c.776+1G>A, c.767_768del and c.1166G>A. The absence of TMC1 mutations in the remaining six linked families implies the presence of mutations outside the coding region of this gene, or alternatively, at least one additional deafness-causing gene in this region. The analysis of copy number variations in TMC1 as well as DNA sequencing of 15 additional candidate genes did not reveal any proven pathogenic changes, leaving both hypotheses open. PMID:18616530

  10. Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity

    PubMed Central

    Tan, Hua; Bao, Jiguang; Zhou, Xiaobo

    2015-01-01

    Cancer is widely recognized as a genetic disease in which somatic mutations are sequentially accumulated to drive tumor progression. Although genomic landscape studies are informative for individual cancer types, a comprehensive comparative study of tumorigenic mutations across cancer types based on integrative data sources is still a pressing need. We systematically analyzed ~106 non-synonymous mutations extracted from COSMIC, involving ~8000 genome-wide screened samples across 23 major human cancers at both the amino acid and gene levels. Our analysis identified cancer-specific heterogeneity that traditional nucleotide variation analysis alone usually overlooked. Particularly, the amino acid arginine (R) turns out to be the most favorable target of amino acid alteration in most cancer types studied (P < 10−9, binomial test), reflecting its important role in cellular physiology. The tumor suppressor gene TP53 is mutated exclusively with the HYDIN, KRAS, and PTEN genes in large intestine, lung, and endometrial cancers respectively, indicating that TP53 takes part in different signaling pathways in different cancers. While some of our analyses corroborated previous observations, others indicated relevant candidates with high priority for further experimental validation. Our findings have many ramifications in understanding the etiology of cancer and the underlying molecular mechanisms in particular cancers. PMID:26212640

  11. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors.

    PubMed

    Robbins, Christiane M; Tembe, Waibov A; Baker, Angela; Sinari, Shripad; Moses, Tracy Y; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Barrett, Michael; Long, James; Chinnaiyan, Arul; Lowey, James; Suh, Edward; Pearson, John V; Craig, David W; Agus, David B; Pienta, Kenneth J; Carpten, John D

    2011-01-01

    Advanced prostate cancer can progress to systemic metastatic tumors, which are generally androgen insensitive and ultimately lethal. Here, we report a comprehensive genomic survey for somatic events in systemic metastatic prostate tumors using both high-resolution copy number analysis and targeted mutational survey of 3508 exons from 577 cancer-related genes using next generation sequencing. Focal homozygous deletions were detected at 8p22, 10q23.31, 13q13.1, 13q14.11, and 13q14.12. Key genes mapping within these deleted regions include PTEN, BRCA2, C13ORF15, and SIAH3. Focal high-level amplifications were detected at 5p13.2-p12, 14q21.1, 7q22.1, and Xq12. Key amplified genes mapping within these regions include SKP2, FOXA1, and AR. Furthermore, targeted mutational analysis of normal-tumor pairs has identified somatic mutations in genes known to be associated with prostate cancer including AR and TP53, but has also revealed novel somatic point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Finally, in one patient where multiple independent metastatic tumors were available, we show common and divergent somatic alterations that occur at both the copy number and point mutation level, supporting a model for a common clonal progenitor with metastatic tumor-specific divergence. Our study represents a deep genomic analysis of advanced metastatic prostate tumors and has revealed candidate somatic alterations, possibly contributing to lethal prostate cancer. PMID:21147910

  12. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors

    PubMed Central

    Robbins, Christiane M.; Tembe, Waibov A.; Baker, Angela; Sinari, Shripad; Moses, Tracy Y.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Barrett, Michael; Long, James; Chinnaiyan, Arul; Lowey, James; Suh, Edward; Pearson, John V.; Craig, David W.; Agus, David B.; Pienta, Kenneth J.; Carpten, John D.

    2011-01-01

    Advanced prostate cancer can progress to systemic metastatic tumors, which are generally androgen insensitive and ultimately lethal. Here, we report a comprehensive genomic survey for somatic events in systemic metastatic prostate tumors using both high-resolution copy number analysis and targeted mutational survey of 3508 exons from 577 cancer-related genes using next generation sequencing. Focal homozygous deletions were detected at 8p22, 10q23.31, 13q13.1, 13q14.11, and 13q14.12. Key genes mapping within these deleted regions include PTEN, BRCA2, C13ORF15, and SIAH3. Focal high-level amplifications were detected at 5p13.2-p12, 14q21.1, 7q22.1, and Xq12. Key amplified genes mapping within these regions include SKP2, FOXA1, and AR. Furthermore, targeted mutational analysis of normal-tumor pairs has identified somatic mutations in genes known to be associated with prostate cancer including AR and TP53, but has also revealed novel somatic point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Finally, in one patient where multiple independent metastatic tumors were available, we show common and divergent somatic alterations that occur at both the copy number and point mutation level, supporting a model for a common clonal progenitor with metastatic tumor-specific divergence. Our study represents a deep genomic analysis of advanced metastatic prostate tumors and has revealed candidate somatic alterations, possibly contributing to lethal prostate cancer. PMID:21147910

  13. Structural Guided Scaffold Phage Display Libraries as a Source of Bio-Therapeutics

    PubMed Central

    Vessillier, Sandrine; Mather, Stephen J.; Rowe, Michelle L.; Howard, Mark J.; Marshall, John F.; Nissim, Ahuva

    2013-01-01

    We have developed a structurally-guided scaffold phage display strategy for identification of ligand mimetic bio-therapeutics. As a proof of concept we used the ligand of integrin αvβ6, a tumour cell surface receptor and a major new target for imaging and therapy of many types of solid cancer. NMR structure analysis showed that RGD-helix structures are optimal for αvβ6 ligand-interaction, so we designed novel algorithms to generate human single chain fragment variable (scFv) libraries with synthetic VH-CDR3 encoding RGD-helix hairpins with helices of differing pitch, length and amino acid composition. Study of the lead scFv clones D25scFv and D34scFv and their corresponding VH-CDR3 derived peptides, D25p and D34p, demonstrated: specific binding to recombinant and cellular αvβ6; inhibition of αvβ6-dependent cell and ligand adhesion, αvβ6-dependent cell internalisation; and selective retention by αvβ6-expressing, but not αvβ6-negative, human xenografts. NMR analysis established that both the D25p and D34p retained RGD-helix structures confirming the success of the algorithm. In conclusion, scFv libraries can be engineered based on ligand structural motifs to increase the likelihood of developing powerful bio-therapeutics. PMID:23950939

  14. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA. PMID:27602322

  15. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    SciTech Connect

    Kamino, K.; Anderson, L.; O'dahl, S.; Nemens, E.; Bird, T.D.; Schellenberg, G.D.; Wijsman, E.M.; Kukall, W.; Larson, E. ); Heston, L.L.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.

  16. Molecular signature of disease onset in granulin mutation carriers: a gene expression analysis study.

    PubMed

    Milanesi, Elena; Bonvicini, Cristian; Alberici, Antonella; Pilotto, Andrea; Cattane, Nadia; Premi, Enrico; Gazzina, Stefano; Archetti, Silvana; Gasparotti, Roberto; Cancelli, Vanessa; Gennarelli, Massimo; Padovani, Alessandro; Borroni, Barbara

    2013-07-01

    Mutations within Granulin (GRN) gene are causative of autosomal dominant frontotemporal lobar degeneration (FTLD). Though GRN mutations are inherited at birth, the disease onset usually occurs in the sixth decade of life. The objective of this study was to identify new genetic pathways linked to inherited GRN disease and involved in the shift from asymptomatic to symptomatic stages. Microarray gene expression analysis on leukocytes was carried out on 15 patients carrying GRN T272SfsX10 mutation, and their asymptomatic siblings with (n = 14) or without (n = 11) GRN mutation. The results were then validated by real-time polymerase chain reaction, and compared with those obtained in a cohort of FTLD without GRN mutation (n = 16). The association between candidate genes and damage of specific brain areas was investigated by voxel-based morphometry on magnetic resonance imaging scans (family-wise error-corrected). Leukocytes mRNA levels of TMEM40 and LY6G6F and other genes mainly involved in inflammation were significantly higher in patients carrying GRN mutations compared with asymptomatic carriers and other FTLD. The higher the levels of TMEM40 the greater is the damage of parietal lobule; the higher the LY6G6F gene expression the greater is the atrophy in superior frontal gyrus. Enhanced inflammation associated with the onset of GRN disease might be either related to disease pathogenetic mechanism leading to neurodegeneration or to a compensatory pathway that counteracts disease progression. The identification of specific molecular targets of GRN-FTLD disease is essential when considering future disease-modifying therapies. PMID:23419701

