Science.gov

Sample records for structures dynamic characteristics

  1. Relations between structural and dynamic thermal characteristics of building walls

    SciTech Connect

    Kossecka, E.; Kosny, J.

    1996-10-01

    The effect of internal thermal structure on dynamic characteristics of walls is analyzed. The concept of structure factors is introduced and the conditions they impose on response factors are given. Simple examples of multilayer walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between structure factors and response factors. The idea of the ``thermally equivalent wall``, a plane multilayer structure, with dynamic characteristics similar to those of a complex structure, in which three-dimensional heat flow occurs, is presented.

  2. A study on the dynamic characteristics of rocket structure

    NASA Astrophysics Data System (ADS)

    Kim, K. O.; Lee, J. M.; Kim, J. H.; Kim, S. J.

    The dynamic characteristics of a rocket structure are studied in various aspects. Modeling of the structure used by the finite element method is performed, and analysis of stress under various loading condition is carried out. In particular, stresses and deflections are investigated for the structure subjected to internal pressure, thermal load, and aerodynamic forces during flight. Natural frequencies and mode shapes are also calculated.

  3. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  4. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    PubMed Central

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072

  5. The dynamical characteristics and wave structure of typhoon Rananim (2004)

    NASA Astrophysics Data System (ADS)

    Ming, Jie; Ni, Yunqi; Shen, Xinyong

    2009-05-01

    Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Futhermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.

  6. Dynamic characteristics of a magnetorheological pin joint for civil structures

    NASA Astrophysics Data System (ADS)

    Li, Yancheng; Li, Jianchun

    2014-03-01

    Magnetorheological (MR) pin joint is a novel device in which its joint moment resistance can be controlled in real-time by altering the applied magnetic field. The smart pin joint is intended to be used as a controllable connector between the columns and beams of a civil structure to instantaneously shift the structural natural frequencies in order to avoid resonance and therefore to reduce unwanted vibrations and hence prevent structural damage. As an intrinsically nonlinear device, modelling of this MR fluid based device is a challenging task and makes the design of a suitable control algorithm a cumbersome situation. Aimed at its application in civil structure, the main purpose of this paper is to test and characterise the hysteretic behaviour of MR pin joint. A test scheme is designed to obtain the dynamic performance of MR pin joint in the dominant earthquake frequency range. Some unique phenomena different from those of MR damper are observed through the experimental testing. A computationally-efficient model is proposed by introducing a hyperbolic element to accurately reproduce its dynamic behaviour and to further facilitate the design of a suitable control algorithm. Comprehensive investigations on the model accuracy and dependences of the proposed model on loading condition (frequency and amplitude) and input current level are reported in the last section of this paper.

  7. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  8. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  9. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  10. A review of the structure, petrology, and dynamic deformation characteristics of some enigmatic terrestrial structures

    NASA Astrophysics Data System (ADS)

    Officer, Charles B.; Carter, Neville L.

    1991-03-01

    We review three categories of enigmatic terrestrial structures that have a variety of macroscopic and microscopic dynamic deformation features. The first category includes the Midcontinent, United States cryptoexplosion structures. They are of shallow origin and illustrate the effects that might be expected from a meteorite impact on a sedimentary rock terrane. The second category includes the well known Vredefort and Sudbury plutons or basement uplifts; the lesser known Precambrian basement uplifts at Steen River, Manson, and Carswell; and the diatreme breccia dikes at the Slate Islands. They are of relatively deep seated origin and illustrate the effects that might be expected from deep crustal or mantle processes of an explosive nature. The third category includes the large landslides in areas of crystalline rocks at Koefels and Langtang. The dynamic deformation features at these latter locations appear to be related to high strain rate tectonic processes associated with the landslide itself. We conclude that microscopic dynamic deformation features which occur in natural materials may have originated from meteorite impacts, from internal explosions, or from high strain rate tectonic process.

  11. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  12. Numerical study on air-structure coupling dynamic characteristics of the axial fan blade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.

    2013-12-01

    In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.

  13. Structural dynamic characteristics of a Space Station Freedom first assembly flight concept

    NASA Technical Reports Server (NTRS)

    Kaszubowski, Martin J.; Martinovic, Zoran N.; Cooper, Paul A.

    1990-01-01

    A study has been conducted of the dynamic characteristics of the first flight of NASA's Space Station Freedom and its response to a typical preboost excitation; the FEM model of the structure used encompasses 88 flexible modes below 5 Hz. The low frequency modes of the system are noted to have been dominated by the relatively low stiffness of such components as the photovoltaic arrays, thermal radiators, and alpha joint. The spacecraft backbone-forming truss was stiffer, exhibiting no deformation below 3 Hz. Reboost forcing-function response was moderate.

  14. Dynamic Characteristics of Vertically Coupled Structures and the Design of a Decoupled Micro Gyroscope

    PubMed Central

    Choi, Bumkyoo; Lee, Seung-Yop; Kim, Taekhyun; Baek, Seog Soon

    2008-01-01

    In a vertical type, vibratory gyroscope, the coupled motion between reference (driving) and sensing vibrations causes the zero-point output, which is the unwanted sensing vibration without angular velocity. This structural coupling leads to an inherent discrepancy between the natural frequencies of the reference and the sensing oscillations, causing curve veering in frequency loci. The coupled motion deteriorates sensing performance and dynamic stability. In this paper, the dynamic characteristics associated with the coupling phenomenon are theoretically analyzed. The effects of reference frequency and coupling factor on the rotational direction and amplitude of elliptic oscillation are determined. Based on the analytical studies on the coupling effects, we propose and fabricate a vertically decoupled vibratory gyroscope with the frequency matching.

  15. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  16. Identifying dynamic characteristics of structures to estimate the performance of a smart wireless MA system

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, WooSang; Lee, Giu; Lee, Donggi

    2005-05-01

    In this paper, a smart wireless MEMS-based accelerometer(MA) system has been designed and experimented for smart monitoring system of civil structures. In order to estimate the performance of a smart wireless MA system(SWMAS), dynamic characteristics of our model structure need to be identified. This system thus employed a high-performance AVR microcontroller, a wireless modem, and MA for multiplex communication capability and real time duplex communication. Various performance and experimental tests have been carried out to evaluate whether this system is suitable for monitoring system of civil structures. First, we examined its sensitivity, resolution, and noise, specifically to evaluate the performance of the smart wireless MA system. The results of experiments enabled us to estimate performance of the MA in SWMAS in comparison to the value of data sheet from MA. Second, characteristics of model structure were analyzed by the ambient vibration test based on the NExT combined with ERA. Finally, this analysis was compared to the one that was made by FE results, and the comparison proved that a smart wireless MA system was fitted in smart monitoring system effectively.

  17. The effect of carbon plastic truss structures of solar arrays on dynamical characteristics of their drive mechanism

    NASA Astrophysics Data System (ADS)

    Shatikhin, V. Ye.; Semenov, L. P.; Artemenko, Yu. H.; Ihnatovych, S. R.

    We consider the effect of carbon plastic truss structures on dynamical characteristics of drive mechanism of space vehicle solar arrays. An analysis is made for frequencies of own oscillations of the truss structures of solar arrays and for dynamical characteristics of their drive mechanism for the case of structures from the carbon and plastic as well as from the aluminium alloy AMh-6. We substantiate the advantages of the manufacturing of truss structures of frameworks from the carbon and plastic by the winding method in respect of deriving a higher rigidity of a structure.

  18. Structural-dynamic-response characteristics of Darrieus vertical-axis wind turbines

    SciTech Connect

    Sullivan, W.N.

    1981-01-01

    Operational experience at Sandia National Laboratories (SNL) with Darrieus-type vertical axis wind turbines (VAWTs) has indicated that a variety of dynamic issues can affect structural performance of the system. The observation and analysis of structural dynamic responses in the VAWT have been divided among three major aspects of the system; namely rotor vibrations, torsional response of the drive train, and transverse vibrations of the cables. This division is not arbitrary, but is rather because the response of these subsystems can be accurately decoupled from each other in most circumstances. This paper will present only a brief summary of the efforts now underway at SNL in the area of structural dynamics. The emphasis will be on discussing the status of our analytical tools, the quantity and quality of existing experimental confirmation data, and the implications structural dynamic issues have on rotor design.

  19. Sensitivity analysis of torsional vibration characteristics of helicopter rotor blades. Part 1: Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1974-01-01

    A theoretical investigation of structural vibration characteristics of rotor blades was carried out. Coupled equations of motion for flapwise bending and torsion were formulated for rotor blades with noncollinear elastic and mass axes. The finite element method was applied for a detailed representation of blade structural properties. Coupled structural mass and stiffness coefficients were evaluated. The range of validity of a set of coupled equations of motion linearized with respect to eccentricity between elastic and mass axes was investigated. The sensitivity of blade vibration characteristics to torsion were evaluated by varying blade geometric properties, boundary conditions, and eccentricities between mass and elastic axes.

  20. Influence of the random dynamic parameters of the human body on the dynamic characteristics of the coupled system of structure-crowd

    NASA Astrophysics Data System (ADS)

    Agu, E.; Kasperski, M.

    2011-01-01

    The presence of human occupants may change the dynamic behaviour of structures considerably. While this effect is considered in mechanical engineering (e.g. interaction between driver seat and driver) and biomechanics (potentially damaging effects of vibrations) by using equivalent mass-spring-damper systems for the human body, the design practice in civil engineering still often clings to the so-called mass-only model, i.e. the occupants are considered only as additional masses when analysing the dynamic behaviour of floor slabs and stand structures. Recent research efforts aim to improve this situation by recommending averaged models for the human body. This approach seems to be reasonable for large crowds; however, for smaller groups, the question arises whether the random scatter in the dynamic characteristics of the human body leads to random scatter in the effective natural frequency and the effective damping of the coupled structure-crowd system. Based on a probabilistic model for the dynamic characteristics of the human body, an extensive study is presented in this paper. The key variables are the natural frequency of the bare structure, the ratio of the crowd's mass to the structure mass and the group size. The scatter in the effective dynamic characteristics of the coupled system is revealed by the 90%-confidence interval. Furthermore, the maximum span of the respective bounds is used to identify cases where the averaged model fails to predict the real behaviour of the coupled system.

  1. [Structural and dynamic characteristics of patients with oligophrenia at a forensic-psychiatric clinic].

    PubMed

    Gorinov, V V

    1989-01-01

    In a comparative structure-dynamic investigation of 250 oligophrenic patients at the debility stage the results of forensic-psychiatric evaluation of responsibility depended on the dynamic shifts. The complexes of symptoms of psychogenic decompensation and reactive states were singled out that were observable in debile patients. The criteria are given for the forensic evaluation of these states. A group of mentally retarded patients with considerable volitional-emotional disorders was studied which did not achieve the age-related compensation. In these, social dysadaptation was of a steady nature with persisting incapability of organizing and critically assessing their own behavior. PMID:2728747

  2. Implosion dynamics and radiative characteristics of a high yield structured gas puff load

    SciTech Connect

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Sze, H. M.; Velikovich, A. L.; Commisso, R. J.; Davis, J.; Lojewski, D.

    2006-08-15

    A large diameter gas puff nozzle, designed to produce a radial mass profile with a substantial fraction of the injected mass on the axis, has demonstrated an increase in K shell yield by nearly a factor of 2, to 21 kJ, in an argon Z pinch at 3.5 MA peak current and 205 ns implosion time [H. Sze, J. Banister, B. H. Failor, J. S. Levine, N. Qi, A. L. Velikovich, J. Davis, D. Lojewski, and P. Sincerny, Phys. Rev. Lett. 95, 105001 (2005)] and 80 kJ at 6 MA and 227 ns implosion time. The initial gas distribution produced by this nozzle has been determined and related to measured plasma dynamics during the implosion run-in phase. The role of two gas shells and the center jet are elucidated by the inclusion of a tracer element sequentially into each of the three independent plenums and by evacuating each plenum. The implosion dynamics and radiative characteristics of the Z pinches are presented.

  3. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study.

    PubMed

    Sijtsema, J J; Oldehinkel, A J; Veenstra, R; Verhulst, F C; Ormel, J

    2014-06-01

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family characteristics have an independent effect on problem development while accounting for stable family characteristics and comorbid problem development. This issue was addressed by studying problem development in a large community sample (N = 2,230; age 10-20) of adolescents using Linear Mixed models. Paternal and maternal warmth and rejection were assessed via the Egna Minnen Beträffande Uppfostran for Children (EMBU-C). Aggressive and depressive problems were assessed via subscales of the Youth/Adult Self-Report. Results showed that dynamic family characteristics independently affected the development of aggressive problems. Moreover, maternal rejection in preadolescence and increases in paternal rejection were associated with aggressive problems, whereas decreases in maternal rejection were associated with decreases in depressive problems over time. Paternal and maternal warmth in preadolescence was associated with fewer depressive problems during adolescence. Moreover, increases in paternal warmth were associated with fewer depressive problems over time. Aggressive problems were a stable predictor of depressive problems over time. Finally, those who increased in depressive problems became more aggressive during adolescence, whereas those who decreased in depressive problems became also less aggressive. Besides the effect of comorbid problems, problem development is to a large extent due to dynamic family characteristics, and in particular to changes in parental rejection, which leaves much room for parenting-based interventions. PMID:24043499

  4. Time-Structured and Net Intraindividual Variability: Tools for Examining the Development of Dynamic Characteristics and Processes

    PubMed Central

    Ram, Nilam; Gerstorf, Denis

    2009-01-01

    The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395

  5. Asymmetric dual-gate-structured one-transistor dynamic random access memory cells for retention characteristics improvement

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Lee, Jong-Ho; Park, Byung-Gook

    2016-08-01

    One of the major concerns of one-transistor dynamic random access memory (1T-DRAM) is poor retention time. In this letter, a 1T-DRAM cell with two separated asymmetric gates was fabricated and evaluated to improve sensing margin and retention characteristics. It was observed that significantly enhanced sensing margin and retention time over 1 s were obtained using a negatively biased second gate and trapped electrons in the nitride layer because of increased hole capacity in the floating body. These findings indicate that the proposed device could serve as a promising candidate for overcoming retention issues of 1T-DRAM cells.

  6. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Chunchao; Xing, Chenxi; Li, Aiqun

    2014-09-01

    A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.

  7. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  8. Heterogeneity of characteristics, structure, and dynamics of male and hijra sex workers in selected cities of Pakistan

    PubMed Central

    Thompson, Laura H; Salim, Momina; Baloch, Chaker Riaz; Musa, Nighat; Reza, Tahira; Dar, Nosheen; Arian, Shahzad; Blanchard, James F; Emmanuel, Faran

    2013-01-01

    Background We sought to describe the characteristics and operational dynamics of male sex workers (MSW) and hijra sex workers (HSWs) in 11 cities across Pakistan in 2011. Methods We report descriptive statistics of self-reported sexual behaviour data from cross-sectional mapping and biological and behavioural surveys conducted among 1431 MSWs and 1415 HSWs in four cities across Pakistan in 2011. Results While Karachi had the largest numbers of MSWs and HSWs, Quetta had the largest relative population sizes, with 3.6 MSWs per 1000 male adults and 3.3 HSWs per 1000 male adults. There was considerable variability in the proportion of HSWs who operate through deras, ranging from 2.2% in Peshawar to 62.7% in Karachi. The number of HSWs per guru varies by city, from 1.5 in Quetta to 16.5 HSWs per guru in Karachi. Among HSWs, the use of mobile phones for solicitation ranged from 37.6% in Quetta to 83% in Peshawar and among MSWs the use of mobile phones ranged from 27% in Karachi to 52% in Quetta. In Quetta, a large proportion of HSWs (41%) find clients through gurus. Client volume tended to be higher among HSWs and among both MSWs and HSWs in Quetta and Peshawar. Condom use with clients was most consistent in Quetta, with 31% of MSWs and 41% of HSWs reporting always using condoms with clients. Peshawar had the greatest proportion reporting never using condoms. Conclusions There is considerable geographic heterogeneity in the characteristics and operational dynamics of MSWs and HSWs across Pakistan. PMID:23605854

  9. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen

  10. Defining Dynamic Route Structure

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Jastrzebski, Michael

    2011-01-01

    This poster describes a method for defining route structure from flight tracks. Dynamically generated route structures could be useful in guiding dynamic airspace configuration and helping controllers retain situational awareness under dynamically changing traffic conditions. Individual merge and diverge intersections between pairs of flights are identified, clustered, and grouped into nodes of a route structure network. Links are placed between nodes to represent major traffic flows. A parametric analysis determined the algorithm input parameters producing route structures of current day flight plans that are closest to todays airway structure. These parameters are then used to define and analyze the dynamic route structure over the course of a day for current day flight paths. Route structures are also compared between current day flight paths and more user preferred paths such as great circle and weather avoidance routing.

  11. Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics

    SciTech Connect

    Jeffries, M.O. )

    1992-08-01

    Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding of these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.

  12. Microemulsions: Structure and dynamics

    SciTech Connect

    Friberg, S.E.; Bothorel, P.

    1987-01-01

    This book covers the state-of-the-art in stability, structure, applications, and dynamics representation of microemulsion systems. An international group of reviewers discuss the introductory investigations into macroemulsions and interfacial free energy, the derivation of the microemulsion systems from micellar solutions, and the correlation between structure and dynamics. Future developments in this area are also considered. The book presents following: contents; phase diagrams and pseudophase assumption; phase diagram and critical behavior of a quaternary microemulsion system; non-aqueous microemulsions; nonionics; molecular diffusion in microemulsions; dynamics of microemulsions; low interfacial tensions in microemulsion systems; oil recovery and microemulsions.

  13. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  14. The conductivity structure and dynamic characteristics of Southern-Ningxia arcstructure belt, north-east edge of Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Min, G.; Wang, G.; Chen, J.; Zhou, J.; Yin, B.

    2013-12-01

    Southern-Ningxia Arcstructural belt is the forward region of Qinghai-Tibet Plateau that with the extension to northeast , it's tectonic deformation is the remoted effect which caused by the uplifting of Qinghai-Tibet Plateau, and the compressional basin-mountain range system which formed in the cenozoic did not suffer too much change, so Southern-Ningxia Arcstructural belt become an ideal place for the geologists and geophysicists to study plateau uplifting mechanis. For the above reasons,many experts carried out a large number of geophysical investigations in this arcstructural belt, and these research made animportant contribution for us to know the deep structure of Southern-Ningxia Arcstructural belt,but limited to the instrument accuracy and data processing technology,the results had poor resolusion. so we need urgently to carry out high-precision geophysical exploration in Southern-Ningxia,to provide technical support for studying dynamic mechanism and deep structure around the epicenter. we arranged two magnetotelluric sounding profile which across the major tectonic units, the average measurement pitch is 2km,and observation time for each measuring point is more than 12 hours, using the latest 2D NLCG inversion technique with topography for the inversion of measured data, then obtain 2D electrically structure figures with the depth of 30km,which clearly revealed the typical electrical strucure and dynamics characteristics of the study area: The middle&upper crust showing the structural styles of "chunky" totally, the low-impedance&high-conductivity layers in the mid-upper crust of the study area intermittent exist,which shows structural styles of southwest deeper and northeast shallower, we can also infer that low-impedance&high-conductivity layers always termination on the edge of the high impedance ,or intersection with the detachment layers that under the thrust nappes; The low-resistivity zone caused by focal fracture of Haiyuan earthquake neither steep

  15. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  16. Characteristics and Prediction of RNA Structure

    PubMed Central

    Zhu, Daming; Zhang, Caiming; Han, Huijian; Crandall, Keith A.

    2014-01-01

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding. PMID:25110687

  17. Error Location in Structural Dynamic Model of a Rocket Structure

    NASA Astrophysics Data System (ADS)

    Sundararajan, T.; Sam, C.

    2012-06-01

    Structural dynamic characteristics of the aerospace structures are essential to obtain the structural responses due to dynamic loads during its mission. The structural dynamic parameters of the aerospace structures are frequencies, associated mode shape and damping. Usually finite element (FE) model of the aerospace structures are generated to estimate the frequencies and the associated mode shape. These FE models are validated by modal survey/ground resonance tests to ensure its completeness and correctness. The modeling deficiencies, if any, in these FE models have to be corrected. This paper describes the method to locate the FE modeling errors using residual force method.

  18. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  19. Molecular Dynamics Investigations of the Local Structural Characteristics of DNA Oligonucleotides: Studies of Helical Axis Deformations, Conformational Sequence Dependence and Modified Nucleoside Perturbations.

    NASA Astrophysics Data System (ADS)

    Louise-May, Shirley

    The present DNA studies investigate the local structure of DNA oligonucleotides in order to characterize helical axis deformations, sequence dependent fine structure and modified nucleoside perturbations of selected oligonucleotide sequences. The molecular dynamics method is used to generate an ensemble of energetically feasible DNA conformations which can then be analyzed for dynamical conformational properties, some of which can be compared to experimentally derived values. A theory and graphical presentation for the analysis of helical deformations of DNA based on the configurational statistics of polymers, called "Persistence Analysis", was designed. The results of the analysis on prototype forms, static crystal structures and two solvated MD simulations of the sequence d(CGCGAATTCGCG) indicate that all of the expected features of bending can be sensitively and systematically identified by this approach. Comparison of the relative performance of three molecular dynamics potential functions commonly used for dynamical modeling of biological macromolecules; CHARMm, AMBER and GROMOS was investigated via in vacuo MD simulations on the dodecamer sequence d(CGCGAATTCGCG)_2 with respect to the conformational properties of each dynamical model and their ability to support A and B families of DNA. Vacuum molecular dynamics simulations using the CHARMm force field carried out on simple homo- and heteropolymers of DNA led to the conclusion that sequence dependent fine structure appears to be well defined for adenine-thymine rich sequences both at the base pair and base step level whereas much of the the fine structure found in cytosine -guanine rich sequences appears to be context dependent. The local conformational properties of the homopolymer poly (dA) -poly (dT) revealed one dynamical model which was found in general agreement with fiber models currently available. Investigation of the relative structural static and dynamical effect of the misincorporation of

  20. Uses And Characteristics Of Dynamic Tradeoff Evaluation

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1995-01-01

    Report discusses basic concepts, some applications, and performance characteristics of dynamic tradeoff evaluation (DTE). Basic concepts of DTE also described in "Dynamic Restructuring of Problems in Artificial Intelligence" (NPO-18488). DTE is method of enhancing real-time performance of artificial-intelligence system such as might be used to monitor data from multiple sensors in factory, aircraft, spacecraft, or other complex system of equipment. Report presents evaluation of DTE as applied to spacecraft-monitoring problems.

  1. Dynamic and Performance Characteristics of Baseball Bats

    ERIC Educational Resources Information Center

    Bryant, Fred O.; And Others

    1977-01-01

    The dynamic and performance characteristics of wooden and aluminum baseball bats were investigated in two phases; the first dealing with the velocity of the batted balls, and the second with a study of centers of percussion and impulse response at the handle. (MJB)

  2. Prominence Structure and Dynamics

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2009-01-01

    Nonerupting prominences are not dull, static objects. Rather, they are composed of fine-scale blobs and threads that are highly dynamic, often appearing to travel in opposite directions on adjacent tracks (denoted counterstreaming). Because the plasma is largely constrained to travel along the magnetic field, these cool, dense features can serve as tracers of the prominence magnetic structure, a valuable resource in view of the long-standing difficulty of observing the coronal field. Conversely, greater understanding of the fundamental magnetic geometry of filament channels can provide important constraints on the physical processes governing the accumulation, support, motion, and eruption of the cool plasma. Despite over a century of detailed observations, large gaps remain in our knowledge of filament channel/plasma formation and evolution. Resolving these issues will shed light on the physics of coronal heating, helicity transport throughout the solar cycle, and the origins of eruptive activity on the Sun. I will discuss the leading models for the magnetic and plasma structure, and outline how new observations and theory /modeling could solve long-standing uncertainties regarding this majestic solar phenomenon.

  3. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  4. Structure/load dependent vectors for linear structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1992-01-01

    The dynamic solution vectors yielded by the present structure/load dependent-vectors method for large-scale linear structural dynamic analyses involving complex loadings can be used as starting vectors, so that both structure and load characteristics are encompassed by the basis vectors. The method is shown to entail fewer vectors than current alternatives for a given level of accuracy, especially in the cases of structures that have external concentrated masses. Numerical results are presented which illustrate the advantages of this dependent-vectors method relative to other reduction methods.

