Science.gov

Sample records for structures dynamic characteristics

  1. Relations between structural and dynamic thermal characteristics of building walls

    SciTech Connect

    Kossecka, E.; Kosny, J.

    1996-10-01

    The effect of internal thermal structure on dynamic characteristics of walls is analyzed. The concept of structure factors is introduced and the conditions they impose on response factors are given. Simple examples of multilayer walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between structure factors and response factors. The idea of the ``thermally equivalent wall``, a plane multilayer structure, with dynamic characteristics similar to those of a complex structure, in which three-dimensional heat flow occurs, is presented.

  2. A study on the dynamic characteristics of rocket structure

    NASA Astrophysics Data System (ADS)

    Kim, K. O.; Lee, J. M.; Kim, J. H.; Kim, S. J.

    The dynamic characteristics of a rocket structure are studied in various aspects. Modeling of the structure used by the finite element method is performed, and analysis of stress under various loading condition is carried out. In particular, stresses and deflections are investigated for the structure subjected to internal pressure, thermal load, and aerodynamic forces during flight. Natural frequencies and mode shapes are also calculated.

  3. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  4. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    PubMed Central

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072

  5. The dynamical characteristics and wave structure of typhoon Rananim (2004)

    NASA Astrophysics Data System (ADS)

    Ming, Jie; Ni, Yunqi; Shen, Xinyong

    2009-05-01

    Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Futhermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.

  6. Dynamic characteristics of a magnetorheological pin joint for civil structures

    NASA Astrophysics Data System (ADS)

    Li, Yancheng; Li, Jianchun

    2014-03-01

    Magnetorheological (MR) pin joint is a novel device in which its joint moment resistance can be controlled in real-time by altering the applied magnetic field. The smart pin joint is intended to be used as a controllable connector between the columns and beams of a civil structure to instantaneously shift the structural natural frequencies in order to avoid resonance and therefore to reduce unwanted vibrations and hence prevent structural damage. As an intrinsically nonlinear device, modelling of this MR fluid based device is a challenging task and makes the design of a suitable control algorithm a cumbersome situation. Aimed at its application in civil structure, the main purpose of this paper is to test and characterise the hysteretic behaviour of MR pin joint. A test scheme is designed to obtain the dynamic performance of MR pin joint in the dominant earthquake frequency range. Some unique phenomena different from those of MR damper are observed through the experimental testing. A computationally-efficient model is proposed by introducing a hyperbolic element to accurately reproduce its dynamic behaviour and to further facilitate the design of a suitable control algorithm. Comprehensive investigations on the model accuracy and dependences of the proposed model on loading condition (frequency and amplitude) and input current level are reported in the last section of this paper.

  7. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  8. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  9. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  10. A review of the structure, petrology, and dynamic deformation characteristics of some enigmatic terrestrial structures

    NASA Astrophysics Data System (ADS)

    Officer, Charles B.; Carter, Neville L.

    1991-03-01

    We review three categories of enigmatic terrestrial structures that have a variety of macroscopic and microscopic dynamic deformation features. The first category includes the Midcontinent, United States cryptoexplosion structures. They are of shallow origin and illustrate the effects that might be expected from a meteorite impact on a sedimentary rock terrane. The second category includes the well known Vredefort and Sudbury plutons or basement uplifts; the lesser known Precambrian basement uplifts at Steen River, Manson, and Carswell; and the diatreme breccia dikes at the Slate Islands. They are of relatively deep seated origin and illustrate the effects that might be expected from deep crustal or mantle processes of an explosive nature. The third category includes the large landslides in areas of crystalline rocks at Koefels and Langtang. The dynamic deformation features at these latter locations appear to be related to high strain rate tectonic processes associated with the landslide itself. We conclude that microscopic dynamic deformation features which occur in natural materials may have originated from meteorite impacts, from internal explosions, or from high strain rate tectonic process.

  11. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  12. Numerical study on air-structure coupling dynamic characteristics of the axial fan blade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.

    2013-12-01

    In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.

  13. Structural dynamic characteristics of a Space Station Freedom first assembly flight concept

    NASA Technical Reports Server (NTRS)

    Kaszubowski, Martin J.; Martinovic, Zoran N.; Cooper, Paul A.

    1990-01-01

    A study has been conducted of the dynamic characteristics of the first flight of NASA's Space Station Freedom and its response to a typical preboost excitation; the FEM model of the structure used encompasses 88 flexible modes below 5 Hz. The low frequency modes of the system are noted to have been dominated by the relatively low stiffness of such components as the photovoltaic arrays, thermal radiators, and alpha joint. The spacecraft backbone-forming truss was stiffer, exhibiting no deformation below 3 Hz. Reboost forcing-function response was moderate.

  14. Dynamic Characteristics of Vertically Coupled Structures and the Design of a Decoupled Micro Gyroscope

    PubMed Central

    Choi, Bumkyoo; Lee, Seung-Yop; Kim, Taekhyun; Baek, Seog Soon

    2008-01-01

    In a vertical type, vibratory gyroscope, the coupled motion between reference (driving) and sensing vibrations causes the zero-point output, which is the unwanted sensing vibration without angular velocity. This structural coupling leads to an inherent discrepancy between the natural frequencies of the reference and the sensing oscillations, causing curve veering in frequency loci. The coupled motion deteriorates sensing performance and dynamic stability. In this paper, the dynamic characteristics associated with the coupling phenomenon are theoretically analyzed. The effects of reference frequency and coupling factor on the rotational direction and amplitude of elliptic oscillation are determined. Based on the analytical studies on the coupling effects, we propose and fabricate a vertically decoupled vibratory gyroscope with the frequency matching.

  15. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  16. Identifying dynamic characteristics of structures to estimate the performance of a smart wireless MA system

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, WooSang; Lee, Giu; Lee, Donggi

    2005-05-01

    In this paper, a smart wireless MEMS-based accelerometer(MA) system has been designed and experimented for smart monitoring system of civil structures. In order to estimate the performance of a smart wireless MA system(SWMAS), dynamic characteristics of our model structure need to be identified. This system thus employed a high-performance AVR microcontroller, a wireless modem, and MA for multiplex communication capability and real time duplex communication. Various performance and experimental tests have been carried out to evaluate whether this system is suitable for monitoring system of civil structures. First, we examined its sensitivity, resolution, and noise, specifically to evaluate the performance of the smart wireless MA system. The results of experiments enabled us to estimate performance of the MA in SWMAS in comparison to the value of data sheet from MA. Second, characteristics of model structure were analyzed by the ambient vibration test based on the NExT combined with ERA. Finally, this analysis was compared to the one that was made by FE results, and the comparison proved that a smart wireless MA system was fitted in smart monitoring system effectively.

  17. The effect of carbon plastic truss structures of solar arrays on dynamical characteristics of their drive mechanism

    NASA Astrophysics Data System (ADS)

    Shatikhin, V. Ye.; Semenov, L. P.; Artemenko, Yu. H.; Ihnatovych, S. R.

    We consider the effect of carbon plastic truss structures on dynamical characteristics of drive mechanism of space vehicle solar arrays. An analysis is made for frequencies of own oscillations of the truss structures of solar arrays and for dynamical characteristics of their drive mechanism for the case of structures from the carbon and plastic as well as from the aluminium alloy AMh-6. We substantiate the advantages of the manufacturing of truss structures of frameworks from the carbon and plastic by the winding method in respect of deriving a higher rigidity of a structure.

  18. Structural-dynamic-response characteristics of Darrieus vertical-axis wind turbines

    SciTech Connect

    Sullivan, W.N.

    1981-01-01

    Operational experience at Sandia National Laboratories (SNL) with Darrieus-type vertical axis wind turbines (VAWTs) has indicated that a variety of dynamic issues can affect structural performance of the system. The observation and analysis of structural dynamic responses in the VAWT have been divided among three major aspects of the system; namely rotor vibrations, torsional response of the drive train, and transverse vibrations of the cables. This division is not arbitrary, but is rather because the response of these subsystems can be accurately decoupled from each other in most circumstances. This paper will present only a brief summary of the efforts now underway at SNL in the area of structural dynamics. The emphasis will be on discussing the status of our analytical tools, the quantity and quality of existing experimental confirmation data, and the implications structural dynamic issues have on rotor design.

  19. Sensitivity analysis of torsional vibration characteristics of helicopter rotor blades. Part 1: Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1974-01-01

    A theoretical investigation of structural vibration characteristics of rotor blades was carried out. Coupled equations of motion for flapwise bending and torsion were formulated for rotor blades with noncollinear elastic and mass axes. The finite element method was applied for a detailed representation of blade structural properties. Coupled structural mass and stiffness coefficients were evaluated. The range of validity of a set of coupled equations of motion linearized with respect to eccentricity between elastic and mass axes was investigated. The sensitivity of blade vibration characteristics to torsion were evaluated by varying blade geometric properties, boundary conditions, and eccentricities between mass and elastic axes.

  20. Influence of the random dynamic parameters of the human body on the dynamic characteristics of the coupled system of structure-crowd

    NASA Astrophysics Data System (ADS)

    Agu, E.; Kasperski, M.

    2011-01-01

    The presence of human occupants may change the dynamic behaviour of structures considerably. While this effect is considered in mechanical engineering (e.g. interaction between driver seat and driver) and biomechanics (potentially damaging effects of vibrations) by using equivalent mass-spring-damper systems for the human body, the design practice in civil engineering still often clings to the so-called mass-only model, i.e. the occupants are considered only as additional masses when analysing the dynamic behaviour of floor slabs and stand structures. Recent research efforts aim to improve this situation by recommending averaged models for the human body. This approach seems to be reasonable for large crowds; however, for smaller groups, the question arises whether the random scatter in the dynamic characteristics of the human body leads to random scatter in the effective natural frequency and the effective damping of the coupled structure-crowd system. Based on a probabilistic model for the dynamic characteristics of the human body, an extensive study is presented in this paper. The key variables are the natural frequency of the bare structure, the ratio of the crowd's mass to the structure mass and the group size. The scatter in the effective dynamic characteristics of the coupled system is revealed by the 90%-confidence interval. Furthermore, the maximum span of the respective bounds is used to identify cases where the averaged model fails to predict the real behaviour of the coupled system.

  1. [Structural and dynamic characteristics of patients with oligophrenia at a forensic-psychiatric clinic].

    PubMed

    Gorinov, V V

    1989-01-01

    In a comparative structure-dynamic investigation of 250 oligophrenic patients at the debility stage the results of forensic-psychiatric evaluation of responsibility depended on the dynamic shifts. The complexes of symptoms of psychogenic decompensation and reactive states were singled out that were observable in debile patients. The criteria are given for the forensic evaluation of these states. A group of mentally retarded patients with considerable volitional-emotional disorders was studied which did not achieve the age-related compensation. In these, social dysadaptation was of a steady nature with persisting incapability of organizing and critically assessing their own behavior. PMID:2728747

  2. Implosion dynamics and radiative characteristics of a high yield structured gas puff load

    SciTech Connect

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Sze, H. M.; Velikovich, A. L.; Commisso, R. J.; Davis, J.; Lojewski, D.

    2006-08-15

    A large diameter gas puff nozzle, designed to produce a radial mass profile with a substantial fraction of the injected mass on the axis, has demonstrated an increase in K shell yield by nearly a factor of 2, to 21 kJ, in an argon Z pinch at 3.5 MA peak current and 205 ns implosion time [H. Sze, J. Banister, B. H. Failor, J. S. Levine, N. Qi, A. L. Velikovich, J. Davis, D. Lojewski, and P. Sincerny, Phys. Rev. Lett. 95, 105001 (2005)] and 80 kJ at 6 MA and 227 ns implosion time. The initial gas distribution produced by this nozzle has been determined and related to measured plasma dynamics during the implosion run-in phase. The role of two gas shells and the center jet are elucidated by the inclusion of a tracer element sequentially into each of the three independent plenums and by evacuating each plenum. The implosion dynamics and radiative characteristics of the Z pinches are presented.

  3. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study.