  17. Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations

    PubMed Central

    Al Assaf, Carla; Van Obbergh, Florence; Billiet, Johan; Lierman, Els; Devos, Timothy; Graux, Carlos; Hervent, Anne-Sophie; Emmerechts, Jan; Tousseyn, Thomas; De Paepe, Pascale; Papadopoulos, Petros; Michaux, Lucienne; Vandenberghe, Peter

    2015-01-01

    The JAK2 V617F mutation, the thrombopoietin receptor MPL W515K/L mutation and calreticulin (CALR) mutations are mutually exclusive in essential thrombocythemia and support a novel molecular categorization of essential thrombocythemia. CALR mutations account for approximately 30% of cases of essential thrombocythemia. In a retrospective study, we examined the frequency of MPL and CALR mutations in JAK2 V617F-negative cases of essential thrombocythemia (n=103). In addition, we compared the clinical phenotype and outcome of CALR mutant cases of essential thrombocythemia with a cohort of JAK2 V617F-positive essential thrombocythemia (n=57). CALR-positive cases represented 63.7% of double-negative cases of essential thrombocythemia, and most carried CALR type 1 or type 2 indels. However, we also identified one patient who was positive for both the JAK2 V617F and the CALR mutations. This study revealed that CALR mutant essential thrombocythemia is associated with younger age, higher platelet counts, lower erythrocyte counts, leukocyte counts, hemoglobin, and hematocrit, and increased risk of progression to myelofibrosis in comparison with JAK2 V617F-positive essential thrombocythemia. Analysis of the CALR mutant group according to indel type showed that CALR type 1 deletion is strongly associated with male gender. CALR mutant patients had a better overall survival than JAK2 V617F-positive patients, in particular patients of age 60 years or younger. In conclusion, this study in a Belgian cohort of patients supports and extends the growing body of evidence that CALR mutant cases of essential thrombocythemia are phenotypically distinct from JAK2 V617F-positive cases, with regards to clinical and hematologic presentation as well as overall survival. PMID:25934766

  18. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.

    PubMed Central

    Berná, G; Robles, P; Micol, J L

    1999-01-01

    As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants. PMID:10353913

  19. Effective epitope identification employing phylogenetic, mutational variability, sequence entropy, and correlated mutation analysis targeting NS5B protein of hepatitis C virus: from bioinformatics to therapeutics.

    PubMed

    Meshram, Rohan J; Gacche, Rajesh N

    2015-08-01

    Hepatitis C virus (HCV) is considered as a foremost cause affecting numerous human liver-related disorders. An effective immuno-prophylactic measure (like stable vaccine) is still unavailable for HCV. We perform an in silico analysis of nonstructural protein 5B (NS5B) based CD4 and CD8 epitopes that might be implicated in improvement of treatment strategies for efficient vaccine development programs against HCV. Here, we report on effective utilization of knowledge obtained from multiple sequence alignment and phylogenetic analysis for investigation and evaluation of candidate epitopes that have enormous potential to be used in formulating proficient vaccine, embracing multiple strains prevalent among major geographical locations. Mutational variability data discussed herein focus on discriminating the region under active evolutionary pressure from those having lower mutational potential in existing experimentally verified epitopes, thus, providing a concrete framework for designing an effective peptide-based vaccine against HCV. Additionally, we measured entropy distribution in NS5B residues and pinpoint the positions in epitopes that are more susceptible to mutations and, thus, account for virus strategy to evade the host immune system. Findings from this study are expected to add more details on the sequence and structural aspects of NS5B protein, ultimately facilitating our understanding about the pathophysiology of HCV and assisting advance studies on the function of NS5B antigen on the epitope level. We also report on the mutational crosstalk between functionally important coevolving residues, using correlated mutation analysis, and identify networks of coupled mutations that represent pathways of allosteric communication inside and among NS5B thumb, finger, and palm domains. PMID:25727409

  20. Diversity, Mutation and Recombination Analysis of Cotton Leaf Curl Geminiviruses

    PubMed Central

    Saleem, Huma; Nahid, Nazia; Shakir, Sara; Ijaz, Sehrish; Murtaza, Ghulam; Khan, Asif Ali; Mubin, Muhammad; Nawaz-ul-Rehman, Muhammad Shah

    2016-01-01

    The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV) and cotton leaf curl Kokhran virus (CLCuKoV), led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP) gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4) and CLCuKoV-CP gene (2.706X10-4), whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent. PMID:26963635

  1. Proteomic analysis of high yield rice variety mutated from spaceflight

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Cheng, Z.; Wang, W.; Sun, Y.

    Seeds of pure rice varieties were flown on Chinese recoverable satellite, JB-1, for a 15-day flight in 1996. Many mutant rice varieties with various phenotypes were generated after continuous selection and breeding. Among the mutants, a variety 971-5 showed a significant increase in grain yield compared to its control (971ck). In this study, proteomic analysis of both mutant variety 971-5 and control variety 971ck were carried out to investigate the changes of protein expression level in their leaves at three different growth stages (early and middle stage of tillering, and booting stage). Results showed that (1) almost all differentially expressed proteins were down-regulated in 971-5 with only one exception, (2) the percentages of differentially expressed proteins were 3.1%, 2.1% and 3.1% at the three stages, respectively, and (3) one protein showed a significant alteration in its molecular weight (MW). These data demonstrated that the space environment can alter the expression level of rice proteins both quantitatively and qualitatively.

  2. Platelet hexosaminidase a enzyme assay effectively detects carriers missed by targeted DNA mutation analysis.

    PubMed

    Nakagawa, Sachiko; Zhan, Jie; Sun, Wei; Ferreira, Jose Carlos; Keiles, Steven; Hambuch, Tina; Kammesheidt, Anja; Mark, Brian L; Schneider, Adele; Gross, Susan; Schreiber-Agus, Nicole

    2012-01-01

    Biochemical testing of hexosaminidase A (HexA) enzyme activity has been available for decades and has the ability to detect almost all Tay-Sachs disease (TSD) carriers, irrespective of ethnic background. This is increasingly important, as the gene pool of those who identify as Ashkenazi Jewish is diversifying. Here we describe the analysis of a cohort of 4,325 individuals arising from large carrier screening programs and tested by the serum and/or platelet HexA enzyme assays and by targeted DNA mutation analysis. Our results continue to support the platelet assay as a highly effective method for TSD carrier screening, with a low inconclusive rate and the ability to detect possible disease-causing mutation carriers that would have been missed by targeted DNA mutation analysis. Sequence analysis performed on one such platelet assay carrier, who had one non-Ashkenazi Jewish parent, identified the amino acid change Thr259Ala (A775G). Based on crystallographic modeling, this change is predicted to be deleterious, as threonine 259 is positioned proximal to the HexA alpha subunit active site and helps to stabilize key residues therein. Accordingly, if individuals are screened for TSD in broad-based programs by targeted molecular testing alone, they must be made aware that there is a more sensitive and inexpensive test available that can identify additional carriers. Alternatively, the enzyme assays can be offered as a first tier test, especially when screening individuals of mixed or non-Jewish ancestry. PMID:23430931

  3. ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.

    PubMed

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript. PMID:26824761

  4. Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics

    SciTech Connect

    Howell, N.