  5. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  6. Dynamic adaptivity of "smart" piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Tzou, Horn-Sen; Zhong, Jianping P.

    1990-10-01

    Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

  7. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  8. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  9. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  10. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  11. NASA/USAF research in structural dynamics

    NASA Technical Reports Server (NTRS)

    Pinson, L. D.; Amos, A. K.

    1983-01-01

    Research in the structural dynamics of large space structures is discussed. The problems of structural response are emphasized. Dynamic modeling, structural members, finite element techniques, axial loads, and vibration tests are among the topics discussed.

  12. Dynamical structure in paleoclimate data

    SciTech Connect

    Stewart, H.B.

    1994-12-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods which can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.

  13. Coherent structures and dynamical systems

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  14. Dynamic response of aircraft structure

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The physical and mathematical problems associated with the response of elastic structures to random excitations such as occurs during buffeting and other transonic phenomena were discussed. The following subjects were covered: (1) general dynamic system consisting of the aircraft structure, the aerodynamic driving forces due to separated flow, and the aerodynamic forces due to aircraft structural motion, (2) structural and aerodynamic quantities of the dynamic system with special emphasis given to the description of the aerodynamic forces, and including a treatment of similarity laws, scaling effects, and wind tunnel testing, and (3) methods for data processing of fluctuating pressure recordings and techniques for response analysis for random excitation. A general buffeting flutter model, which takes into account the interactions between the separated and motion induced flows was presented. Relaxations of this model leading to the forced vibration model were explained.

  15. Some Structural Characteristics of Music Television Videos.

    ERIC Educational Resources Information Center

    Fry, Donald L.; Fry, Virginia H.

    1987-01-01

    Indicates, by analyzing two types of montage structures, that music television is a hybrid form of television programing displaying visual characteristics of both television commercials and drama. Argues that this amalgam of different characteristics gives music television its distinctive look and power as a promotional tool for the record…

  16. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  17. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    SciTech Connect

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-08

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  18. Dynamic characteristics of multisensory facilitation and inhibition.

    PubMed

    Wang, W Y; Hu, L; Valentini, E; Xie, X B; Cui, H Y; Hu, Y

    2012-10-01

    Multimodal integration, which mainly refers to multisensory facilitation and multisensory inhibition, is the process of merging multisensory information in the human brain. However, the neural mechanisms underlying the dynamic characteristics of multimodal integration are not fully understood. The objective of this study is to investigate the basic mechanisms of multimodal integration by assessing the intermodal influences of vision, audition, and somatosensory sensations (the influence of multisensory background events to the target event). We used a timed target detection task, and measured both behavioral and electroencephalographic responses to visual target events (green solid circle), auditory target events (2 kHz pure tone) and somatosensory target events (1.5 ± 0.1 mA square wave pulse) from 20 normal participants. There were significant differences in both behavior performance and ERP components when comparing the unimodal target stimuli with multimodal (bimodal and trimodal) target stimuli for all target groups. Significant correlation among reaction time and P3 latency was observed across all target conditions. The perceptual processing of auditory target events (A) was inhibited by the background events, while the perceptual processing of somatosensory target events (S) was facilitated by the background events. In contrast, the perceptual processing of visual target events (V) remained impervious to multisensory background events. PMID:24082962

  19. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  20. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  1. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  2. Structural Dynamics, Stability, and Control of Helicopters

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Hale, A. L.

    1978-01-01

    The dynamic synthesis of gyroscopic structures consisting of point-connected substructures is investigated. The objective is to develop a mathematical model capable of an adequate simulation of the modal characteristics of a helicopter using a minimum number of degrees of freedom. The basic approach is to regard the helicopter structure as an assemblage of flexible substructures. The variational equations for the perturbed motion about certain equilibrium solutions are derived. The discretized variational equations can be conveniently exhibited in matrix form, and a great deal of information about the system modal characteristics can be extracted from the coefficient matrices. The derivation of the variational equations requires a monumental amount of algebraic operations. To automate this task a symbolic manipulation program on a digital computer is developed.

  3. Sierra Structural Dynamics User's Notes

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  4. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-03-01

    The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  5. Evolutionary dynamics in structured populations

    PubMed Central

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  6. The implicit structure of positive characteristics.

    PubMed

    Haslam, Nick; Bain, Paul; Neal, David

    2004-04-01

    The implicit structure of positive character traits was examined in two studies of 190 and 100 undergraduates. Participants judged the pairwise covariation or semantic similarity of 42 positive characteristics using a sorting or a rating task. Characteristics were drawn from a new classification of strengths and virtues, the Five-Factor Model, and a taxonomy of values. Participants showed consistent patterns of perceived association among the characteristics across the study conditions. Multidimensional scaling yielded three consistent dimensions underlying these judgments ("warmth vs. self-control," "vivacity vs. decency," and "wisdom vs. power"). Cluster analyses yielded six consistent groupings-"self-control," "love," "wisdom," "drive," "vivacity," and "collaboration"-that corresponded only moderately to the virtue classification. All three taxonomies were systematically related to this implicit structure, but none captured it satisfactorily on its own. Revisions to positive psychology's classification of strengths are proposed. PMID:15070480

  7. Spectral response of multilayer optical structures to dynamic mechanical loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; LeCroy, Garrett; Summers, Christopher J.; Thadhani, Naresh N.

    2015-05-01

    A computational study of Distributed Bragg Reflectors (DBR) and Optical Microcavities (OMC) was conducted to ascertain their potential as time-resolved mesoscale sensors due to their unique structure-driven spectral characteristics. Shock wave propagation simulations of polymer-based DBRs and glass/ceramic-based OMCs were coupled with spectral response calculations to demonstrate the combined dynamic mechanical and spectral response of the structures. Clear spectral shifts in both structures are predicted as a function of dynamic loading magnitude. Potential applications of the structures include high spatial and temporal resolution surface maps of material states, and in-situ probing of material interfaces during dynamic loading.

  8. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  9. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig are presented.

  10. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  11. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  12. Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems

    NASA Astrophysics Data System (ADS)

    Zhu, Shi-yao; Lei, Yong-jun; Wu, Xin-feng; Zhang, Da-peng

    2015-05-01

    Spacecraft tracking-drive flexible systems (STFS) consist of drive mechanisms and flexible structures, including solar array and a variety of large-scale antennas. The electromechanical interaction inside drive mechanisms makes it quite complicated to directly analyze the dynamic characteristics of an STFS. In this paper, an indirect dynamic characteristic analysis method for operating-state STFS is presented. The proposed method utilizes the structure dynamics approximation of drive mechanisms that converts the electromechanical model of an STFS into a structure dynamic model with elastic boundary conditions. The structure dynamics approximation and the dynamic characteristic analysis method are validated by experimental and analytical results, respectively. The analysis results indicate that the gear transmission ratio and viscous friction coefficient are the primary factors in approximating boundary stiffness and damping. Dynamic characteristics of an STFS with a large gear transmission ratio are close to that of a flexible structure with a cantilever boundary. Otherwise, torsion-mode natural frequencies of the STFS become smaller and corresponding modal damping ratios become larger, as a result of the local stiffness and damping features of drive mechanisms.

  13. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  14. Sierra Structural Dynamics Theory Manual

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  15. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  16. Structural Characteristics of Homogeneous Hydrophobic Ionic Liquid-HNO3-H2O Ternary System: Experimental Studies and Molecular Dynamics Simulations.

    PubMed

    Fu, Jing; Yang, Y Isaac; Zhang, Jun; Chen, Qingde; Shen, Xinghai; Gao, Yi Qin

    2016-06-16

    The solubility of water in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) increases significantly in the presence of HNO3. [C2mim][NTf2] is completely miscible with HNO3 but immiscible with water. The triangular phase diagram of the ternary system [C2mim][NTf2]-HNO3-H2O was determined at 300.1 K. The homogeneous [C2mim][NTf2]-HNO3-H2O phase is thermodynamically stable, while it can be separated into two phases with an increase of water content. Experiments (electrospray ionization mass spectrometry, Fourier transform infrared spectrometry, and (1)H-nuclear magnetic resonance spectrometry) and molecular dynamics simulations were carried out to investigate the interaction between [C2mim][NTf2], HNO3, and water in the homogeneous phase. It was found that NO3(-) ions interact with both C2mim(+) and water via H-bonding and act as a "bridge" to induce a large amount of water to be dissolved in the hydrophobic IL phase. This confirms that the complexes [C2mim-NTf2-C2mim](+) and [NTf2-C2mim-NTf2](-) exist in the homogeneous [C2mim][NTf2]-HNO3-H2O system at the concentration of HNO3 up to 27.01 wt % and of water as high as 20.74 wt %. PMID:27196811

  17. Dynamic characteristics of a simple bursting neuron model

    NASA Astrophysics Data System (ADS)

    Nakajima, Koji; Sato, Shigeo; Hayakawa, Yoshihiro

    We present a simple neuron model that shows a rich property in spite of the simple structure derived from the simplification of the Hindmarsh-Rose, the Morris-Lecar, and the Hodgkin-Huxley models. The model is a typical example whose characteristics can be discussed through the concept of potential with active areas. A potential function is able to provide a global landscape for dynamics of a model, and the dynamics is explained in connection with the disposition of the active areas on the potential, and hence we are able to discuss the global dynamic behaviors and the common properties among these realistic models. The obtained outputs are broadly classified as simple oscillations, spiking, bursting, and chaotic oscillations. The bursting outputs are classified as with spike undershoot and without spike undershoot, and the bursts without spike undershoot are classified as with tapered and without tapered. We show the parameter dependence of these outputs and discuss the connection between these outputs and the potential with active areas.

  18. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  19. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  20. Numerical investigation of bubble nonlinear dynamics characteristics

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  1. Dynamic characteristics of two-phase media

    SciTech Connect

    Fedotovskiy, V.S.; Sinyavskiy, V.F.; Terenik, L.V.; Spirov, V.S.

    1990-01-01

    This paper presents the results of investigations into the effective dynamic properties of heterogeneous media formed by a liquid and rigid spherical or cylindrical inclusions contained in it. Oscillations of a pipeline with a two-phase mixture in the general case having a non-uniform distribution of phases over the cross section are considered. Relations are obtained for the effective mass and hydrodynamic damping that determine the frequencies and dynamic-response factors. Oscillations of the bundles of elastic rods in a liquid are considered as in a two-phase mixture formed by a liquid and cylindrical inclusions and which has equivalent inertia and viscous properties.

  2. Structural characteristics of hydration sites in lysozyme.

    PubMed

    Soda, Kunitsugu; Shimbo, Yudai; Seki, Yasutaka; Taiji, Makoto

    2011-06-01

    A new method is presented for determining the hydration site of proteins, where the effect of structural fluctuations in both protein and hydration water is explicitly considered by using molecular dynamics simulation (MDS). The whole hydration sites (HS) of lysozyme are composed of 195 single HSs and 38 clustered ones (CHS), and divided into 231 external HSs (EHS) and 2 internal ones (IHS). The largest CHSs, 'Hg' and 'Lβ', are the IHSs having 2.54 and 1.35 mean internal hydration waters respectively. The largest EHS, 'Clft', is located in the cleft region. The real hydration structure of a CHS is an ensemble of multiple structures. The transition between two structures occurs through recombinations of some H-bonds. The number of the experimental X-ray crystal waters is nearly the same as that of the estimated MDS hydration waters for 70% of the HSs, but significantly different for the rest of HSs. PMID:21435773

  3. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  4. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.

    1982-01-01

    The possibilities and the limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are investigated. Changes in mass or stiffness distribution used to place rotor frequencies at desired locations are determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass moment of inertia size, strength, and stability are formulated. The extent hub loads can be minimized by proper choice of EL distribution is determined. Configurations that are simple enough to yield clear, fundamental insights into the structural mechanisms but which are sufficiently complex to result in a realistic result for an optimum rotor blade are emphasized.

  5. Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.

  6. Research in Structures and Dynamics, 1984

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)

    1984-01-01

    A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.

  7. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  8. Combustion fume structure and dynamics

    SciTech Connect

    Flagan, R.C.

    1992-08-01

    The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, composition, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory. (VC)

  9. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGESBeta

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  10. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  11. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  12. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A workshop on structural dynamics and control interaction of flexible structures was held to promote technical exchange between the structural dynamics and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. Issues and areas of emphasis were identified in structure-control interaction for the next generation of flexible systems.

  13. Resolution of structural heterogeneity in dynamic crystallography

    PubMed Central

    Ren, Zhong; Chan, Peter W. Y.; Moffat, Keith; Pai, Emil F.; Royer, William E.; Šrajer, Vukica; Yang, Xiaojing

    2013-01-01

    Dynamic behavior of proteins is critical to their function. X-­ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamicstructural changes’ are often indirectly inferred from ‘structural differences’ by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods. PMID:23695239

  14. Dynamic Characteristics of a Simple Brayton Cryocycle

    NASA Astrophysics Data System (ADS)

    Kutzschbach, A.; Kauschke, M.; Haberstroh, Ch.; Quack, H.

    2006-04-01

    The goal of the overall program is to develop a dynamic numerical model of helium refrigerators and the associated cooling systems based on commercial simulation software. The aim is to give system designers a tool to search for optimum control strategies during the construction phase of the refrigerator with the help of a plant "simulator". In a first step, a simple Brayton refrigerator has been investigated, which consists of a compressor, an after-cooler, a counter-current heat exchanger, a turboexpander and a heat source. Operating modes are "refrigeration" and "liquefaction". Whereas for the steady state design only component efficiencies are needed and mass and energy balances have to be calculated, for the dynamic calculation one needs also the thermal masses and the helium inventory. Transient mass and energy balances have to be formulated for many small elements and then solved simultaneously for all elements. Starting point of the simulation of the Brayton cycle is the steady state operation at design conditions. The response of the system to step and cyclic changes of the refrigeration or liquefaction rate are calculated and characterized.

  15. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  16. Dynamic characteristics and seismic stability of expanded polystyrene geofoam embankments

    NASA Astrophysics Data System (ADS)

    Amini, Zahra A.

    Expanded Polystyrene (EPS) geofoam has become a preferred material in various construction applications due to its light weight. Application of EPS accelerates the projects particularly on soft soils. The focus of this research is on the application of the EPS in embankments and its behavior mainly under harmonic vibration. The goal of this study was to investigate dynamic characteristics of freestanding vertical EPS geofoam embankment and address potential seismic issues that result from the distinguished dynamic behavior of such systems due to the layered and discrete block structure. A series of experimental studies on EPS 19 and a commercially available adhesive was conducted. Two-dimensional numerical analyses were performed to replicate the response of EPS geofoam embankment to horizontal and vertical harmonic motions. The results of the analyses have shown that for some acceleration amplitude levels interlayer sliding is expected to occur in EPS geofoam embankments almost immediately after the start of the base excitation; however, as a highly efficient energy dissipation mechanism sliding ceases rapidly. Shear keys and adhesive may be used to prevent interlayer sliding if they cover the proper extent of area of the embankment. EPS blocks placed in the corners of the embankment and at the edges of the segment prohibited from sliding may experience high stress concentrations. The embankment may show horizontal sway and rocking once sliding is prevented.

  17. Structure and Dynamic Regulation of Abl Kinases*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity. PMID:23316053

  18. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  19. Dynamics and control characteristics of a reference Space Station configuration

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.

    1988-01-01

    This paper describes the structural dynamic characteristics of a NASA reference space station configuration as defined in the November 1987 Space Station Program - Systems Engineering and Integration Engineering Data Book. The modes and frequencies of the station below 2.0 Hz were obtained and selected results along with rigid body properties are presented. A three-axis attitude control system using control moment gyros responding to attitude and attitude rate signals is used to regulate the orientation of the station. The stability of the control system with non-collocated sensors is investigated for both compensated and uncompensated control signals. Results from a closed-loop simulation of a commanded attitude change about three axes, and from a closed-loop simulation of the response of the station to an externally applied unit force impulse at the docking port are presented. These simulation results are used to evaluate the possible degree of control/structures interaction which could occur during normal operation of the station.

  20. Structural dynamics analyses testing and correlation

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1982-01-01

    Some aspects of the lack of close correlation between the predictions of analytical modeling of dynamic structures and the results of vibration tests on such structures are examined. Ways in which the correlation may be improved are suggested.

  1. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  2. GPS in pioneering dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.

    2002-01-01

    Global Positioning System (GPS) technology with 10-20-Hz sampling rates allows scientifically justified dynamic measurements of relative displacements of long-period structures. The displacement response of a simulated tall building in real time and permanent deployment of GPS units at the roof of a building are described. To the authors' best knowledge, this is the first permanent deployment of GPS units (in the world) for continuous dynamic monitoring of a tall building. Data recorded from the building during a windy day is analyzed to determine the structural characteristics. When recorded during extreme motions caused by earthquakes and strong winds, such measurements can be used to compute average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the structural integrity and performance by establishing pre-established thresholds. Such information can be used to secure public safety and/or take steps to improve the performance of the building.

  3. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  4. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  5. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  6. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  7. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  8. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  9. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  10. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2014-09-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  11. Structural Biology by NMR: Structure, Dynamics, and Interactions

    PubMed Central

    Markwick, Phineus R. L.; Malliavin, Thérèse; Nilges, Michael

    2008-01-01

    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data. PMID:18818721

  12. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  13. Predicting protein dynamics from structural ensembles

    NASA Astrophysics Data System (ADS)

    Copperman, J.; Guenza, M. G.

    2015-12-01

    The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes knowledge of the important metastable folded states of the protein to predict the protein dynamics. This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of seven different proteins for which both relaxation data and NMR solution structures are available. Using experimental NMR conformers as the input structural ensembles, LE4PD predicts quantitatively accurate results, with correlation coefficient ρ = 0.93 to NMR backbone relaxation measurements for the seven proteins. The NMR solution structure derived ensemble and predicted dynamical relaxation is compared with molecular dynamics simulation-derived structural ensembles and LE4PD predictions and is consistent in the time scale of the simulations. The use of the experimental NMR conformers frees the approach from computationally demanding simulations.

  14. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  15. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1985-01-01

    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering.

  16. Flow characteristics of the dynamic "EPA flux chamber"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic flux chamber, commonly referred as the “EPA chamber”, is one method that has been adapted to investigate spatial gas emission on feedlot surfaces. However, the flow characteristics within the chamber have not been evaluated to determine if it can be effectively used outside of its origina...

  17. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  18. Global asymptotic stability of dynamic dissipative compensators for multibody flexible space structures

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M.; Alberts, Thomas E.

    1993-01-01

    The stability characteristics of dynamic dissipative compensators are investigated for multibody flexible space structures having nonlinear dynamics. The problem addressed is that of proving asymptotic stability of dynamic dissipative compensators. The stability proof uses the Liapunov approach and exploits the inherent passivity of such systems. For such systems these compensators are shown to be robust to parametric uncertainties and unmodeled dynamics. The results are applicable to a large class of structures such as flexible space structures with articulated flexible appendages.

  19. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  20. Dynamic characteristics of magnetically-levitated vehicle systems.

    SciTech Connect

    Cai, Y.; Chen, S. S.; Energy Technology

    1997-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  1. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  2. Dynamic Characteristics of Penor Peat Using MASW Method

    NASA Astrophysics Data System (ADS)

    Zainorabidin, A.; Said, M. J. M.

    2016-07-01

    The dynamic behaviour of soil affected the mechanical properties of soil such as shear wave velocity, shear modulus, damping ratio and poisson's ratio [1] which is becoming important aspect need to be considered for structures influences by dynamic movement. This study is to determine the dynamic behaviour of Penor peat such as shear wave velocity using MASW and estimation its shear modulus. Peat soils are very problematic soils since it's have high compressibility, low shear strength, high moisture content and low bearing capacity which is very not suitable materials to construct any foundation structures. Shear wave velocity ranges between 32.94 - 95.89 m/s and shear modulus are ranging between 0.93 - 8.01 MPa. The differences of both dynamic properties are due to the changes of peat density and affected by the fibre content, organic content, degree of degradation and moisture content.

  3. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  4. Evolutionary dynamics in set structured populations

    PubMed Central

    Tarnita, Corina E.; Antal, Tibor; Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Evolutionary dynamics are strongly affected by population structure. The outcome of an evolutionary process in a well-mixed population can be very different from that in a structured population. We introduce a powerful method to study dynamical population structure: evolutionary set theory. The individuals of a population are distributed over sets. Individuals interact with others who are in the same set. Any 2 individuals can have several sets in common. Some sets can be empty, whereas others have many members. Interactions occur in terms of an evolutionary game. The payoff of the game is interpreted as fitness. Both the strategy and the set memberships change under evolutionary updating. Therefore, the population structure itself is a consequence of evolutionary dynamics. We construct a general mathematical approach for studying any evolutionary game in set structured populations. As a particular example, we study the evolution of cooperation and derive precise conditions for cooperators to be selected over defectors. PMID:19433793

  5. From structure to function, via dynamics

    NASA Astrophysics Data System (ADS)

    Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.

    2013-01-01

    Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).

  6. Study on Dynamic Characteristics of Ammonia Refrigerator System

    NASA Astrophysics Data System (ADS)

    Nakashima, Minoru; Ikegami, Yasuyuki; Hirao, Yasuhiro; Sudoh, Gaku; Shingoh, Masashi; Uehara, Haruo

    The dynamic characteristics of ammonia refrigerator system are observed when the expansion valve's opening is slightly changed. The refrigerator system is constructed with the reciprocal compressor, the plate type heat exchanger for the condenser and the evaporator, and the expansion valve. A simple simulation model for this refrigerator system is proposed to develop the computer-simulator of this ammonia refrigerator system and those simulation results are compared to above experimental results. For the development of the computer-simulator, simple but useful models, which can represent the dynamic characteristics of the refrigerator, are adopted for each components of the refrigerator system. The simulation shows the overall good agreement with experiment, without the time constant in the variation of the temperature at the evaporator outlet.

  7. Dynamic Structures through Microdifferential Holography

    PubMed Central

    Sharnoff, Mark; Brehm, Lawrence P.; Henry, Richard W.

    1986-01-01

    The principles of microdifferential holography are developed primarily from nonmathematical argument, and the method's capabilities are compared with those of x-ray and optical diffraction. Microdifferential holography is very sensitive to small displacements of strongly scattering elements of a specimen whether or not they can be optically resolved. We present and interpret differential images of electrical activity of neurons and of contractile activity of isolated skeletal fibers. The latter confirm the suggestion of earlier work that the dynamic regions of contracting muscle are organized along myofibrillar segments rather than by sarcomeres. ImagesFIGURE 2FIGURE 3FIGURE 4FIGURE 5FIGURE 6FIGURE 7 PMID:19431634

  8. Effects of joint on dynamics of space deployable structure

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Zhang, Jing; Liu, Rongqiang; Deng, Zongquan

    2013-09-01

    Joints are necessary components in large space deployable truss structures which have significant effects on dynamic behavior of these joint dominated structures. Previous researches usually analyzed effects of one or fewer joint characters on dynamics of jointed structures. Effects of joint stiffness, damping, location, number, clearance and contact stiffness on dynamics of jointed structures are systematically analyzed. Cantilever beam model containing linear joints is developed based on finite element method, influence of joint on natural frequencies and mode shapes of the jointed system are analyzed. Analytical results show that frequencies of jointed system decrease dramatically when peak mode shapes occur at joint locations, and there are cusp shapes present in mode shapes. System frequencies increase with joint damping increasing, there are different joint damping to achieve maximum system damping for different joint stiffness. Joint nonlinear force-displacement is described by describing function method, one-DOF model containing nonlinear joints is established to analyze joints freeplay and hysteresis nonlinearities. Analysis results show that nonlinear effects of freeplay and hysteresis make dynamic responses switch from one resonance frequency to another frequency when amplitude exceed demarcation values. Joint contact stiffness determine degree of system nonlinearity, while exciting force level, clearance and slipping force affect amplitude of dynamic response. Dynamic responses of joint dominated deployable truss structure under different sinusoidal exciting force levels are tested. The test results show obvious nonlinear behaviors contributed by joints, dynamic response shifts to lower frequency and higher amplitude as exciting force increasing. The test results are further compared with analytical results, and joint nonlinearity tested is coincident with hysteresis nonlinearity. Analysis method of joint effects on dynamic characteristics of jointed

  9. VDAC Structure, Selectivity, and Dynamics

    PubMed Central

    Colombini, Marco

    2012-01-01

    VDAC channels exist in the mitochondrial outer membrane of all eukaryotic organisms. Of the different isoforms present in one organism, it seems that one of these is the canonical VDAC whose properties and 3D structure is highly conserved. The fundamental role of these channels is to control the flux of metabolites between the cytosol and mitochondrial spaces. Based on many functional studies, the fundamental structure of the pore wall consists of one α helix and 13 β strands tilted at a 46° angle. This results in a pore with an estimated internal diameter of 2.5 nm. This structure has not yet been resolved. The published 3D structure consists of 19 β strands and is different from the functional structure that forms voltage-gated channels. The selectivity of the channel is exquisite, being able to select for ATP over molecules of the same size and charge. Voltage gating involves two separate gating processes. The mechanism involves the translocation of a positively charged portion of the wall of the channel to the membrane surface resulting in a reduction in pore diameter and volume and an inversion in ion selectivity. This mechanism is consistent with experiments probing changes in selectivity, voltage gating, kinetics and energetics. Other published mechanisms are in conflict with experimental results. PMID:22240010

  10. Structure and Dynamics of Polymer nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Xu, Di; Rafailovich, Miriam; Gersappe, Dilip

    2013-03-01

    Polymer hydrogels are widely used in fields like food science, tissue engineering and drug delivery. A lot of research has focused on developing hydrogels with novel properties. However, a lack of understanding of the dynamics and structure of the hydrogel has become a big obstacle. We use molecular dynamic simulations, which provide a direct observation of gel formation and gel structures, to study the local structural and dynamic properties of hydrogels. Our work focuses on using coarse-graining molecule dynamic simulations to study physically linked polymer nano-composite hydrogels. Our goal is to study how the aspect ratio and shape of the nanofiller introduced to the hydrogel can lead to different mechanical behavior. Our simulation looks at the effects of polymer species, chain length, and water content and the effect on the mechanical properties of the hydrogel.