    PubMed

    Sijtsema, J J; Oldehinkel, A J; Veenstra, R; Verhulst, F C; Ormel, J

    2014-06-01

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family characteristics have an independent effect on problem development while accounting for stable family characteristics and comorbid problem development. This issue was addressed by studying problem development in a large community sample (N = 2,230; age 10-20) of adolescents using Linear Mixed models. Paternal and maternal warmth and rejection were assessed via the Egna Minnen Beträffande Uppfostran for Children (EMBU-C). Aggressive and depressive problems were assessed via subscales of the Youth/Adult Self-Report. Results showed that dynamic family characteristics independently affected the development of aggressive problems. Moreover, maternal rejection in preadolescence and increases in paternal rejection were associated with aggressive problems, whereas decreases in maternal rejection were associated with decreases in depressive problems over time. Paternal and maternal warmth in preadolescence was associated with fewer depressive problems during adolescence. Moreover, increases in paternal warmth were associated with fewer depressive problems over time. Aggressive problems were a stable predictor of depressive problems over time. Finally, those who increased in depressive problems became more aggressive during adolescence, whereas those who decreased in depressive problems became also less aggressive. Besides the effect of comorbid problems, problem development is to a large extent due to dynamic family characteristics, and in particular to changes in parental rejection, which leaves much room for parenting-based interventions. PMID:24043499

  4. Time-Structured and Net Intraindividual Variability: Tools for Examining the Development of Dynamic Characteristics and Processes

    PubMed Central

    Ram, Nilam; Gerstorf, Denis

    2009-01-01

    The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395

  5. Asymmetric dual-gate-structured one-transistor dynamic random access memory cells for retention characteristics improvement

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Lee, Jong-Ho; Park, Byung-Gook

    2016-08-01

    One of the major concerns of one-transistor dynamic random access memory (1T-DRAM) is poor retention time. In this letter, a 1T-DRAM cell with two separated asymmetric gates was fabricated and evaluated to improve sensing margin and retention characteristics. It was observed that significantly enhanced sensing margin and retention time over 1 s were obtained using a negatively biased second gate and trapped electrons in the nitride layer because of increased hole capacity in the floating body. These findings indicate that the proposed device could serve as a promising candidate for overcoming retention issues of 1T-DRAM cells.

  6. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Chunchao; Xing, Chenxi; Li, Aiqun

    2014-09-01

    A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.

  7. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  8. Heterogeneity of characteristics, structure, and dynamics of male and hijra sex workers in selected cities of Pakistan

    PubMed Central

    Thompson, Laura H; Salim, Momina; Baloch, Chaker Riaz; Musa, Nighat; Reza, Tahira; Dar, Nosheen; Arian, Shahzad; Blanchard, James F; Emmanuel, Faran

    2013-01-01

    Background We sought to describe the characteristics and operational dynamics of male sex workers (MSW) and hijra sex workers (HSWs) in 11 cities across Pakistan in 2011. Methods We report descriptive statistics of self-reported sexual behaviour data from cross-sectional mapping and biological and behavioural surveys conducted among 1431 MSWs and 1415 HSWs in four cities across Pakistan in 2011. Results While Karachi had the largest numbers of MSWs and HSWs, Quetta had the largest relative population sizes, with 3.6 MSWs per 1000 male adults and 3.3 HSWs per 1000 male adults. There was considerable variability in the proportion of HSWs who operate through deras, ranging from 2.2% in Peshawar to 62.7% in Karachi. The number of HSWs per guru varies by city, from 1.5 in Quetta to 16.5 HSWs per guru in Karachi. Among HSWs, the use of mobile phones for solicitation ranged from 37.6% in Quetta to 83% in Peshawar and among MSWs the use of mobile phones ranged from 27% in Karachi to 52% in Quetta. In Quetta, a large proportion of HSWs (41%) find clients through gurus. Client volume tended to be higher among HSWs and among both MSWs and HSWs in Quetta and Peshawar. Condom use with clients was most consistent in Quetta, with 31% of MSWs and 41% of HSWs reporting always using condoms with clients. Peshawar had the greatest proportion reporting never using condoms. Conclusions There is considerable geographic heterogeneity in the characteristics and operational dynamics of MSWs and HSWs across Pakistan. PMID:23605854

  9. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen

  10. Defining Dynamic Route Structure

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Jastrzebski, Michael

    2011-01-01

    This poster describes a method for defining route structure from flight tracks. Dynamically generated route structures could be useful in guiding dynamic airspace configuration and helping controllers retain situational awareness under dynamically changing traffic conditions. Individual merge and diverge intersections between pairs of flights are identified, clustered, and grouped into nodes of a route structure network. Links are placed between nodes to represent major traffic flows. A parametric analysis determined the algorithm input parameters producing route structures of current day flight plans that are closest to todays airway structure. These parameters are then used to define and analyze the dynamic route structure over the course of a day for current day flight paths. Route structures are also compared between current day flight paths and more user preferred paths such as great circle and weather avoidance routing.

  11. Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics

    SciTech Connect

    Jeffries, M.O. )

    1992-08-01

    Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding of these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.

  12. Microemulsions: Structure and dynamics

    SciTech Connect

    Friberg, S.E.; Bothorel, P.

    1987-01-01

    This book covers the state-of-the-art in stability, structure, applications, and dynamics representation of microemulsion systems. An international group of reviewers discuss the introductory investigations into macroemulsions and interfacial free energy, the derivation of the microemulsion systems from micellar solutions, and the correlation between structure and dynamics. Future developments in this area are also considered. The book presents following: contents; phase diagrams and pseudophase assumption; phase diagram and critical behavior of a quaternary microemulsion system; non-aqueous microemulsions; nonionics; molecular diffusion in microemulsions; dynamics of microemulsions; low interfacial tensions in microemulsion systems; oil recovery and microemulsions.

  13. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  14. The conductivity structure and dynamic characteristics of Southern-Ningxia arcstructure belt, north-east edge of Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Min, G.; Wang, G.; Chen, J.; Zhou, J.; Yin, B.

    2013-12-01

    Southern-Ningxia Arcstructural belt is the forward region of Qinghai-Tibet Plateau that with the extension to northeast , it's tectonic deformation is the remoted effect which caused by the uplifting of Qinghai-Tibet Plateau, and the compressional basin-mountain range system which formed in the cenozoic did not suffer too much change, so Southern-Ningxia Arcstructural belt become an ideal place for the geologists and geophysicists to study plateau uplifting mechanis. For the above reasons,many experts carried out a large number of geophysical investigations in this arcstructural belt, and these research made animportant contribution for us to know the deep structure of Southern-Ningxia Arcstructural belt,but limited to the instrument accuracy and data processing technology,the results had poor resolusion. so we need urgently to carry out high-precision geophysical exploration in Southern-Ningxia,to provide technical support for studying dynamic mechanism and deep structure around the epicenter. we arranged two magnetotelluric sounding profile which across the major tectonic units, the average measurement pitch is 2km,and observation time for each measuring point is more than 12 hours, using the latest 2D NLCG inversion technique with topography for the inversion of measured data, then obtain 2D electrically structure figures with the depth of 30km,which clearly revealed the typical electrical strucure and dynamics characteristics of the study area: The middle&upper crust showing the structural styles of "chunky" totally, the low-impedance&high-conductivity layers in the mid-upper crust of the study area intermittent exist,which shows structural styles of southwest deeper and northeast shallower, we can also infer that low-impedance&high-conductivity layers always termination on the edge of the high impedance ,or intersection with the detachment layers that under the thrust nappes; The low-resistivity zone caused by focal fracture of Haiyuan earthquake neither steep

  15. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  16. Characteristics and Prediction of RNA Structure

    PubMed Central

    Zhu, Daming; Zhang, Caiming; Han, Huijian; Crandall, Keith A.

    2014-01-01

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding. PMID:25110687

  17. Error Location in Structural Dynamic Model of a Rocket Structure

    NASA Astrophysics Data System (ADS)

    Sundararajan, T.; Sam, C.

    2012-06-01

    Structural dynamic characteristics of the aerospace structures are essential to obtain the structural responses due to dynamic loads during its mission. The structural dynamic parameters of the aerospace structures are frequencies, associated mode shape and damping. Usually finite element (FE) model of the aerospace structures are generated to estimate the frequencies and the associated mode shape. These FE models are validated by modal survey/ground resonance tests to ensure its completeness and correctness. The modeling deficiencies, if any, in these FE models have to be corrected. This paper describes the method to locate the FE modeling errors using residual force method.

  18. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  19. Molecular Dynamics Investigations of the Local Structural Characteristics of DNA Oligonucleotides: Studies of Helical Axis Deformations, Conformational Sequence Dependence and Modified Nucleoside Perturbations.

    NASA Astrophysics Data System (ADS)

    Louise-May, Shirley

    The present DNA studies investigate the local structure of DNA oligonucleotides in order to characterize helical axis deformations, sequence dependent fine structure and modified nucleoside perturbations of selected oligonucleotide sequences. The molecular dynamics method is used to generate an ensemble of energetically feasible DNA conformations which can then be analyzed for dynamical conformational properties, some of which can be compared to experimentally derived values. A theory and graphical presentation for the analysis of helical deformations of DNA based on the configurational statistics of polymers, called "Persistence Analysis", was designed. The results of the analysis on prototype forms, static crystal structures and two solvated MD simulations of the sequence d(CGCGAATTCGCG) indicate that all of the expected features of bending can be sensitively and systematically identified by this approach. Comparison of the relative performance of three molecular dynamics potential functions commonly used for dynamical modeling of biological macromolecules; CHARMm, AMBER and GROMOS was investigated via in vacuo MD simulations on the dodecamer sequence d(CGCGAATTCGCG)_2 with respect to the conformational properties of each dynamical model and their ability to support A and B families of DNA. Vacuum molecular dynamics simulations using the CHARMm force field carried out on simple homo- and heteropolymers of DNA led to the conclusion that sequence dependent fine structure appears to be well defined for adenine-thymine rich sequences both at the base pair and base step level whereas much of the the fine structure found in cytosine -guanine rich sequences appears to be context dependent. The local conformational properties of the homopolymer poly (dA) -poly (dT) revealed one dynamical model which was found in general agreement with fiber models currently available. Investigation of the relative structural static and dynamical effect of the misincorporation of

  20. Uses And Characteristics Of Dynamic Tradeoff Evaluation

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1995-01-01

    Report discusses basic concepts, some applications, and performance characteristics of dynamic tradeoff evaluation (DTE). Basic concepts of DTE also described in "Dynamic Restructuring of Problems in Artificial Intelligence" (NPO-18488). DTE is method of enhancing real-time performance of artificial-intelligence system such as might be used to monitor data from multiple sensors in factory, aircraft, spacecraft, or other complex system of equipment. Report presents evaluation of DTE as applied to spacecraft-monitoring problems.

  1. Dynamic and Performance Characteristics of Baseball Bats

    ERIC Educational Resources Information Center

    Bryant, Fred O.; And Others

    1977-01-01

    The dynamic and performance characteristics of wooden and aluminum baseball bats were investigated in two phases; the first dealing with the velocity of the batted balls, and the second with a study of centers of percussion and impulse response at the handle. (MJB)

  2. Prominence Structure and Dynamics

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2009-01-01

    Nonerupting prominences are not dull, static objects. Rather, they are composed of fine-scale blobs and threads that are highly dynamic, often appearing to travel in opposite directions on adjacent tracks (denoted counterstreaming). Because the plasma is largely constrained to travel along the magnetic field, these cool, dense features can serve as tracers of the prominence magnetic structure, a valuable resource in view of the long-standing difficulty of observing the coronal field. Conversely, greater understanding of the fundamental magnetic geometry of filament channels can provide important constraints on the physical processes governing the accumulation, support, motion, and eruption of the cool plasma. Despite over a century of detailed observations, large gaps remain in our knowledge of filament channel/plasma formation and evolution. Resolving these issues will shed light on the physics of coronal heating, helicity transport throughout the solar cycle, and the origins of eruptive activity on the Sun. I will discuss the leading models for the magnetic and plasma structure, and outline how new observations and theory /modeling could solve long-standing uncertainties regarding this majestic solar phenomenon.