    1996-10-01

    This is shaping up as a vintage year for studies of the genetics and evolution of the human mitochondrial genome (mtDNA). In a theoretical and experimental tour de force, Shenkar et al. (1996), on pages 772-780 of this issue, derive the mutation rate of the 4,977-bp (or {open_quotes}common{close_quotes}) deletion in the human mtDNA through refinement and extension of fluctuation analysis, a technique that was first used >50 years ago. Shenkar et al., in essence, have solved or bypassed many of the difficulties that are inherent in the application of fluctuation analysis to human mitochondrial gene mutations. Their study is important for two principal reasons. In the first place, high levels of this deletion cause a variety of pathological disorders, including Kearns-Sayre syndrome and chronic progressive external ophthalmoplegia. Their current report, therefore, is a major step in the elucidation of the molecular genetic pathogenesis of this group of mitochondrial disorders. For example, it now may be feasible to analyze the effects of selection on transmission and segregation of this deletion and, perhaps, other mtDNA mutations as well. Second, and at a broader level, the approach of Shenkar et al. should find widespread applicability to the study of other mtDNA mutations. It has been recognized for several years that mammalian mtDNA mutates much more rapidly than nuclear DNA, a phenomenon with potentially profound evolutionary implications. It is exciting and useful, both experimentally and theoretically, that this {open_quotes}old{close_quotes} approach can be used for {open_quotes}new{close_quotes} applications. 56 refs.

  5. ZMYND10 - Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia

    PubMed Central

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60–65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript. PMID:26824761

  6. Targeted ultradeep next-generation sequencing as a method for KIT D816V mutation analysis in mastocytosis.

    PubMed

    Kristensen, Thomas; Broesby-Olsen, Sigurd; Vestergaard, Hanne; Bindslev-Jensen, Carsten; Møller, Michael Boe

    2016-04-01

    Next-generation sequencing (NGS) is becoming increasingly used for diagnostic mutation analysis in myeloid neoplasms and may also represent a feasible technique in mastocytosis. However, detection of the KIT D816V mutation requires a highly sensitive method in most patients due to the typically low mutation levels. In this study, we established an NGS-based KIT mutation analysis and analyzed the sensitivity of D816V detection using the Ion Torrent platform. Eighty-two individual NGS analyses were included in the study. All samples were also analyzed using highly sensitive KIT D816V mutation-specific qPCR. Measurements of the background level in D816V-negative samples supported a cutoff for positivity of 0.2% in three different NGS panels. Clinical samples from patients with SM that tested positive using qPCR with a D816V allele burden >0.2% also tested positive using NGS. Samples that tested positive using qPCR with an allele burden <0.2% tested negative using NGS. We thereby demonstrate that caution should be taken when using the potentially very sensitive NGS technique for KIT D816V mutation analysis in mastocytosis, as many patients with SM have D816V mutation levels below the detection limit of NGS. A dedicated and highly sensitive KIT D816V mutation analysis therefore remains important in mastocytosis diagnostics. PMID:26095448

  7. Identification of Mutation of Glucose-6-Phosphate Dehy–drogenase (G6PD) in Iran: Meta- analysis Study

    PubMed Central

    MOOSAZADEH, Mahmood; NEKOEI-MOGHADAM, Mahmood; ALIRAM–ZANY, Maryam; AMIRESMAILI, Mohammadreza

    2013-01-01

    Abstract Background Glucose-6-phosphate dehydrogenase is one of the most common genetic deficiencies, which approximately 400 million people in the world suffer from. According to authors’ initial search, numerous studies have been carried out in Iran regarding molecular variants of this enzyme. Thus, this meta-analysis presented a reliable estimation about prevalence of different types of molecular mutations of G6PD Enzyme in Iran. Methods Keywords “glucose 6 phosphate dehydrogenase or G6PD, Mediterranean or Chatham or Cosenza and mutation, Iran or Iranian and their Persian equivalents” were searched in different databases. Moreover, reference list of the published studies were examined to increase sensitivity and to select more studies. After studying titles and abstracts of retrieved articles, excluding the repeated and unrelated ones, and evaluating quality of articles, documents were selected. Data was analyzed using STATA. Results After performing systematic review, 22 papers were entered this meta-analysis and 1698 subjects were examined concerning G6PD molecular mutation. In this meta-analysis, prevalence of Mediterranean mutation, Chatham mutation and Cosenza mutation in Iran was estimated 78.2%, 9.1% and 0.5% respectively. Conclusions This meta-analysis showed that in spite of prevalence of different types of G6PD molecular mutations in center, north, north-west and west of Iran, the most common molecular mutations in people with G6PD deficiency in Iran, like other Mediterranean countries and countries around Persian Gulf, were Mediterranean mutation, Chatham mutation and Cosenza mutation. It is also recommended that future studies may focus on races and regions which haven’t been taken into consideration up to now. PMID:26060661

  8. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  9. bz-rates: A Web Tool to Estimate Mutation Rates from Fluctuation Analysis.

    PubMed

    Gillet-Markowska, Alexandre; Louvel, Guillaume; Fischer, Gilles

    2015-11-01

    Fluctuation analysis is the standard experimental method for measuring mutation rates in micro-organisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that provides three useful advances over existing Web tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the generating function. Second, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates. PMID:26338660

  10. bz-rates: A Web Tool to Estimate Mutation Rates from Fluctuation Analysis

    PubMed Central

    Gillet-Markowska, Alexandre; Louvel, Guillaume; Fischer, Gilles

    2015-01-01

    Fluctuation analysis is the standard experimental method for measuring mutation rates in micro-organisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that provides three useful advances over existing Web tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the generating function. Second, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates. PMID:26338660

  11. COL1A1 mutation analysis in Lithuanian patients with osteogenesis imperfecta.

    PubMed

    Benusiené, Egle; Kucinskas, Vaidutis

    2003-01-01

    Osteogenesis imperfecta (OI) is a generalised disorder of connective tissue characterised by an increased fragility of bones and also manifested in other tissues containing collagen type I, by blue sclera, hearing loss, dentinogenesis imperfecta, hyperextensible joints, hernias and easy bruising. OI is dominantly inherited and results in >90% OI cases, caused by mutations in one of the two genes COL1A1 or COL1A2 coding for type I procollagen. The Lithuanian OI database comprises 147 case records covering the period of 1980 - 2001. Clinical and genealogical analysis of OI cases/families from Lithuania available for examination revealed 18 familial cases of OI type I and 22 sporadic cases: OI type II (3 cases), OI type III (11 cases) and OI type I (8 cases). As a result of their molecular genetic investigation, 11 mutations were identified in the COL1A1 gene in 13 unrelated patients. Of them, nine mutations (E500X, G481A, c.2046insCTCTCTAG, c.1668delT, c.1667insC, c.4337insC, IVS19+1G > A, IVS20-2A > G, IVS22-1G > T) appeared to be novel, i.e. not yet registered in the Human Type I and Type III Collagen Mutations Database (http://www.le.ac.uk/genetics/collagen). PMID:12590186

  12. A transposon-based analysis of gene mutations related to skin cancer development.

    PubMed

    Quintana, Rita M; Dupuy, Adam J; Bravo, Ana; Casanova, M Llanos; Alameda, Josefa P; Page, Angustias; Sánchez-Viera, Miguel; Ramírez, Angel; Navarro, Manuel

    2013-01-01

    Nonmelanoma skin cancer (NMSC) is by far the most frequent type of cancer in humans. NMSC includes several types of malignancies with different clinical outcomes, the most frequent being basal and squamous cell carcinomas. We have used the Sleeping Beauty transposon/transposase system to identify somatic mutations associated with NMSC. Transgenic mice bearing multiple copies of a mutagenic Sleeping Beauty transposon T2Onc2 and expressing the SB11 transposase under the transcriptional control of regulatory elements from the keratin K5 promoter were treated with TPA, either in wild-type or Ha-ras mutated backgrounds. After several weeks of treatment, mice with transposition developed more malignant tumors with decreased latency compared with control mice. Transposon/transposase animals also developed basal cell carcinomas. Genetic analysis of the transposon integration sites in the tumors identified several genes recurrently mutated in different tumor samples, which may represent novel candidate cancer genes. We observed alterations in the expression levels of some of these genes in human tumors. Our results show that inactivating mutations in Notch1 and Nsd1, among others, may have an important role in skin carcinogenesis. PMID:22832494

  13. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm.