  11. Dynamic and Structural Gas Turbine Engine Modeling

    NASA Technical Reports Server (NTRS)

    Turso, James A.

    2003-01-01

    Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.

  12. Evolutionary dynamics of taxonomic structure

    PubMed Central

    Foote, Michael

    2012-01-01

    The distribution of species among genera and higher taxa has largely untapped potential to reveal among-clade variation in rates of origination and extinction. The probability distribution of the number of species within a genus is modelled with a stochastic, time-homogeneous birth–death model having two parameters: the rate of species extinction, μ, and the rate of genus origination, γ, each scaled as a multiple of the rate of within-genus speciation, λ. The distribution is more sensitive to γ than to μ, although μ affects the size of the largest genera. The species : genus ratio depends strongly on both γ and μ, and so is not a good diagnostic of evolutionary dynamics. The proportion of monotypic genera, however, depends mainly on γ, and so may provide an index of the genus origination rate. Application to living marine molluscs of New Zealand shows that bivalves have a higher relative rate of genus origination than gastropods. This is supported by the analysis of palaeontological data. This concordance suggests that analysis of living taxonomic distributions may allow inference of macroevolutionary dynamics even without a fossil record. PMID:21865239

  13. Comparisons of the dynamic characteristics of magnetorheological and hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Oyadiji, S. O.

    2015-04-01

    A magnetorheological (MR) damper can adapt its dynamic performance to the vibration environment by controlling the current applied. Compared to other types of dampers, the MR damper has a wider range of dynamic characteristics. Two different dampers: hydraulic, and MR dampers were tested under forced sinusoidal excitations of low to high frequencies. Also, different currents were applied on the MR damper to investigate its performance under varying electromagnetic fields. The results reveal that the two dampers have nonlinear dynamic characteristics and that characteristics of the hydraulic damper are different from those of the MR damper. The hydraulic damper provides slight nonlinear damping force whereas the MR damper shows a strong nonlinear property. In addition, the hydraulic damper is designed to provide an asymmetric damping force of rebound and compression whereas the MR damper provides a symmetric damping force. In the experiments conducted, the excitation frequency was varied from 3 Hz to 11 Hz and the amplitude from 2.5 mm to 12 mm. For the hydraulic damper, the lowest compression damping force only increases by about 0.54 kN while the rebound force increases by about 1.9 kN. In contrast, the variations of compression and rebound forces of the MR damper are 1.9 and 2.0 kN, respectively. Furthermore, the damping force of the MR damper increases as the current increases from 0 to 0.75 A.

  14. Dynamic Structure of Plasma Fibronectin

    PubMed Central

    Maurer, Lisa M.; Ma, Wenjiang; Mosher, Deane F.

    2016-01-01

    Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29 to 31 modules—12 type I, two type II, and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation, and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to “beads on a string”. There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins. PMID:27185500

  15. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  16. Polar cusp: optical and particle characteristics-dynamics

    SciTech Connect

    Sandholt, P.E.; Egeland, A.; Asheim, S.; Lybekk, B.; Hardy, D.A.

    1985-01-01

    Photometric observations from two stations on Svalbard, Norway, were used to map the location and dynamics of polar-cusp auroras. Coordinated observations of low-energy electron precipitation from satellite HILAT and optical observations from the ground are discussed. Cases are presented showing the dynamical behavior of cusp auroras and the local magnetic field related to changes in the interplanetary magnetic field (IMF) and irregularities in the solar wind plasma. Dynamical phenomena with different time scales are studied. South and northward expansions of the midday sector of the auroral oval are discussed in relation to IMF variations and geomagnetic substorm activity. Intensifications and rapid poleward motions of discrete auroral structures in the cusp region are shown to be associated with local Pi type magnetic pulsations, each event lasting a few minutes. These small scale dynamical phenomena are discussed in relation to different models of plasma penetration across the dayside magnetopause, from the magnetosheath to the polar cusp region of the magnetosphere.

  17. On Dynamics of Spinning Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  18. Structural dynamics payload loads estimates

    NASA Technical Reports Server (NTRS)

    Engels, R. C.

    1982-01-01

    Methods for the prediction of loads on large space structures are discussed. Existing approaches to the problem of loads calculation are surveyed. A full scale version of an alternate numerical integration technique to solve the response part of a load cycle is presented, and a set of short cut versions of the algorithm developed. The implementation of these techniques using the software package developed is discussed.

  19. Technical issues in dynamics and control of large space structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Anderson, W. W.

    1983-01-01

    Examples of large space systems currently being considered by NASA include a large communications antenna system (the Land Mobile Satellite System), a precision antenna system (the Large Deployable Reflector System), and a preliminary concept for NASA's space station. Each system has low natural vibration frequencies, stringent pointing requirements, and, for the antennas, demanding surface accuracy requirements. A review is provided of the progress being made in structural ground tests with respect to surface accuracy, deployment, and erection of large structures. Attention is given to the dynamic loads on large space structures, on-orbit testing, space vibration control devices, and the characteristics of distributed control.

  20. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  1. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Venneri, Samuel L.

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  2. Program of Research in Structures and Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  3. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  4. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  5. Submesoscale dynamics and planktonic community structure

    NASA Astrophysics Data System (ADS)

    Franks, P. J.; Taniguchi, D. A.

    2012-12-01

    The vertical velocities associated with submesoscale dynamics occur on time scales that are resonant with planktonic growth and grazing rates. This resonance may cause submesoscale dynamics to be disproportionately important to planktonic productivity and carbon sequestration. To investigate the role of submesoscale motions on planktonic community structure, we used a continuum size-structured planktonic ecosystem model. The model is based on a traditional NPZ framework, but allows for size dependence of all biological processes. The model was carefully parameterized with data from the literature, and reproduces realistic planktonic size spectra. Perturbing the model with a nutrient pulse similar to that driven by submesoscale upwelling leads to significant perturbations to the ecosystem. Pulses of enhanced biomass propagate from small to large organisms over time scales of days to weeks. We explore the model stability and dynamics, and their dependence on the parameter values, to gain understanding of the potential for submesoscale physical motions to influence planktonic ecosystem dynamics.

  6. Structural dynamics of liganded myoglobin

    SciTech Connect

    Frauenfelder, H.; Petsko, G.A.

    1980-10-01

    X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to the overall apparent displacement can be estimated by Moessbauer spectroscopy. This technique has been applied to high resolution x-ray diffraction data from sperm whale myoglobin in its Met iron and oxy cobalt forms. Both crystal structures display regions of large conformational motions, particularly at the chain termini and in the region of the proximal histidine. Overall, the mean-square displacement increases with increasing distance from the center of gravity of the molecule. Some regions of the heme pocket in oxy cobalt myoglobin are more rigid than the corresponding regions in Met myoglobin.

  7. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  8. Structure and dynamics of biphasic colloidal mixtures.

    PubMed

    Mohraz, Ali; Weeks, Eric R; Lewis, Jennifer A

    2008-06-01

    We investigate the structure and dynamics of biphasic colloidal mixtures composed of coexisting attractive and repulsive microspheres by confocal microscopy. Attractive gels formed in the presence of repulsive microspheres are more spatially homogeneous and, on average, are both more locally tenuous and have fewer large voids than their unary counterparts. The repulsive microspheres within these mixtures display heterogeneous dynamics, with some species exhibiting freely diffusive Brownian motion while others are trapped within the gel network during aggregation. PMID:18643205

  9. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  10. Origin and Structure of Dynamic Cooperative Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2014-01-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks. PMID:25030202

  11. Origin and Structure of Dynamic Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; Hauert, Christoph

    2014-07-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks.

  12. Strength of concrete structures under dynamic loading

    NASA Astrophysics Data System (ADS)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  13. Dynamics and structure of energetic displacement cascades

    SciTech Connect

    Averback, R.S.; Diaz de la Rubia, T.; Benedek, R.

    1987-12-01

    This paper summarizes recent progress in the understanding of energetic displacement cascades and the primary state of damage in metals. On the theoretical side, the availability of supercomputers has greatly enhanced our ability to simulate cascades by molecular dynamics. Recent application of this simulation technique to Cu and Ni provides new insight into the dynamics of cascade processes. On the experimental side, new data on ion beam mixing and in situ electron microscopy studies of ion damage at low temperatures reveal the role of the thermodynamic properties of the material on cascade dynamics and structure. 38 refs., 9 figs.

  14. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Bugg, Frank M.; Ivey, E. W.; Moore, C. J.; Townsend, John S.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction.

  15. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  16. Protein crowding affects hydration structure and dynamics

    PubMed Central

    Harada, Ryuhei; Sugita, Yuji; Feig, Michael

    2012-01-01

    The effect of protein crowding on the structure and dynamics of water was examined from explicit solvent molecular dynamics simulations of a series of protein G and protein G/villin systems at different protein concentrations. Hydration structure was analyzed in terms of radial distribution functions, three-dimensional hydration sites, and preservation of tetrahedral coordination. Analysis of hydration dynamics focused on self-diffusion rates and dielectric constants as a function of crowding. The results show significant changes in both structure and dynamics of water under highly crowded conditions. The structure of water is altered mostly beyond the first solvation shell. Diffusion rates and dielectric constants are significantly reduced following linear trends as a function of crowding reflecting highly constrained water in crowded environments. The reduced dynamics of diffusion is expected to be strongly related to hydrodynamic properties of crowded cellular environments while the reduced dielectric constant under crowded conditions has implications for the stability of biomolecules in crowded environments. The results from this study suggest a prescription for modeling solvation in simulations of cellular environments. PMID:22352398

  17. Video Game Structural Characteristics: A New Psychological Taxonomy

    ERIC Educational Resources Information Center

    King, Daniel; Delfabbro, Paul; Griffiths, Mark

    2010-01-01

    Excessive video game playing behaviour may be influenced by a variety of factors including the structural characteristics of video games. Structural characteristics refer to those features inherent within the video game itself that may facilitate initiation, development and maintenance of video game playing over time. Numerous structural…

  18. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  19. The structural characteristics of video games: a psycho-structural analysis.

    PubMed

    Wood, Richard T A; Griffiths, Mark D; Chappell, Darren; Davies, Mark N O

    2004-02-01

    There is little doubt that video game playing is a psychological and social phenomenon. This paper outlines the main structural characteristics of video game playing (i.e., those characteristics that either induce gaming in the first place or are inducements to continue gaming irrespective of the individual's psychological, physiological, or socio-economic status). This online study is the first ever to assess what structural characteristics (if any) are important to a group of self-selected video game players (n = 382). The main variables examined were sound, graphics, background and setting, duration of game, rate of play, advancement rate, use of humor, control options, game dynamics, winning and losing features, character development, brand assurance, and multi-player features. Although there were many major gender differences, one of the main overall findings was the importance of a high degree of realism (i.e., realistic sound, graphics, and setting). Other important characteristics included a rapid absorption rate, character development, the ability to customize the game, and multiplayer features. Suggestions for future research are outlined. PMID:15006163

  20. Prediction of vibration characteristics in beam structure using sub-scale modeling with experimental validation

    NASA Astrophysics Data System (ADS)

    Zai, Behzad Ahmed; Sami, Saad; Khan, M. Amir; Ahmad, Furqan; Park, Myung Kyun

    2015-09-01

    Geometric or sub-scale modeling techniques are used for the evaluation of large and complex dynamic structures to ensure accurate reproduction of load path and thus leading to true dynamic characteristics of such structures. The sub-scale modeling technique is very effective in the prediction of vibration characteristics of original large structure when the experimental testing is not feasible due to the absence of a large testing facility. Previous researches were more focused on free and harmonic vibration case with little or no consideration for readily encountered random vibration. A sub-scale modeling technique is proposed for estimating the vibration characteristics of any large scale structure such as Launch vehicles, Mega structures, etc., under various vibration load cases by utilizing precise scaled-down model of that dynamic structure. In order to establish an analytical correlation between the original structure and its scaled models, different scale models of isotropic cantilever beam are selected and analyzed under various vibration conditions( i.e. free, harmonic and random) using finite element package ANSYS. The developed correlations are also validated through experimental testing. The prediction made from the vibratory response of the scaled-down beam through the established sets of correlation are found similar to the response measured from the testing of original beam structure. The established correlations are equally applicable in the prediction of dynamic characteristics of any complex structure through its scaled-down models. This paper presents modified sub-scale modeling technique that enables accurate prediction of vibration characteristics of large and complex structure under not only sinusoidal but also for random vibrations.

  1. Static and dynamic characteristics of parallel-grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji

    1987-01-01

    Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.

  2. Dynamic characteristics of the LLNL Precision Engineering Research Lathe

    SciTech Connect

    Franse, J.; Roblee, J.W.; Modemann, K.

    1988-08-31

    The dynamic characteristics of the Precision Engineering Research Lathe (PERL) have been investigated experimentally, up to a frequency of 1000 Hz. In successive tests, the exciting force was applied to either the X slide or the (non-rotating) spindle, and in the X or Z direction. These are the critical directions for turning operations on this T base type lathe. Each of these tests was furthermore done with the servo system active and with the servo system off (slides clamped, control loops open). The applied force fluctuations and the resulting relative displacement, between a capacitive probe mounted on the X slide and the spindle, were measured during the experiments. From these data, the relative dynamic compliances between the tool and the workpiece, in the Z and X directions, have been determined. The most important resonant frequencies, modes, and compliances are reported. Their consequences with regard to the surface quality of diamond turned parts are also discussed. 3 refs., 11 figs.

  3. Chemical structure and dynamics: Annual report 1993

    SciTech Connect

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  4. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  5. Structure of the Benzene - by Dynamics

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie; Erlekam, Undine; Von Helden, Gert; Meijer, Gerard; Bunker, Philip R.; Grabow, Jens-Uwe; Van Der Avoird, Ad

    2013-06-01

    The benzene dimer is the prototype system for Van der Waals interactions between aromatic molecules. Here, we report a joint experimental and theoretical study regarding normal (C_6H_6)_2 and the partially deuterated (C_6D_6)(C_6H_6) isotopologue. Interestingly, although its tilted T-shaped equilibrium structure corresponds to an asymmetric rotor, both isotopologues exhibit the rotational spectrum of a symmetric rotor, with a characteristic quartet splitting pattern due to internal tunneling motions: each transition exhibits a -2 : -1 : +1 : +2 splitting ratio with respect to its center. We unravel these splittings with the aid of the unrivalled resolution of the supersonic-jet FT-microwave experiment which provides accurate split-patterns, by means of a reduced-dimensionality model for the internal dynamics of the (rotating) dimer that reproduces them. They turn out to originate from a concerted tunneling mechanism involving both the hindered rotation of the stem in the T-shaped dimer around its sixfold axis and tilt tunneling. We also show that the observed intensities of the tunneling components are not solely determined by nuclear spin statistical weights. Rather, taking small differences in the dissociation energies of different dimer nuclear spin species into account, the kinetics of the dimer formation and equilibration can bias the populations of the tunneling symmetry species. Using Stark shift measurements, we determine the dipole moment of (C_6H_6)_2 to be μ = 0.580(51) D, in agreement with the value of 0.63 D calculated with the assumption that the dipole moment is mainly determined by the dipoles induced in both monomers by the electric field of the quadrupole of the other monomer. M. Schnell, U. Erlekam, P. R. Bunker, G. v. Helden, J.-U. Grabow, G. Meijer, A. van der Avoird, Angew. Chem. Int. Ed., DOI: 10.1002/anie.201300653 and 10.1002/ange.201300653

  6. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concepts are summarized.

  7. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concept are summarized.

  8. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  9. Influence of external perturbations on dynamical characteristics of dust clusters (simulation)

    SciTech Connect

    Lisin, E. A. Vaulina, O. S.

    2012-11-15

    The results of a numerical study of the dynamics of interacting particles in cluster systems under the action of an external perturbing field on them are presented. The relaxation rates and characteristic relaxation times of a cluster to its equilibrium state are analyzed. The conditions for the formation of dynamical structures of charged particles in the field of external nonpotential forces are investigated. The peculiarities of diagnosing the pair potential of particles in nonequilibrium systems are considered. The numerical simulation conditions for the problem were close to the conditions of experiments in a dusty plasma.

  10. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  11. Dynamic based damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauvik; Ricci, Fabrizio; Baid, Harsh; Mal, Ajit K.

    2009-03-01

    Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.

  12. Algorithms and software for nonlinear structural dynamics

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.

    1989-01-01

    The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.

  13. Experimental research on structural dynamics and control

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Horner, G. C.; Cole, S. R.

    1981-01-01

    This report describes an apparatus at the NASA Langley Research Center for conducting research on dynamics and control of structural dynamics systems. The apparatus consists of a 3.66 m (12 ft.) long flexible beam to which are attached four electromagnetic actuators, nine noncontacting sensors to measure deflection of beam at various locations, and four strain gage type load cells one at each actuator attachment point. The important feature of the apparatus is that the actuators can be controlled and deflection and load sensor data can be processed in real time using the research centers CDC Cyber 175 computer system - thereby allowing research to be conducted on structural dynamics systems using advanced control laws. The facility is described in the report along with a detailed discussion of the actuators used.

  14. Structure and dynamics of aqueous solution of uranyl ions

    SciTech Connect

    Chopra, Manish; Choudhury, Niharendu

    2014-04-24

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied.

  15. Characteristic ion distributions in the dynamic auroral transition region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.; Tu, J.-N.

    2006-04-01

    A Dynamic Fluid Kinetic (DyFK) simulation is conducted to study the H+/O+ flows and distribution functions in the high-latitude dynamic transition region, specifically from 1000 km to about 4000 km altitude. Here, the collisional-to-collisionless transition region is that region where Coulomb collisions have significant but not dominant effects on the ion distributions. In this study, a simulation flux tube, which extends from 120 km to 3 RE altitude, is assumed to experience a pulse of auroral effects for approximately 20 minutes, including both soft electron precipitation and transverse wave heating, and then according to different geophysical circumstances, either to relax following the cessation of such auroral effects or to be heated further continuously by waves with power at higher frequencies. Our principal purpose in this investigation is to elicit the characteristic ion distribution functions in the auroral transition region, where both collisions and kinetic processes play significant roles. The characteristics of the simulated O+ and H+ velocity distributions, such as kidney bean shaped H+ distributions, and O+ distributions having cold cores with upward folded conic wings, resemble those observed by satellites at similar altitudes and geographic conditions. From the simulated distribution function results under different geophysical conditions, we find that O+-O+ and O+-H+ collisions, in conjunction with the kinetic and auroral processes, are key factors in the velocity distributions up to 4000 km altitude, especially for the low speed portions, for both O+ and H+ ions.

  16. The Dynamic Characteristic and Hysteresis Effect of an Air Spring

    NASA Astrophysics Data System (ADS)

    Löcken, F.; Welsch, M.

    2015-02-01

    In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.

  17. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  18. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  19. Demographic Characteristics, Faculty Attitudes and School Structure.

    ERIC Educational Resources Information Center

    Miskel, Cecil

    Examination of the relevant literature indicates that most studies of school structure and interpersonal relations have either been too narrow in scope, too theoretical, or too tied to the individual as the unit of analysis to support any conclusive generalizations. A search of the literature for appropriate variables to include in a more complex…

  20. Natural vibration characteristics of gravity structures

    NASA Astrophysics Data System (ADS)

    Chugh, Ashok K.

    2007-04-01

    A forced vibration procedure is presented to estimate fundamental and higher frequencies of vibrations and associated mode shapes of gravity structures. The gravity structures considered are retaining walls and gravity dams. The validity of the proposed procedure is tested on three test problems of varying complexity for which the natural vibration frequencies and mode shapes either have known analytical solutions or have been determined via numerical means/field tests by others. Also included are the results of natural vibration frequencies and associated mode shapes for a spillway control structure located near the abutment end of an embankment dam obtained using the proposed procedure. For all problems considered, fundamental frequency and mode shape results using the proposed procedure are compared with the results obtained using an alternative procedure in which static deflections due to the structure's own weight are used as the starting point for free vibrations by setting the gravity vector to zero. All results compare well. The merits of the proposed procedure are discussed. Published in 2006 by John Wiley & Sons, Ltd.

  1. Dynamic object management for distributed data structures

    NASA Technical Reports Server (NTRS)

    Totty, Brian K.; Reed, Daniel A.

    1992-01-01

    In distributed-memory multiprocessors, remote memory accesses incur larger delays than local accesses. Hence, insightful allocation and access of distributed data can yield substantial performance gains. The authors argue for the use of dynamic data management policies encapsulated within individual distributed data structures. Distributed data structures offer performance, flexibility, abstraction, and system independence. This approach is supported by data from a trace-driven simulation study of parallel scientific benchmarks. Experimental data on memory locality, message count, message volume, and communication delay suggest that data-structure-specific data management is superior to a single, system-imposed policy.

  2. Dynamic characteristics of piezoelectric shear deformable composite plates

    NASA Astrophysics Data System (ADS)

    Kolar, Ramesh

    2004-07-01

    Layered composites have attracted attention for their high specific stiffness, high specific strength, and application specific tailoring of their properties. It is also recognized that layered composites are prone to delamination failure in addition to other failure modes. Consideration of transverse shear on the deformation behavior of the composites is an important aspect in the study of delamination mode failure of such plates. In this paper, we consider the effects of including the transverse shear deformation on the vibration characteristics of layered piezoelectric composites. The formulation is based on the Raleigh-Ritz method using the beam characteristic functions. MATLAB based symbollic math tool box is used in evaluating th eintegrals resulting from the Raleigh Ritz approach. Various commonly occuring boundary conditions are discussed. Results are provided showing the effects of the shear deformation on the dynamics of layered laminated composites. The effects of laminate thickness, fiber orientation, and the plate aspect ratios on the free vibration characteristics of the composite laminates are given to demonstrate the methodology described.