  3. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  4. Structure/load dependent vectors for linear structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1992-01-01

    The dynamic solution vectors yielded by the present structure/load dependent-vectors method for large-scale linear structural dynamic analyses involving complex loadings can be used as starting vectors, so that both structure and load characteristics are encompassed by the basis vectors. The method is shown to entail fewer vectors than current alternatives for a given level of accuracy, especially in the cases of structures that have external concentrated masses. Numerical results are presented which illustrate the advantages of this dependent-vectors method relative to other reduction methods.

  5. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  6. Dynamic adaptivity of "smart" piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Tzou, Horn-Sen; Zhong, Jianping P.

    1990-10-01

    Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

  7. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  8. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  9. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  10. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  11. NASA/USAF research in structural dynamics

    NASA Technical Reports Server (NTRS)

    Pinson, L. D.; Amos, A. K.

    1983-01-01

    Research in the structural dynamics of large space structures is discussed. The problems of structural response are emphasized. Dynamic modeling, structural members, finite element techniques, axial loads, and vibration tests are among the topics discussed.

  12. Dynamical structure in paleoclimate data

    SciTech Connect

    Stewart, H.B.

    1994-12-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods which can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.

  13. Coherent structures and dynamical systems

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  14. Dynamic response of aircraft structure

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The physical and mathematical problems associated with the response of elastic structures to random excitations such as occurs during buffeting and other transonic phenomena were discussed. The following subjects were covered: (1) general dynamic system consisting of the aircraft structure, the aerodynamic driving forces due to separated flow, and the aerodynamic forces due to aircraft structural motion, (2) structural and aerodynamic quantities of the dynamic system with special emphasis given to the description of the aerodynamic forces, and including a treatment of similarity laws, scaling effects, and wind tunnel testing, and (3) methods for data processing of fluctuating pressure recordings and techniques for response analysis for random excitation. A general buffeting flutter model, which takes into account the interactions between the separated and motion induced flows was presented. Relaxations of this model leading to the forced vibration model were explained.

  15. Some Structural Characteristics of Music Television Videos.

    ERIC Educational Resources Information Center

    Fry, Donald L.; Fry, Virginia H.

    1987-01-01

    Indicates, by analyzing two types of montage structures, that music television is a hybrid form of television programing displaying visual characteristics of both television commercials and drama. Argues that this amalgam of different characteristics gives music television its distinctive look and power as a promotional tool for the record…

  16. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  17. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    SciTech Connect

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-08

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  18. Dynamic characteristics of multisensory facilitation and inhibition.

    PubMed

    Wang, W Y; Hu, L; Valentini, E; Xie, X B; Cui, H Y; Hu, Y

    2012-10-01

    Multimodal integration, which mainly refers to multisensory facilitation and multisensory inhibition, is the process of merging multisensory information in the human brain. However, the neural mechanisms underlying the dynamic characteristics of multimodal integration are not fully understood. The objective of this study is to investigate the basic mechanisms of multimodal integration by assessing the intermodal influences of vision, audition, and somatosensory sensations (the influence of multisensory background events to the target event). We used a timed target detection task, and measured both behavioral and electroencephalographic responses to visual target events (green solid circle), auditory target events (2 kHz pure tone) and somatosensory target events (1.5 ± 0.1 mA square wave pulse) from 20 normal participants. There were significant differences in both behavior performance and ERP components when comparing the unimodal target stimuli with multimodal (bimodal and trimodal) target stimuli for all target groups. Significant correlation among reaction time and P3 latency was observed across all target conditions. The perceptual processing of auditory target events (A) was inhibited by the background events, while the perceptual processing of somatosensory target events (S) was facilitated by the background events. In contrast, the perceptual processing of visual target events (V) remained impervious to multisensory background events. PMID:24082962

  19. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  20. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  1. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  2. Structural Dynamics, Stability, and Control of Helicopters

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Hale, A. L.

    1978-01-01

    The dynamic synthesis of gyroscopic structures consisting of point-connected substructures is investigated. The objective is to develop a mathematical model capable of an adequate simulation of the modal characteristics of a helicopter using a minimum number of degrees of freedom. The basic approach is to regard the helicopter structure as an assemblage of flexible substructures. The variational equations for the perturbed motion about certain equilibrium solutions are derived. The discretized variational equations can be conveniently exhibited in matrix form, and a great deal of information about the system modal characteristics can be extracted from the coefficient matrices. The derivation of the variational equations requires a monumental amount of algebraic operations. To automate this task a symbolic manipulation program on a digital computer is developed.

  3. Sierra Structural Dynamics User's Notes

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  4. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-03-01

    The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  5. Evolutionary dynamics in structured populations

    PubMed Central

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  6. Spectral response of multilayer optical structures to dynamic mechanical loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; LeCroy, Garrett; Summers, Christopher J.; Thadhani, Naresh N.

    2015-05-01

    A computational study of Distributed Bragg Reflectors (DBR) and Optical Microcavities (OMC) was conducted to ascertain their potential as time-resolved mesoscale sensors due to their unique structure-driven spectral characteristics. Shock wave propagation simulations of polymer-based DBRs and glass/ceramic-based OMCs were coupled with spectral response calculations to demonstrate the combined dynamic mechanical and spectral response of the structures. Clear spectral shifts in both structures are predicted as a function of dynamic loading magnitude. Potential applications of the structures include high spatial and temporal resolution surface maps of material states, and in-situ probing of material interfaces during dynamic loading.

  7. The implicit structure of positive characteristics.

    PubMed

    Haslam, Nick; Bain, Paul; Neal, David

    2004-04-01

    The implicit structure of positive character traits was examined in two studies of 190 and 100 undergraduates. Participants judged the pairwise covariation or semantic similarity of 42 positive characteristics using a sorting or a rating task. Characteristics were drawn from a new classification of strengths and virtues, the Five-Factor Model, and a taxonomy of values. Participants showed consistent patterns of perceived association among the characteristics across the study conditions. Multidimensional scaling yielded three consistent dimensions underlying these judgments ("warmth vs. self-control," "vivacity vs. decency," and "wisdom vs. power"). Cluster analyses yielded six consistent groupings-"self-control," "love," "wisdom," "drive," "vivacity," and "collaboration"-that corresponded only moderately to the virtue classification. All three taxonomies were systematically related to this implicit structure, but none captured it satisfactorily on its own. Revisions to positive psychology's classification of strengths are proposed. PMID:15070480

  8. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  9. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig are presented.

  10. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  11. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  12. Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems

    NASA Astrophysics Data System (ADS)

    Zhu, Shi-yao; Lei, Yong-jun; Wu, Xin-feng; Zhang, Da-peng

    2015-05-01

    Spacecraft tracking-drive flexible systems (STFS) consist of drive mechanisms and flexible structures, including solar array and a variety of large-scale antennas. The electromechanical interaction inside drive mechanisms makes it quite complicated to directly analyze the dynamic characteristics of an STFS. In this paper, an indirect dynamic characteristic analysis method for operating-state STFS is presented. The proposed method utilizes the structure dynamics approximation of drive mechanisms that converts the electromechanical model of an STFS into a structure dynamic model with elastic boundary conditions. The structure dynamics approximation and the dynamic characteristic analysis method are validated by experimental and analytical results, respectively. The analysis results indicate that the gear transmission ratio and viscous friction coefficient are the primary factors in approximating boundary stiffness and damping. Dynamic characteristics of an STFS with a large gear transmission ratio are close to that of a flexible structure with a cantilever boundary. Otherwise, torsion-mode natural frequencies of the STFS become smaller and corresponding modal damping ratios become larger, as a result of the local stiffness and damping features of drive mechanisms.

  13. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  14. Sierra Structural Dynamics Theory Manual

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  15. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  16. Structural Characteristics of Homogeneous Hydrophobic Ionic Liquid-HNO3-H2O Ternary System: Experimental Studies and Molecular Dynamics Simulations.

    PubMed

    Fu, Jing; Yang, Y Isaac; Zhang, Jun; Chen, Qingde; Shen, Xinghai; Gao, Yi Qin

    2016-06-16

    The solubility of water in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) increases significantly in the presence of HNO3. [C2mim][NTf2] is completely miscible with HNO3 but immiscible with water. The triangular phase diagram of the ternary system [C2mim][NTf2]-HNO3-H2O was determined at 300.1 K. The homogeneous [C2mim][NTf2]-HNO3-H2O phase is thermodynamically stable, while it can be separated into two phases with an increase of water content. Experiments (electrospray ionization mass spectrometry, Fourier transform infrared spectrometry, and (1)H-nuclear magnetic resonance spectrometry) and molecular dynamics simulations were carried out to investigate the interaction between [C2mim][NTf2], HNO3, and water in the homogeneous phase. It was found that NO3(-) ions interact with both C2mim(+) and water via H-bonding and act as a "bridge" to induce a large amount of water to be dissolved in the hydrophobic IL phase. This confirms that the complexes [C2mim-NTf2-C2mim](+) and [NTf2-C2mim-NTf2](-) exist in the homogeneous [C2mim][NTf2]-HNO3-H2O system at the concentration of HNO3 up to 27.01 wt % and of water as high as 20.74 wt %. PMID:27196811

  17. Dynamic characteristics of a simple bursting neuron model

    NASA Astrophysics Data System (ADS)

    Nakajima, Koji; Sato, Shigeo; Hayakawa, Yoshihiro

    We present a simple neuron model that shows a rich property in spite of the simple structure derived from the simplification of the Hindmarsh-Rose, the Morris-Lecar, and the Hodgkin-Huxley models. The model is a typical example whose characteristics can be discussed through the concept of potential with active areas. A potential function is able to provide a global landscape for dynamics of a model, and the dynamics is explained in connection with the disposition of the active areas on the potential, and hence we are able to discuss the global dynamic behaviors and the common properties among these realistic models. The obtained outputs are broadly classified as simple oscillations, spiking, bursting, and chaotic oscillations. The bursting outputs are classified as with spike undershoot and without spike undershoot, and the bursts without spike undershoot are classified as with tapered and without tapered. We show the parameter dependence of these outputs and discuss the connection between these outputs and the potential with active areas.

  18. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  19. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  20. Dynamic characteristics of two-phase media

    SciTech Connect

    Fedotovskiy, V.S.; Sinyavskiy, V.F.; Terenik, L.V.; Spirov, V.S.

    1990-01-01

    This paper presents the results of investigations into the effective dynamic properties of heterogeneous media formed by a liquid and rigid spherical or cylindrical inclusions contained in it. Oscillations of a pipeline with a two-phase mixture in the general case having a non-uniform distribution of phases over the cross section are considered. Relations are obtained for the effective mass and hydrodynamic damping that determine the frequencies and dynamic-response factors. Oscillations of the bundles of elastic rods in a liquid are considered as in a two-phase mixture formed by a liquid and cylindrical inclusions and which has equivalent inertia and viscous properties.

  1. Numerical investigation of bubble nonlinear dynamics characteristics

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  2. Structural characteristics of hydration sites in lysozyme.

    PubMed

    Soda, Kunitsugu; Shimbo, Yudai; Seki, Yasutaka; Taiji, Makoto

    2011-06-01

    A new method is presented for determining the hydration site of proteins, where the effect of structural fluctuations in both protein and hydration water is explicitly considered by using molecular dynamics simulation (MDS). The whole hydration sites (HS) of lysozyme are composed of 195 single HSs and 38 clustered ones (CHS), and divided into 231 external HSs (EHS) and 2 internal ones (IHS). The largest CHSs, 'Hg' and 'Lβ', are the IHSs having 2.54 and 1.35 mean internal hydration waters respectively. The largest EHS, 'Clft', is located in the cleft region. The real hydration structure of a CHS is an ensemble of multiple structures. The transition between two structures occurs through recombinations of some H-bonds. The number of the experimental X-ray crystal waters is nearly the same as that of the estimated MDS hydration waters for 70% of the HSs, but significantly different for the rest of HSs. PMID:21435773

  3. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  4. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.

    1982-01-01

    The possibilities and the limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are investigated. Changes in mass or stiffness distribution used to place rotor frequencies at desired locations are determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass moment of inertia size, strength, and stability are formulated. The extent hub loads can be minimized by proper choice of EL distribution is determined. Configurations that are simple enough to yield clear, fundamental insights into the structural mechanisms but which are sufficiently complex to result in a realistic result for an optimum rotor blade are emphasized.