    PubMed

    Nishi, A; Nakamura, Y; Tanaka, N; Satoh, H

    2001-10-01

    Biochemical analysis of amylose-extender (ae) mutant of rice (Oryza sativa) revealed that the mutation in the gene for starch-branching enzyme IIb (BEIIb) specifically altered the structure of amylopectin in the endosperm by reducing short chains with degree of polymerization of 17 or less, with the greatest decrease in chains with degree of polymerization of 8 to 12. The extent of such change was correlated with the gelatinization properties of the starch granules, as determined in terms of solubility in urea solution. The ae mutation caused a dramatic reduction in the activity of BEIIb. The activity of soluble starch synthase I (SSI) in the ae mutant was significantly lower than in the wild type, suggesting that the mutation had a pleiotropic effect on the SSI activity. In contrast, the activities of BEI, BEIIa, ADP-Glc pyrophosphorylase, isoamylase, isoamylase, pullulanase, and Suc synthase were not affected by the mutation. Therefore, it is stressed that the function of BEIIb cannot be complemented by BEIIa and BEI. These results strongly suggest that BEIIb plays a specific role in the transfer of short chains, which might then be extended by SS to form the A and B(1) chains of amylopectin cluster in rice endosperm. PMID:11598221

  14. Novel EPHB4 Receptor Tyrosine Kinase Mutations and Kinomic Pathway Analysis in Lung Cancer

    PubMed Central

    Ferguson, Benjamin D.; Carol Tan, Yi-Hung; Kanteti, Rajani S.; Liu, Ren; Gayed, Matthew J.; Vokes, Everett E.; Ferguson, Mark K.; John Iafrate, A.; Gill, Parkash S.; Salgia, Ravi

    2015-01-01

    Lung cancer outcomes remain poor despite the identification of several potential therapeutic targets. The EPHB4 receptor tyrosine kinase (RTK) has recently emerged as an oncogenic factor in many cancers, including lung cancer. Mutations of EPHB4 in lung cancers have previously been identified, though their significance remains unknown. Here, we report the identification of novel EPHB4 mutations that lead to putative structural alterations as well as increased cellular proliferation and motility. We also conducted a bioinformatic analysis of these mutations to demonstrate that they are mutually exclusive from other common RTK variants in lung cancer, that they correspond to analogous sites of other RTKs’ variations in cancers, and that they are predicted to be oncogenic based on biochemical, evolutionary, and domain-function constraints. Finally, we show that EPHB4 mutations can induce broad changes in the kinome signature of lung cancer cells. Taken together, these data illuminate the role of EPHB4 in lung cancer and further identify EPHB4 as a potentially important therapeutic target. PMID:26073592

  15. Analysis of gene mutation in plant cell wall by dielectric relaxation

    NASA Astrophysics Data System (ADS)

    Roig, Frédéric; Dantras, Eric; Grima-Pettenatti, Jacqueline; Lacabanne, Colette

    2012-07-01

    Arabidopsis Thaliana is a plant composed mainly of cellulose and lignin. Geneticists need techniques able to make differences at the molecular level between modified plants (DML6, CAD C/D) and non-modified ones. Thermo-stimulated current (TSC) analysis is a promising route to identify gene mutations. For the non-modified plant, at low temperatures, TSC thermograms highlight three dielectric relaxation modes. From -150 to -110 °C, γCellulose is attributed to CH2OH and-OH groups of cellulose. Between -110 and -80 °C, βLignin is detected. From -80 to -40 °C, βCellulose is characteristic of the molecular mobility of glycosidic linkages. For the CAD C/D modified plants, only γCellulose and βLignin are observed; due to analogous enthalpy values, those modes have the same molecular origin as in the non-modified plant. So, the βLignin mode is associated with the molecular mobility of the lignin-OH groups. The CAD C/D gene mutation changes the chemical structure of lignin, which promotes hydrogen bonds in the network and inhibits molecular mobility of glucosidic rings. It is also interesting to note that the DML6 gene mutation induces a higher cooperativity of this βCellulose relaxation than in wild vegetal composites. In fact, this mutation promotes molecular mobility of glycosidic rings thanks to β1-4 glycosidic linkages.

  16. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  17. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively. PMID:26708016

  18. Mutation analysis of patients with neurodegenerative disorders using NeuroX array.

    PubMed

    Ghani, Mahdi; Lang, Anthony E; Zinman, Lorne; Nacmias, Benedetta; Sorbi, Sandro; Bessi, Valentina; Tedde, Andrea; Tartaglia, Maria Carmela; Surace, Ezequiel I; Sato, Christine; Moreno, Danielle; Xi, Zhengrui; Hung, Rachel; Nalls, Mike A; Singleton, Andrew; St George-Hyslop, Peter; Rogaeva, Ekaterina

    2015-01-01

    Genetic analyses of patients with neurodegenerative disorders have identified multiple genes that need to be investigated for the presence of damaging variants. However, mutation analysis by Sanger sequencing is costly and time consuming. We tested the utility of a recently designed semi-custom genome-wide array (NeuroX; Illumina, Inc) tailored to study neurodegenerative diseases (e.g., mutation screening). We investigated 192 patients with 4 different neurodegenerative disorders for the presence of rare damaging variations in 77 genes implicated in these diseases. Several causative mutations were identified and confirmed by Sanger sequencing, including PSEN1 p.M233T responsible for Alzheimer's disease in a large Italian family, as well as SOD1 p.A4V and p.I113T in patients with amyotrophic lateral sclerosis. In total, we identified 78 potentially damaging rare variants (frequency <1%), including ABCA7 p.L400V in a family with Alzheimer's disease and LRRK2 p.R1514Q in 6 of 98 patients with Parkinson's disease (6.1%). In conclusion, NeuroX appears to be helpful for rapid and accurate mutation screening, although further development may be still required to improve some current caveats. PMID:25174650

  19. Mutation analysis of patients with Neurodegenerative disorders using NeuroX array

    PubMed Central

    Ghani, Mahdi; Lang, Anthony E; Zinman, Lorne; Nacmias, Benedetta; Sorbi, Sandro; Tartaglia, Maria Carmela; Surace, Ezequiel I; Sato, Christine; Moreno, Danielle; Xi, Zhengrui; Hung, Rachel; Nalls, Mike A; Singleton, Andrew; George-Hyslop, Peter St; Rogaeva, Ekaterina

    2014-01-01

    Genetic analyses of patients with neurodegenerative disorders have identified multiple genes that need to be investigated for the presence of damaging variants. However, mutation analysis by Sanger sequencing is costly and time consuming. We tested the utility of a recently designed semi-custom genome-wide array (NeuroX; Illumina, Inc) tailored to study neurodegenerative diseases (e.g. mutation screening). We investigated 192 patients with four different neurodegenerative disorders for the presence of rare damaging variations in 77 genes implicated in these diseases. Several causative mutations were identified and confirmed by Sanger sequencing including PSEN1 p.M233T responsible for Alzheimer’s disease in a large Italian family, as well as SOD1 p.A4V and p.I113T in patients with Amyotrophic Lateral Sclerosis. In total, we identified 78 potentially damaging rare variants (frequency <1%), including ABCA7 p.L400V in a family with Alzheimer’s disease and LRRK2 p.R1514Q in 6 out 98 patients with Parkinson’s Disease (6.1%). In conclusion, NeuroX appears to be helpful for rapid and accurate mutation screening, although further development may be still required to improve some current caveats. PMID:25174650

  20. Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia.

    PubMed

    Di Filippo, Mathilde; Créhalet, Hervé; Samson-Bouma, Marie Elisabeth; Bonnet, Véronique; Aggerbeck, Lawrence P; Rabès, Jean-Pierre; Gottrand, Frederic; Luc, Gérald; Bozon, Dominique; Sassolas, Agnès

    2012-03-01

    Abetalipoproteinemia (ABL) is an inherited disease characterized by the defective assembly and secretion of apolipoprotein B-containing lipoproteins caused by mutations in the microsomal triglyceride transfer protein large subunit (MTP) gene (MTTP). We report here a female patient with an unusual clinical and biochemical ABL phenotype. She presented with severe liver injury, low levels of LDL-cholesterol, and subnormal levels of vitamin E, but only mild fat malabsorption and no retinitis pigmentosa or acanthocytosis. Our objective was to search for MTTP mutations and to determine the relationship between the genotype and this particular phenotype. The subject exhibited compound heterozygosity for two novel MTTP mutations: one missense mutation (p.Leu435His) and an intronic deletion (c.619-5_619-2del). COS-1 cells expressing the missense mutant protein exhibited negligible levels of MTP activity. In contrast, the minigene splicing reporter assay showed an incomplete splicing defect of the intronic deletion, with 26% of the normal splicing being maintained in the transfected HeLa cells. The small amount of MTP activity resulting from the residual normal splicing in the patient explains the atypical phenotype observed. Our investigation provides an example of a functional analysis of unclassified variations, which is an absolute necessity for the molecular diagnosis of atypical ABL cases. PMID:22236406

  1. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    SciTech Connect

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-12-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.