  3. A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Guirong; De Stefano, Alessandro; Matta, Emiliano; Feng, Ruoqiang

    2013-01-01

    During the service life of structures, breathing-fatigue cracks may occur in structural members due to dynamic loadings acting on them. These fatigue cracks, if undetected, might lead to a catastrophic failure of the whole structural system. Although a number of approaches have been proposed to detect breathing-fatigue cracks, some of them appear rather sophisticated or expensive (requiring complicated equipment), and others suffer from a lack of sensitivity. In this study, a simple and efficient approach to detecting breathing-fatigue cracks is developed based on dynamic characteristics of breathing cracks. First, considering that breathing cracks introduce bilinearity into structures, a simple system identification method for bilinear systems is proposed by taking best advantage of dynamic characteristics of bilinear systems. This method transfers nonlinear system identification into linear system identification by dividing impulse or free-vibration responses into different parts corresponding to each stiffness region according to the stiffness interface. In this way, the natural frequency of each region can be identified using any modal identification approach applicable to linear systems. Second, the procedure for identifying the existence of breathing fatigue cracks and quantifying the cracks qualitatively is proposed by looking for the difference in the identified natural frequency between regions. Third, through introducing Hilbert transform, the proposed procedure is extended to identify fatigue cracks in piecewise-nonlinear systems. The proposed system identification method and crack detection procedure have been successfully validated by numerical simulations and experimental tests.

  4. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  5. Dynamic structural disorder in supported nanoscale catalysts.

    PubMed

    Rehr, J J; Vila, F D

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale. PMID:24712802

  6. Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes.

    PubMed

    Sun, Zhe; Suenaga, Takuya; Sarkar, Parantap; Sato, Sota; Kotani, Motoko; Isobe, Hiroyuki

    2016-07-19

    The chemistry of a belt-shaped cyclic array of aromatic panels, a so-called "nanohoop," has increasingly attracted much interest, partly because it serves as a segmental model of single-wall carbon nanotubes with curved sp(2)-carbon networks. Although the unique molecular structure of nanohoops is expected to deepen our understanding in curved π-systems, its structural chemistry is still in its infancy despite structural variants rapidly accumulated over the past several years. For instance, structural characteristics that endow the belt shapes with rigidity, an important structural feature relevant to carbon nanotubes, have not been clarified to date. We herein report the synthesis and structures of a series of belt-shaped cyclonaphthylenes. Random synthesis methods using three precursor units with different numbers of naphthylene panels allowed us to prepare 6 congeners consisting of 6 to 11 naphthylene panels, and relationships between the rigidity and the panel numbers, i.e., molecular structures, were investigated. Fundamental yet complicated stereoisomerism in the belt-shaped structures was disclosed by mathematical methods, and dynamics in the panel rotation was revealed by dynamic NMR studies with the aid of theoretical calculations. PMID:27357686

  7. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  8. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A Workshop was held to promote technical exchange between the structural dynamic and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. The workshop was closed by a panel meeting. Panel members' viewpoints and their responses to questions are included.

  9. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  10. Dynamic structural network evolution in compressed granular systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James; Daniels, Karen; Bassett, Danielle

    The heterogeneous dynamic behavior of granular packings under shear or compression is not well-understood. In this study, we use novel techniques from network science to investigate the structural evolution that occurs in compressed granular systems. Specifically, we treat particles as network nodes, and pressure-dependent forces between particles as layer-specific network edges. Then, we use a generalization of community detection methods to multilayer networks, and develop quantitative measures that characterize changes in the architecture of the force network as a function of pressure. We observe that branchlike domains reminiscent of force chains evolve differentially as pressure is applied: topological characteristics of these domains at rest predict their coalescence or dispersion under pressure. Our methods allow us to study the dynamics of mesoscale structure in granular systems, and provide a direct way to compare data from systems under different external conditions or with different physical makeup.

  11. Design of a space shuttle structural dynamics model

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A 1/8 scale structural dynamics model of a parallel burn space shuttle has been designed. Basic objectives were to represent the significant low frequency structural dynamic characteristics while keeping the fabrication costs low. The model was derived from the proposed Grumman Design 619 space shuttle. The design includes an orbiter, two solid rocket motors (SRM) and an external tank (ET). The ET consists of a monocoque LO2 tank an interbank skirt with three frames to accept SRM attachment members, an LH2 tank with 10 frames of which 3 provide for orbiter attachment members, and an aft skirt with on frame to provide for aft SRM attachment members. The frames designed for the SRM attachments are fitted with transverse struts to take symmetric loads.

  12. Elucidating microscopic structure and dynamics in optically tweezed environments

    NASA Astrophysics Data System (ADS)

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2015-02-01

    To probe the structure and dynamics of molecules under optical trapping conditions, we exploit the effect of femtosecond Fluorescence Resonance Energy Transfer (FRET) between dye molecules coated on the surface of polystyrene microspheres of various sizes suspended in water. The use of femtosecond laser pulses enables sensitive detection through two-photon fluorescence (TPF). Unlike conventional backscatter signal, the TPF signal shows a slow counterintuitive decay for the trapped microspheres when they are not fully within the laser illuminated volume. This decay is a characteristic sign of the occurrence of the FRET process. For microspheres with sizes less than the trapping focal volume, trapping of multiple particles can occur leading to the formation of optically bound clusters. Using different laser polarizations, we also extract information about the structure and dynamics of such optically bound clusters as a consequence of FRET.

  13. Load deflection characteristics of inflated structures

    NASA Technical Reports Server (NTRS)

    Baumgarten, J. R.

    1983-01-01

    A single, closed form relationship to relate load to the deformed dimensions of the horizontal torus was developed. Wall elasticity was included in the analysis, and special care was taken to predict the final footprint area of the loaded structure. The test fixture utilized is shown. The tori used for the bulk of the testing were rubber inner tubes for a 32 and 160 pneumatic tire. The inner tube being tested was plumbed, to a mercury-filled manometer, which had a 50 inch measurement capacity, by use of a special adapter. The adapter fit over the valve stem and allowed air to be added from a shop-air source and to be bled through the standard valve mechanism. In this fashion, tests requiring the maintenance of a constant indication of air pressure could be run with little difficulty.

  14. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  15. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.

    1983-01-01

    The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated.

  16. The structure and dynamics of multilayer networks

    NASA Astrophysics Data System (ADS)

    Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M.

    2014-11-01

    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

  17. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  18. Chemical structure and dynamics. Annual report 1995

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  19. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steve D; McDowell, Rod S

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  20. Chemical structure and dynamics: Annual report 1996

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  1. Dynamic characteristics of an assembly of prop-fan blades

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Kielb, R. E.; Lawrence, C.

    1986-01-01

    In contrast to conventional propellers, propfan blades are thin and highly swept-back, thereby giving rise to large bending and twisting deformations and complex vibratory characteristics. Aerodynamic performance depends on the extent of steady state deformation, and the aeroelastic response depends on the vibratory frequency and mode shape. Attention is presently given to the principal results of structural analyses for a five-bladed propfan assembly; these results are compared with test data. The results encompass both steady deformations and vibratory frequencies and mode shapes in a vacuum centrifugal environment.

  2. Space structure (dynamics and control) theme development

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was made to define the long-range technical objectives and goals for the Space Structure (Dynamics and Control) theme area. The approach was to evaluate ongoing and proposed technology activities such that the technology gaps and voids could be identified. After the technology needs were identified, a set of recommended experimental activities was defined including the technical objectives of each and their relationship.

  3. Structure And Dynamics Of Finite Dust Clouds

    SciTech Connect

    Block, D.; Kroll, M.; Arp, O.; Piel, A.; Kaeding, S.; Ivanov, Y.; Melzer, A.; Henning, C.; Baumgartner, H.; Bonitz, M.

    2008-09-07

    Two novel three-dimensional (3D) diagnostics, stereoscopic imaging and digital holography, enable us to provide a critical comparison of experimental results with simulations and theory and thus to gain a detailed insight into the structural and dynamical properties of strongly coupled dust clouds. Special attention is paid to the influence of screening and the role of metastable states in dust clouds containing just a very few particles.

  4. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  5. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  6. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores.

    PubMed

    Ji, Qing; Lefort, Ronan; Busselez, Rémi; Morineau, Denis

    2009-06-21

    Gay-Berne liquid crystals confined in two cylindrical nanopores with different pore sizes were studied by molecular dynamics simulation. Their structure and dynamics properties were obtained and compared with those of the bulk. Our data show that confinement changes the bulk isotropic-to-nematic transition to a continuous ordering from a paranematic to a nematic phase. Moreover, confinement strongly hinders the smectic translational order. The molecular dynamics is characterized by the translational diffusion coefficients and the first-rank reorientational correlation times. Very different characteristic times and temperature variations in the dynamics are observed in confinement. Spatially resolved quantities illustrate that confinement induces predominant structural and dynamical heterogeneities. PMID:19548733

  7. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores

    NASA Astrophysics Data System (ADS)

    Ji, Qing; Lefort, Ronan; Busselez, Rémi; Morineau, Denis

    2009-06-01

    Gay-Berne liquid crystals confined in two cylindrical nanopores with different pore sizes were studied by molecular dynamics simulation. Their structure and dynamics properties were obtained and compared with those of the bulk. Our data show that confinement changes the bulk isotropic-to-nematic transition to a continuous ordering from a paranematic to a nematic phase. Moreover, confinement strongly hinders the smectic translational order. The molecular dynamics is characterized by the translational diffusion coefficients and the first-rank reorientational correlation times. Very different characteristic times and temperature variations in the dynamics are observed in confinement. Spatially resolved quantities illustrate that confinement induces predominant structural and dynamical heterogeneities.

  8. Patterns and localized structures in population dynamics

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Escaff, D.; Kenkre, V. M.

    2005-11-01

    Patterns, fronts, and localized structures of a prototypical model for population dynamics interaction are studied. The physical content of the model is the coexistence of a simple random walk for the motion of the individuals with a nonlinearity in the competitive struggle for resources which simultaneously stresses the Allee effect and interaction at a distance. Mathematically, the model is variational and exhibits coexistence between different stable extended states. Solutions are obtained, the phase diagram is constructed, and the emergence of localized structures is investigated.

  9. 8B structure in Fermionic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Henninger, K. R.; Neff, T.; Feldmeier, H.

    2015-04-01

    The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.

  10. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  11. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  12. Physicochemical, rheological and structural characteristics of starch in maize tortillas.

    PubMed

    Hernández-Uribe, Juan P; Ramos-López, Gonzalo; Yee-Madeira, Hernani; Bello-Pérez, Luis A

    2010-06-01

    Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50-56 degrees C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105-123 degrees C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2theta = 17 masculine and 23 masculine, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role. PMID:20396953

  13. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  14. Handbook on dynamics of jointed structures.

    SciTech Connect

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  15. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  16. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  17. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  18. Dynamic testing of MFTF containment-vessel structural system

    SciTech Connect

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-04-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters (mode shapes).

  19. Dynamic characterization of thin-film inflatable structures

    NASA Astrophysics Data System (ADS)

    Slade, Kara Nicole

    Inflatable structures constructed from thin polyimide films form a key part of several technology development programs for solar thermal propulsion for satellites, as well as for other applications both in space and on earth. This project investigates the mechanical properties of several of these structures, focusing primarily on their dynamic behavior. The primary focus is the Shooting Star Experiment prototype developed by NASA, but a simpler cylindrical structure is also considered in order to provide an analytically tractable situation for the evaluation of testing and modeling techniques. The cylindrical strut is tested statically to determine its load-deflection characteristics both in linear and nonlinear regimes. The phenomenon of wrinkling is observed under large deflection conditions, particularly at lower pressure. Then, modal testing is used to determine the dynamic properties of the strut for comparison to numerical models. Modal testing is also conducted on Pathfinder 3, a prototype inflatable solar concentrator for the Shooting Star Experiment, both in vacuum and ambient atmospheric conditions. The orbital terminator crossing test is used to determine the dynamic susceptibility of the Pathfinder 3 structure to thermal shock, and it is found to undergo only quasistatic deformations. Finite element models of the cylinder and the Pathfinder 3 concentrator are then constructed using MSC NASTRAN. The inflatable cylinder may be modeled as a beam if only global bending is considered. This restriction leads to the development of a frequency-dependent modulus of elasticity in bending for the structure, developed from engineering beam theory. Both frequency-dependent beam models and shell models are constructed and evaluated for their efficacy. The results from the modeling of the strut are then applied to the inflatable concentrator, where it is found that the shell model captures more of the dynamic subtleties of the system than the beam model, but that both

  20. Response and characteristics of structures subjected to S-H waves

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    A study of the dynamic characteristics of a coupled translational-rotational system is given. The formulation of the problem considers the soil-structure interaction effects by utilizing the impedance functions at the foundation of a structure. Due to the fact that the coefficient matrix in the characteristic equation is frequency dependent in nature, iterations have to be performed to find the nature frequencies of the system. Examples and discussions are presented. Comparisons of the analytical results from various approaches are also given.

  1. Identification of structural parameters from helicopter dynamic test data

    NASA Technical Reports Server (NTRS)

    Giansante, N.; Flannelly, W. G.

    1974-01-01

    A method is presented for obtaining the mass, stiffness, and damping parameters of a linear mathematical model, having fewer degrees of freedom than the structure it represents, directly from dynamic response measurements on the actual helicopter without a priori knowledge of the physical characteristics of the fuselage. The only input information required in the formulation is the approximate natural frequency of each mode and mobility data measured proximate to these frequencies with sinusoidal force excitation applied at only one point on the vehicle. The practicality and numerical soundness of the theoretical development was demonstrated through a computer simulation of an experimental program.

  2. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  3. Community structure and dynamics in social systems

    NASA Astrophysics Data System (ADS)

    Wilkinson, Dennis M.

    This thesis presents applications of statistical physics to the study of the structure and dynamics of social systems, that is, systems whose interactions are based on information exchange. Social systems typically possess a community structure arising from the self organization of groups of interacting components into tightly-knit clusters. An automated method of identifying communities within a network of interactions is first presented. The method includes a statistical component crucial to obtaining accurate results in large, complex systems. It is applied to two real-world social networks, a network of email interactions and a network of related articles in the biomedical literature. The clusters it identifies within these networks are shown to correspond to communities of interrelated components. Next, the dynamics of cooperative problem solving processes on social systems are studied. A simple stochastic model is proposed which captures key aspects of the dynamics which have been empirically observed. Most important among these are the increase in average time to solution and in likelihood of long delays as the system size increases, as well as the log-normal distribution of times to solution. It is shown that a community structure both reduces the average time to solution and decreases the probability of delay. In cases where a system of cooperative efforts does not possess an inherent community structure, the effect of imposing communities is examined. The factor which most affects the dynamics when communities are imposed is shown to be the degree to which individuals neglect information from outside their own communities. The theory of stochastic vector processes is central to the dynamics of social systems and a mathematical study of this subject is presented. Expressions describing the evolution of the moments in the neighborhood of fixed points are obtained for arbitrary systems. Approximation techniques are applied in the small and large noise limits

  4. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  5. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  6. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  7. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  8. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Long, Xu; Ge, Fei; Wang, Lei; Hong, Youshi

    2009-06-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  9. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  10. Equilibrium and Dynamical Characteristics of Imidazole Langmuir Monolayers on Graphite Sheets.

    PubMed

    Rodriguez, Javier; Elola, M Dolores; Laria, D

    2015-07-23

    Using molecular dynamics techniques, we examine structural and dynamical characteristics of liquid-like imidazole (Im) monolayers physisorbed onto a planar graphite sheet, at T = 384 K. Our simulations reveal that molecular orientations in the saturated monolayer exhibit a bistable distribution, characterized by an inner parallel arrangement of the molecules in close contact with the substrate and a slanted alignment, in those lying in adjacent, outer locations. Compared to the results found in three-dimensional, bulk phases, the analysis of the spatial correlations between sites participating in hydrogen bonding shows a clear enhancement of the intermolecular interactions, which also leads to stronger dipolar correlations. As a result, the gross structural features of the monolayer can be cast in terms of mesoscopic domains, comprising units articulated via winding hydrogen bonds, that persist along typical time intervals of a few tens of picoseconds. On the dynamical side, a similar comparison of the characteristic decorrelation time for orientational motions shows a 4-fold increment. Contrasting, the reduction of the system dimensionality leads to a larger diffusion constant. Possible substrate-induced anisotropies in the diffusive motions are also investigated. PMID:25423289

  11. Characteristics of gap plasmon waveguide with stub structures.

    PubMed

    Matsuzaki, Yousuke; Okamoto, Toshihiro; Haraguchi, Masanobu; Fukui, Masuo; Nakagaki, Masatoshi

    2008-10-13

    We found that metal-dielectric-metal plasmon waveguides with a stub structure, i.e. a branch of the waveguide with a finite length, can function as wavelength selective filters of a submicron size. It was found that the transmission characteristics of such structures depend on the phase relationship between the plasmon wave passing through the stub and the one returning to the waveguide from the stub. We also propose structures with a lossless 90 degrees bend in a plasmon waveguide, utilizing a stub structure. Furthermore, we present a functional stub structure, e.g., a 1:1 demultiplexer and a wavelength selective demultiplexer. PMID:18852737

  12. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  13. Dynamic tuning of lattice plasmon lasers with long coherence characteristics

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Yang, Ankun; Schatz, George; Odom, Teri; Mikkelsen, Maiken

    Here, we experimentally demonstrate dynamic tuning of an optically-pumped lattice plasmon laser based on arrays of gold nanoparticles and liquid gain materials [A. Yang, T.B. Hoang et al., Nature Communications 6, 6939 (2015)]. The structure consists of an array of 120 nm diameter gold disks with a height of 50 nm and 600 nm spacing. A liquid gain material composed of IR-140 dye molecules dissolved in a variety of organic solvents is placed on top of the disks and held in place by a thin glass coverslip. At a lasing wavelength of 860 nm, time-resolved measurements show a dramatic reduction of the decay time from 1 ns to less than 20 ps when the optical excitation power density increases from below to above the lasing threshold, indicating the transition from spontaneous to stimulated emission. By changing the dielectric environment surrounding the gold disks in real time, the lasing wavelength can be dynamically tuned over a 55 nm range. Finally, we will discuss recent experiments where we probe both the temporal and spatial coherence properties of the lattice plasmon laser. This advance of tunable plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time.

  14. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  15. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  16. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  17. Algebraic Dynamic Programming over general data structures

    PubMed Central

    2015-01-01

    Background Dynamic programming algorithms provide exact solutions to many problems in computational biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions, and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside recursions are covered by the classical ADP theory. Results The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a natural way. We demonstrate that outside recursions are generically derivable from inside decomposition schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene clusters in terms of shortest Hamiltonian paths. Conclusions The generalized ADP framework presented here greatly facilitates the development and implementation of dynamic programming algorithms for a wide spectrum of applications. PMID:26695390

  18. Dynamic Structure in Artificial Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott B.; Hong, Mei; de Azevedo, Eduardo; Tirrell, David A.; Russell, Thomas P.

    2000-03-01

    Artificial proteins that form reversible hydrogels have been designed and synthesized using recombinant DNA methodologies. Proteins are designed such that two helical, leucine zipper domains flank a central, water soluble domain. Under proper conditions of concentration, pH, and temperature the helical domains aggregate as coiled coils and act as physical crosslinks. Small angle x-ray and neutron scattering have been used to elucidate the gel structure, and NMR and fluorescence exchange experiments have been used to probe the dynamics of the gel system.

  19. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.

    PubMed

    Demontis, Pierfranco; Gulín-González, Jorge; Masia, Marco; Sant, Marco; Suffritti, Giuseppe B

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130-350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between "fragile" (at higher temperatures) and "strong" (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between "fragile" (at lower temperatures) and "strong" (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T(∗) ∼ 315 ± 5 K, was spotted at T(∗) ∼ 283 K and T(∗) ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible mechanisms of the two

  20. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  1. Static and dynamic analyses of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Nishimura, Yoshitaka

    Tensegrity structures are a class of truss structures consisting of a continuous set of tension members (cables) and a discrete set of compression members (bars). Since tensegrity structures are light weight and can be compactly stowed and deployed, cylindrical tensegrity modules have been proposed for space structures. From a view point of structural dynamics, tensegrity structures pose a new set of problems, i.e., initial shape finding. Initial configurations of tensegrity structures must be computed by imposing a pre-stressability condition to initial equilibrium equations. There are ample qualitative statements regarding the initial geometry of cylindrical and spherical tensegrity modules. Quantitative initial shape anlyses have only been performed on one-stage and two-stage cylindrical modules. However, analytical expressions for important geometrical parameters such as twist angles and overlap ratios lack the definition of the initial shape of both cylindrical and spherical tensegrity modules. In response to the above needs, a set of static and dynamic characterization procedures for tensegrity modules was first developed. The procedures were subsequently applied to Buckminster Fuller's spherical tensegrity modules. Both the initial shape and the corresponding pre-stress mode were analytically obtained by using the graphs of the tetrahedral, octahedral (cubic), and icosahedral (dodecahedral) groups. For pre-stressed configurations, modal analyses were conducted to classify a large number of infinitesimal mechanism modes. The procedures also applied tocyclic cylindrical tensegrity modules with an arbitrary number of stages. It was found that both the Maxwell number and the number of infinitesimal mechanism modes are independent of the number of stages in the axial direction. A reduced set of equilibrium equations was derived by incorporating cyclic symmetry and the flip, or quasi-flip, symmetry of the cylindrical modules. For multi-stage modules with more than

  2. Dynamic characteristics of power-tower space stations with 15-foot truss bays

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    A power tower space station concept which generates power with photovoltaic arrays and where the truss structure has a bay size of 15 ft is described. Rigid body and flexible body dynamic characteristics are presented for a 75-kW Initial Operating Capability (IOC) and 150-kW and 300-kW growth stations. The transient response of the IOC and 300-kW growth stations to shuttle dock, orbit reboost, and mobile remote manipulator system translation loads are studied. Displacements, accelerations, and bending moments at various locations on the IOC and 300-kW growth stations are presented.

  3. Molten uranium dioxide structure and dynamics

    SciTech Connect

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  4. Molten uranium dioxide structure and dynamics

    DOE PAGESBeta

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  5. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-06-01

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  6. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Lin, H.-W.

    2007-06-13

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  7. Molten uranium dioxide structure and dynamics.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts. PMID:25414311

  8. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  9. Solution Structure and Backbone Dynamics of Streptopain

    PubMed Central

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T.; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-01-01

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was ∼12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  10. High-dynamic-range MCP structures

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.

    1991-01-01

    We report on the development of a new high-dynamic-range two-stage Multi-Anode Microchannel Array (MAMA) imaging tube designed for improved high count rate performance at FUV and EUV wavelengths. The new two-stage MAMA tube employs two 25-mm-diameter format MCPs placed in tandem with a small gap between the plates. The front (input) MCP is designed to be a low-gain converter plate that supports an opaque photocathode and converts the detected photons to electrons, while the second (output) MCP is of higher conductivity and thus maintains the overall gain of the multiplier at high count rates. The second MCP is mounted in proximity focus with a (224 x 960)-pixel fine-fine coincidence MAMA array for high-spatial-resolution imaging studies. The applied voltage across each MCP can be controlled independently. We report on the gain and dynamic range performance characteristics of the two-stage MAMA tube in two different configurations: first, with the output MCP having moderate conductivity (about 100 MOhm); and second, with the output MCP having very high conductivity (about 2 MOhm). These results are compared and contrasted with those of the more conventional MAMA tube configuration which employs a single high-gain curved-channel MCP.

  11. Fine Structure and Dynamics of Sunspot Penumbra

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T.; Title, A.

    2007-08-01

    A mature sunspot is usually surrounded by a penumbra: strong vertical magnetic field in the umbra, the dark central region of sunspot, becomes more and more horizontal toward the periphery forming an ensemble of a thin magnetic filaments of varying inclinations. Recent high resolution observations with the 1-meter Swedish Solar Telescope (SST) on La Palma revealed a fine substructure of penumbral filaments and new regularities in their dynamics.1 These findings provide both the basis and constraints for an adequate model of the penumbra whose origin still remains enigmatic. We present results of recent observations obtained with the SST. Our data, taken simultaneously in 4305 Å G-band and 4396 Å continuum bandpasses and compiled in high cadence movies, confirm previous results and reveal new features of the penumbra. We find e.g. that individual filaments are cylindrical helices with a pitch/radius ratio providing their dynamic stability. We propose a mechanism that may explain the fine structure of penumbral filaments, the observed regularities, and their togetherness with sunspot formation. The mechanism is based on the anatomy of sunspots in which not only penumbra has a filamentary structure but umbra itself is a dense conglomerate of twisted interlaced flux tubes.