  5. Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.

  6. Research in Structures and Dynamics, 1984

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)

    1984-01-01

    A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.

  7. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  8. Combustion fume structure and dynamics

    SciTech Connect

    Flagan, R.C.

    1992-08-01

    The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, composition, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory. (VC)

  9. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGESBeta

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  10. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  11. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A workshop on structural dynamics and control interaction of flexible structures was held to promote technical exchange between the structural dynamics and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. Issues and areas of emphasis were identified in structure-control interaction for the next generation of flexible systems.

  12. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  13. Resolution of structural heterogeneity in dynamic crystallography

    PubMed Central

    Ren, Zhong; Chan, Peter W. Y.; Moffat, Keith; Pai, Emil F.; Royer, William E.; Šrajer, Vukica; Yang, Xiaojing

    2013-01-01

    Dynamic behavior of proteins is critical to their function. X-­ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamicstructural changes’ are often indirectly inferred from ‘structural differences’ by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods. PMID:23695239

  14. Dynamic Characteristics of a Simple Brayton Cryocycle

    NASA Astrophysics Data System (ADS)

    Kutzschbach, A.; Kauschke, M.; Haberstroh, Ch.; Quack, H.

    2006-04-01

    The goal of the overall program is to develop a dynamic numerical model of helium refrigerators and the associated cooling systems based on commercial simulation software. The aim is to give system designers a tool to search for optimum control strategies during the construction phase of the refrigerator with the help of a plant "simulator". In a first step, a simple Brayton refrigerator has been investigated, which consists of a compressor, an after-cooler, a counter-current heat exchanger, a turboexpander and a heat source. Operating modes are "refrigeration" and "liquefaction". Whereas for the steady state design only component efficiencies are needed and mass and energy balances have to be calculated, for the dynamic calculation one needs also the thermal masses and the helium inventory. Transient mass and energy balances have to be formulated for many small elements and then solved simultaneously for all elements. Starting point of the simulation of the Brayton cycle is the steady state operation at design conditions. The response of the system to step and cyclic changes of the refrigeration or liquefaction rate are calculated and characterized.

  15. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  16. Dynamic characteristics and seismic stability of expanded polystyrene geofoam embankments

    NASA Astrophysics Data System (ADS)

    Amini, Zahra A.

    Expanded Polystyrene (EPS) geofoam has become a preferred material in various construction applications due to its light weight. Application of EPS accelerates the projects particularly on soft soils. The focus of this research is on the application of the EPS in embankments and its behavior mainly under harmonic vibration. The goal of this study was to investigate dynamic characteristics of freestanding vertical EPS geofoam embankment and address potential seismic issues that result from the distinguished dynamic behavior of such systems due to the layered and discrete block structure. A series of experimental studies on EPS 19 and a commercially available adhesive was conducted. Two-dimensional numerical analyses were performed to replicate the response of EPS geofoam embankment to horizontal and vertical harmonic motions. The results of the analyses have shown that for some acceleration amplitude levels interlayer sliding is expected to occur in EPS geofoam embankments almost immediately after the start of the base excitation; however, as a highly efficient energy dissipation mechanism sliding ceases rapidly. Shear keys and adhesive may be used to prevent interlayer sliding if they cover the proper extent of area of the embankment. EPS blocks placed in the corners of the embankment and at the edges of the segment prohibited from sliding may experience high stress concentrations. The embankment may show horizontal sway and rocking once sliding is prevented.

  17. Structure and Dynamic Regulation of Abl Kinases*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity. PMID:23316053

  18. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  19. Dynamics and control characteristics of a reference Space Station configuration

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.

    1988-01-01

    This paper describes the structural dynamic characteristics of a NASA reference space station configuration as defined in the November 1987 Space Station Program - Systems Engineering and Integration Engineering Data Book. The modes and frequencies of the station below 2.0 Hz were obtained and selected results along with rigid body properties are presented. A three-axis attitude control system using control moment gyros responding to attitude and attitude rate signals is used to regulate the orientation of the station. The stability of the control system with non-collocated sensors is investigated for both compensated and uncompensated control signals. Results from a closed-loop simulation of a commanded attitude change about three axes, and from a closed-loop simulation of the response of the station to an externally applied unit force impulse at the docking port are presented. These simulation results are used to evaluate the possible degree of control/structures interaction which could occur during normal operation of the station.

  20. Structural dynamics analyses testing and correlation

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1982-01-01

    Some aspects of the lack of close correlation between the predictions of analytical modeling of dynamic structures and the results of vibration tests on such structures are examined. Ways in which the correlation may be improved are suggested.

  1. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  2. GPS in pioneering dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.

    2002-01-01

    Global Positioning System (GPS) technology with 10-20-Hz sampling rates allows scientifically justified dynamic measurements of relative displacements of long-period structures. The displacement response of a simulated tall building in real time and permanent deployment of GPS units at the roof of a building are described. To the authors' best knowledge, this is the first permanent deployment of GPS units (in the world) for continuous dynamic monitoring of a tall building. Data recorded from the building during a windy day is analyzed to determine the structural characteristics. When recorded during extreme motions caused by earthquakes and strong winds, such measurements can be used to compute average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the structural integrity and performance by establishing pre-established thresholds. Such information can be used to secure public safety and/or take steps to improve the performance of the building.

  3. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  4. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  5. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  6. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  7. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  8. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  9. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  10. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2014-09-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  11. Structural Biology by NMR: Structure, Dynamics, and Interactions

    PubMed Central

    Markwick, Phineus R. L.; Malliavin, Thérèse; Nilges, Michael

    2008-01-01

    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data. PMID:18818721

  12. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  13. Predicting protein dynamics from structural ensembles

    NASA Astrophysics Data System (ADS)

    Copperman, J.; Guenza, M. G.

    2015-12-01

    The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes knowledge of the important metastable folded states of the protein to predict the protein dynamics. This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of seven different proteins for which both relaxation data and NMR solution structures are available. Using experimental NMR conformers as the input structural ensembles, LE4PD predicts quantitatively accurate results, with correlation coefficient ρ = 0.93 to NMR backbone relaxation measurements for the seven proteins. The NMR solution structure derived ensemble and predicted dynamical relaxation is compared with molecular dynamics simulation-derived structural ensembles and LE4PD predictions and is consistent in the time scale of the simulations. The use of the experimental NMR conformers frees the approach from computationally demanding simulations.

  14. Flow characteristics of the dynamic "EPA flux chamber"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic flux chamber, commonly referred as the “EPA chamber”, is one method that has been adapted to investigate spatial gas emission on feedlot surfaces. However, the flow characteristics within the chamber have not been evaluated to determine if it can be effectively used outside of its origina...

  15. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  16. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1985-01-01

    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering.

  17. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  18. Global asymptotic stability of dynamic dissipative compensators for multibody flexible space structures

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M.; Alberts, Thomas E.

    1993-01-01

    The stability characteristics of dynamic dissipative compensators are investigated for multibody flexible space structures having nonlinear dynamics. The problem addressed is that of proving asymptotic stability of dynamic dissipative compensators. The stability proof uses the Liapunov approach and exploits the inherent passivity of such systems. For such systems these compensators are shown to be robust to parametric uncertainties and unmodeled dynamics. The results are applicable to a large class of structures such as flexible space structures with articulated flexible appendages.

  19. Dynamic characteristics of magnetically-levitated vehicle systems.

    SciTech Connect

    Cai, Y.; Chen, S. S.; Energy Technology

    1997-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  20. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  1. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  2. Dynamic Characteristics of Penor Peat Using MASW Method

    NASA Astrophysics Data System (ADS)

    Zainorabidin, A.; Said, M. J. M.

    2016-07-01

    The dynamic behaviour of soil affected the mechanical properties of soil such as shear wave velocity, shear modulus, damping ratio and poisson's ratio [1] which is becoming important aspect need to be considered for structures influences by dynamic movement. This study is to determine the dynamic behaviour of Penor peat such as shear wave velocity using MASW and estimation its shear modulus. Peat soils are very problematic soils since it's have high compressibility, low shear strength, high moisture content and low bearing capacity which is very not suitable materials to construct any foundation structures. Shear wave velocity ranges between 32.94 - 95.89 m/s and shear modulus are ranging between 0.93 - 8.01 MPa. The differences of both dynamic properties are due to the changes of peat density and affected by the fibre content, organic content, degree of degradation and moisture content.

  3. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  4. Evolutionary dynamics in set structured populations

    PubMed Central

    Tarnita, Corina E.; Antal, Tibor; Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Evolutionary dynamics are strongly affected by population structure. The outcome of an evolutionary process in a well-mixed population can be very different from that in a structured population. We introduce a powerful method to study dynamical population structure: evolutionary set theory. The individuals of a population are distributed over sets. Individuals interact with others who are in the same set. Any 2 individuals can have several sets in common. Some sets can be empty, whereas others have many members. Interactions occur in terms of an evolutionary game. The payoff of the game is interpreted as fitness. Both the strategy and the set memberships change under evolutionary updating. Therefore, the population structure itself is a consequence of evolutionary dynamics. We construct a general mathematical approach for studying any evolutionary game in set structured populations. As a particular example, we study the evolution of cooperation and derive precise conditions for cooperators to be selected over defectors. PMID:19433793

  5. From structure to function, via dynamics

    NASA Astrophysics Data System (ADS)

    Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.

    2013-01-01

    Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).

  6. Study on Dynamic Characteristics of Ammonia Refrigerator System

    NASA Astrophysics Data System (ADS)

    Nakashima, Minoru; Ikegami, Yasuyuki; Hirao, Yasuhiro; Sudoh, Gaku; Shingoh, Masashi; Uehara, Haruo

    The dynamic characteristics of ammonia refrigerator system are observed when the expansion valve's opening is slightly changed. The refrigerator system is constructed with the reciprocal compressor, the plate type heat exchanger for the condenser and the evaporator, and the expansion valve. A simple simulation model for this refrigerator system is proposed to develop the computer-simulator of this ammonia refrigerator system and those simulation results are compared to above experimental results. For the development of the computer-simulator, simple but useful models, which can represent the dynamic characteristics of the refrigerator, are adopted for each components of the refrigerator system. The simulation shows the overall good agreement with experiment, without the time constant in the variation of the temperature at the evaporator outlet.

  7. Dynamic Structures through Microdifferential Holography

    PubMed Central

    Sharnoff, Mark; Brehm, Lawrence P.; Henry, Richard W.