  2. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    PubMed

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy. PMID:27082205

  3. Identification of novel, in vivo active Chk1 inhibitors utilizing structure guided drug design

    PubMed Central

    Massey, Andrew J.; Stokes, Stephen; Browne, Helen; Foloppe, Nicolas; Fiumana, Andreá; Scrace, Simon; Fallowfield, Mandy; Bedford, Simon; Webb, Paul; Baker, Lisa; Christie, Mark; Drysdale, Martin J.; Wood, Mike

    2015-01-01

    Chk1 kinase is a critical component of the DNA damage response checkpoint especially in cancer cells and targeting Chk1 is a potential therapeutic opportunity for potentiating the anti-tumor activity of DNA damaging chemotherapy drugs. Fragment elaboration by structure guided design was utilized to identify and develop a novel series of Chk1 inhibitors culminating in the identification of V158411, a potent ATP-competitive inhibitor of the Chk1 and Chk2 kinases. V158411 abrogated gemcitabine and camptothecin induced cell cycle checkpoints, resulting in the expected modulation of cell cycle proteins and increased cell death in cancer cells. V158411 potentiated the cytotoxicity of gemcitabine, cisplatin, SN38 and camptothecin in a variety of p53 deficient human tumor cell lines in vitro, p53 proficient cells were unaffected. In nude mice, V158411 showed minimal toxicity as a single agent and in combination with irinotecan. In tumor bearing animals, V158411 was detected at high levels in the tumor with a long elimination half-life; no pharmacologically significant in vivo drug-drug interactions with irinotecan were identified through analysis of the pharmacokinetic profiles. V158411 potentiated the anti-tumor activity of irinotecan in a variety of human colon tumor xenograft models without additional systemic toxicity. These results demonstrate the opportunity for combining V158411 with standard of care chemotherapeutic agents to potentiate the therapeutic efficacy of these agents without increasing their toxicity to normal cells. Thus, V158411 would warrant further clinical evaluation. PMID:26437226

  4. Identification of novel, in vivo active Chk1 inhibitors utilizing structure guided drug design.

    PubMed

    Massey, Andrew J; Stokes, Stephen; Browne, Helen; Foloppe, Nicolas; Fiumana, Andreá; Scrace, Simon; Fallowfield, Mandy; Bedford, Simon; Webb, Paul; Baker, Lisa; Christie, Mark; Drysdale, Martin J; Wood, Mike

    2015-11-01

    Chk1 kinase is a critical component of the DNA damage response checkpoint especially in cancer cells and targeting Chk1 is a potential therapeutic opportunity for potentiating the anti-tumor activity of DNA damaging chemotherapy drugs. Fragment elaboration by structure guided design was utilized to identify and develop a novel series of Chk1 inhibitors culminating in the identification of V158411, a potent ATP-competitive inhibitor of the Chk1 and Chk2 kinases. V158411 abrogated gemcitabine and camptothecin induced cell cycle checkpoints, resulting in the expected modulation of cell cycle proteins and increased cell death in cancer cells. V158411 potentiated the cytotoxicity of gemcitabine, cisplatin, SN38 and camptothecin in a variety of p53 deficient human tumor cell lines in vitro, p53 proficient cells were unaffected. In nude mice, V158411 showed minimal toxicity as a single agent and in combination with irinotecan. In tumor bearing animals, V158411 was detected at high levels in the tumor with a long elimination half-life; no pharmacologically significant in vivo drug-drug interactions with irinotecan were identified through analysis of the pharmacokinetic profiles. V158411 potentiated the anti-tumor activity of irinotecan in a variety of human colon tumor xenograft models without additional systemic toxicity. These results demonstrate the opportunity for combining V158411 with standard of care chemotherapeutic agents to potentiate the therapeutic efficacy of these agents without increasing their toxicity to normal cells. Thus, V158411 would warrant further clinical evaluation. PMID:26437226

  5. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase.

    PubMed

    Bhan, Namita; Cress, Brady F; Linhardt, Robert J; Koffas, Mattheos

    2015-08-01

    Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts. PMID:26048582

  6. Genome Analysis of 17 Extensively Drug-Resistant Strains Reveals New Potential Mutations for Resistance

    PubMed Central

    Tarazona, D.; Galarza, M.; Borda, V.; Curitomay, R.

    2014-01-01

    We report the whole-genome sequence of an extensively drug-resistant (XDR) tuberculosis (TB) strain of Latin American–Mediterranean (LAM) lineage. This strain is phenotypically resistant to aminoglycosides, but carries no related mutations in rrs, tlyA, and eis. Through genome analysis comparison with 16 XDR strains, we found 218 non-synonymous single nucleotide polymorphisms (SNPs) shared that could confer resistance. PMID:25081269

  7. Analysis of regulatory mechanism after ErbB4 gene mutation based on local modeling methodology.

    PubMed

    Chen, C L; Zhao, J W

    2016-01-01

    ErbB4 is an oncogene belonging to the epidermal growth factor receptor family and contributes to the occurrence and development of multiple cancers, such as gastric, breast, and colorectal cancers. Therefore, studies of the regulation of ErbB4 in cancerigenic pathway will advance molecular targeted therapy. Advanced bioinformatic analysis softwares, such as ExPASy, Predictprotei, QUARK, and I-TASSER, were used to analyze the regulatory mechanism after ErbB4 gene mutation in terms of amino acid sequence, primary, secondary, and tertiary structure of the protein and upstream-downstream receptor/ligands. Mutation of the 19th and 113th amino acids at the carboxyl terminus of ErbB4 protein did not affect its biological nature, but its secondary structure changed and protein binding sites were near 2 mutational sites; moreover, after mutation introduction, additional binding sites were observed. Tertiary structure modeling indicated that local structure of ErbB4 was changed from an α helical conformation into a β chain folding structure; the α helical conformation is the functional site of protein, while active sites are typically near junctions between helical regions, thus the helical structures are easily destroyed and change into folding structures or other structures after stretching. Mutable sites of ErbB4 is exact binding sites where dimer formed with other epidermal growth factor family proteins; mutation enabled the ErbB4 receptor to bind to neuregulin 1 ligand without dimer formation, disrupting the signal transduction pathway and affecting ErbB4 function. PMID:27323039

  8. Value of TIRADS, BSRTC and FNA-BRAFV600E mutation analysis in differentiating high-risk thyroid nodules

    PubMed Central

    Zhang, Yu-zhi; Xu, Ting; Cui, Dai; Li, Xiao; Yao, Qing; Gong, Hai-yan; Liu, Xiao-yun; Chen, Huan-huan; Jiang, Lin; Ye, Xin-hua; Zhang, Zhi-hong; Shen, Mei-ping; Duan, Yu; Yang, Tao; Wu, Xiao-hong

    2015-01-01

    The thyroid imaging reporting and data system (TIRADS) and Bethesda system for reporting thyroid cytopathology (BSRTC) have been used for interpretation of ultrasound and fine-needle aspiration cytology (FNAC) results of thyroid nodules. BRAFV600E mutation analysis is a molecular tool in diagnosing thyroid carcinoma. Our objective was to compare the diagnostic value of these methods in differentiating high-risk thyroid nodules. Total 220 patients with high-risk thyroid nodules were recruited in this prospective study. They all underwent ultrasound, FNAC and BRAFV600E mutation analysis. The sensitivity and specificity of TIRADS were 73.1% and 88.4%. BSRTC had higher specificity (97.7%) and similar sensitivity (77.6%) compared with TIRADS. The sensitivity and specificity of BRAFV600E mutation (85.1%, 100%) were the highest. The combination of BSRTC and BRAFV600E mutation analysis significantly increased the efficiency, with 97.8% sensitivity, 97.7% specificity. In patients with BSRTC I-III, the mutation rate of BRAFV600E was 64.5% in nodules with TIRADS 4B compared with 8.4% in nodules with TIRADS 3 or 4A (P < 0.001). Our study indicated that combination of BSRTC and BRAFV600E mutation analysis bears a great value in differentiating high-risk thyroid nodules. The TIRADS is useful in selecting high-risk patients for FNAB and patients with BSRTC I-III for BRAFV600E mutation analysis. PMID:26597052

  9. The role of targeted BRCA1/BRCA2 mutation analysis in hereditary breast/ovarian cancer families of Portuguese ancestry.