  12. Modeling Insurgent Network Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  13. Chemical Structure and Dynamics annual report 1997

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  14. Structure and Dynamics of the Solar Chromosphere

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1998-01-01

    The problem of chromospheric dynamics and heating consists of two problems: one, concerning the magnetic network on the boundary of supergranulation cells (CB), where the oscillation period is seven minutes, and the other, concerning the cell interior (CI), where the oscillation period is three minutes. The observational data on the oscillations and the emission of radiation can be used to determine the structure and dynamics of the atmosphere provided answers are known to three critical questions, concerning: the nature of the waves powering the bright points, the origin of the observed oscillation periods and the mechanism of chromospheric heating. The recent modeling of the dynamics of the CI, which combines a sophisticated treatment of gas dynamics and radiative transfer in a one-dimensional model with empirical velocity input from the observations, answered the first of these questions: the waves powering K(sub 2upsilon), bright points are propagating acoustic waves. This firm conclusion declares invalid the model of Leibacher & Stein, which explains the observed period with standing acoustic waves in a chromospheric cavity. On the third question, the heating of the chromosphere in the CI, their model predicts that the temperature in the chromosphere is declining in the outward direction up to a height of at least I Mm most of the time, so even the time-average temperature is dropping monotonically in the outward direction, implying that lines formed in the chromosphere up to a height of at least 1 Mm appear in absorption most of the time and everywhere in the CI. The problem of the CI can be resolved with a two-component model, which combines a model for K(sub 2upsilon), bright points with a model for the background. The bright point model has the same aims as the CS94 model, except that the empirical driving from the LRK93 observations is replaced by impulsive excitation, as suggested by the properties of the Klein-Gordon equation.

  15. Structural Dynamics of the Vault Ribonucleoprotein Particle

    NASA Astrophysics Data System (ADS)

    Casañas, Arnau; Querol, Jordi; Fita, Ignasi; Verdaguer, Núria

    Vaults are ubiquitous, highly conserved, 13 MDa ribonucleoprotein particles, involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. There are between 104 and 106 vault particles per mammalian cell and they do not trigger autoimmunity. The vault particle shows a hollow barrel-shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein (MVP). Other data indicated that vault halves can dissociate at acidic pH. The high resolution, crystal structure of the of the seven N-terminal domains (R1-R7) of MVP, forming the central vault barrel, together with that of the native vault particle (solved at 8 Å resolution), revealed the interactions governing vault association and suggested a pH-dependent mechanism for a reversible dissociation induced by low pH. Vault particles posses many features making them very promising vehicles for the delivery of therapeutic agents including self-assembly, 100 nm size range, emerging atomic-level structural information, natural presence in humans ensuring biocompability, recombinant production system, existing features for targeting species to the large lumen and a dynamic structure that may be controlled for manipulation of drug release kinetics. All these attributes provide vaults with enormous potential as a drug/gene delivery platform.

  16. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  17. Structure and dynamics in Photosystem I

    NASA Astrophysics Data System (ADS)

    Jolley, Craig Charles

    Photosystem I (PSI) is a transmembrane protein complex that uses incident light energy to drive an energetically unfavorable electron transfer reaction across a membrane in the early steps of oxygenic photosynthesis. This electron transfer reaction provides energy for the fixing of carbon dioxide and for the subsequent synthesis of nearly all biological material on Earth. Despite the morphological variety of oxygenic photosynthetic organisms---ranging from single-celled aquatic cyanobacteria to large, complex terrestrial plants---the structure and function of PSI are remarkably well-conserved across phyla. PSI has been the subject of extensive interdisciplinary research involving fields ranging from molecular genetics to condensed matter physics, and many aspects of its function still remain unclear. This study presents a variety of theoretical and experimental approaches to aspects of PSI structure and dynamics. An atomic-level structural model of higher plant PSI has been constructed based on recent protein crystal structures, and provides insight into the evolution of eukaryotic PSI. Time-resolved optical spectroscopic studies of PSI supercomplexes from the green freshwater alga Chlamydomonas reinhardtii illustrate how this organism adapts its photosynthetic apparatus to deal with changing environmental conditions and highlight the importance of structure-function relationships in light-harvesting systems. A novel computational approach using constrained geometric simulations has been used to model a portion of the PSI assembly process, shedding some light on how the heterodimeric PSI reaction center evolved from the more ancient homodimeric photosynthetic reaction centers found in green sulfur bacteria and heliobacteria. A new method is also demonstrated in which constrained geometric simulations are used to flexibly fit a high-resolution protein structure to a low-resolution density map obtained with cryo-electron microscopy (cryo-EM) or low-resolution x

  18. The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.

  19. Charge transport and structural dynamics in ultra-thin films of polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Cosby, Tyler; Berdzinski, Stefan; Strehmel, Veronica; Benson, Roberto; Sangoro, Joshua

    Ion conduction and structural dynamics in a series of ultra-thin films of imidazolium based polymerized ionic liquids are investigated using broadband dielectric spectroscopy, atomic force microscopy, and ellipsometry. No alteration in the characteristic charge transport rate is observed between bulk sample and films as thin as 12nm. These results are discussed within the recent approaches proposed to explain the confinement effects on structural dynamics in polymers and low molecular weight ionic liquids. NSF DRM Polymers Program.

  20. Structural dynamic health monitoring of adaptive CFRP structures

    NASA Astrophysics Data System (ADS)

    Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf

    1999-07-01

    The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.

  1. Identification of dynamic characteristics of flexible rotors as dynamic inverse problem

    NASA Technical Reports Server (NTRS)

    Roisman, W. P.; Vajingortin, L. D.

    1991-01-01

    The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses.

  2. Dynamic properties of high structural integrity auxetic open cell foam

    NASA Astrophysics Data System (ADS)

    Scarpa, F.; Ciffo, L. G.; Yates, J. R.

    2004-02-01

    This paper illustrates various dynamic characteristics of open cell compliant polyurethane foam with auxetic (negative Poisson's ratio) behaviour. The foam is obtained from off-the-shelf open cell polyurethane grey foam with a manufacturing process based on mechanical deformation on a mould in a temperature-controlled oven. The Poisson's ratio is measured with an image processing technique based on edge detection with wavelet methods. Foam samples have been tested in a viscoelastic analyser tensile test machine to determine the Young's modulus and loss factor for small dynamic strains. The same samples have also been tested in an acoustic impedance tube to measure acoustic absorption and specific acoustic resistance and reactance with a transmissibility technique. Another set of tests has been set up on a cam plastometer machine for constant strain rate dynamic crushing analysis. All the tests have been carried out on auxetic and normal foam samples to provide a comparison between the two types of cellular solids. The results from the experimental tests are discussed and interpreted using microstructure models for cellular materials existing in the literature. The negative Poisson's ratio foam presented in this paper shows an overall superiority regarding damping and acoustic properties compared to the original conventional foam. Its dynamic crushing performance is also significantly superior to the normal foam, suggesting a possible use in structural integrity compliant elements.

  3. Chromospheric Structure and Dynamics--Observations

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.

    1997-01-01

    The chromosphere is a highly structured dynamic 'layer' of the solar outer atmosphere. Here, not only are the effects of mechanical heating first evident (moving upward in altitude from the deep photosphere), but also the amount of nonradiative energy deposited is far greater than in the albeit much hotter overlying transition region and corona. Further, the chromosphere is by far the thickest zone of the solar atmosphere with respect to the pressure scale height. A major goal of stellar astrophysics is to understand how the chromosphere is heated and why it adopts its peculiar structure. A cursory examination of solar filtergrams and high-resolution movies demonstrates that much of the chromospheric "action" must be occurring on fine spatial scales and short times; particularly in the cell interior transient brightenings, but also in the longer-lived network fragments. That regime of investigation is far removed from what one usually associates with "synoptic" measurements. Nevertheless, synoptic observations of chromospheric indices, filtergrams, and globally-averaged profile parameters (e.g., for Ca II) not only can provide important insight concerning the crucial role of the cycle-variable part of the solar magnetic field; but they also can forge a key link with analogous measurements of the stars, where often the phenomena can be significantly exaggerated from the solar case, but high spatial resolution reconnaissance is not even a remote possibility. In addition to discussing the synoptic aspects of chromospheric structure and dynamics, I will summarize new insights into the general problem of the solar chromosphere that have been obtained recently with the SUMER far-ultraviolet spectrometer on SOHO.

  4. Functional structures and folding dynamics of two peptides

    NASA Astrophysics Data System (ADS)

    Sheng, Yue-Biao; Li, Jing; Ma, Bao-Liang; Wang, Wei

    2005-11-01

    The folding dynamics and structural characteristics of peptides RTKAWNRQLYPEW (P1) and RTKQLYPEW (P2) are investigated by using all-atomic simulation procedure CHARMM in this work. The results show that P1, a segment of an antigen, has a folding motif of α-helix, whereas P2, which is derived by deleting four residues AWNR from peptide P1, prevents the formation of helix and presents a β-strand. And peptide P1 experiences a more rugged energy landscape than peptide P2. From our results, it is inferred that the antibody CD8 cytolytic T lymphocyte prefers an antigen with a β-folding structure to that with an α-helical one.

  5. Nonparametric inference of network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  6. Integrated analysis and design of thick composite structures for optimal passive damping characteristics

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.

  7. Synthesis of gold nanoparticles with different atomistic structural characteristics

    SciTech Connect

    Esparza, R. . E-mail: roesparza@gmail.com; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.

    2007-08-15

    A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles.

  8. Structure, dynamics, and function of biomolecules

    SciTech Connect

    Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal.

  9. Structure and dynamics of glasses and glass formers

    SciTech Connect

    Angell, C.A.; Ngai, K.L.; Kieffer, J.; Egami, T.; Nienhaus, G.U.

    1997-12-31

    This book was divided into the following parts: (1) short-time dynamics; (2) relaxation dynamics of glasses and glass formers; (3) glasslike systems, simulations, and models; (4) contrasting metallic, ionic, bio, and polymer systems; (5) structure, energetics, and polyamorphism; and (6) structure and dynamics of glasses and glass formers. Separate abstracts were prepared for most papers in this volume.

  10. Effect of temperature on the dynamic characteristics of the glass-carbon fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Hidayat, Yon Afif; Susilo, Didik Djoko; Raharjo, Wijang W.

    2016-03-01

    This study aimed to investigate the effect of temperature on the dynamic characteristics of hybrid composites. Hybrid composites consisting of unsaturated polyester resin and glass fiber reinforced with carbon fiber. The volume fraction used in this study was 0.4. The hybrid composite was made using hand lay-up technique. The dynamic characteristics were obtained through vibration testing. The testing was conducted according to ASTM E756. The variables studied were composite without heating, heating at 100 °C, 200 °C and 280 °C. The experiments were done in three mounting configurations, i.e. upright, downward and horizontal configurations. The natural frequency and damping ratio was determined using half-power bandwidth method. The results showed that heating of composite structure affects the natural frequency and damping ratio of the hybrid composite. Heating until 100 °C will increase the natural frequency of the hybrid composite and decrease the damping ratio, but heating at the temperature above 100 °C will decrease the natural frequency and will damage the hybrid composite structure. The composite mounting configurations do not give significant effect to natural frequency and damping ratio of the hybrid composites.

  11. Structure and dynamics of amorphous water ice

    NASA Technical Reports Server (NTRS)

    Laufer, D.; Kochavi, E.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1987-01-01

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  12. On the modal characteristics of damaging structures subjected to earthquakes

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico

    2015-04-01

    Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only

  13. Dynamics of influence on hierarchical structures

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-08-01

    Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node). Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case of discord between the head node and the bottommost classes, the average state over all nodes inclines towards that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the bottommost class is signified.

  14. Dynamics and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    French, R. G.

    1991-01-01

    Recent research efforts were directed towards sharpening the understanding of kinematical and dynamical properties of the Uranian rings, with the combination of Earth-based and Voyager observations, and in obtaining and interpreting new observations of the Saturn system from the remarkable stellar occultation of 3 Jul. 1989. Some of the highlights studied include: (1) a detailed comparison of structure and dynamics of the Uranus rings from joint analysis of high quality Earth-based data and the complete set of Voyager occultation measurements; (2) a comprehensive search for weak normal modes excited in the Uranian rings, analogous to the m = 2 and m = 0 normal modes previously identified for the delta and gamma rings; (3) an ongoing search for faint rings and ring arcs of Uranus, using both Voyager images of the rings and Earth-based and spacecraft stellar occultation data; (4) a comparison of upper stratospheric temperatures of Uranus inferred from Voyager ultraviolet occultations with results of ground-based occultation observations; and (5) observations of the 3 Jul. 1989 Saturn occultation of 28 Sgr.

  15. Lagrangian coherent structures and inertial particle dynamics

    NASA Astrophysics Data System (ADS)

    Sudharsan, M.; Brunton, Steven L.; Riley, James J.

    2016-03-01

    In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with nonzero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double-gyre flow.

  16. Segmenting dynamic human action via statistical structure.

    PubMed

    Baldwin, Dare; Andersson, Annika; Saffran, Jenny; Meyer, Meredith

    2008-03-01

    Human social, cognitive, and linguistic functioning depends on skills for rapidly processing action. Identifying distinct acts within the dynamic motion flow is one basic component of action processing; for example, skill at segmenting action is foundational to action categorization, verb learning, and comprehension of novel action sequences. Yet little is currently known about mechanisms that may subserve action segmentation. The present research documents that adults can register statistical regularities providing clues to action segmentation. This finding provides new evidence that structural knowledge gained by mechanisms such as statistical learning can play a role in action segmentation, and highlights a striking parallel between processing of action and processing in other domains, such as language. PMID:18035346

  17. Chromatin Higher-order Structure and Dynamics

    PubMed Central

    Woodcock, Christopher L.; Ghosh, Rajarshi P.

    2010-01-01

    The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional “higher order” levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study. PMID:20452954

  18. Statistical characteristics of dynamics for population migration driven by the economic interests

    NASA Astrophysics Data System (ADS)

    Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui

    2016-06-01

    Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.

  19. Multiscale Dynamics of Solar Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  20. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  1. Chemical structure and dynamics. Annual report 1994

    SciTech Connect

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  2. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    RS McDowell.

    1999-05-10

    The Chemical Structure and Dynamics (CS D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  3. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  4. Sediment characteristics and transportation dynamics of the Ganga River

    NASA Astrophysics Data System (ADS)

    Singh, Munendra; Singh, Indra Bir; Müller, German

    2007-04-01

    Understanding of river systems that have experienced various forcing mechanisms such as climate, tectonics, sea level fluctuations and their linkages is a major concern for fluvial scientists. The 2525-km-long Ganga River derives its fluvial flux from northern part of the Indian subcontinent and drops in the Ganga-Brahmaputra delta and the Bengal fan regions. This paper presents a study of the Ganga River sediments for their textural properties, grainsize characteristics, and transportation dynamics. A suite of recently deposited sediments (189 bedload samples and 27 suspended load samples) of the river and its tributaries was collected from 63 locations. Dry and wet sieve methods of grainsize analysis were performed and Folk and Ward's parameters were calculated. Transportation dynamics of the sediment load was assessed by means of channel hydrology, flow/sediment rating curves, bedform mechanics, grainsize images, and cumulative curves. Textural properties of the bedload sediments of the Ganga River tributaries originating from the Himalaya orogenic belt, the northern Indian craton and the Ganga alluvial plain regions are characterised by the predominance of fine to very fine sand, medium to fine sand, and very fine sand to clay, respectively. Downstream textural variations in the bedload and suspended load sediments of the Ganga River are, therefore, complex and are strongly influenced by lateral sediment inputs by the tributaries and channel slope. At the base of the Himalaya, a very sharp gravel-sand transition is present in which median grainsize of bedload sediments decreases from over - 0.16 Φ to 2.46 Φ within a distance of 35 km. Downstream decline in mean grainsize of bedload sediments in the upper Ganga River within the alluvial plain can be expressed by an exponential formula as: mean grainsize (in Φ) = 0.0024 × Distance (in kilometres from the Himalayan front) + 1.29. It is a result of selective transport phenomena rather than of abrasion, the

  5. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  6. Space Station Freedom solar dynamic modules structural modelling and analysis

    SciTech Connect

    Lawrence, C.; Morris, R.

    1991-12-01

    In support of the Space Station Freedom (SSF) Solar Dynamic Power Module effort, structural design studies were performed to investigate issues related to the design of the power module, its pointing capabilities, and the integration of the module into the SSF infrastructure. Of particular concern from a structural viewpoint are the dynamics of the power module, the impact of the power module on the Space Station dynamics and controls, and the required control effort for obtaining the specified Solar Dynamic Power Module pointing accuracy. Structural analyses were performed to determine the structural dynamics attributes of both the existing and the proposed structural dynamics module designs. The objectives of these analyses were to generate validated Solar Dynamic Power Module NASTRAN finite element models, combine Space Station and power module models into integrated system models, perform finite element modal analyses to assess the effect of the relocations of the power module center of mass, and provide modal data to controls designers for control systems design.

  7. Identification of the dynamic characteristics of a viscoelastic, nonlinear adhesive joint

    NASA Astrophysics Data System (ADS)

    Naraghi, T.; Nobari, A. S.

    2015-09-01

    In this paper, the nonlinear mechanical characteristics of an adhesive (Sikaflex-252) are identified over frequency range, using eigenvalues of nonlinear system and inverse eigen-sensitivity method and experimental data. Sikaflex-252 is selected as an adhesive which is mainly used as a joining medium (joint) in structural applications. In order to simulate the viscoelastic behaviour of the adhesive, the frequency dependent Young's modulus and damping coefficient are assumed in identification process leading to the updating process being repeated for different ranges of frequencies to identify stiffness and damping properties of the adhesive. Using the optimum equivalent linear frequency response function (OELF) concept, in order to realize the nonlinear nature of the adhesive, modal tests are performed under two different random excitation levels which illustrate the stiffness softening characteristic of adhesive which can have serious implications regarding dynamic stability of structures. Furthermore, based on the identified characteristics, the paper examines the possibility of tuning of the Standard Linear Solid model (SLS), in representing the adhesive viscoelastic behaviour. Results of this attempt proved that the S.L.S. model with tuned parameters significantly improves the fidelity of finite element (FE) model to experimental results.

  8. Strain Concentration at Structural Discontinuities and Its Prediction Based on Characteristics of Compliance Change in Structures

    NASA Astrophysics Data System (ADS)

    Kasahara, Naoto

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes an increase in creep-fatigue damage of materials. One of the difficulties in predicting strain concentration is its dependence on the magnitude of loading, the constitutive equations, and the duration of loading. In this study, the author investigated the fundamental mechanism of strain concentration and its main factors. The results revealed that strain concentration is caused by strain redistribution between elastic and inelastic regions, which can be quantified by the characteristics of structural compliance. The characteristics of structural compliance are controlled by elastic region in structures and are insensitive to constitutive equations. It means that inelastic analysis can be easily applied to obtain compliance characteristics. By utilizing this fact, a simplified inelastic analysis method was proposed based on the characteristics of compliance change for the prediction of strain concentration.

  9. Solitary waves and nonlinear dynamic coherent structures in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Smagin, V. V.; Borich, M. A.; Zhuravlev, A. S.

    2009-03-01

    Within the framework of the extended nonlinear Schrödinger equation (ENSE), two types of nonlinear states of magnetization in a ferromagnet-dielectric-metal metamagnetic structure have been obtained and investigated. These states have an internal structure; e.g., a periodic sequence of compound solitons is formed by kink-antikink pairs (shock waves), and coherent periodic breather structures are formed by “bright” quasi-solitons. Conditions have been found under which the envelope of these states is described by a modified Korteweg-de Vries (mKdV) equation. It is shown that the compound solitons are described by an mKdV equation with repulsion, and the breather structures, by an mKdV equation with attraction. It is shown also that the characteristic properties of the solutions are determined by the sign of the group-velocity dispersion rather than by the sign of the group velocity itself. The results obtained can be used for searching new nonlinear dynamic coherent structures, e.g., compound solitons and breathers in high-dispersion magnetic metamaterials.

  10. Dynamics of wake structure in clapping propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2009-11-01

    Some animals such as insects and frogs use a pair of symmetric flaps for locomotion. In some cases, these flappers operate in close proximity or even touch each other. In order to understand the underlying physics of these kinds of motion, we have studied the wake structures induced by clapping and their associated thrust performance. A simple mechanical model with two acrylic plates was used to simulate the power stroke of the clapping motion and three-dimensional flow fields were obtained using defocusing digital particle image velocimetry. Our studies show that the process of vortex connection plays a critical role in forming a downstream closed vortex loop. Under some kinematic conditions, this vortex loop changes its shape dynamically, which is analogous to the process of an elliptical vortex ring switching its minor and major axis. As the length of the plate along the rotating shaft decreases to change an aspect ratio, the downstream motion of the vortex is retarded due to the outward motion of side edge vortices and less propulsive force is generated per the surface area of the plate. The impact of compliance and stroke angle of the plate on wake structures and thrust magnitudes are also presented.

  11. Dynamics of Subauroral Polarization Stream (SAPS) Structures

    NASA Astrophysics Data System (ADS)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Ridley, A. J.; Erickson, P. J.; Foster, J. C.; Baker, J. B. H.; Wolf, R.

    2015-12-01

    The Subauroral Polarization Stream (SAPS) flow structures are narrow ionospheric channels of fast (in excess of 100 m/s) westward drift just outside the equatorward edge of the diffuse aurora in the dusk-to-midnight local time sector. Other terms for this phenomenon include subauroral Ion Drift (SAID) events and Polarization Jets. SAPS structures represent a striking departure from the commonly-used two-cell convection pattern. They are thought to arise from the displacement of the downward region-2 Birkeland currents on the dusk side equatorward of the low-latitude boundary of the auroral oval during times of changing high-latitude convection. In this paper, we will use several event simulations with the SAMI3-RCM numerical model (a self-consistent ionosphere-inner magnetosphere model) and RCM-GITM (a self-consistent model of the ionosphere-thermosphere-inner magnetosphere) to analyze the relative roles of changes in the IMF Bz component, ionospheric electron density depletions, and thermospheric modifications in controlling the dynamics of SAPS. Simulation results will be compared to multi-instrument ionospheric observations.

  12. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  13. A travelling wave approach to the dynamic analysis of large space structures

    NASA Technical Reports Server (NTRS)

    Von Flotow, A. H.

    1983-01-01

    This paper investigates the dynamic analysis of certain large space structures via travelling wave mathematics. It is assumed that large space structures may be modelled as networks of interconnected one-dimensional structural members. Bodies with a finite number of internal dynamic degrees of freedom may be scattered throughout the network. The wave propagation behavior of one-dimensional continuous and periodic structural elements is investigated. A scattering matrix description of junctions and discontinuities is proposed. A time domain method of calculating network transient response using the wave propagation characteristics of the elements is briefly described.

  14. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    PubMed Central

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  15. Sea anemones possess dynamic mitogenome structures.

    PubMed

    Emblem, Åse; Okkenhaug, Siri; Weiss, Emily S; Denver, Dee R; Karlsen, Bård Ove; Moum, Truls; Johansen, Steinar D

    2014-06-01

    A notable feature of hexacoral mitogenomes is the presence of complex self-catalytic group I introns. We investigated mitogenome structural variations and evolutionary mechanisms in actiniarian sea anemones based on the complete mitogenome sequence of the cold-water sea anemone species Urticina eques, Bolocera tuediae, Hormathia digitata and Metridium senile, and two isolates of the sub-tropical Aiptasia pulchella. Whole genome sequencing at 50 times coverage of B. tuediae and H. digitata indicated low mtDNA copy number of per haploid nuclear genome and presence of rare haplotypes. A group I intron inserted in ND5 was found to host essential mitochondrial protein genes in all species, and an additional truncated copy of ND5 in B. tuediae. A second group I intron (inserted in COI) that contained a homing endonuclease gene (HEG) was present in all mtDNA examined. Different variants of HEGs were observed, and included expressed elements fused in-frame with upstream exons and free-standing HEGs embedded within the intron. A notable hallmark of HEGs was a high extent of overlap with ribozyme structural elements; the U. eques HEG overlapped with the entire intron. We reconstructed the evolutionary history of the COI intron from insertion at unoccupied cognate sites, through HEG degradation, to intron loss. We also identified a novel insertion element in U. eques that contained two expressed protein-coding genes. An evolutionary analysis of the sea anemone mtDNA genes revealed higher substitution rates in the HEG and the insertion sequence as compared to the other loci, indicating relaxed selective pressures in these elements. We conclude that sea anemone mitogenomes are surprisingly dynamic in structure despite the economical organization and low sequence mutation rate. PMID:24613805

  16. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  17. Characteristic Structures of Power Spectra in Periodic Chaos

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tomita, K.