    1986-01-01

    The principles of microdifferential holography are developed primarily from nonmathematical argument, and the method's capabilities are compared with those of x-ray and optical diffraction. Microdifferential holography is very sensitive to small displacements of strongly scattering elements of a specimen whether or not they can be optically resolved. We present and interpret differential images of electrical activity of neurons and of contractile activity of isolated skeletal fibers. The latter confirm the suggestion of earlier work that the dynamic regions of contracting muscle are organized along myofibrillar segments rather than by sarcomeres. ImagesFIGURE 2FIGURE 3FIGURE 4FIGURE 5FIGURE 6FIGURE 7 PMID:19431634

  8. Effects of joint on dynamics of space deployable structure

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Zhang, Jing; Liu, Rongqiang; Deng, Zongquan

    2013-09-01

    Joints are necessary components in large space deployable truss structures which have significant effects on dynamic behavior of these joint dominated structures. Previous researches usually analyzed effects of one or fewer joint characters on dynamics of jointed structures. Effects of joint stiffness, damping, location, number, clearance and contact stiffness on dynamics of jointed structures are systematically analyzed. Cantilever beam model containing linear joints is developed based on finite element method, influence of joint on natural frequencies and mode shapes of the jointed system are analyzed. Analytical results show that frequencies of jointed system decrease dramatically when peak mode shapes occur at joint locations, and there are cusp shapes present in mode shapes. System frequencies increase with joint damping increasing, there are different joint damping to achieve maximum system damping for different joint stiffness. Joint nonlinear force-displacement is described by describing function method, one-DOF model containing nonlinear joints is established to analyze joints freeplay and hysteresis nonlinearities. Analysis results show that nonlinear effects of freeplay and hysteresis make dynamic responses switch from one resonance frequency to another frequency when amplitude exceed demarcation values. Joint contact stiffness determine degree of system nonlinearity, while exciting force level, clearance and slipping force affect amplitude of dynamic response. Dynamic responses of joint dominated deployable truss structure under different sinusoidal exciting force levels are tested. The test results show obvious nonlinear behaviors contributed by joints, dynamic response shifts to lower frequency and higher amplitude as exciting force increasing. The test results are further compared with analytical results, and joint nonlinearity tested is coincident with hysteresis nonlinearity. Analysis method of joint effects on dynamic characteristics of jointed

  9. VDAC Structure, Selectivity, and Dynamics

    PubMed Central

    Colombini, Marco

    2012-01-01

    VDAC channels exist in the mitochondrial outer membrane of all eukaryotic organisms. Of the different isoforms present in one organism, it seems that one of these is the canonical VDAC whose properties and 3D structure is highly conserved. The fundamental role of these channels is to control the flux of metabolites between the cytosol and mitochondrial spaces. Based on many functional studies, the fundamental structure of the pore wall consists of one α helix and 13 β strands tilted at a 46° angle. This results in a pore with an estimated internal diameter of 2.5 nm. This structure has not yet been resolved. The published 3D structure consists of 19 β strands and is different from the functional structure that forms voltage-gated channels. The selectivity of the channel is exquisite, being able to select for ATP over molecules of the same size and charge. Voltage gating involves two separate gating processes. The mechanism involves the translocation of a positively charged portion of the wall of the channel to the membrane surface resulting in a reduction in pore diameter and volume and an inversion in ion selectivity. This mechanism is consistent with experiments probing changes in selectivity, voltage gating, kinetics and energetics. Other published mechanisms are in conflict with experimental results. PMID:22240010

  10. Structure and Dynamics of Polymer nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Xu, Di; Rafailovich, Miriam; Gersappe, Dilip

    2013-03-01

    Polymer hydrogels are widely used in fields like food science, tissue engineering and drug delivery. A lot of research has focused on developing hydrogels with novel properties. However, a lack of understanding of the dynamics and structure of the hydrogel has become a big obstacle. We use molecular dynamic simulations, which provide a direct observation of gel formation and gel structures, to study the local structural and dynamic properties of hydrogels. Our work focuses on using coarse-graining molecule dynamic simulations to study physically linked polymer nano-composite hydrogels. Our goal is to study how the aspect ratio and shape of the nanofiller introduced to the hydrogel can lead to different mechanical behavior. Our simulation looks at the effects of polymer species, chain length, and water content and the effect on the mechanical properties of the hydrogel.

  11. Dynamic and Structural Gas Turbine Engine Modeling

    NASA Technical Reports Server (NTRS)

    Turso, James A.

    2003-01-01

    Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.

  12. Evolutionary dynamics of taxonomic structure

    PubMed Central

    Foote, Michael

    2012-01-01

    The distribution of species among genera and higher taxa has largely untapped potential to reveal among-clade variation in rates of origination and extinction. The probability distribution of the number of species within a genus is modelled with a stochastic, time-homogeneous birth–death model having two parameters: the rate of species extinction, μ, and the rate of genus origination, γ, each scaled as a multiple of the rate of within-genus speciation, λ. The distribution is more sensitive to γ than to μ, although μ affects the size of the largest genera. The species : genus ratio depends strongly on both γ and μ, and so is not a good diagnostic of evolutionary dynamics. The proportion of monotypic genera, however, depends mainly on γ, and so may provide an index of the genus origination rate. Application to living marine molluscs of New Zealand shows that bivalves have a higher relative rate of genus origination than gastropods. This is supported by the analysis of palaeontological data. This concordance suggests that analysis of living taxonomic distributions may allow inference of macroevolutionary dynamics even without a fossil record. PMID:21865239

  13. Comparisons of the dynamic characteristics of magnetorheological and hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Oyadiji, S. O.

    2015-04-01

    A magnetorheological (MR) damper can adapt its dynamic performance to the vibration environment by controlling the current applied. Compared to other types of dampers, the MR damper has a wider range of dynamic characteristics. Two different dampers: hydraulic, and MR dampers were tested under forced sinusoidal excitations of low to high frequencies. Also, different currents were applied on the MR damper to investigate its performance under varying electromagnetic fields. The results reveal that the two dampers have nonlinear dynamic characteristics and that characteristics of the hydraulic damper are different from those of the MR damper. The hydraulic damper provides slight nonlinear damping force whereas the MR damper shows a strong nonlinear property. In addition, the hydraulic damper is designed to provide an asymmetric damping force of rebound and compression whereas the MR damper provides a symmetric damping force. In the experiments conducted, the excitation frequency was varied from 3 Hz to 11 Hz and the amplitude from 2.5 mm to 12 mm. For the hydraulic damper, the lowest compression damping force only increases by about 0.54 kN while the rebound force increases by about 1.9 kN. In contrast, the variations of compression and rebound forces of the MR damper are 1.9 and 2.0 kN, respectively. Furthermore, the damping force of the MR damper increases as the current increases from 0 to 0.75 A.

  14. Dynamic Structure of Plasma Fibronectin

    PubMed Central

    Maurer, Lisa M.; Ma, Wenjiang; Mosher, Deane F.

    2016-01-01

    Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29 to 31 modules—12 type I, two type II, and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation, and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to “beads on a string”. There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins. PMID:27185500

  15. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  16. Polar cusp: optical and particle characteristics-dynamics

    SciTech Connect

    Sandholt, P.E.; Egeland, A.; Asheim, S.; Lybekk, B.; Hardy, D.A.

    1985-01-01

    Photometric observations from two stations on Svalbard, Norway, were used to map the location and dynamics of polar-cusp auroras. Coordinated observations of low-energy electron precipitation from satellite HILAT and optical observations from the ground are discussed. Cases are presented showing the dynamical behavior of cusp auroras and the local magnetic field related to changes in the interplanetary magnetic field (IMF) and irregularities in the solar wind plasma. Dynamical phenomena with different time scales are studied. South and northward expansions of the midday sector of the auroral oval are discussed in relation to IMF variations and geomagnetic substorm activity. Intensifications and rapid poleward motions of discrete auroral structures in the cusp region are shown to be associated with local Pi type magnetic pulsations, each event lasting a few minutes. These small scale dynamical phenomena are discussed in relation to different models of plasma penetration across the dayside magnetopause, from the magnetosheath to the polar cusp region of the magnetosphere.

  17. Structural dynamics payload loads estimates

    NASA Technical Reports Server (NTRS)

    Engels, R. C.

    1982-01-01

    Methods for the prediction of loads on large space structures are discussed. Existing approaches to the problem of loads calculation are surveyed. A full scale version of an alternate numerical integration technique to solve the response part of a load cycle is presented, and a set of short cut versions of the algorithm developed. The implementation of these techniques using the software package developed is discussed.

  18. On Dynamics of Spinning Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  19. Technical issues in dynamics and control of large space structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Anderson, W. W.

    1983-01-01

    Examples of large space systems currently being considered by NASA include a large communications antenna system (the Land Mobile Satellite System), a precision antenna system (the Large Deployable Reflector System), and a preliminary concept for NASA's space station. Each system has low natural vibration frequencies, stringent pointing requirements, and, for the antennas, demanding surface accuracy requirements. A review is provided of the progress being made in structural ground tests with respect to surface accuracy, deployment, and erection of large structures. Attention is given to the dynamic loads on large space structures, on-orbit testing, space vibration control devices, and the characteristics of distributed control.

  20. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  1. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Venneri, Samuel L.

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  2. Program of Research in Structures and Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  3. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  4. Submesoscale dynamics and planktonic community structure

    NASA Astrophysics Data System (ADS)

    Franks, P. J.; Taniguchi, D. A.

    2012-12-01

    The vertical velocities associated with submesoscale dynamics occur on time scales that are resonant with planktonic growth and grazing rates. This resonance may cause submesoscale dynamics to be disproportionately important to planktonic productivity and carbon sequestration. To investigate the role of submesoscale motions on planktonic community structure, we used a continuum size-structured planktonic ecosystem model. The model is based on a traditional NPZ framework, but allows for size dependence of all biological processes. The model was carefully parameterized with data from the literature, and reproduces realistic planktonic size spectra. Perturbing the model with a nutrient pulse similar to that driven by submesoscale upwelling leads to significant perturbations to the ecosystem. Pulses of enhanced biomass propagate from small to large organisms over time scales of days to weeks. We explore the model stability and dynamics, and their dependence on the parameter values, to gain understanding of the potential for submesoscale physical motions to influence planktonic ecosystem dynamics.

  5. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  6. Structural dynamics of liganded myoglobin

    SciTech Connect

    Frauenfelder, H.; Petsko, G.A.

    1980-10-01

    X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to the overall apparent displacement can be estimated by Moessbauer spectroscopy. This technique has been applied to high resolution x-ray diffraction data from sperm whale myoglobin in its Met iron and oxy cobalt forms. Both crystal structures display regions of large conformational motions, particularly at the chain termini and in the region of the proximal histidine. Overall, the mean-square displacement increases with increasing distance from the center of gravity of the molecule. Some regions of the heme pocket in oxy cobalt myoglobin are more rigid than the corresponding regions in Met myoglobin.

  7. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  8. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  9. Structure and dynamics of biphasic colloidal mixtures.

    PubMed

    Mohraz, Ali; Weeks, Eric R; Lewis, Jennifer A

    2008-06-01

    We investigate the structure and dynamics of biphasic colloidal mixtures composed of coexisting attractive and repulsive microspheres by confocal microscopy. Attractive gels formed in the presence of repulsive microspheres are more spatially homogeneous and, on average, are both more locally tenuous and have fewer large voids than their unary counterparts. The repulsive microspheres within these mixtures display heterogeneous dynamics, with some species exhibiting freely diffusive Brownian motion while others are trapped within the gel network during aggregation. PMID:18643205

  10. Origin and Structure of Dynamic Cooperative Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2014-01-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks. PMID:25030202

  11. Origin and Structure of Dynamic Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; Hauert, Christoph

    2014-07-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks.

  12. Dynamics and structure of energetic displacement cascades

    SciTech Connect

    Averback, R.S.; Diaz de la Rubia, T.; Benedek, R.

    1987-12-01

    This paper summarizes recent progress in the understanding of energetic displacement cascades and the primary state of damage in metals. On the theoretical side, the availability of supercomputers has greatly enhanced our ability to simulate cascades by molecular dynamics. Recent application of this simulation technique to Cu and Ni provides new insight into the dynamics of cascade processes. On the experimental side, new data on ion beam mixing and in situ electron microscopy studies of ion damage at low temperatures reveal the role of the thermodynamic properties of the material on cascade dynamics and structure. 38 refs., 9 figs.

  13. Strength of concrete structures under dynamic loading

    NASA Astrophysics Data System (ADS)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  14. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Bugg, Frank M.; Ivey, E. W.; Moore, C. J.; Townsend, John S.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction.

  15. Protein crowding affects hydration structure and dynamics

    PubMed Central

    Harada, Ryuhei; Sugita, Yuji; Feig, Michael

    2012-01-01

    The effect of protein crowding on the structure and dynamics of water was examined from explicit solvent molecular dynamics simulations of a series of protein G and protein G/villin systems at different protein concentrations. Hydration structure was analyzed in terms of radial distribution functions, three-dimensional hydration sites, and preservation of tetrahedral coordination. Analysis of hydration dynamics focused on self-diffusion rates and dielectric constants as a function of crowding. The results show significant changes in both structure and dynamics of water under highly crowded conditions. The structure of water is altered mostly beyond the first solvation shell. Diffusion rates and dielectric constants are significantly reduced following linear trends as a function of crowding reflecting highly constrained water in crowded environments. The reduced dynamics of diffusion is expected to be strongly related to hydrodynamic properties of crowded cellular environments while the reduced dielectric constant under crowded conditions has implications for the stability of biomolecules in crowded environments. The results from this study suggest a prescription for modeling solvation in simulations of cellular environments. PMID:22352398

  16. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  17. Video Game Structural Characteristics: A New Psychological Taxonomy

    ERIC Educational Resources Information Center

    King, Daniel; Delfabbro, Paul; Griffiths, Mark

    2010-01-01

    Excessive video game playing behaviour may be influenced by a variety of factors including the structural characteristics of video games. Structural characteristics refer to those features inherent within the video game itself that may facilitate initiation, development and maintenance of video game playing over time. Numerous structural…

  18. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  19. The structural characteristics of video games: a psycho-structural analysis.