    PubMed

    Peixoto, A; Santos, C; Pinto, P; Pinheiro, M; Rocha, P; Pinto, C; Bizarro, S; Veiga, I; Principe, A S; Maia, S; Castro, F; Couto, R; Gouveia, A; Teixeira, M R

    2015-07-01

    We report the analysis of altogether 1050 suspected hereditary breast/ovarian cancer (HBOC) families, 524 fully screened for BRCA1/BRCA2 mutations and 526 tested only for the most common mutations. Of the 119 families with pathogenic mutations, 40 (33.6%) had the BRCA2 c.156_157insAlu rearrangement and 15 (12.6%) the BRCA1 c.3331_3334del mutation, the former being specific of Portuguese ancestry and the latter showing a founder effect in Portugal. Interestingly, the two most common mutations were found in a significant proportion of the HBOC families with an a priori BRCAPRO mutation probability <10%. We recommend that all suspected HBOC families from Portugal or with Portuguese ancestry, even those fulfilling moderately stringent clinical-criteria for genetic testing, should be specifically analyzed for the two most common BRCA1/BRCA2 founder mutations, and we here present a simple method for this first tier test. Screening of the entire coding regions of BRCA1 and BRCA2 should subsequently be offered to those families with a mutation probability ≥10% if none of those founder mutations are found. PMID:24916970

  10. Novel MEK1 Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma

    PubMed Central

    Marks, Jenifer L.; Gong, Yixuan; Chitale, Dhananjay; Golas, Ben; McLellan, Michael D.; Kasai, Yumi; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Solit, David; Levine, Ross; Michel, Kathrin; Thomas, Roman K.; Rusch, Valerie W.; Ladanyi, Marc; Pao, William

    2008-01-01

    Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non–small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal–regulated kinase (ERK)-1/2 in human 293T cells and to growth factor–independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. PMID:18632602

  11. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    PubMed Central

    Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, André; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with the wild-type (WT)-LHR and the D578G-LHR mutant, a classic cause of testotoxicosis. The three main signal transduction pathways in which LHR is involved were studied. Patients: We describe eight male patients with gonadotropin-independent precocious puberty due to Leydig cell adenoma or hyperplasia. Results: The D578H-LHR mutation was found in the adenoma or nodule with hyperplasia in all but two patients. D578H-LHR displayed a constitutively increased but noninducible production of cAMP, led to a very high production of inositol phosphates, and induced a slight phosphorylation of p44/42 MAPK in the absence of human chorionic gonadotropin. The D578G-LHR showed a response intermediate between WT-LHR and the D578H-LHR. Subcellular localization studies showed that the WT-LHR was almost exclusively located at the cell membrane, whereas the D578H-LHR showed signs of internalization. D578H-LHR was the only receptor to colocalize with early endosomes in the absence of human chorionic gonadotropin. Conclusions: Although several LHR mutations have been reported in testotoxicosis, the D578H-LHR mutation, which has been found only as a somatic mutation, appears up until now to be specifically responsible for Leydig cell adenomas. This is reflected by the different activation of the signal transduction pathways, when compared with the WT-LHR or D578G-LHR, which may explain the tumorigenesis in the D578H mutant. PMID:21490077

  12. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients. PMID:25987093

  13. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43.

    PubMed

    Gendron, Tania F; Rademakers, Rosa; Petrucelli, Leonard

    2013-01-01

    The identification of TAR DNA-binding protein 43 (TDP-43) as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions has defined a new class of neurodegenerative conditions: the TDP-43 proteinopathies. This breakthrough was quickly followed by mutation analysis of TARDBP, the gene encoding TDP-43. Herein, we provide a review of our previously published efforts that led to the identification of 3 TARDBP mutations (p.M337V, p.N345K, and p.I383V) in familial ALS patients, two of which were novel. With over 40 TARDBP mutations now discovered, there exists conclusive evidence that TDP-43 plays a direct role in neurodegeneration. The onus is now on researchers to elucidate the mechanisms by which mutant TDP-43 confers toxicity, and to exploit these findings to gain a better understanding of how TDP-43 contributes to the pathogenesis of disease. Our biochemical analysis of TDP-43 in ALS patient lymphoblastoid cell lines revealed a substantial increase in TDP-43 truncation products, including a ≈ 25 kDa fragment, compared to control lymphoblastoid cell lines. We discuss the putative harmful consequence of abnormal TDP-43 fragmentation, as well as highlight additional mechanisms of toxicity associated with mutant TDP-43. PMID:22751173

  14. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43

    PubMed Central

    Gendron, Tania F.; Rademakers, Rosa; Petrucelli, Leonard

    2012-01-01

    The identification of TAR DNA-binding protein 43 (TDP-43) as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) has defined a new class of neurodegenerative conditions: the TDP-43 proteinopathies. This breakthrough was quickly followed by mutation analysis of TARDBP, the gene encoding TDP-43. Herein, we provide a review of our previously published efforts that led to the identification of 3 TARDBP mutations (p.M337V, p.N345K, and p.I383V) in familial ALS patients, 2 of which were novel. With over 40 TARDBP mutations now discovered, there exists conclusive evidence that TDP-43 plays a direct role in neurodegeneration. The onus is now on researchers to elucidate the mechanisms by which mutant TDP-43 confers toxicity, and to exploit these findings to gain a better understanding of how TDP-43 contributes to the pathogenesis of disease. Our biochemical analysis of TDP-43 in ALS patient lymphoblastoid cell lines revealed a substantial increase in TDP-43 truncation products, including a ~25 kDa fragment, compared to control lymphoblastoid cell lines. We discuss the putative harmful consequence of abnormal TDP-43 fragmentation, as well as highlight additional mechanisms of toxicity associated with mutant TDP-43. PMID:22751173

  15. Rapid mutational analysis of regulatory loci in Escherichia coli K-12 using bacteriophage M13.

    PubMed Central

    Wertman, K F; Little, J W; Mount, D W

    1984-01-01

    A derivative of bacteriophage M13mp8 , designated M13mp8 /P, was prepared in which the promoter and NH2-terminal codons of bacterial genes may be fused to a portion of beta-galactosidase, resulting in an easily scorable phenotype. Because transcription from the inserted promoter remains responsive to the host regulatory system, it is simple to screen mutagenized phage for isolates with aberrant regulatory phenotypes and to determine the mutational changes by dideoxy sequence analysis. The feasibility of the method was demonstrated by isolation of a large number of mutations in the regulatory regions of two genes, lexA and recA. Base substitutions that altered the phenotype of recombinant phage were identified both in the single LexA repressor binding site of recA and in the two binding sites of lexA, as well as in other sites that likely affect translational efficiency. Our results suggest that this approach will be generally useful for mutational analysis of transcriptional and translational regulatory elements. Images PMID:6427775

  16. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies.

    PubMed

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E; Burke, Michael A; Crotti, Lia; Schwartz, Peter J; Mayosi, Bongani M

    2016-01-01

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function. PMID:26917049

  17. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies

    PubMed Central

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E.; Burke, Michael A.; Crotti, Lia; Schwartz, Peter J.; Mayosi, Bongani M.

    2016-01-01

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function. PMID:26917049

  18. Homozygous beta zero-39 mutation with thalassemia intermedia in northern Sardinia: clinical, hematological and molecular analysis.