    1986-10-01

    The power spectra of periodic chaos are shown to have characteristic structures which are governed by the universal recursion relations. By periodic chaos we mean a chaos which emerges via period-doubling bifurcations, and the recursion relations are based on similarity structures in the process of band-splitting bifurcations of periodic chaos. To derive these relations, the asymmetric tent map is used, and the universal applicability of these relations to other classes of maps including the logistic map, where the rescaling factors are replaced by proper ones, is verified by numerical experiment. Some affirmative results for the H&{acutee}non maps are also given.

  18. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  19. Damping characteristics of composite petal structure for an 8-m diameter telescope at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Carrier, Alain C.; Romney, Bruce; Mihara, Roger

    2004-10-01

    Concerns have been raised in the engineering community about the potentially extremely low levels of structural damping in structures at cryogenic temperatures. Experiments conducted on material coupons have shown that material damping at those temperatures can be orders of magnitude lower than that at room temperature. Whether structural damping in built-up structures at those temperatures can be that low is unknown, but if it was, the telescope resonances could exacerbate microdynamics originating from the structure itself and residual vibrations propagating from the instrument module to the telescope. Since the effect of those vibrations might not be compensated for optically, the observatory might not meet its wavefront and jitter error budgets. The structural damping characteristics of built-up structures in the micrometer to nanometer regime and at cryogenic temperatures are to a large extent unknown. Characterization on structures traceable to future flight designs is therefore necessary to develop an understanding of these characteristics, as well as devise means to mitigate those effects. To address those concerns and to reduce the technical risks in these areas, Lockheed Martin tested the dynamics characteristics of its Single Petal Testbed (SPT) flight-like petal structure at full-scale, from room temperature down to -175C (98K). The SPT was designed by the Lockheed Martin Advanced Technology Center and fabricated by Programmed Composites Inc. Significant changes in dynamics characteristics with temperature were observed, but primarily in mode shapes as opposed to modal frequencies and modal dampings. The modal damping remained fairly constant throughout the temperature range and, to the extent changes could be detected, the trends were more towards an increase than a decrease in damping at 98K, which was highly unexpected. A detailed analysis of these results extracted from dynamics tests conducted during the cool down portion of the last thermal cycle

  20. Entropy-driven structure and dynamics in carbon nanocrystallites

    SciTech Connect

    McNutt, Nicholas W; Wang, Qifei; Rios, Orlando; Keffer, David J

    2014-01-01

    New carbon composite materials are being developed that contain carbon nanocrystallites in the range of 5 17 A in radius dispersed within an amorphous carbon matrix. Evaluating the applicability of these materials for use in battery electrodes requires a molecular-level understanding of the thermodynamic, structural, and dynamic properties of the nanocrystallites. Herein, molecular dynamics simulations reveal the molecular-level mechanisms for such experimental observations as the increased spacing between carbon planes in nanocrystallites as a function of decreasing crystallite size. As the width of this spacing impacts Li-ion capacity, an explanation of the origin of this distance is relevant to understanding anode performance. It is thus shown that the structural configuration of these crystallites is a function of entropy. The magnitude of out-of-plane ripples, binding energy between layers, and frequency of characteristic planar modes are reported over a range of nanocrystallite sizes and temperatures. This fundamental information for layered carbon nanocrystallites may be used to explain enhanced lithium ion diffusion within the carbon composites.

  1. Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-10-01

    The topological and dynamical features of small scales are studied in the context of decaying magnetohydrodynamic turbulent flows using direct numerical simulations. Joint probability density functions (PDFs) of the invariants of gradient quantities related to the velocity and the magnetic fields demonstrate that structures and dynamics at the time of maximum dissipation depend on the large scale initial conditions at the examined Reynolds numbers. This is evident in particular from the fact that each flow has a different shape for the joint PDF of the invariants of the velocity gradient in contrast to the universal teardrop shape of hydrodynamic turbulence. The general picture that emerges from the analysis of the invariants is that regions of high vorticity are correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent flows. Magnetic strain dominated regions are also well correlated with region of high current density j. Viscous dissipation ({∝ } S^2) as well as Ohmic dissipation ({∝ } j^2) resides in regions where strain and rotation are locally almost in balance. The structures related to the velocity gradient possess different characteristics than those associated with the magnetic field gradient with the latter being locally more quasi-two dimensional.

  2. A set of measurement system for the dynamic laser scatter characteristics of target

    NASA Astrophysics Data System (ADS)

    Wei, Xiangquan; Huang, Jianming; Xiao, Yuzhi; Fan, Xiaoli

    2015-12-01

    It is an important measure to observe target by using laser sensor in the field of target detection. Exact and reliable dynamic laser scatter characteristics of observing target, can not only be used for the design and development of laser sensor as well as the research of algorithm for target capture, recognition and tracking, but also can offer reference bases for the test flow programming. A set of simulation, measurement system for the dynamic laser scatter characteristics of observing target is introduced in this paper. The simulation problem of dynamic laser scatter characteristics of observing target is solved, under the circumstance of laboratory with different azimuth angle and pitch angle of observation. The dynamic laser scatter characteristics of observing target can be obtained directly by such system, the test data can be used for the verification of the analyzing model for the laser scatter characteristics of observing target, and can also offer basis for the development of laser detecting sensor.

  3. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  4. Synthesis of Au nanowires with controlled morphological and structural characteristics

    NASA Astrophysics Data System (ADS)

    Singh, Gurvinder; van Helvoort, Antonius T. J.; Bandyopadhyay, Sulalit; Volden, Sondre; Andreassen, Jens-Petter; Glomm, Wilhelm R.

    2014-08-01

    A growth of one-dimensional noble metal nanostructure with controlled structural characteristic has been under intense investigation as the physical properties, for example, mechanical and electrical properties highly depend on the crystallinity of the nanostructure. Herein, we report a seed-mediated growth of gold nanowires with controlled structural and morphological characteristics, which can easily be varied by selecting appropriate seed nanoparticles, either spherical or rod type in aqueous solution at room temperature. The growth of nanowires was monitored by characterizing the samples at different time period during the reaction, and our observations suggest that growth occurs from seeds rapidly growing along one-dimension followed by surfactant induced fusion or welding and surface diffusion. The aspect ratio and morphology of these NWs can be tuned by CTAB concentration, pH and temperature of the growth solution. We show that the aspect ratio and morphology of these NWs can be tuned by the surfactant concentration, pH and temperature of the growth solution. Electron microscopy and X-ray Photoelectron spectroscopic techniques were employed for investigating structural and surface characteristics of nanowires. This approach can possibly help to synthesize nanowires of other metals with controlled crystalline behaviour which is highly essential for understanding their properties and practical applications in nanoelectronics, optical devices, catalysis, and sensors.

  5. A Molecular Dynamics Study of the Structure-Dynamics Relationships of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Soklaski, Ryan

    Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu64Zr36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu64Zr36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown

  6. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  7. Femtosecond resolution of soft mode dynamics in structural phase transitions

    NASA Technical Reports Server (NTRS)

    Dougherty, Thomas P.; Wiederrecht, Gary P.; Nelson, Keith A.; Garrett, Mark H.; Jensen, Hans P.; Warde, Cardinal

    1992-01-01

    The microscopic pathway along which ions or molecules in a crystal move during structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a 'soft' phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO3 and BaTiO3 are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.

  8. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations

    NASA Astrophysics Data System (ADS)

    Leung, C.; Radulescu, M. I.; Sharpe, G. J.

    2010-12-01

    The nonlinear pulsating mechanism of one-dimensional detonations was studied numerically using a simple two-step chain-branching model with separate induction and reaction zones. Numerical simulations were performed for a wide range of parameters, which revealed four distinct pulsating regimes classified according to the mechanism controlling the frequency of the pulsations. The dynamics of these regimes were clarified by reconstructing the characteristics, representing the trajectory of pressure waves and particle paths. The high and low frequency regimes of oscillation previously observed in one-step and realistic chemistry simulations were clarified. Under some parameter range, simultaneous low and high frequency pulsations were observed. A novel regime was also found with a pulsation period smaller than the induction time. It involves coupling between the acoustic and the reactivity disturbances propagating, respectively, along the C- and C0 characteristics. These are generated at successive lead shock pulsations and arrive at the reaction zone simultaneously. For all regimes, the dominating mechanism of the pulsating instability was found to be in good qualitative agreement with Toong's phenomenological model based on the wave dynamics in a square wave reaction zone structure.

  9. Sound radiation characteristics of a box-type structure

    NASA Astrophysics Data System (ADS)

    Ran Lin, Tian; Pan, Jie

    2009-09-01

    The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1-031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.

  10. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 33rd, Dallas, TX, Apr. 13-15, 1992, Technical Papers. Pt. 3 - Structural dynamics I

    SciTech Connect

    Not Available

    1992-01-01

    The present conference on structural dynamics encompasses finite-element analyses of rotorcraft vibration, spacecraft dynamics, dynamic analyses, rotor aeroelasticity, rotorcraft dynamics, damping, control analysis and experiments, and experimental dynamics and testing. Specific issues addressed include NASA/industry design-analysis methods for vibrations, controlling a large flexible structure to mimic a rigid one, the dynamic response of rapidly heated space structures, interval prediction in structural dynamic analysis, mode localization in computer disk drives, and a discrete transfer-matrix method for rotating beams. Also addressed are the dynamics of axially moving continua on an elastic foundation, stiffness and stress in a fluid-filled circular diaphragm, linear structure control by the modal force technique, directional filters for sensing 1D structural dynamics, and an adaptive multilevel substructuring method for efficient modeling of complex structures.

  11. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    NASA Astrophysics Data System (ADS)

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-01

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT, and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  12. Structure and dynamics of ultrathin organic films

    NASA Astrophysics Data System (ADS)

    Kiktyeva, Tatyana A.

    Existing and newly developed nonlinear optical methods have been used to characterize molecular structure, orientation and dynamics at interfaces. Optical second harmonic generation (SHG) studies have been conducted on molecular films of the organic dyes, rhodamine 6G and malachite green, adsorbed at the fused silica/air interface. The second harmonic response from the organic dye films was found to be a non-monotonic function of the surface concentration with discontinuities corresponding to completion of successive monolayers. This behavior reflects ordering of molecular adlayers, which extends for several layers. Polarized SHG studies in conjunction with optical absorbance and fluorescence measurements were used to determine the type of interactions responsible for the adsorption in the ordered layers. The results indicate that the well-defined order within the first layer is due to the specific adsorbate-substrate interactions. Orientation in subsequent layers is teed by adsorbate-adsorbate interactions, dependent on the nature of the adsorbate and consequently on its orientation within the first layer. These results provide a direct measure of the extent of the interfacial ordering and molecular interactions at the solid/air interface and can be used to determine an adsorbate's filling factor. Time and frequency resolved vibrational spectra of a monolayer of amphiphilic molecules at the CaF2/air interface were investigated using infrared-visible sum frequency generation. Vibrational wave packet dynamics following coherent excitation of CH3 vibrational modes with broad bandwidth infrared pulses is reported. The induced macroscopic polarization displays quantum interference effects (quantum beats) and decays on a time scale dependent on the nature of the interfacial environment. These observations provide a link between the degree of structural order of the monolayer and the vibrational coherence lifetime. Monitoring interfacial wave packet dynamics represents a

  13. Optimizing Dynamical Network Structure for Pinning Control

    PubMed Central

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  14. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  15. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  16. Dynamics of a complex streamer structure

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Ostgaard, N.; Inan, U.

    2014-12-01

    Streamer corona formation and propagation is an important process in the development of lightning. In order to understand its dynamics, the streamer front velocity is calculated in a 1D model with curvature. We show that streamers may only propagate only the presence of mechanisms such as electron drift, electron diffusion and photoionization. The results indicate, in particular, that: (1) the effect of photoionization on the streamer velocity for both positive and negative streamers is mostly determined by the photoionization length, with a weaker dependence on the amount of photoionization; (2) the electron drift may increase the velocity of the negative streamers but has an opposite effect on the positive streamers; (3) the contributions of photoionization and electron diffusion to the velocity are decreased for positive curvature, i.e., convex fronts, while the contribution of electron drift is independent of curvature. These results are used in a fractal model in which the front propagation velocity is simulated as the cluster growth probability [Niemeyer et al, 1984, doi:10.1103/PhysRevLett.52.1033]. In the case when the photoionization is the main mechanism which determines the streamer propagation, the emerging transverse size of the streamers is of the order of the photoionization length, and at the larger scale the streamer structure is a fractal similar to the one obtained in a diffusion-limited aggregation system.

  17. Changing dynamic behavior of periodic structures by using piezoelectric circuitry with negative resistance

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, X.; Tang, J.

    2009-03-01

    Integrating a piezoelectric circuitry, which consists of a piezoelectric transducer connected with electrical circuitry elements, to a mechanical structure can alter the dynamic behavior of the structural system. From a system dynamics standpoint, these circuitry elements are analogous to the mass, damping, and stiffness elements in the mechanical regime. Using op amp circuits we can synthesize circuitry elements with interesting characteristics such as tunable or negative elements. In this research, we demonstrate that the negative resistance element can reduce the overall system damping, thereby changing the dynamic response of mechanical structures. In particular, it will be shown that not only the response amplitude can be amplified; the response pattern in the mistuned periodic structure can be altered significantly upon the change of local structural properties. Such phenomena are analyzed systematically, and the potential advantage for structural damage detection is highlighted.

  18. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  19. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    SciTech Connect

    Demontis, Pierfranco; Suffritti, Giuseppe B.; Gulín-González, Jorge; Sant, Marco

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  20. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures

    PubMed Central

    Weng, Lindong; Elliott, Gloria D.

    2014-01-01

    The glass transition temperature Tg of biopreservative formulations is important for predicting the longterm storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation. PMID:24803351

  1. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation. PMID:24803351

  2. The relevance of network micro-structure for neural dynamics.

    PubMed

    Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan

    2013-01-01

    The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits. PMID:23761758

  3. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  4. Development of an experimental space station model for structural dynamics research

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Edighoffer, Harold E.; Wallace, John W.

    1990-01-01

    Design, analysis, and testing of an experimental space station scale model is presented. The model contains hardware components with dynamic characteristics similar to those expected for other large space structures. Validation of analysis models is achieved through correlation with dynamic tests of hardware components and representative assembly configurations. A component mode synthesis analysis method is examined through comparisons with results from fully mated system models. Selection of input requirements for accurate component synthesis analysis predictions are assessed.

  5. Dynamic Characteristics Analysis of Analogue Networks Design Process

    NASA Astrophysics Data System (ADS)

    Zemliak, Alexander M.

    The process of designing analogue circuits is formulated as a controlled dynamic system. For analysis of such system's properties it is suggested to use the concept of Lyapunov's function for a dynamic system. Various forms of Lyapunov's function are suggested. Analyzing the behavior of Lyapunov's function and its first derivative allowed us to determine significant correlation between this function's properties and processor time used to design the circuit. Numerical results prove the possibility of forecasting the behavior of various designing strategies and processor time based on the properties of Lyapunov's function for the process of designing the circuit.

  6. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  7. Auditory virtual environment with dynamic room characteristics for music performances

    NASA Astrophysics Data System (ADS)

    Choi, Daniel Dhaham

    A room-adaptive system was designed to simulate an electro-acoustic space that changes room characteristics in real-time according to the content of sound. In this specific case, the focus of the sound components is on the different styles and genres of music. This system is composed of real-time music recognition algorithms that analyze the different elements of music, determine the desired room characteristics, and output the acoustical parameters via multi-channel room simulation mechanisms. The system modifies the acoustic properties of a space and enables it to "improvise" its acoustical parameters based on the sounds of the music performances.

  8. The dynamic adsorption characteristics of phenol by granular activated carbon.

    PubMed

    Namane, A; Hellal, A

    2006-09-01

    The objective of the present work is to determine the operating conditions of an activated carbon filter, based on the characteristics of breakthrough curves. For this we apply the technical developed by Mickaels for the ionic exchange and applied by Luchkis for the adsorption, and which is the mass transfer zone. To reach our goal, an evaluation of the operating conditions (height of the bed, flow and concentration of effluent) on the characteristics of the mass transfer zone was made and an explanation of the mechanism of adsorption was given. Thereafter a modeling of the experimental results was done. PMID:16621251

  9. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    SciTech Connect

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-09

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics.

  10. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  11. Structural Dynamics Branch research and accomplishments for FY 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Presented here is a collection of FY 1990 research highlights from the Structural Dynamics Branch at the NASA Lewis Research Center. Highlights are from the branch's major work areas: aeroelasticity, vibration control, dynamic systems, and computational structural methods. A listing is given of FY 1990 branch publications.

  12. Structural dynamics branch research and accomplishments for FY 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Fiscal year 1988 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center are described. Highlights from the branch's major work areas -- aeroelasticity, vibration control, dynamic systems, and computational structural methods -- are included as well as a complete listing of the FY 88 branch publications.

  13. Structural dynamics branch research and accomplishments to FY 1992

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  14. Structural dynamics branch research and accomplishments for fiscal year 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications.

  15. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jalloh, Abdul

    2005-01-01

    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report.

  16. Navier-Stokes Simulation of the Canard-Wing-Body Longitudinal Dynamic Stability Characteristics

    NASA Technical Reports Server (NTRS)

    Tu, Eugene L.; VanDalsem, William R. (Technical Monitor)

    1996-01-01

    Many modern aircraft are canard-configured for aircraft control and improved aerodynamic performance. Canards can often enhance aircraft cruise performance, maneuverability and agility. For close-coupled canard configurations, the aerodynamic interaction between the canard and wing significantly changes the flow characteristics of the wing. In unsteady flow, such changes in the flow structure and performance of wings can be quite pronounced. Accurate modeling of the unsteady aerodynamics is essential for potential CFD design and analysis of such configurations. A time-accurate numerical simulation is performed to study the unsteady aerodynamic interaction between a canard and wing with emphasis on the effects of the canard on the configuration's dynamic response characteristics. The thin-layer Reynolds-averaged Navier-Stokes Equations with various turbulence models are used in this study. Computations are made on a generic, analytically-defined, close-coupled canard-wing-body configuration which has been the subject of numerous previously published experimental studies during the 1970's to mid-80's. More recently, a series of steady-flow simulations has been performed and published by the author. In the current study, the configuration is given prescribed ramp and oscillatory motions in order to predict characteristics such as the damping-in-pitch and oscillatory longitudinal stability parameters. The current computations are made at high-subsonic and transonic Mach numbers, moderate angles-of- attack from -4 to 20 degrees, and at various pitch rates and reduced frequencies. Comparisons of pressures and integrated force quantities (e.g. lift, drag, pitching moment and selected dynamic parameters) are made with other published computational results and available experimental data. Results showing the unsteady effects of the canard on surface pressures, integrated forces, canard-wing vortex interaction and vortex breakdown will be presented.

  17. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  18. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  19. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  20. Low-dimensional dynamics of structured random networks

    NASA Astrophysics Data System (ADS)

    Aljadeff, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-02-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015), 10.1103/PhysRevLett.114.088101], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g . Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.

  1. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. PMID:23399486

  2. Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications

    NASA Astrophysics Data System (ADS)

    Trombetti, Tomaso

    This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral

  3. Dynamic characteristics of mixtures of plutonium, Nevada tuff, and water

    SciTech Connect

    Myers, W.; Rojas, S.; Kimpland, R.H.; Jaegers, P.J.; Sanchez, R.G.; Hayes, D.; Paternoster, R.; Anderson, R.; Stratton, W.

    1996-02-01

    One of the technical options being considered for long term disposition of weapons grade plutonium is geologic storage at Yucca Mountain. Multikilogram quantities of plutonium are to be vitrified, placed within a heavy steel container, and buried in the material know as Nevada tuff. It has been postulated that after ten thousand years, geologic and chemical processes would have disintegrated the steel container and created the possibility for plutonium to form mixtures with Nevada tuff and water that could lead to a nuclear explosion in the range of kilotons. A survey and description of critical homogeneous mixtures of plutonium, silicon dioxide, Nevada tuff, and water which also identified the mixture regimes where autocatalytic dynamic behavior is possible was completed. This study is a follow up of this survey and the major objective is to examine the dynamic behavior of the worst case critical and supercritical configurations of plutonium, water and Nevada tuff.

  4. Nike Black Brant V high altitude dynamic instability characteristics

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  5. Characteristics of electrohydrodynamic roll structures in laminar planar Couette flow

    NASA Astrophysics Data System (ADS)

    Kourmatzis, Agisilaos; Shrimpton, John S.

    2016-02-01

    The behaviour of an incompressible dielectric liquid subjected to a laminar planar Couette flow with unipolar charge injection is investigated numerically in two dimensions. The computations show new morphological characteristics of roll structures that arise in this forced electro-convection problem. The charge and velocity magnitude distributions between the two parallel electrodes are discussed as a function of the top wall velocity and the EHD Rayleigh number, T for the case of strong charge injection. A wide enough parametric space is investigated such that the observed EHD roll structures progress through three regimes. These regimes are defined by the presence of a single or double-roll free convective structure as observed elsewhere (Vazquez et al 2008 J. Phys. D 41 175303), a sheared or stretched roll structure, and finally by a regime where the perpendicular velocity gradient is sufficient to prevent the generation of a roll. These three regimes have been delineated as a function of the wall to ionic drift velocity {{U}\\text{W}}/κ E , and the T number. In the stretched regime, an increase in {{U}\\text{W}}/κ E can reduce charge and momentum fluctuations whilst in parallel de-stratify charge in the region between the two electrodes. The stretched roll regime is also characterised by a substantial influence of {{U}\\text{W}}/κ E on the steady development time, however in the traditional non-stretched roll structure regime, no influence of {{U}\\text{W}}/κ E on the development time is noted.

  6. Energy absorption characteristics of nano-composite conical structures

    NASA Astrophysics Data System (ADS)

    Silva, F.; Sachse, S.; Njuguna, J.

    2012-09-01

    The effect of the filler material on the energy absorption capabilities of polyamide 6 composite structures is studied in details in the present paper. The axial dynamic and quasi-static collapse of conical structures was conducted using a high energy drop tower, as well as Instron 5500R electro-mechanical testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated using scanning electron microscopy (SEM). The obtained results indicate an important influence of filler material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) is observed in polyamide 6 (PA6) reinforced with nano-silica particles (SiO2) and glass-spheres (GS), whereas addition of montmorillonite (MMT) did not change the SEA parameter.

  7. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  8. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.

    PubMed

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  9. (Inter-),Network Structure and DynamicS

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    1999-09-01

    The dynamical nature of the low solar atmosphere outside active regions is emphasized by recent observations and simulations alike. La Palma images, MDI maps, SUMER spectra, TRACE movies, hydrodynamic shock simulations and magnetohydrodynamic sheet simulations all impart non-quiet behavior to the "quiet Sun". This review begins with a brief summary of current insights and then focuses on various quiet-Sun questions that seem pertinent and solvable.

  10. Towards Multifunctional Characteristics of Embedded Structures With Carbon Nanotube Yarns

    NASA Technical Reports Server (NTRS)

    Hernandez, Corey D.; Gates, Thomas S.; Kahng, Seun K.

    2006-01-01

    This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10-20 m. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.

  11. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  12. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  13. Climate Creators. Dynamic Characteristics of People Who Create Positive Organizational Climate.

    ERIC Educational Resources Information Center

    Bedley, Gene

    This book contains practical information on creating a positive work climate within an organization. Twenty separate characteristics of successful "climate creators" are discussed. Information is also included on: (1) climate; (2) climate creators; (3) dynamic characteristics of climate creators; (4) the challenge of creating a positive climate;…

  14. Dynamic characteristics of peripheral jet ACV. III - Coupling motion of heaving and pitching

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The paper presents the dynamic characteristics of peripheral jet ACV (Air Cushion Vehicle) which has two degrees of freedom, i.e., heaving and pitching motion. The experiments are carried out for an ACV model, noting that the experimental results agree considerably with the analytical values. Furthermore, the response characteristics of ACV induced by the ground board oscillations of various modes are also investigated.