    PubMed

    Wood, Richard T A; Griffiths, Mark D; Chappell, Darren; Davies, Mark N O

    2004-02-01

    There is little doubt that video game playing is a psychological and social phenomenon. This paper outlines the main structural characteristics of video game playing (i.e., those characteristics that either induce gaming in the first place or are inducements to continue gaming irrespective of the individual's psychological, physiological, or socio-economic status). This online study is the first ever to assess what structural characteristics (if any) are important to a group of self-selected video game players (n = 382). The main variables examined were sound, graphics, background and setting, duration of game, rate of play, advancement rate, use of humor, control options, game dynamics, winning and losing features, character development, brand assurance, and multi-player features. Although there were many major gender differences, one of the main overall findings was the importance of a high degree of realism (i.e., realistic sound, graphics, and setting). Other important characteristics included a rapid absorption rate, character development, the ability to customize the game, and multiplayer features. Suggestions for future research are outlined. PMID:15006163

  20. Prediction of vibration characteristics in beam structure using sub-scale modeling with experimental validation

    NASA Astrophysics Data System (ADS)

    Zai, Behzad Ahmed; Sami, Saad; Khan, M. Amir; Ahmad, Furqan; Park, Myung Kyun

    2015-09-01

    Geometric or sub-scale modeling techniques are used for the evaluation of large and complex dynamic structures to ensure accurate reproduction of load path and thus leading to true dynamic characteristics of such structures. The sub-scale modeling technique is very effective in the prediction of vibration characteristics of original large structure when the experimental testing is not feasible due to the absence of a large testing facility. Previous researches were more focused on free and harmonic vibration case with little or no consideration for readily encountered random vibration. A sub-scale modeling technique is proposed for estimating the vibration characteristics of any large scale structure such as Launch vehicles, Mega structures, etc., under various vibration load cases by utilizing precise scaled-down model of that dynamic structure. In order to establish an analytical correlation between the original structure and its scaled models, different scale models of isotropic cantilever beam are selected and analyzed under various vibration conditions( i.e. free, harmonic and random) using finite element package ANSYS. The developed correlations are also validated through experimental testing. The prediction made from the vibratory response of the scaled-down beam through the established sets of correlation are found similar to the response measured from the testing of original beam structure. The established correlations are equally applicable in the prediction of dynamic characteristics of any complex structure through its scaled-down models. This paper presents modified sub-scale modeling technique that enables accurate prediction of vibration characteristics of large and complex structure under not only sinusoidal but also for random vibrations.

  1. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  2. Chemical structure and dynamics: Annual report 1993

    SciTech Connect

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  3. Static and dynamic characteristics of parallel-grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji

    1987-01-01

    Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.

  4. Dynamic characteristics of the LLNL Precision Engineering Research Lathe

    SciTech Connect

    Franse, J.; Roblee, J.W.; Modemann, K.

    1988-08-31

    The dynamic characteristics of the Precision Engineering Research Lathe (PERL) have been investigated experimentally, up to a frequency of 1000 Hz. In successive tests, the exciting force was applied to either the X slide or the (non-rotating) spindle, and in the X or Z direction. These are the critical directions for turning operations on this T base type lathe. Each of these tests was furthermore done with the servo system active and with the servo system off (slides clamped, control loops open). The applied force fluctuations and the resulting relative displacement, between a capacitive probe mounted on the X slide and the spindle, were measured during the experiments. From these data, the relative dynamic compliances between the tool and the workpiece, in the Z and X directions, have been determined. The most important resonant frequencies, modes, and compliances are reported. Their consequences with regard to the surface quality of diamond turned parts are also discussed. 3 refs., 11 figs.

  5. Structure of the Benzene - by Dynamics

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie; Erlekam, Undine; Von Helden, Gert; Meijer, Gerard; Bunker, Philip R.; Grabow, Jens-Uwe; Van Der Avoird, Ad

    2013-06-01

    The benzene dimer is the prototype system for Van der Waals interactions between aromatic molecules. Here, we report a joint experimental and theoretical study regarding normal (C_6H_6)_2 and the partially deuterated (C_6D_6)(C_6H_6) isotopologue. Interestingly, although its tilted T-shaped equilibrium structure corresponds to an asymmetric rotor, both isotopologues exhibit the rotational spectrum of a symmetric rotor, with a characteristic quartet splitting pattern due to internal tunneling motions: each transition exhibits a -2 : -1 : +1 : +2 splitting ratio with respect to its center. We unravel these splittings with the aid of the unrivalled resolution of the supersonic-jet FT-microwave experiment which provides accurate split-patterns, by means of a reduced-dimensionality model for the internal dynamics of the (rotating) dimer that reproduces them. They turn out to originate from a concerted tunneling mechanism involving both the hindered rotation of the stem in the T-shaped dimer around its sixfold axis and tilt tunneling. We also show that the observed intensities of the tunneling components are not solely determined by nuclear spin statistical weights. Rather, taking small differences in the dissociation energies of different dimer nuclear spin species into account, the kinetics of the dimer formation and equilibration can bias the populations of the tunneling symmetry species. Using Stark shift measurements, we determine the dipole moment of (C_6H_6)_2 to be μ = 0.580(51) D, in agreement with the value of 0.63 D calculated with the assumption that the dipole moment is mainly determined by the dipoles induced in both monomers by the electric field of the quadrupole of the other monomer. M. Schnell, U. Erlekam, P. R. Bunker, G. v. Helden, J.-U. Grabow, G. Meijer, A. van der Avoird, Angew. Chem. Int. Ed., DOI: 10.1002/anie.201300653 and 10.1002/ange.201300653

  6. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concepts are summarized.

  7. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concept are summarized.

  8. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  9. Influence of external perturbations on dynamical characteristics of dust clusters (simulation)

    SciTech Connect

    Lisin, E. A. Vaulina, O. S.

    2012-11-15

    The results of a numerical study of the dynamics of interacting particles in cluster systems under the action of an external perturbing field on them are presented. The relaxation rates and characteristic relaxation times of a cluster to its equilibrium state are analyzed. The conditions for the formation of dynamical structures of charged particles in the field of external nonpotential forces are investigated. The peculiarities of diagnosing the pair potential of particles in nonequilibrium systems are considered. The numerical simulation conditions for the problem were close to the conditions of experiments in a dusty plasma.

  10. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  11. Dynamic based damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauvik; Ricci, Fabrizio; Baid, Harsh; Mal, Ajit K.

    2009-03-01

    Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.

  12. Algorithms and software for nonlinear structural dynamics

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.

    1989-01-01

    The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.

  13. Experimental research on structural dynamics and control

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Horner, G. C.; Cole, S. R.

    1981-01-01

    This report describes an apparatus at the NASA Langley Research Center for conducting research on dynamics and control of structural dynamics systems. The apparatus consists of a 3.66 m (12 ft.) long flexible beam to which are attached four electromagnetic actuators, nine noncontacting sensors to measure deflection of beam at various locations, and four strain gage type load cells one at each actuator attachment point. The important feature of the apparatus is that the actuators can be controlled and deflection and load sensor data can be processed in real time using the research centers CDC Cyber 175 computer system - thereby allowing research to be conducted on structural dynamics systems using advanced control laws. The facility is described in the report along with a detailed discussion of the actuators used.

  14. Structure and dynamics of aqueous solution of uranyl ions

    SciTech Connect

    Chopra, Manish; Choudhury, Niharendu

    2014-04-24

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied.

  15. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  16. The Dynamic Characteristic and Hysteresis Effect of an Air Spring

    NASA Astrophysics Data System (ADS)

    Löcken, F.; Welsch, M.

    2015-02-01

    In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.

  17. Characteristic ion distributions in the dynamic auroral transition region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.; Tu, J.-N.

    2006-04-01

    A Dynamic Fluid Kinetic (DyFK) simulation is conducted to study the H+/O+ flows and distribution functions in the high-latitude dynamic transition region, specifically from 1000 km to about 4000 km altitude. Here, the collisional-to-collisionless transition region is that region where Coulomb collisions have significant but not dominant effects on the ion distributions. In this study, a simulation flux tube, which extends from 120 km to 3 RE altitude, is assumed to experience a pulse of auroral effects for approximately 20 minutes, including both soft electron precipitation and transverse wave heating, and then according to different geophysical circumstances, either to relax following the cessation of such auroral effects or to be heated further continuously by waves with power at higher frequencies. Our principal purpose in this investigation is to elicit the characteristic ion distribution functions in the auroral transition region, where both collisions and kinetic processes play significant roles. The characteristics of the simulated O+ and H+ velocity distributions, such as kidney bean shaped H+ distributions, and O+ distributions having cold cores with upward folded conic wings, resemble those observed by satellites at similar altitudes and geographic conditions. From the simulated distribution function results under different geophysical conditions, we find that O+-O+ and O+-H+ collisions, in conjunction with the kinetic and auroral processes, are key factors in the velocity distributions up to 4000 km altitude, especially for the low speed portions, for both O+ and H+ ions.

  18. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  19. Natural vibration characteristics of gravity structures

    NASA Astrophysics Data System (ADS)

    Chugh, Ashok K.

    2007-04-01

    A forced vibration procedure is presented to estimate fundamental and higher frequencies of vibrations and associated mode shapes of gravity structures. The gravity structures considered are retaining walls and gravity dams. The validity of the proposed procedure is tested on three test problems of varying complexity for which the natural vibration frequencies and mode shapes either have known analytical solutions or have been determined via numerical means/field tests by others. Also included are the results of natural vibration frequencies and associated mode shapes for a spillway control structure located near the abutment end of an embankment dam obtained using the proposed procedure. For all problems considered, fundamental frequency and mode shape results using the proposed procedure are compared with the results obtained using an alternative procedure in which static deflections due to the structure's own weight are used as the starting point for free vibrations by setting the gravity vector to zero. All results compare well. The merits of the proposed procedure are discussed. Published in 2006 by John Wiley & Sons, Ltd.

  20. Demographic Characteristics, Faculty Attitudes and School Structure.

    ERIC Educational Resources Information Center

    Miskel, Cecil

    Examination of the relevant literature indicates that most studies of school structure and interpersonal relations have either been too narrow in scope, too theoretical, or too tied to the individual as the unit of analysis to support any conclusive generalizations. A search of the literature for appropriate variables to include in a more complex…

  1. Dynamic object management for distributed data structures

    NASA Technical Reports Server (NTRS)

    Totty, Brian K.; Reed, Daniel A.

    1992-01-01

    In distributed-memory multiprocessors, remote memory accesses incur larger delays than local accesses. Hence, insightful allocation and access of distributed data can yield substantial performance gains. The authors argue for the use of dynamic data management policies encapsulated within individual distributed data structures. Distributed data structures offer performance, flexibility, abstraction, and system independence. This approach is supported by data from a trace-driven simulation study of parallel scientific benchmarks. Experimental data on memory locality, message count, message volume, and communication delay suggest that data-structure-specific data management is superior to a single, system-imposed policy.

  2. Dynamic characteristics of piezoelectric shear deformable composite plates

    NASA Astrophysics Data System (ADS)

    Kolar, Ramesh

    2004-07-01

    Layered composites have attracted attention for their high specific stiffness, high specific strength, and application specific tailoring of their properties. It is also recognized that layered composites are prone to delamination failure in addition to other failure modes. Consideration of transverse shear on the deformation behavior of the composites is an important aspect in the study of delamination mode failure of such plates. In this paper, we consider the effects of including the transverse shear deformation on the vibration characteristics of layered piezoelectric composites. The formulation is based on the Raleigh-Ritz method using the beam characteristic functions. MATLAB based symbollic math tool box is used in evaluating th eintegrals resulting from the Raleigh Ritz approach. Various commonly occuring boundary conditions are discussed. Results are provided showing the effects of the shear deformation on the dynamics of layered laminated composites. The effects of laminate thickness, fiber orientation, and the plate aspect ratios on the free vibration characteristics of the composite laminates are given to demonstrate the methodology described.