    PubMed

    Oggiano, L; Dore, F; Pistidda, P; Guiso, L; Manca, L; Masala, B; Pirastu, M; Rosatelli, C; Cao, A; Longinotti, M

    1988-01-01

    In this study, we investigated the clinical and hematological features and carried out alpha- and beta-globin gene analyses in 11 Sardinian adult beta zero-thalassemia homozygotes from Northern Sardinia who were not transfusion-dependent. Oligonucleotide analysis revealed in nine out of 11 patients the nonsense mutation at codon 39, which was associated either with haplotype II or IX (14/16 and 2/16 chromosomes, respectively). Haplotype II was linked to the A gamma T mutation. The G gamma globin level ranged from 50 to 70%. Four out of nine patients (44%) were heterozygous and 3/9 (33%) homozygous for the rightward deletional type of alpha-thalassemia; two (22%) had the normal alpha-gene complement. Patients who were alpha-thalassemia homozygotes (-alpha/-alpha) showed a more balanced globin chain synthesis ratio. This study confirms that alpha-thalassemia may ameliorate the clinical picture of homozygous beta zero-thalassemia. PMID:2905346

  19. Bayesian analysis of complex interacting mutations in HIV drug resistance and cross-resistance.

    PubMed

    Kozyryev, Ivan; Zhang, Jing

    2015-01-01

    A successful treatment of AIDS world-wide is severely hindered by the HIV virus' drug resistance capability resulting from complicated mutation patterns of viral proteins. Such a system of mutations enables the virus to survive and reproduce despite the presence of various antiretroviral drugs by disrupting their binding capability. Although these interacting mutation patterns are extremely difficult to efficiently uncover and interpret, they contribute valuable information to personalized therapeutic regimen design. The use of Bayesian statistical modeling provides an unprecedented opportunity in the field of anti-HIV therapy to understand detailed interaction structures of drug resistant mutations. Multiple Bayesian models equipped with Markov Chain Monte Carlo (MCMC) methods have been recently proposed in this field (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]; Svicher et al. in Antiviral Res 93(1):86-93, 2012 [3]; Svicher et al. in Antiviral Therapy 16(7):1035-1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14-A14, 2011 [5]; Svicher et al. in Antiviral Ther 16(4):A85-A85, 2011 [6]; Alteri et al. in Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]). Probabilistically modeling mutations in the HIV-1 protease or reverse transcriptase (RT) isolated from drug-treated patients provides a powerful statistical procedure that first detects mutation combinations associated with single or multiple-drug resistance, and then infers detailed dependence structures among the interacting mutations in viral proteins (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]). Combined with molecular dynamics simulations and free energy calculations, Bayesian analysis predictions help to uncover genetic and structural mechanisms in the HIV treatment

  20. Detection of somatic BRCA1/2 mutations in ovarian cancer - next-generation sequencing analysis of 100 cases.

    PubMed

    Koczkowska, Magdalena; Zuk, Monika; Gorczynski, Adam; Ratajska, Magdalena; Lewandowska, Marzena; Biernat, Wojciech; Limon, Janusz; Wasag, Bartosz

    2016-07-01

    The overall prevalence of germline BRCA1/2 mutations is estimated between 11% and 15% of all ovarian cancers. Individuals with germline BRCA1/2 alterations treated with the PARP1 inhibitors (iPARP1) tend to respond better than patients with wild-type BRCA1/2. Additionally, also somatic BRCA1/2 alterations induce the sensitivity to iPARP1. Therefore, the detection of both germline and somatic BRCA1/2 mutations is required for effective iPARP1 treatment. The aim of this study was to identify the frequency and spectrum of germline and somatic BRCA1/2 alterations in a group of Polish patients with ovarian serous carcinoma. In total, 100 formalin-fixed paraffin-embedded (FFPE) ovarian serous carcinoma tissues were enrolled to the study. Mutational analysis of BRCA1/2 genes was performed by using next-generation sequencing. The presence of pathogenic variants was confirmed by Sanger sequencing. In addition, to confirm the germline or somatic status of the mutation, the nonneoplastic tissue was analyzed by bidirectional Sanger sequencing. In total, 27 (28% of patient samples) mutations (20 in BRCA1 and 7 in BRCA2) were identified. For 22 of 27 patients, nonneoplastic cells were available and sequencing revealed the somatic character of two BRCA1 (2/16; 12.5%) and two BRCA2 (2/6; 33%) mutations. Notably, we identified six novel frameshift or nonsense BRCA1/2 mutations. The heterogeneity of the detected mutations confirms the necessity of simultaneous analysis of BRCA1/2 genes in all patients diagnosed with serous ovarian carcinoma. Moreover, the use of tumor tissue for mutational analysis allowed the detection of both somatic and germline BRCA1/2 mutations. PMID:27167707

  1. KRAS Mutation

    PubMed Central

    Franklin, Wilbur A.; Haney, Jerry; Sugita, Michio; Bemis, Lynne; Jimeno, Antonio; Messersmith, Wells A.

    2010-01-01

    Treatment of colon carcinoma with the anti-epidermal growth factor receptor antibody Cetuximab is reported to be ineffective in KRAS-mutant tumors. Mutation testing techniques have therefore become an urgent concern. We have compared three methods for detecting KRAS mutations in 59 cases of colon carcinoma: 1) high resolution melting, 2) the amplification refractory mutation system using a bifunctional self-probing primer (ARMS/Scorpion, ARMS/S), and 3) direct sequencing. We also evaluated the effects of the methods of sectioning and coring of paraffin blocks to obtain tumor DNA on assay sensitivity and specificity. The most sensitive and specific combination of block sampling and mutational analysis was ARMS/S performed on DNA derived from 1-mm paraffin cores. This combination of tissue sampling and testing method detected KRAS mutations in 46% of colon tumors. Four samples were positive by ARMS/S, but initially negative by direct sequencing. Cloned DNA samples were retested by direct sequencing, and in all four cases KRAS mutations were identified in the DNA. In six cases, high resolution melting abnormalities could not be confirmed as specific mutations either by ARMS/S or direct sequencing. We conclude that coring of the paraffin blocks and testing by ARMS/S is a sensitive, specific, and efficient method for KRAS testing. PMID:20007845

  2. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO

    PubMed Central

    Clark, Victoria E.; Erson-Omay, E. Zeynep; Serin, Akdes; Yin, Jun; Cotney, Justin; Özduman, Koray; Avşar, Timuçin; Li, Jie; Murray, Phillip B.; Henegariu, Octavian; Yilmaz, Saliha; Günel, Jennifer Moliterno; Carrión-Grant, Geneive; Yılmaz, Baran; Grady, Conor; Tanrıkulu, Bahattin; Bakırcıoğlu, Mehmet; Kaymakçalan, Hande; Caglayan, Ahmet Okay; Sencar, Leman; Ceyhun, Emre; Atik, A. Fatih; Bayri, Yaşar; Bai, Hanwen; Kolb, Luis E.; Hebert, Ryan; Omay, S. Bulent; Mishra-Gorur, Ketu; Choi, Murim; Overton, John D.; Holland, Eric C.; Mane, Shrikant; State, Matthew W.; Bilgüvar, Kaya; Baehring, Joachim M.; Gutin, Philip H.; Piepmeier, Joseph M.; Vortmeyer, Alexander; Brennan, Cameron W.; Pamir, M. Necmettin; Kılıç, Türker; Lifton, Richard P.; Noonan, James P.; Yasuno, Katsuhito; Günel, Murat

    2016-01-01

    We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1E17K, a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive—nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics. PMID:23348505

  3. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.

    PubMed

    Clark, Victoria E; Erson-Omay, E Zeynep; Serin, Akdes; Yin, Jun; Cotney, Justin; Ozduman, Koray; Avşar, Timuçin; Li, Jie; Murray, Phillip B; Henegariu, Octavian; Yilmaz, Saliha; Günel, Jennifer Moliterno; Carrión-Grant, Geneive; Yilmaz, Baran; Grady, Conor; Tanrikulu, Bahattin; Bakircioğlu, Mehmet; Kaymakçalan, Hande; Caglayan, Ahmet Okay; Sencar, Leman; Ceyhun, Emre; Atik, A Fatih; Bayri, Yaşar; Bai, Hanwen; Kolb, Luis E; Hebert, Ryan M; Omay, S Bulent; Mishra-Gorur, Ketu; Choi, Murim; Overton, John D; Holland, Eric C; Mane, Shrikant; State, Matthew W; Bilgüvar, Kaya; Baehring, Joachim M; Gutin, Philip H; Piepmeier, Joseph M; Vortmeyer, Alexander; Brennan, Cameron W; Pamir, M Necmettin; Kiliç, Türker; Lifton, Richard P; Noonan, James P; Yasuno, Katsuhito; Günel, Murat

    2013-03-01

    We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics. PMID:23348505

  4. DNA analysis of renal electrolyte transporter genes among patients suffering from Bartter and Gitelman syndromes: summary of mutation screening.