  15. The effects of bolted joints on dynamic response of structures

    NASA Astrophysics Data System (ADS)

    Zaman, I.; Khalid, A.; Manshoor, B.; Araby, S.; Ghazali, M. I.

    2013-12-01

    Joint is an universal fastening technology for structural members; in particular bolted joints are extensively used in mechanical structures due to their simple maintenance and low cost. However, the components of bolted joints are imperative because failure could be catastrophic and endanger lives. Hence, in this study, the effects of bolted joints on vibrating structures are investigated by determining the structural dynamic properties, such as mode shapes, damping ratios and natural frequencies, and these are compared with the monolithic structures (welding). Two approaches of experimental rigs are developed: a beam and a frame where both are subjected to dynamic loading. The analysis reveals the importance of bolted joints in increasing the damping properties and minimizing the vibration magnitude of structures, this indicates the significant influence of bolted joints on the dynamic behaviour of assembled structures. The outcome of this study provides a good model for predicting the experimental variable response in different types of structural joints.

  16. Reconstruction of dynamic structural inputs in the presence of noise

    SciTech Connect

    Bateman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes a technique to reconstruct dynamic structural inputs by deconvolution of measured data. The structure to which this technique has been applied is a mild steel bar (3 in diameter and 60 in. long) with a conical nose which provides some geometric simulation of penetrating structures which are used in field test. The deconvolution technique successfully reconstructs dynamic inputs to the bar with and without additive white noise present in the measured response.

  17. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  18. Plant Coilin: Structural Characteristics and RNA-Binding Properties

    PubMed Central

    Protopopova, Anna; Yaminsky, Igor; Arutiunian, Alexander; Love, Andrew J.; Taliansky, Michael; Kalinina, Natalia

    2013-01-01

    Cajal bodies (CBs) are dynamic subnuclear compartments involved in the biogenesis of ribonucleoproteins. Coilin is a major structural scaffolding protein necessary for CB formation, composition and activity. The predicted secondary structure of Arabidopsis thaliana coilin (Atcoilin) suggests that the protein is composed of three main domains. Analysis of the physical properties of deletion mutants indicates that Atcoilin might consist of an N-terminal globular domain, a central highly disordered domain and a C-terminal domain containing a presumable Tudor-like structure adjacent to a disordered C terminus. Despite the low homology in amino acid sequences, a similar type of domain organization is likely shared by human and animal coilin proteins and coilin-like proteins of various plant species. Atcoilin is able to bind RNA effectively and in a non-specific manner. This activity is provided by three RNA-binding sites: two sets of basic amino acids in the N-terminal domain and one set in the central domain. Interaction with RNA induces the multimerization of the Atcoilin molecule, a consequence of the structural alterations in the N-terminal domain. The interaction with RNA and subsequent multimerization may facilitate coilin’s function as a scaffolding protein. A model of the N-terminal domain is also proposed. PMID:23320094

  19. Prediction and measurement of human pilot dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an 'acceleration symbol' is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  20. A Comparison of Seismicity Characteristics and Fault Structure Between Stick-Slip Experiments and Nature

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Sammis, C. G.; Becker, T. W.; Dresen, G.; Schorlemmer, D.

    2015-08-01

    Fault zones contain structural complexity on all scales. This complexity influences fault mechanics including the dynamics of large earthquakes as well as the spatial and temporal distribution of small seismic events. Incomplete earthquake records, unknown stresses, and unresolved fault structures within the crust complicate a quantitative assessment of the parameters that control factors affecting seismicity. To better understand the relationship between fault structure and seismicity, we examined dynamic faulting under controlled conditions in the laboratory by creating saw-cut-guided natural fractures in cylindrical granite samples. The resulting rough surfaces were triaxially loaded to produce a sequence of stick-slip events. During these experiments, we monitored stress, strain, and seismic activity. After the experiments, fault structures were imaged in thin sections and using computer tomography. The laboratory fault zones showed many structural characteristics observed in upper crustal faults, including zones of localized slip embedded in a layer of fault gouge. Laboratory faults also exhibited a several millimeter wide damage zone with decreasing micro-crack density at larger distances from the fault axis. In addition to the structural similarities, we also observed many similarities between our observed distribution of acoustic emissions (AEs) and natural seismicity. The AEs followed the Gutenberg-Richter and Omori-Utsu relationships commonly used to describe natural seismicity. Moreover, we observed a connection between along-strike fault heterogeneity and variations of the Gutenberg-Richter b value. As suggested by natural seismicity studies, areas of low b value marked the nucleation points of large slip events and were located at large asperities within the fault zone that were revealed by post-experimental tomography scans. Our results emphasize the importance of stick-slip experiments for the study of fault mechanics. The direct correlation of

  1. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  2. Dynamic characteristics analysis and vibration experiment of Upper-time of Flight Counter (U-ToFC)

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Zhang, Yidu; Song, Sunguang

    2012-09-01

    The dynamic characteristic parameters of Up-time of Flight Counter (U-ToFC) are important for research of structure optimization and reliability. However, the current simulation is performed based on homogenous material and simplified constraint model, the correct and reliability of results are difficult to be guaranteed. The finite element method based on identification of material parameters is proposed for this investigation on dynamic analysis, simulation and vibration experiment of the U-ToFC. The structure of the U-ToFC is complicated. Its' outside is made of aluminum alloy and inside contains electronic components such as capacitors, resistors, inductors, and integrated circuits. The accurate material parameters of model are identified difficultly. Hence, the parameters identification tests are performed to obtain the material parameters of this structure. On the basis of the above parameters, the experiment and FEA are conducted to the U-ToFC. In terms of the flight acceptance test level, and two kinds of joints condition between the U-ToFC and fixture are considered. The natural frequencies, vibration shapes and the response of the power spectral density of the U-ToFC are obtained. The results show simulation which is based on parameters identification is similar with vibration experiment in natural frequencies and responses. The errors are less than 10%. The vibration modes of simulation and experiment are consistent. The paper provides a more reliable computing method for the dynamic characteristic analysis of large complicated structure.

  3. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    SciTech Connect

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  4. Dynamic characteristics of vibration isolation platforms considering the joints of the struts

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao

    2016-09-01

    This paper discusses the dynamic characteristics of the impacts and corresponding frictions generated by the clearances of joints of vibration isolation platforms for control moment gyroscopes (CMGs) on spacecraft. A contact force model is applied using a nonlinear contact force model, and the frictions in the joints are considered in the dynamic analysis. First, the dynamic characteristics of a single isolation strut with spherical joints were studied, and joints with different initial clearance sizes were separately analyzed. Then, dynamic models of the vibration isolation platform for a CMG cluster with both perfect joints and joints with clearances were established. During the numeral simulation, joints with different elastic moduli were used to study the nonlinear characteristics. Finally, the distributions of the collision points, which can serve as a reference for the reliability and lifetime of a platform, were given.

  5. Dynamic characteristics of peripheral jet ACV. I - Heaving motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The theory of the dynamics of peripheral jet ACV is presented. The flow patterns under the bottom of the ACV are classified into two types, i.e. underfed and overfed regimes. The mathematical models associated with such regimes are presented and the equations of those models are derived. The forced heaving oscillation of a two-dimensional ACV model is investigated experimentally and variations of cushion pressure and lift force are measured and compared with the results obtained by the numerical calculation. The coincidence of these two results seems to be reasonable. The heaving motion of ACV which is induced by the simple harmonic oscillation of the ground board is also analyzed numerically.

  6. Subsonic and Transonic Dynamic Stability Characteristics of the X-33

    NASA Technical Reports Server (NTRS)

    Tomek, D.; Boyden, R.

    2000-01-01

    Dynamic stability testing was conducted on a 2.5% scale model of the X-33 technology demonstrator sub-orbital flight-test vehicle. This testing was conducted at the NASA Langley Research Center (LaRC) l6-Foot Transonic Wind Tunnel with the LaRC High-speed Dynamic Stability system. Forced oscillation data were acquired for various configurations over a Mach number range of 0.3 to 1.15 measuring pitch, roll and yaw damping, as well as the normal force due to pitch rate and the cross derivatives. The test angle of attack range was from -2 to 24 degrees, except for those cases where load constraints limited the higher angles of attack at the higher Mach numbers. A variety of model configurations with and without control surfaces were employed, including a body alone configuration. Stable pitch damping is exhibited for the baseline configuration throughout the angle of attack range for Mach numbers 0.3, 0.8, and 1.15. Stable pitch damping is present for Mach numbers 0.9 and 0.6 with the exception of angles 2 and 16 degrees, respectively. Constant and stable roll damping were present for the baseline configuration over the range of Mach numbers up to an angle of attack of 16 degrees. The yaw damping for the baseline is somewhat stable and constant for the angle of attack range from -2 to 8 degrees, with the exception of Mach numbers 0.6 and 0.8. Yaw damping becomes highly unstable for all Mach numbers at angles of attack greater than 8 degrees.

  7. Flow field characteristics study of a flapping airfoil using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Amiralaei, M. R.; Alighanbari, H.; Hashemi, S. M.

    2011-10-01

    The flow field of a flapping airfoil in Low Reynolds Number (LRN) flow regime is associated with complex nonlinear vortex shedding and viscous phenomena. The respective fluid dynamics of such a flow is investigated here through Computational Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes (N-S) equations. The airfoil is a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping pattern. The flow field and vortical patterns around the airfoil are examined in detail, and the effects of several unsteady flow and system parameters on the flow characteristics are explored. The investigated parameters are the amplitude of pitching oscillations, phase angle between pitching and plunging motions, mean angle of attack, Reynolds number (Re), Strouhal number (St) based on the translational amplitudes of oscillations, and the pitching axis location ( x / c ). It is shown that these parameters change the instantaneous force coefficients quantitatively and qualitatively. It is also observed that the strength, interaction, and convection of the vortical structures surrounding the airfoil are significantly affected by the variations of these parameters.

  8. The effect of nonsymmetric pressure stiffness on the dynamic characteristics of Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Christensen, Eric R.

    1993-01-01

    This paper discusses the effect of pressure on the dynamics of pre-stiffened structures such as the Advanced Solid Rocket Motor (ASRM). Previous work in which the stiffness terms resulting from constant pressure were derived has been extended to enable modeling of nonconstant pressure applied over nonenclosed volumes. These conditions will result in nonsymmetric terms in the global stiffness matrix which will not cancel out. Three new pressure stiffness elements incorporating these nonsymmetric terms have been implemented as dummy elements in COSMIC NASTRAN and have been tested on various simple examples as well as an existing ASRM NASTRAN finite element model. The results indicate that for all load cases of practical interest to the ASRM program, the nonsymmetric terms have very little effect on the dynamic characteristics. In addition, the pressure stiffness elements developed in the previous work which assumed constant pressure gave virtually the same results as the new elements even for problems in which the pressures are not constant. The original elements appear to work well as long as the pressure gradient across any individual element is no larger than about 0.75 psi/inch. The new elements are therefore most useful for determining the conditions under which the original pressure stiffness elements can be used.

  9. Structure and dynamics of pentacene on SiO2: From monolayer to bulk structure

    NASA Astrophysics Data System (ADS)

    Brillante, Aldo; Bilotti, Ivano; Della Valle, Raffaele Guido; Venuti, Elisabetta; Girlando, Alberto; Masino, Matteo; Liscio, Fabiola; Milita, Silvia; Albonetti, Cristiano; D'angelo, Pasquale; Shehu, Arian; Biscarini, Fabio

    2012-05-01

    We have used confocal micro Raman spectroscopy, atomic force microscopy (AFM), and x-ray diffraction (XRD) to investigate pentacene films obtained by vacuum deposition on SiO2 substrates. These methods allow us to follow the evolution of lattice structure, vibrational dynamics, and crystal morphology during the growth from monolayer, to TF, and, finally, to bulk crystal. The Raman measurements, supported by the AFM and XRD data, indicate that the film morphology depends on the deposition rate. High deposition rates yield two-dimensional nucleation and quasi-layer-by-layer growth of the T-F form only. Low rates yield three-dimensional nucleation and growth, with phase mixing occurring in sufficiently thick films, where the T-F form is accompanied by the “high-temperature” bulk phase. Our general findings are consistent with those of previous work. However, the Raman measurements, supported by lattice dynamics calculations, provide additional insight into the nature of the TFs, showing that their characteristic spectra originate from a loss of dynamical correlation between adjacent layers.

  10. Ion-ion dynamic structure factor of warm dense mixtures.

    PubMed

    Gill, N M; Heinonen, R A; Starrett, C E; Saumon, D

    2015-06-01

    The ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture-equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement. PMID:26172810

  11. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  12. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGESBeta

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  13. Riboswitch Structure and Dynamics by smFRET Microscopy

    PubMed Central

    Suddala, Krishna C.; Walter, Nils G.

    2016-01-01

    Riboswitches are structured non-coding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy for smFRET studies of the structure, dynamics and ligand binding mechanisms of riboswitches. PMID:25432756

  14. Structures and Dynamics Division: Research and technology plans for FY 1983 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1983-01-01

    The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.

  15. Segmenting Dynamic Human Action via Statistical Structure

    ERIC Educational Resources Information Center

    Baldwin, Dare; Andersson, Annika; Saffran, Jenny; Meyer, Meredith

    2008-01-01

    Human social, cognitive, and linguistic functioning depends on skills for rapidly processing action. Identifying distinct acts within the dynamic motion flow is one basic component of action processing; for example, skill at segmenting action is foundational to action categorization, verb learning, and comprehension of novel action sequences. Yet…

  16. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  17. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    NASA Astrophysics Data System (ADS)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  18. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  19. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  20. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  1. Spontaneous functional network dynamics and associated structural substrates in the human brain

    PubMed Central

    Liao, Xuhong; Yuan, Lin; Zhao, Tengda; Dai, Zhengjia; Shu, Ni; Xia, Mingrui; Yang, Yihong; Evans, Alan; He, Yong

    2015-01-01

    Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI) include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC) patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex) emerging as functionally persistent hubs (i.e., highly connected regions) while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability) of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient, and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans. PMID:26388757

  2. Dynamic characteristics of a space-station solar wing array

    SciTech Connect

    Dorsey, J.T.; Bush, H.G.

    1984-06-01

    Describes a solar-wing-array concept which meets space-station requirements for minimum fundamental frequency, component modularity, and growth potential. The basic wing-array design parameters are varied, and the resulting effects on the array vibration frequencies and mode shapes are assessed. The transient response of a free-free space station (incorporating a solar-wing-array point design) to a load applied at the space-station center is studied. The use of the transient response studies in identifying critically loaded structural members is briefly discussed.

  3. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    NASA Astrophysics Data System (ADS)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  4. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  5. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors.

    PubMed

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Zhou, Jinsong; Luo, Zhongyang; Cen, Kefa

    2016-10-01

    The effects of torrefaction on hemicellulose characteristics and its pyrolysis behaviors were studied in detail. The oxygen content decreased significantly after torrefaction, leading to the increase of high heating value. Two-dimensional perturbation correlation analysis based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed to characterize the structural evolutions. It was found the dehydration of hydroxyls and the dissociation of branches were the main reactions at low torrefaction temperature. When the temperature further increased, the depolymerization of hemicellulose and the fragmentation of monosaccharide residues occurred. The distributed activation energy model with double Gaussian functions based on reaction-order model was used to investigate the pyrolysis kinetics. The results showed that torrefaction enhanced the activation energy for degradation reactions while lowered that for condensation reactions, and increased the devolatilization contribution of condensation reactions. Besides, torrefaction decreased the yields of typical pyrolytic products, such as acids, furans, alicyclic ketones and so on. PMID:27469091

  6. Impact of structural characteristics on starch digestibility of cooked rice.

    PubMed

    Tamura, Masatsugu; Singh, Jaspreet; Kaur, Lovedeep; Ogawa, Yukiharu

    2016-01-15

    To examine the impact of structural characteristics of cooked rice grains on their starch digestibility, a simulated in vitro gastro-small intestinal digestion technique was applied to intact and homogenised cooked rice samples. The starch hydrolysis percentage increased during simulated small intestinal digestion, in which approximately 65% and 24% of the starch was hydrolysed within the first 5min, for homogenised and intact cooked rice, respectively. The kinetic constant of homogenised cooked rice, which was regarded as an estimated digestion rate, was ∼8 times higher than the intact cooked rice. The homogenised and intact samples were also examined for any microstructural changes occurring during the in vitro digestion process using fluorescent and scanning electron microscopy. In the intact samples, the aleurone layers of the endosperm remained as thin-film like layers during in vitro digestion and thus may be regarded as less digestible materials that influence cooked rice digestibility. PMID:26258706

  7. Climatology of Gravity Wave Characteristics and Middle Atmosphere Thermal Structure Characteristics over Reunion Islands, France

    NASA Astrophysics Data System (ADS)

    Prasanth, Vishnu

    2016-07-01

    In this paper, climatological characteristics of the gravity wave activities and thermal structure activities are studied using temperature profiles obtained from Rayleigh lidar located at Reunion Island (20.8°S, 55.5°E) over a period of ~14 years (1994-2007). The study has been performed over the height range from 30 to 65 km. The overall monthly mean temperature shows a maximum of 265-270K at the stratopause height region from ˜44-52km and peaks during the months of March and November. While there is no clear signature of seasonal oscillation in the stratopause height, the stratopause temperature shows distinct maxima during the periods March-April and October-November. The GW characteristics in terms of time (frequency), height (wave number) and GW associated Potential Energy and their seasonal dependences are presented. Generally, the temporal evolution of temperature profile illustrates the downward phase propagation indicating that the energy is propagating upward. The wave activity is clearly visible with the wave periods ranging from 260 min to 32 min. The dominant components have vertical wavelengths in the range of about ~4 km to 35 km. It is found that the seasonal variation of potential energy is maximum during summer in the upper stratosphere and lower mesosphere. A semiannual variation is seen in the gravity wave activity over all height ranges in the months of February and August.

  8. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.

    PubMed

    Sedeh, Reza Sharifi; Pan, Keyao; Adendorff, Matthew Ralph; Hallatschek, Oskar; Bathe, Klaus-Jürgen; Bathe, Mark

    2016-01-12

    Synthetic nucleic acids can be programmed to form precise three-dimensional structures on the nanometer-scale. These thermodynamically stable complexes can serve as structural scaffolds to spatially organize functional molecules including multiple enzymes, chromophores, and force-sensing elements with internal dynamics that include substrate reaction-diffusion, excitonic energy transfer, and force-displacement response that often depend critically on both the local and global conformational dynamics of the nucleic acid assembly. However, high molecular weight assemblies exhibit long time-scale and large length-scale motions that cannot easily be sampled using all-atom computational procedures such as molecular dynamics. As an alternative, here we present a computational framework to compute the overdamped conformational dynamics of structured nucleic acid assemblies and apply it to a DNA-based tweezer, a nine-layer DNA origami ring, and a pointer-shaped DNA origami object, which consist of 204, 3,600, and over 7,000 basepairs, respectively. The framework employs a mechanical finite element model for the DNA nanostructure combined with an implicit solvent model to either simulate the Brownian dynamics of the assembly or alternatively compute its Brownian modes. Computational results are compared with an all-atom molecular dynamics simulation of the DNA-based tweezer. Several hundred microseconds of Brownian dynamics are simulated for the nine-layer ring origami object to reveal its long time-scale conformational dynamics, and the first ten Brownian modes of the pointer-shaped structure are predicted. PMID:26636351

  9. Nonlinear dynamics and collective excitations in layered superconducting structures

    NASA Astrophysics Data System (ADS)

    Zel'Tser, A. S.; Kivshar', Iu. S.; Soboleva, T. K.

    1991-06-01

    Nonlinear excitations in layered superconducting structures representing a system of interacting extended Josephson junctions are investigated theoretically. The possibility of the propagation of dynamic supersolitons, localized vortex lattice density excitations, in such a system is demonstrated. Particular attention is given to soliton excitations of two types: kinks and envelope solitons. The relaxation of dynamic kinks is investigated numerically.

  10. Dynamic Structure of Emotions Among Individuals with Parkinson's Disease

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Nesselroade, John R.; Shifren, Kim; McArdle, John J.

    2004-01-01

    With few exceptions, the dynamics underlying the mood structures of individuals with Parkinson's Disease have consistently been overlooked. Based on 12 participants' daily self-reports over 72 days, we identified 10 participants whose covariance matrices for positive and negative affect were similar enough to warrant pooling. Dynamic factor models…

  11. Quantifying and modeling soil structure dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...

  12. Phosphorus sorbing materials: sorption dynamics and physicochemical characteristics.

    PubMed

    Leader, J W; Dunne, E J; Reddy, K R

    2008-01-01

    The effectiveness of various management practices to reduce phosphorus (P) loss from soil to water can potentially be improved by using by-product materials that have the capacity to sorb phosphorus. This study evaluated the P sorption and desorption potential, and the physicochemical characteristics of various phosphorus sorbing materials. Twelve materials were selected and P sorption potentials ranged between 66 and 990 mg kg(-1). Iron, and calcium drinking water treatment residuals (DWTRs), a magnesium fertilizer by-product, aluminum, and humate materials all removed substantial amounts of P from solution and desorbed little. Humate had the highest maximum P sorption capacity (S(max)). Materials which had a low equilibrium P concentration (EPC(0)) and a high S(max) included aluminum and humate by-products. In a kinetic study, the Fe-DWTR, Ca-DWTR, aluminum, and magnesium by-product materials all removed P (to relatively low levels) from solution within 4 h. Phosphorus fractionation suggests that most materials contained little or no P that was readily available to water. Sand materials contained the greatest P fraction associated with fulvic and humic acids. In general, materials (not Ca-DWTR) and magnesium by-product were composed of sand-sized particles. There were no relationships between particle size distributions and P sorption in materials other than sands. The Ca- and Fe-DWTR, and magnesium by-product also contained plant nutrients and thus, may be desirable as soil amendments after being used to sorb P. Further, using Ca-DWTRs and Fe-DWTRs as soil amendments may also increase soil cation exchange and water holding capacity. PMID:18178890

  13. Elucidation of kinematical and dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Ueda, H.; Koyama, H.; Kan-ya, Y.; Taruya, A.

    2008-07-01

    Future space mission of astrometric satellite, GAIA and JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration), will produce astrometric parameter, such as positions, parallaxes, and proper motions of stars in the Galactic bulge. Then kinematical information will be obtained in the future. Accordingly it is expected that our understanding of the dynamical structure will be greatly improved. Therefore it is important to make a method to construct a kinematical and dynamical structure of the Galactic bulge immediately.

  14. Solvation Structure and Dynamics of Ni(2+)(aq) from First Principles.

    PubMed

    Mareš, Jiří; Liimatainen, Helmi; Laasonen, Kari; Vaara, Juha

    2011-09-13

    The aqueous solution of Ni(2+) was investigated using first principles molecular dynamics (FPMD) simulation based on periodic density-functional theory (DFT) calculations. The experimental structural parameters of the Ni(aq) complex are reproduced well by the simulation. An exchange event of the water molecule in the first solvation shell is observed, supporting the proposed dissociative mechanism of exchange. The calculated dynamic characteristics of the surrounding water molecules indicate too slow translational diffusion in comparison to experimental results, in agreement with other FPMD studies employing a similar level of theory. We also find that the reorientational dynamics of water are an order of magnitude slower as compared to experimental data. On the other hand, the angular momentum dynamics are in better agreement with the experimental data than the previously reported results from MD simulations employing empirical force fields. The obtained MD trajectory can supply accurate structures for the calculation of magnetic properties. PMID:26605483

  15. Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid-structure interaction.

    PubMed

    Salimi, S; Park, S Simon; Freiheit, T

    2011-09-01

    The vibration characteristics of shell structures such as eyes have been shown to vary with intraocular pressure (IOP). Therefore, vibration characteristics of the eye have the potential to provide improved correlation to IOP over traditional IOP measurements. As background to examine an improved IOP correlation, this paper develops a finite element model of an eye subject to vibration. The eye is modeled as a shell structure filled with inviscid pressurized fluid in which there is no mean flow. This model solves a problem of a fluid with coupled structural interactions of a generally spherically shaped shell system. The model is verified by comparing its vibrational characteristics with an experimental modal analysis of an elastic spherical shell filled with water. The structural dynamic effects due to change in pressure of the fluid are examined. It is shown that the frequency response of this fluid-solid coupled system has a clear increase in natural frequency as the fluid pressure rises. The fluid and structure interaction is important for accurate prediction of system dynamics. This model is then extended to improve its accuracy in modeling the eye by including the effect of the lens to study corneal vibration. The effect of biomechanical parameters such as the thicknesses of different parts of the eye and eye dimensions in altering measured natural frequencies is investigated and compared to the influence of biomechanical parameters in Goldmann applanation tonometry models. The dynamic response of the eye is found to be less sensitive to biomechanical parameters than the applanation tonometry model. PMID:22010744

  16. Past and future trends in structures and dynamics

    SciTech Connect

    Bader, R.M.; Goesch, W.H.; Olsen, J.J.