  3. A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Guirong; De Stefano, Alessandro; Matta, Emiliano; Feng, Ruoqiang

    2013-01-01

    During the service life of structures, breathing-fatigue cracks may occur in structural members due to dynamic loadings acting on them. These fatigue cracks, if undetected, might lead to a catastrophic failure of the whole structural system. Although a number of approaches have been proposed to detect breathing-fatigue cracks, some of them appear rather sophisticated or expensive (requiring complicated equipment), and others suffer from a lack of sensitivity. In this study, a simple and efficient approach to detecting breathing-fatigue cracks is developed based on dynamic characteristics of breathing cracks. First, considering that breathing cracks introduce bilinearity into structures, a simple system identification method for bilinear systems is proposed by taking best advantage of dynamic characteristics of bilinear systems. This method transfers nonlinear system identification into linear system identification by dividing impulse or free-vibration responses into different parts corresponding to each stiffness region according to the stiffness interface. In this way, the natural frequency of each region can be identified using any modal identification approach applicable to linear systems. Second, the procedure for identifying the existence of breathing fatigue cracks and quantifying the cracks qualitatively is proposed by looking for the difference in the identified natural frequency between regions. Third, through introducing Hilbert transform, the proposed procedure is extended to identify fatigue cracks in piecewise-nonlinear systems. The proposed system identification method and crack detection procedure have been successfully validated by numerical simulations and experimental tests.

  4. Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes.

    PubMed

    Sun, Zhe; Suenaga, Takuya; Sarkar, Parantap; Sato, Sota; Kotani, Motoko; Isobe, Hiroyuki

    2016-07-19

    The chemistry of a belt-shaped cyclic array of aromatic panels, a so-called "nanohoop," has increasingly attracted much interest, partly because it serves as a segmental model of single-wall carbon nanotubes with curved sp(2)-carbon networks. Although the unique molecular structure of nanohoops is expected to deepen our understanding in curved π-systems, its structural chemistry is still in its infancy despite structural variants rapidly accumulated over the past several years. For instance, structural characteristics that endow the belt shapes with rigidity, an important structural feature relevant to carbon nanotubes, have not been clarified to date. We herein report the synthesis and structures of a series of belt-shaped cyclonaphthylenes. Random synthesis methods using three precursor units with different numbers of naphthylene panels allowed us to prepare 6 congeners consisting of 6 to 11 naphthylene panels, and relationships between the rigidity and the panel numbers, i.e., molecular structures, were investigated. Fundamental yet complicated stereoisomerism in the belt-shaped structures was disclosed by mathematical methods, and dynamics in the panel rotation was revealed by dynamic NMR studies with the aid of theoretical calculations. PMID:27357686

  5. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  6. Dynamic structural disorder in supported nanoscale catalysts.

    PubMed

    Rehr, J J; Vila, F D

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale. PMID:24712802

  7. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  8. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A Workshop was held to promote technical exchange between the structural dynamic and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. The workshop was closed by a panel meeting. Panel members' viewpoints and their responses to questions are included.

  9. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  10. Design of a space shuttle structural dynamics model

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A 1/8 scale structural dynamics model of a parallel burn space shuttle has been designed. Basic objectives were to represent the significant low frequency structural dynamic characteristics while keeping the fabrication costs low. The model was derived from the proposed Grumman Design 619 space shuttle. The design includes an orbiter, two solid rocket motors (SRM) and an external tank (ET). The ET consists of a monocoque LO2 tank an interbank skirt with three frames to accept SRM attachment members, an LH2 tank with 10 frames of which 3 provide for orbiter attachment members, and an aft skirt with on frame to provide for aft SRM attachment members. The frames designed for the SRM attachments are fitted with transverse struts to take symmetric loads.

  11. Dynamic structural network evolution in compressed granular systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James; Daniels, Karen; Bassett, Danielle

    The heterogeneous dynamic behavior of granular packings under shear or compression is not well-understood. In this study, we use novel techniques from network science to investigate the structural evolution that occurs in compressed granular systems. Specifically, we treat particles as network nodes, and pressure-dependent forces between particles as layer-specific network edges. Then, we use a generalization of community detection methods to multilayer networks, and develop quantitative measures that characterize changes in the architecture of the force network as a function of pressure. We observe that branchlike domains reminiscent of force chains evolve differentially as pressure is applied: topological characteristics of these domains at rest predict their coalescence or dispersion under pressure. Our methods allow us to study the dynamics of mesoscale structure in granular systems, and provide a direct way to compare data from systems under different external conditions or with different physical makeup.

  12. Elucidating microscopic structure and dynamics in optically tweezed environments

    NASA Astrophysics Data System (ADS)

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2015-02-01

    To probe the structure and dynamics of molecules under optical trapping conditions, we exploit the effect of femtosecond Fluorescence Resonance Energy Transfer (FRET) between dye molecules coated on the surface of polystyrene microspheres of various sizes suspended in water. The use of femtosecond laser pulses enables sensitive detection through two-photon fluorescence (TPF). Unlike conventional backscatter signal, the TPF signal shows a slow counterintuitive decay for the trapped microspheres when they are not fully within the laser illuminated volume. This decay is a characteristic sign of the occurrence of the FRET process. For microspheres with sizes less than the trapping focal volume, trapping of multiple particles can occur leading to the formation of optically bound clusters. Using different laser polarizations, we also extract information about the structure and dynamics of such optically bound clusters as a consequence of FRET.

  13. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  14. Load deflection characteristics of inflated structures

    NASA Technical Reports Server (NTRS)

    Baumgarten, J. R.

    1983-01-01

    A single, closed form relationship to relate load to the deformed dimensions of the horizontal torus was developed. Wall elasticity was included in the analysis, and special care was taken to predict the final footprint area of the loaded structure. The test fixture utilized is shown. The tori used for the bulk of the testing were rubber inner tubes for a 32 and 160 pneumatic tire. The inner tube being tested was plumbed, to a mercury-filled manometer, which had a 50 inch measurement capacity, by use of a special adapter. The adapter fit over the valve stem and allowed air to be added from a shop-air source and to be bled through the standard valve mechanism. In this fashion, tests requiring the maintenance of a constant indication of air pressure could be run with little difficulty.

  15. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.

    1983-01-01

    The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated.

  16. Chemical structure and dynamics: Annual report 1996

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  17. The structure and dynamics of multilayer networks

    NASA Astrophysics Data System (ADS)

    Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M.

    2014-11-01

    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

  18. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  19. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steve D; McDowell, Rod S

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  20. Chemical structure and dynamics. Annual report 1995

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  1. Dynamic characteristics of an assembly of prop-fan blades

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Kielb, R. E.; Lawrence, C.

    1986-01-01

    In contrast to conventional propellers, propfan blades are thin and highly swept-back, thereby giving rise to large bending and twisting deformations and complex vibratory characteristics. Aerodynamic performance depends on the extent of steady state deformation, and the aeroelastic response depends on the vibratory frequency and mode shape. Attention is presently given to the principal results of structural analyses for a five-bladed propfan assembly; these results are compared with test data. The results encompass both steady deformations and vibratory frequencies and mode shapes in a vacuum centrifugal environment.

  2. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  3. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  4. Space structure (dynamics and control) theme development

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was made to define the long-range technical objectives and goals for the Space Structure (Dynamics and Control) theme area. The approach was to evaluate ongoing and proposed technology activities such that the technology gaps and voids could be identified. After the technology needs were identified, a set of recommended experimental activities was defined including the technical objectives of each and their relationship.

  5. Structure And Dynamics Of Finite Dust Clouds

    SciTech Connect

    Block, D.; Kroll, M.; Arp, O.; Piel, A.; Kaeding, S.; Ivanov, Y.; Melzer, A.; Henning, C.; Baumgartner, H.; Bonitz, M.

    2008-09-07

    Two novel three-dimensional (3D) diagnostics, stereoscopic imaging and digital holography, enable us to provide a critical comparison of experimental results with simulations and theory and thus to gain a detailed insight into the structural and dynamical properties of strongly coupled dust clouds. Special attention is paid to the influence of screening and the role of metastable states in dust clouds containing just a very few particles.

  6. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores.

    PubMed

    Ji, Qing; Lefort, Ronan; Busselez, Rémi; Morineau, Denis

    2009-06-21

    Gay-Berne liquid crystals confined in two cylindrical nanopores with different pore sizes were studied by molecular dynamics simulation. Their structure and dynamics properties were obtained and compared with those of the bulk. Our data show that confinement changes the bulk isotropic-to-nematic transition to a continuous ordering from a paranematic to a nematic phase. Moreover, confinement strongly hinders the smectic translational order. The molecular dynamics is characterized by the translational diffusion coefficients and the first-rank reorientational correlation times. Very different characteristic times and temperature variations in the dynamics are observed in confinement. Spatially resolved quantities illustrate that confinement induces predominant structural and dynamical heterogeneities. PMID:19548733

  7. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores

    NASA Astrophysics Data System (ADS)

    Ji, Qing; Lefort, Ronan; Busselez, Rémi; Morineau, Denis

    2009-06-01

    Gay-Berne liquid crystals confined in two cylindrical nanopores with different pore sizes were studied by molecular dynamics simulation. Their structure and dynamics properties were obtained and compared with those of the bulk. Our data show that confinement changes the bulk isotropic-to-nematic transition to a continuous ordering from a paranematic to a nematic phase. Moreover, confinement strongly hinders the smectic translational order. The molecular dynamics is characterized by the translational diffusion coefficients and the first-rank reorientational correlation times. Very different characteristic times and temperature variations in the dynamics are observed in confinement. Spatially resolved quantities illustrate that confinement induces predominant structural and dynamical heterogeneities.

  8. Patterns and localized structures in population dynamics

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Escaff, D.; Kenkre, V. M.

    2005-11-01

    Patterns, fronts, and localized structures of a prototypical model for population dynamics interaction are studied. The physical content of the model is the coexistence of a simple random walk for the motion of the individuals with a nonlinearity in the competitive struggle for resources which simultaneously stresses the Allee effect and interaction at a distance. Mathematically, the model is variational and exhibits coexistence between different stable extended states. Solutions are obtained, the phase diagram is constructed, and the emergence of localized structures is investigated.

  9. 8B structure in Fermionic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Henninger, K. R.; Neff, T.; Feldmeier, H.

    2015-04-01

    The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.

  10. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  11. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  12. Physicochemical, rheological and structural characteristics of starch in maize tortillas.

    PubMed

    Hernández-Uribe, Juan P; Ramos-López, Gonzalo; Yee-Madeira, Hernani; Bello-Pérez, Luis A

    2010-06-01

    Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50-56 degrees C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105-123 degrees C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2theta = 17 masculine and 23 masculine, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role. PMID:20396953

  13. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  14. Handbook on dynamics of jointed structures.

    SciTech Connect

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  15. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  16. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  17. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  18. Dynamic testing of MFTF containment-vessel structural system

    SciTech Connect

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-04-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters (mode shapes).