    PubMed

    Urbanová, M; Reiterová, J; Stěkrová, J; Lněnička, P; Ryšavá, R

    2011-01-01

    Patients with renal diseases associated with salt-losing tubulopathies categorized as Gitelman and classic form of Bartter syndrome have undergone genetic screening for possible mutation capture in two different genes: SLC12A3 and CLCNKB. Clinical symptoms of these two diseases may overlap. Patients with clinical symptoms of antenatal form of Bartter syndrome were screened for mutations in two different genes: KCNJ1 and SLC12A1. The aim was to establish genetic mutation screening of Bartter/Gitelman syndrome and to confirm the proposed diagnosis. We have identified seven different causative mutations in the SLC12A3 gene, four in the CLCNKB gene, two in the SLC12A1 gene, and none in the KCNJ1 gene. Nine of these mutations are novel. In one case, genetic analysis led to re-evaluation of diagnosis between the Gitelman and classic form of Bartter syndrome. PMID:21631963

  5. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer.

    PubMed

    Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C

    2015-11-11

    Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer. PMID:26560360

  6. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover

    SciTech Connect

    Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie

    2008-05-25

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway.

  7. ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions.

    PubMed

    Mulatero, P; Schiavi, F; Williams, T A; Monticone, S; Barbon, G; Opocher, G; Fallo, F

    2016-06-01

    Idiopathic hyperaldosteronism (IHA) due to bilateral adrenal hyperplasia is the most common subtype of primary aldosteronism (PA). The pathogenesis of IHA is still unknown, but the bilateral disease suggests a potential predisposing genetic alteration. Heterozygous germline mutations of armadillo repeat containing 5 (ARMC5) have been shown to be associated with hypercortisolism due to sporadic primary bilateral macronodular adrenal hyperplasia and are also observed in African-American PA patients. We investigated the presence of germline ARMC5 mutations in a group of PA patients who had bilateral computed tomography-detectable adrenal alterations. We sequenced the entire coding region of ARMC5 and all intron/exon boundaries in 39 patients (37 Caucasians and 2 black Africans) with confirmed PA (8 unilateral, 27 bilateral and 4 undetermined subtype) and bilateral adrenal lesions. We identified 11 common variants, 5 rare variants with a minor allele frequency <1% and 2 new variants not previously reported in public databases. We did not detect by in silico analysis any ARMC5 sequence variations that were predicted to alter protein function. In conclusion, ARMC5 mutations are not present in a fairly large series of Caucasian patients with PA associated to bilateral adrenal disease. Further studies are required to definitively clarify the role of ARMC5 in the pathogenesis of adrenal nodules and aldosterone excess in patients with PA. PMID:26446392

  8. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation

    PubMed Central

    Fabbri, Giulia; Rasi, Silvia; Rossi, Davide; Trifonov, Vladimir; Khiabanian, Hossein; Ma, Jing; Grunn, Adina; Fangazio, Marco; Capello, Daniela; Monti, Sara; Cresta, Stefania; Gargiulo, Ernesto; Forconi, Francesco; Guarini, Anna; Arcaini, Luca; Paulli, Marco; Laurenti, Luca; Larocca, Luigi M.; Marasca, Roberto; Gattei, Valter; Oscier, David; Bertoni, Francesco; Mullighan, Charles G.; Foá, Robin; Pasqualucci, Laura; Rabadan, Raul

    2011-01-01

    The pathogenesis of chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is still largely unknown. The full spectrum of genetic lesions that are present in the CLL genome, and therefore the number and identity of dysregulated cellular pathways, have not been identified. By combining next-generation sequencing and copy number analysis, we show here that the typical CLL coding genome contains <20 clonally represented gene alterations/case, including predominantly nonsilent mutations, and fewer copy number aberrations. These analyses led to the discovery of several genes not previously known to be altered in CLL. Although most of these genes were affected at low frequency in an expanded CLL screening cohort, mutational activation of NOTCH1, observed in 8.3% of CLL at diagnosis, was detected at significantly higher frequency during disease progression toward Richter transformation (31.0%), as well as in chemorefractory CLL (20.8%). Consistent with the association of NOTCH1 mutations with clinically aggressive forms of the disease, NOTCH1 activation at CLL diagnosis emerged as an independent predictor of poor survival. These results provide initial data on the complexity of the CLL coding genome and identify a dysregulated pathway of diagnostic and therapeutic relevance. PMID:21670202

  9. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN.

    PubMed Central

    Gray, I. C.; Stewart, L. M.; Phillips, S. M.; Hamilton, J. A.; Gray, N. E.; Watson, G. J.; Spurr, N. K.; Snary, D.

    1998-01-01

    The chromosomal region 10q23-24 is frequently deleted in a number of tumour types, including prostate adenocarcinoma and glioma. A candidate tumour-suppressor gene at 10q23.3, designated PTENor MMAC1, with putative actin-binding and tyrosine phosphatase domains has recently been described. Mutations in PTEN have been identified in cell lines derived from gliomas, melanomas and prostate tumours and from a number of tumour specimens derived from glial, breast, endometrial and kidney tissue. Germline mutations in PTEN appear to be responsible for Cowden disease. We identified five PTEN mutations in 37 primary prostatic tumours analysed and found that 70% of tumours showed loss or alteration of at least one PTEN allele, supporting the evidence for PTEN involvement in prostate tumour progression. We raised antisera to a peptide from PTEN and showed that reactivity occurs in numerous small cytoplasmic organelles and that the protein is commonly expressed in a variety of cell types. Northern blot analysis revealed multiple RNA species; some arise as a result of alternative polyadenylation sites, but others may be due to alternative splicing. Images Figure 1 Figure 2 Figure 3 PMID:9823969

  10. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France.

    PubMed

    Wintjens, René; Bozon, Dominique; Belabbas, Khaldia; MBou, Félicien; Girardet, Jean-Philippe; Tounian, Patrick; Jolly, Mathilde; Boccara, Franck; Cohen, Ariel; Karsenty, Alexandra; Dubern, Béatrice; Carel, Jean-Claude; Azar-Kolakez, Ahlam; Feillet, François; Labarthe, François; Gorsky, Anne-Marie Colin; Horovitz, Alice; Tamarindi, Catherine; Kieffer, Pierre; Lienhardt, Anne; Lascols, Olivier; Di Filippo, Mathilde; Dufernez, Fabienne

    2016-03-01

    Autosomal dominant hypercholesterolemia (ADH) is a human disorder characterized phenotypically by isolated high-cholesterol levels. Mutations in the low density lipoprotein receptor (LDLR), APOB, and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes are well known to be associated with the disease. To characterize the genetic background associated with ADH in France, the three ADH-associated genes were sequenced in a cohort of 120 children and 109 adult patients. Fifty-one percent of the cohort had a possible deleterious variant in LDLR, 3.1% in APOB, and 1.7% in PCSK9. We identified 18 new variants in LDLR and 2 in PCSK9. Three LDLR variants, including two newly identified, were studied by minigene reporter assay confirming the predicted effects on splicing. Additionally, as recently an in-frame deletion in the APOE gene was found to be linked to ADH, the sequencing of this latter gene was performed in patients without a deleterious variant in the three former genes. An APOE variant was identified in three patients with isolated severe hypercholesterolemia giving a frequency of 1.3% in the cohort. Therefore, even though LDLR mutations are the major cause of ADH with a large mutation spectrum, APOE variants were found to be significantly associated with the disease. Furthermore, using structural analysis and modeling, the identified APOE sequence changes were predicted to impact protein function. PMID:26802169