  19. Dynamic characterization of thin-film inflatable structures

    NASA Astrophysics Data System (ADS)

    Slade, Kara Nicole

    Inflatable structures constructed from thin polyimide films form a key part of several technology development programs for solar thermal propulsion for satellites, as well as for other applications both in space and on earth. This project investigates the mechanical properties of several of these structures, focusing primarily on their dynamic behavior. The primary focus is the Shooting Star Experiment prototype developed by NASA, but a simpler cylindrical structure is also considered in order to provide an analytically tractable situation for the evaluation of testing and modeling techniques. The cylindrical strut is tested statically to determine its load-deflection characteristics both in linear and nonlinear regimes. The phenomenon of wrinkling is observed under large deflection conditions, particularly at lower pressure. Then, modal testing is used to determine the dynamic properties of the strut for comparison to numerical models. Modal testing is also conducted on Pathfinder 3, a prototype inflatable solar concentrator for the Shooting Star Experiment, both in vacuum and ambient atmospheric conditions. The orbital terminator crossing test is used to determine the dynamic susceptibility of the Pathfinder 3 structure to thermal shock, and it is found to undergo only quasistatic deformations. Finite element models of the cylinder and the Pathfinder 3 concentrator are then constructed using MSC NASTRAN. The inflatable cylinder may be modeled as a beam if only global bending is considered. This restriction leads to the development of a frequency-dependent modulus of elasticity in bending for the structure, developed from engineering beam theory. Both frequency-dependent beam models and shell models are constructed and evaluated for their efficacy. The results from the modeling of the strut are then applied to the inflatable concentrator, where it is found that the shell model captures more of the dynamic subtleties of the system than the beam model, but that both

  20. Response and characteristics of structures subjected to S-H waves

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    A study of the dynamic characteristics of a coupled translational-rotational system is given. The formulation of the problem considers the soil-structure interaction effects by utilizing the impedance functions at the foundation of a structure. Due to the fact that the coefficient matrix in the characteristic equation is frequency dependent in nature, iterations have to be performed to find the nature frequencies of the system. Examples and discussions are presented. Comparisons of the analytical results from various approaches are also given.

  1. Identification of structural parameters from helicopter dynamic test data

    NASA Technical Reports Server (NTRS)

    Giansante, N.; Flannelly, W. G.

    1974-01-01

    A method is presented for obtaining the mass, stiffness, and damping parameters of a linear mathematical model, having fewer degrees of freedom than the structure it represents, directly from dynamic response measurements on the actual helicopter without a priori knowledge of the physical characteristics of the fuselage. The only input information required in the formulation is the approximate natural frequency of each mode and mobility data measured proximate to these frequencies with sinusoidal force excitation applied at only one point on the vehicle. The practicality and numerical soundness of the theoretical development was demonstrated through a computer simulation of an experimental program.

  2. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  3. Community structure and dynamics in social systems

    NASA Astrophysics Data System (ADS)

    Wilkinson, Dennis M.

    This thesis presents applications of statistical physics to the study of the structure and dynamics of social systems, that is, systems whose interactions are based on information exchange. Social systems typically possess a community structure arising from the self organization of groups of interacting components into tightly-knit clusters. An automated method of identifying communities within a network of interactions is first presented. The method includes a statistical component crucial to obtaining accurate results in large, complex systems. It is applied to two real-world social networks, a network of email interactions and a network of related articles in the biomedical literature. The clusters it identifies within these networks are shown to correspond to communities of interrelated components. Next, the dynamics of cooperative problem solving processes on social systems are studied. A simple stochastic model is proposed which captures key aspects of the dynamics which have been empirically observed. Most important among these are the increase in average time to solution and in likelihood of long delays as the system size increases, as well as the log-normal distribution of times to solution. It is shown that a community structure both reduces the average time to solution and decreases the probability of delay. In cases where a system of cooperative efforts does not possess an inherent community structure, the effect of imposing communities is examined. The factor which most affects the dynamics when communities are imposed is shown to be the degree to which individuals neglect information from outside their own communities. The theory of stochastic vector processes is central to the dynamics of social systems and a mathematical study of this subject is presented. Expressions describing the evolution of the moments in the neighborhood of fixed points are obtained for arbitrary systems. Approximation techniques are applied in the small and large noise limits

  4. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  5. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  6. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  7. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  8. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Long, Xu; Ge, Fei; Wang, Lei; Hong, Youshi

    2009-06-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  9. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  10. Equilibrium and Dynamical Characteristics of Imidazole Langmuir Monolayers on Graphite Sheets.

    PubMed

    Rodriguez, Javier; Elola, M Dolores; Laria, D

    2015-07-23

    Using molecular dynamics techniques, we examine structural and dynamical characteristics of liquid-like imidazole (Im) monolayers physisorbed onto a planar graphite sheet, at T = 384 K. Our simulations reveal that molecular orientations in the saturated monolayer exhibit a bistable distribution, characterized by an inner parallel arrangement of the molecules in close contact with the substrate and a slanted alignment, in those lying in adjacent, outer locations. Compared to the results found in three-dimensional, bulk phases, the analysis of the spatial correlations between sites participating in hydrogen bonding shows a clear enhancement of the intermolecular interactions, which also leads to stronger dipolar correlations. As a result, the gross structural features of the monolayer can be cast in terms of mesoscopic domains, comprising units articulated via winding hydrogen bonds, that persist along typical time intervals of a few tens of picoseconds. On the dynamical side, a similar comparison of the characteristic decorrelation time for orientational motions shows a 4-fold increment. Contrasting, the reduction of the system dimensionality leads to a larger diffusion constant. Possible substrate-induced anisotropies in the diffusive motions are also investigated. PMID:25423289

  11. Characteristics of gap plasmon waveguide with stub structures.

    PubMed

    Matsuzaki, Yousuke; Okamoto, Toshihiro; Haraguchi, Masanobu; Fukui, Masuo; Nakagaki, Masatoshi

    2008-10-13

    We found that metal-dielectric-metal plasmon waveguides with a stub structure, i.e. a branch of the waveguide with a finite length, can function as wavelength selective filters of a submicron size. It was found that the transmission characteristics of such structures depend on the phase relationship between the plasmon wave passing through the stub and the one returning to the waveguide from the stub. We also propose structures with a lossless 90 degrees bend in a plasmon waveguide, utilizing a stub structure. Furthermore, we present a functional stub structure, e.g., a 1:1 demultiplexer and a wavelength selective demultiplexer. PMID:18852737

  12. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  13. Dynamic tuning of lattice plasmon lasers with long coherence characteristics

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Yang, Ankun; Schatz, George; Odom, Teri; Mikkelsen, Maiken

    Here, we experimentally demonstrate dynamic tuning of an optically-pumped lattice plasmon laser based on arrays of gold nanoparticles and liquid gain materials [A. Yang, T.B. Hoang et al., Nature Communications 6, 6939 (2015)]. The structure consists of an array of 120 nm diameter gold disks with a height of 50 nm and 600 nm spacing. A liquid gain material composed of IR-140 dye molecules dissolved in a variety of organic solvents is placed on top of the disks and held in place by a thin glass coverslip. At a lasing wavelength of 860 nm, time-resolved measurements show a dramatic reduction of the decay time from 1 ns to less than 20 ps when the optical excitation power density increases from below to above the lasing threshold, indicating the transition from spontaneous to stimulated emission. By changing the dielectric environment surrounding the gold disks in real time, the lasing wavelength can be dynamically tuned over a 55 nm range. Finally, we will discuss recent experiments where we probe both the temporal and spatial coherence properties of the lattice plasmon laser. This advance of tunable plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time.

  14. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  15. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  16. Algebraic Dynamic Programming over general data structures

    PubMed Central

    2015-01-01

    Background Dynamic programming algorithms provide exact solutions to many problems in computational biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions, and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside recursions are covered by the classical ADP theory. Results The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a natural way. We demonstrate that outside recursions are generically derivable from inside decomposition schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene clusters in terms of shortest Hamiltonian paths. Conclusions The generalized ADP framework presented here greatly facilitates the development and implementation of dynamic programming algorithms for a wide spectrum of applications. PMID:26695390

  17. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  18. Dynamic Structure in Artificial Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott B.; Hong, Mei; de Azevedo, Eduardo; Tirrell, David A.; Russell, Thomas P.

    2000-03-01

    Artificial proteins that form reversible hydrogels have been designed and synthesized using recombinant DNA methodologies. Proteins are designed such that two helical, leucine zipper domains flank a central, water soluble domain. Under proper conditions of concentration, pH, and temperature the helical domains aggregate as coiled coils and act as physical crosslinks. Small angle x-ray and neutron scattering have been used to elucidate the gel structure, and NMR and fluorescence exchange experiments have been used to probe the dynamics of the gel system.

  19. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.

    PubMed

    Demontis, Pierfranco; Gulín-González, Jorge; Masia, Marco; Sant, Marco; Suffritti, Giuseppe B

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130-350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between "fragile" (at higher temperatures) and "strong" (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between "fragile" (at lower temperatures) and "strong" (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T(∗) ∼ 315 ± 5 K, was spotted at T(∗) ∼ 283 K and T(∗) ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible mechanisms of the two

  20. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  1. Static and dynamic analyses of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Nishimura, Yoshitaka

    Tensegrity structures are a class of truss structures consisting of a continuous set of tension members (cables) and a discrete set of compression members (bars). Since tensegrity structures are light weight and can be compactly stowed and deployed, cylindrical tensegrity modules have been proposed for space structures. From a view point of structural dynamics, tensegrity structures pose a new set of problems, i.e., initial shape finding. Initial configurations of tensegrity structures must be computed by imposing a pre-stressability condition to initial equilibrium equations. There are ample qualitative statements regarding the initial geometry of cylindrical and spherical tensegrity modules. Quantitative initial shape anlyses have only been performed on one-stage and two-stage cylindrical modules. However, analytical expressions for important geometrical parameters such as twist angles and overlap ratios lack the definition of the initial shape of both cylindrical and spherical tensegrity modules. In response to the above needs, a set of static and dynamic characterization procedures for tensegrity modules was first developed. The procedures were subsequently applied to Buckminster Fuller's spherical tensegrity modules. Both the initial shape and the corresponding pre-stress mode were analytically obtained by using the graphs of the tetrahedral, octahedral (cubic), and icosahedral (dodecahedral) groups. For pre-stressed configurations, modal analyses were conducted to classify a large number of infinitesimal mechanism modes. The procedures also applied tocyclic cylindrical tensegrity modules with an arbitrary number of stages. It was found that both the Maxwell number and the number of infinitesimal mechanism modes are independent of the number of stages in the axial direction. A reduced set of equilibrium equations was derived by incorporating cyclic symmetry and the flip, or quasi-flip, symmetry of the cylindrical modules. For multi-stage modules with more than

  2. Dynamic characteristics of power-tower space stations with 15-foot truss bays

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    A power tower space station concept which generates power with photovoltaic arrays and where the truss structure has a bay size of 15 ft is described. Rigid body and flexible body dynamic characteristics are presented for a 75-kW Initial Operating Capability (IOC) and 150-kW and 300-kW growth stations. The transient response of the IOC and 300-kW growth stations to shuttle dock, orbit reboost, and mobile remote manipulator system translation loads are studied. Displacements, accelerations, and bending moments at various locations on the IOC and 300-kW growth stations are presented.

  3. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-06-01

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  4. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Lin, H.-W.

    2007-06-13

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  5. Molten uranium dioxide structure and dynamics.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts. PMID:25414311

  6. Molten uranium dioxide structure and dynamics

    SciTech Connect

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  7. Molten uranium dioxide structure and dynamics

    DOE PAGESBeta

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  8. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  9. Solution Structure and Backbone Dynamics of Streptopain

    PubMed Central

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T.; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-01-01

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was ∼12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  10. High-dynamic-range MCP structures

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.

    1991-01-01

    We report on the development of a new high-dynamic-range two-stage Multi-Anode Microchannel Array (MAMA) imaging tube designed for improved high count rate performance at FUV and EUV wavelengths. The new two-stage MAMA tube employs two 25-mm-diameter format MCPs placed in tandem with a small gap between the plates. The front (input) MCP is designed to be a low-gain converter plate that supports an opaque photocathode and converts the detected photons to electrons, while the second (output) MCP is of higher conductivity and thus maintains the overall gain of the multiplier at high count rates. The second MCP is mounted in proximity focus with a (224 x 960)-pixel fine-fine coincidence MAMA array for high-spatial-resolution imaging studies. The applied voltage across each MCP can be controlled independently. We report on the gain and dynamic range performance characteristics of the two-stage MAMA tube in two different configurations: first, with the output MCP having moderate conductivity (about 100 MOhm); and second, with the output MCP having very high conductivity (about 2 MOhm). These results are compared and contrasted with those of the more conventional MAMA tube configuration which employs a single high-gain curved-channel MCP.