    1981-01-01

    An historical review and a series of prognostications based on current developments are presented for the fields of structural design and structural dynamics analysis. It is shown that while weight and cost reduction and improved durability have been the primary forces in structural technology development in the past, emphasis has shifted to such things as productivity, quality assurance, low observables for military aircraft and increased fuel efficiency. Prominent among recent advances in future developments are damage tolerance durability, computer-aided design, active flutter suppression, adhesive bonding of primary structures, cast aluminum structures, titanium and graphite-epoxy primary aircraft structures, aeroelastic tailoring composites, metal matrix composites, and radar-absorbing structures.

  17. Structural dynamics of an actin spring.

    PubMed

    Mahadevan, L; Riera, C S; Shin, Jennifer H

    2011-02-16

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca(2+). This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  18. Research on the structural dynamics verification of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Hanks, Brantley R.

    1993-01-01

    Langley spacecraft structural dynamics research based on a broad range of experimental and analytical studies, which contributed to the technology base for designing and building advanced spacecraft structures, is reviewed. It is concluded that considerable progress has been made toward developing the scale model technology for validating mathematical models used to predict the on-orbit dynamic behavior of spacecraft structures. Advanced suspension systems for testing models of spacecraft as well as feasibility of using modal data to detect damage in truss-type structures were demonstrated.

  19. Controlling flexible structures with second order actuator dynamics

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John

    1989-01-01

    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.

  20. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  1. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  2. A Structural Characterization of Temporal Dynamic Controllability

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2006-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.

  3. Automated output-only dynamic identification of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.

    2010-04-01

    Modal-based damage detection algorithms are well-known techniques for structural health assessment, but they are not commonly used due to the lack of automated modal identification and tracking procedures. Development of such procedures is not a trivial task since traditional modal identification requires extensive interaction from an expert user. Nevertheless, computational efforts have to be carefully considered. If fast on-line data processing is crucial for quickly varying in time systems (such as a rocket burning fuel), a number of vibration-based condition monitoring applications are performed at very different time scales, resulting in satisfactory time steps for on-line data analysis. Moreover, promising results in the field of automated modal identification have been recently achieved. In the present paper, a literature review on this topic is presented and recent developments concerning fully automated output-only modal identification procedures are described. Some case studies are also reported in order to validate the approach. They are characterized by different levels of complexity, in terms of mode coupling, dynamic interaction effects and level of vibration. Advantages and drawbacks of the proposed approach will be pointed out with reference to available experimental results. The final objective is the implementation of a fully automated system for vibration-based structural health monitoring of civil engineering structures and identification of adequate requirements about sensor number and layout, record duration and hardware characteristics able to ensure a reliable low-cost health assessment of constructions. Results of application of the proposed methodology to modal parameter estimation in operational conditions and during ground motions induced by the recent L'Aquila earthquake will be finally presented and discussed.

  4. Dynamic Spectral Structure Specifies Vowels for Adults and Children

    PubMed Central

    Nittrouer, Susan; Lowenstein, Joanna H.

    2014-01-01

    The dynamic specification account of vowel recognition suggests that formant movement between vowel targets and consonant margins is used by listeners to recognize vowels. This study tested that account by measuring contributions to vowel recognition of dynamic (i.e., time-varying) spectral structure and coarticulatory effects on stationary structure. Adults and children (four-and seven-year-olds) were tested with three kinds of consonant-vowel-consonant syllables: (1) unprocessed; (2) sine waves that preserved both stationary coarticulated and dynamic spectral structure; and (3) vocoded signals that primarily preserved that stationary, but not dynamic structure. Sections of two lengths were removed from syllable middles: (1) half the vocalic portion; and (2) all but the first and last three pitch periods. Adults performed accurately with unprocessed and sine-wave signals, as long as half the syllable remained; their recognition was poorer for vocoded signals, but above chance. Seven-year-olds performed more poorly than adults with both sorts of processed signals, but disproportionately worse with vocoded than sine-wave signals. Most four-year-olds were unable to recognize vowels at all with vocoded signals. Conclusions were that both dynamic and stationary coarticulated structures support vowel recognition for adults, but children attend to dynamic spectral structure more strongly because early phonological organization favors whole words. PMID:25536845

  5. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion

    PubMed Central

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D.; Nolte, Tobias; Walter, Martin

    2016-01-01

    our observation of direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings. PMID:27014016

  6. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  7. Characteristic Lifelength of Coherent Structure in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    2006-01-01

    A characteristic lifelength is defined by which a Gaussian distribution is fit to data correlated over a 3 sensor array sampling streamwise sidewall pressure. The data were acquired at subsonic, transonic and supersonic speeds aboard a Tu-144. Lifelengths are estimated using the cross spectrum and are shown to compare favorably with Efimtsov's prediction of correlation space scales. Lifelength distributions are computed in the time/frequency domain using an interval correlation technique on the continuous wavelet transform of the original time data. The median values of the lifelength distributions are found to be very close to the frequency averaged result. The interval correlation technique is shown to allow the retrieval and inspection of the original time data of each event in the lifelength distribution, thus providing a means to locate and study the nature of the coherent structure in the turbulent boundary layer. The lifelength data can be converted to lifetimes using the convection velocity. The lifetime of events in the time/frequency domain are displayed in Lifetime Maps. The primary purpose of the paper is to validate these new analysis techniques so that they can be used with confidence to further characterize coherent structure in the turbulent boundary layer.

  8. Stability characteristics and flame structure of low swirl burner

    SciTech Connect

    Mansour, Mohy; Chen, Yung-Cheng

    2008-07-15

    Low swirl burner provides stable lifted flames for fundamental studies of flame structure and turbulence/chemistry interaction in well defined boundary conditions. In the present study the stability characteristics of the burner have been investigated with four tangential jets at the same stoichiometry as the main jet. Two different burner nozzles with 40 mm and 53.5 mm diameters have been used for the stability measurements. In addition, a combined two-dimensional Rayleigh/LIPF-OH technique has been applied for simultaneous measurements of temperature and OH-radical for reaction zone and flame front investigation. Three flames have been selected near extinction for detailed measurements. The data show that the relation between of the main jet velocity, U, and the velocity of the four tangential jets, u, is linear. For the present data set with the nozzles investigated the linear trend can lead to an almost constant ratio of UD/u as 5.08 mm with D as the nozzle diameter of the burner. The flame structure varies from corrugated to highly wrinkle according to the turbulence level. (author)

  9. Combustion fume structure and dynamics. Final report

    SciTech Connect

    Flagan, R.C.

    1995-06-29

    An investigation of the fundamental physical processes that govern the structures of fume particles that are produced from the vapor phase in a wide range of high temperature systems has been conducted. The key objective of this study has been to develop models of the evolution of fine particles of refractory materials that are produced from the vapor phase, with particular emphasis on those processes that govern the evolution of ash fumes produced from volatilized mineral matter during coal combustion. To accomplish this goal, the study has included investigations of a number of fundamental aspects of pyrogenous fumes: Structural characterization of agglomerate particles in terms of fractal structure parameters; the relationship between the structures of agglomerate particles and the aerodynamic drag forces they experience; coagulation kinetics of fractal-like particles; sintering of aerosol agglomerates past the early stage of neck formation and incorporating the simultaneous influences of several transport mechanisms.

  10. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    PubMed

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory. PMID:26998957

  11. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  12. Control/structure interactions of Freedom's solar dynamic modules

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Yunis, I.

    1990-01-01

    The purpose of this paper is to address potential control/structures interaction (CSI) problems of large flexible multibody structures in the presence of pointing and tracking requirements. A control approach is introduced for the simultaneous tracking and vibration control of multibody space structures. The application that is discussed is Space Station Freedom configured with solar dynamic (SD) modules. The SD fine-pointing and tracking requirements may necessitate controller frequencies above the structural natural frequencies of Freedom and the SD modules. It is well known that this can give rise to CSI problems if the controller is designed without due consideration given to the structural dynamics of the system. In this paper, possible CSI problems of Freedom's solar dynamic power systems are demonstrated using a simple lumped mass model. A NASTRAN model of Freedom developed at NASA Lewis is used to demonstrate potential CSI problems and the proposed tracking and vibration control approach.

  13. The structural and dynamical variables of pentane isomers

    NASA Astrophysics Data System (ADS)

    Patel, Tarika K.; Vaghela, M. V.; Gajjar, P. N.

    2016-05-01

    We derived structural and dynamical properties of pentane isomers: normal pentane, iso-pentane and neo pentane for liquid and gaseous state. We use molecular dynamics simulation to calculate the dynamical properties of pentane isomers for number of particles 729 using the intermolecular potential and force due to Lenard Jones potential. The computations also include mean square displacement and self diffusion co-efficient using Einstein relation. In structural properties, structure factor and phonon frequency are obtaining from P Y Method and Hubbard and Beeby Approach respectively. The Intermolecular potential and self diffusion co-efficient depend on the branching in the structure. The pair correlation function and phonon dispersion curves revels the complex structure of neo-pentane with respect to iso-pentane and n-pentane.

  14. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  15. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Froyland, Gary

    2015-10-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.

  16. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  17. A preliminary look at control augmented dynamic response of structures

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Jewell, R. E.

    1983-01-01

    The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.

  18. The dynamics and control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; Krishna, R.; Reddy, A. S. S. R.; Diarra, C. M.

    1983-01-01

    Large, flexible orbiting systems proposed for possible use in communications, electronic orbital based mail systems, and solar energy collection are discussed. The size and low weight to area ratio of such systems indicate that system flexibility is now the main consideration in the dynamics and control problem. For such large, flexible systems, both orientation and surface shape control will often be required. A conceptual development plan of a system software capability for use in analysis of the dynamics and control of large space structures technology (LSST) systems is discussed. This concept can be subdivided into four different stages: (1) system dynamics; (2) structural dynamics; (3) application of control algorithms; and (4) simulation of environmental disturbances. Modeling the system dynamics of such systems in orbit is the most fundamental component. Solar radiation pressure effects and orbital and gravity gradient effects are discussed.

  19. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  20. Cardiolipin effects on membrane structure and dynamics.

    PubMed

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization. PMID:23962277

  1. MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; Livi, S. A.; McNutt, R. L., Jr.; Raines, J. M.; Sarantos, M.; Schriver, D.; Solomon, S. C.; Travnicek, P.

    2008-01-01

    MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.

  2. Proceedings of Workshop XVI; The dynamic characteristics of faulting inferred from recordings of strong ground motion

    USGS Publications Warehouse

    1982-01-01

    The strong ground motions radiated by earthquake faulting are controlled by the dynamic characteristics of the faulting process. Although this assertion seems self-evident, seismologists have only recently begun to derive and test quantitative relations between common measures of strong ground motion and the dynamic characteristics of faulting. Interest in this problem has increased dramatically in past several years, however, resulting in a number of important advances. The research presented in this workshop is a significant part of this scientific development. Watching this development occur through the work of many scientists is exciting; to be able to gather a number of these scientists together in one workshop is a remarkable opportunity.

  3. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  4. Structural dynamic and control considerations for Space Station transportation node concepts

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Ayers, J. Kirk

    1990-01-01

    This paper discusses the results of two studies which investigated the expected low frequency dynamic characteristics of conceptual Mars and lunar transportation nodes. Both concepts are based on evolution of the assembly-complete Space Station Freedom configuration by the addition of keels, booms, and modules. Finite-element models of the concepts were developed and a set of undamped modes and frequencies was computed below 2 Hz for each concept. The modes were used as basis vectors for modal analyses describing the dynamic response of the structures to typical reboost maneuvers. The reboost maneuvers had fairly complex loading characteristics since the reaction control system (RCS) jets used for the maneuvers were off-modulated to control pitch and yaw attitude. Interaction of the dynamic response of the structure with the closed-loop attitude control system is investigated for both concepts. The elastic response in the solar dynamic region is investigated to evaluate the severity of the dynamic environment, since the solar dynamic systems have stringent sunpointing requirements which must be maintained during the reboost maneuver.

  5. Chaos, dynamical structure and climate variability

    SciTech Connect

    Stewart, H.B.

    1995-09-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.

  6. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    NASA Technical Reports Server (NTRS)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  7. Task Characteristics, Structural Characteristics, Organizational Relationships, and Communication Processes: A Contingency Approach to Job Performance. Phase III.

    ERIC Educational Resources Information Center

    Petelle, John L.; Garthright-Petelle, Kathleen

    A study examined the relationships between (1) employee job performance and organizational relationships, (2) employee job performance and communication processes, (3) organizational relationships and communication processes, and (4) task characteristics and structural characteristics. Data were gathered from approximately 200 employees of a state…

  8. Hadron structure with light dynamical quarks

    SciTech Connect

    Robert Edwards; David Richards

    2005-07-25

    Generalized parton distributions encompass a wealth of information concerning the three dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV.

  9. Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method

    NASA Astrophysics Data System (ADS)

    Beklemysheva, K. A.; Vasyukov, A. V.; Petrov, I. B.

    2015-08-01

    Results of the numerical simulation of mechanical processes occurring in biological tissues under dynamic actions are presented. The grid-characteristic method on unstructured grids is used to solve the system of equations of mechanics of deformable solids; this method takes into account the characteristic properties of the constitutive system of partial differential equations and produces adequate algorithms on interfaces between media and on the boundaries of integration domains.

  10. Identification of structural systems with full characteristic matrices under single point excitation

    NASA Astrophysics Data System (ADS)

    Ghafory-Ashtiany, Mohsen; Adhami, Behnam; Khanlari, Karen

    2014-12-01

    The aim of "System Identification" is to determine modal and system properties of structural systems. This is while in "Damage Detection", the identification of system characteristic matrices is as important as or even more important than the identification of frequency characteristics. Because of various constraints - i.e. difficulties in force excitation of structures due to their large size, geometry, and location - in practice only single excitation and partial measurement, at selected degrees of freedom, is possible. In this paper, a single dynamic load was applied to identify a structural system only along one of the degrees of freedom of the structure. Further, responses corresponding to a few degrees of freedom were also measured. To identify a system with this sort of restricted information, a new approach was introduced enabling identification of the structure's parameters of mass, damping and stiffness. Taking into account the significant effect of noise reduction in improving system identification accuracy levels, a noise reduction technique was also proposed. The accuracy of the method was also assessed against noise level and location of single excitation. It was shown that as noise level increases, identification errors will also increase (less than 3.5 percent). It was further observed that applying single force at the first storey of the flexural structure would yield the lowest error levels in the identification results. Later, the method's efficiency and precision were examined through the application of a "closed loop solution" to a six-storey flexural structure, and a four-span Pratt truss. The obtained results showed that the proposed method could act as an effective model in identification of system properties.

  11. Study on the dynamic characteristics of flow over building cluster at high Reynolds number by large eddy simulation

    NASA Astrophysics Data System (ADS)

    Wang, BoBin; Wang, ZhiShi; Cui, GuiXiang; Zhang, ZhaoShun

    2014-06-01

    In this paper, the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters. To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary. The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics. The domain height must be greater than 8 h ( h is the average building height) in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height. The Reynolds number effects on the dynamic characteristics and flow patterns are investigated. The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster. Roughness height increases monotonously with Reynolds number by 20% from Re*=103 to Re*=105 but displacement height is almost unchanged. Within the canopy layer of heterogeneous building clusters, flow structures vary between buildings and turbulence is more active at high Reynolds number.

  12. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. PMID:26231415

  13. SPAR improved structure-fluid dynamic analysis capability, phase 2

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1984-01-01

    An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.

  14. Introducing Students to Structural Dynamics and Earthquake Engineering

    ERIC Educational Resources Information Center

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  15. Structural Dynamics of Filament-Wound Booster Rockets

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1987-01-01

    Report summarizes program of measurements and calculations of vibrations in filament-wound composite models of Space Shuttle solid-rocket boosters. Vibrational behavior predicted by finite-element computer model of structural dynamics correlates well with data from tests on full- and quarter-scale models. Computer model developed with NASTRAN general-purpose structural-analysis computer code.

  16. A Dynamic Photovoltaic Model Incorporating Capacitive and Reverse-Bias Characteristics

    SciTech Connect

    Kim, KA; Xu, CY; Jin, L; Krein, PT

    2013-10-01

    Photovoltaics (PVs) are typically modeled only for their forward-biased dc characteristics, as in the commonly used single-diode model. While this approach accurately models the I-V curve under steady forward bias, it lacks dynamic and reverse-bias characteristics. The dynamic characteristics, primarily parallel capacitance and series inductance, affect operation when a PV cell or string interacts with switching converters or experiences sudden transients. Reverse-bias characteristics are often ignored because PV devices are not intended to operate in the reverse-biased region. However, when partial shading occurs on a string of PVs, the shaded cell can become reverse biased and develop into a hot spot that permanently degrades the cell. To fully examine PV behavior under hot spots and various other faults, reverse-bias characteristics must also be modeled. This study develops a comprehensive mathematical PV model based on circuit components that accounts for forward bias, reverse bias, and dynamic characteristics. Using a series of three experimental tests on an unilluminated PV cell, all required model parameters are determined. The model is implemented in MATLAB Simulink and accurately models the measured data.

  17. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co

  18. Dynamical and orientational structural crossovers in low-temperature glycerol

    NASA Astrophysics Data System (ADS)

    Seyedi, Salman; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.

  19. Dynamical and orientational structural crossovers in low-temperature glycerol.

    PubMed

    Seyedi, Salman; Martin, Daniel R; Matyushov, Dmitry V

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations. PMID:27575188

  20. A dynamical structure of high frequency currency exchange market

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Ohira, Toru; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar currency exchange rates. We show that a dynamical structure can be observed in binarized data indicating the direction of up and down movement of prices, which is not apparently seen from the price change itself. This result is consistent with our previous study that there exists a conditional probabilistic structure in binarized data. The dynamical and probabilistic structure which we found could indicate that dealers’ decision making is based on a binary strategy, even if they are unconscious of this fact.

  1. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  2. Experimental analysis of dynamic characteristics for vibration-impact process of steam turbine blades with integral shroud

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Lu-ping; Lu, Xu-xiang; Rao, Hong-de; Liu, Yu-jing

    2008-11-01

    Integral shroud is an advanced technique used to improve reliability of steam turbine blades. In this paper, dynamic characteristics of vibration-impact process of steam turbine blades with integral shroud are studied. To test and verify the reliability of calculation result, a series of experiments are well performed on the platform of contracting and impacting of blades tips. The dynamic strain data under different gaps, different loads and different rotating speeds are surveyed through which the log decrement at each condition is obtained, and the effects of vibration damping are obtained by comparing the log decrement. The results of experimental study show that larger log decrement means larger system damping and better effectives of vibration reduction. Besides, the effects of vibro-impact reduction of different parameters are got and the experimental study results show that the vibro-impact structure is a good vibration damper. The dynamic stress of the blade with integral shroud is insensitive to loads when the gap between adjacent integral shrouds is small. In short, the achievements gained in the paper have revealed dynamic characteristics for vibro-impact process of steam turbine blades with integral shroud, which will bring important engineering application to development and modification design of the integrally shrouded blades.

  3. Communication: Role of short chain branching in polymer structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Jun Mo; Baig, Chunggi

    2016-02-01

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions.

  4. Communication: Role of short chain branching in polymer structure and dynamics.

    PubMed

    Kim, Jun Mo; Baig, Chunggi

    2016-02-28

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions. PMID:26931673

  5. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  6. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.

    PubMed

    Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko

    2016-01-01

    The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900

  7. Structural Brain Network Characteristics Can Differentiate CIS from Early RRMS

    PubMed Central

    Muthuraman, Muthuraman; Fleischer, Vinzenz; Kolber, Pierre; Luessi, Felix; Zipp, Frauke; Groppa, Sergiu

    2016-01-01

    Focal demyelinated lesions, diffuse white matter (WM) damage, and gray matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, 33 with RRMS, and 40 healthy subjects were investigated using 3 T-MRI. Diffusion tensor imaging was applied, together with probabilistic tractography and fractional anisotropy (FA) maps for WM and cortical thickness correlation analysis for GM, to determine the structural connectivity patterns. A network topology analysis with the aid of graph theoretical approaches was used to characterize the network at different community levels (modularity, clustering coefficient, global, and local efficiencies). Finally, we applied support vector machines (SVM) to automatically discriminate the two groups. In comparison to CIS subjects, patients with RRMS were found to have increased modular connectivity and higher local clustering, highlighting increased local processing in both GM and WM. Both groups presented increased modularity and clustering coefficients in comparison to healthy controls. SVM algorithms achieved 97% accuracy using the clustering coefficient as classifier derived from GM and 65% using WM from probabilistic tractography and 67% from modularity of FA maps to differentiate between CIS and RRMS patients. We demonstrate a clear increase of modular and local connectivity in patients with early RRMS in comparison to CIS and healthy subjects. Based only on a single anatomic scan and without a priori information, we developed an automated and investigator-independent paradigm that can accurately discriminate between patients with these clinically similar disease entities, and could thus complement the current dissemination-in-time criteria for

  8. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  9. Structural Brain Network Characteristics Can Differentiate CIS from Early RRMS.

    PubMed

    Muthuraman, Muthuraman; Fleischer, Vinzenz; Kolber, Pierre; Luessi, Felix; Zipp, Frauke; Groppa, Sergiu

    2016-01-01

    Focal demyelinated lesions, diffuse white matter (WM) damage, and gray matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, 33 with RRMS, and 40 healthy subjects were investigated using 3 T-MRI. Diffusion tensor imaging was applied, together with probabilistic tractography and fractional anisotropy (FA) maps for WM and cortical thickness correlation analysis for GM, to determine the structural connectivity patterns. A network topology analysis with the aid of graph theoretical approaches was used to characterize the network at different community levels (modularity, clustering coefficient, global, and local efficiencies). Finally, we applied support vector machines (SVM) to automatically discriminate the two groups. In comparison to CIS subjects, patients with RRMS were found to have increased modular connectivity and higher local clustering, highlighting increased local processing in both GM and WM. Both groups presented increased modularity and clustering coefficients in comparison to healthy controls. SVM algorithms achieved 97% accuracy using the clustering coefficient as classifier derived from GM and 65% using WM from probabilistic tractography and 67% from modularity of FA maps to differentiate between CIS and RRMS patients. We demonstrate a clear increase of modular and local connectivity in patients with early RRMS in comparison to CIS and healthy subjects. Based only on a single anatomic scan and without a priori information, we developed an automated and investigator-independent paradigm that can accurately discriminate between patients with these clinically similar disease entities, and could thus complement the current dissemination-in-time criteria for

  10. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  11. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  12. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  13. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  14. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon (Principal Investigator)

    1996-01-01

    Progress for the period July 1995 - June 1996 included work on the differential magnetic field shear in an active region; observations and modeling of the solar chromosphere seen in soft X-ray absorption by NIXT; and modeling magnetic flux emergence. These were the subjects of three papers. The plans for the current year include projects on a converging flux model for point-like brightenings around sunspots, and difficulties in observing coronal structure.

  15. Structural concerns in dynamic drop loads on transfer lock mechanisms

    SciTech Connect

    Pfeiffer, P.A.; Moran, T.J.; Kulak, R.F.

    1997-07-01

    Drop loads are usually low probability events that can generate substantial loading to the impacted structures. When the impacted structure contains slender elements, the concern about dynamic buckling must be addressed. The problem of interest here is a structure is also under significant preload, which must be taken into account in the transient analysis. For complex structures, numerical simulations are the only viable option for assessing the transient response to short duration impactive loads. this paper addresses several analysis issues of preloaded structures with slender members subjected to drop loads. A three-dimensional beam element is validated for use in dynamic buckling analysis. the numerical algorithm used to solve the transient response of preloaded structures is discussed. The methodology is applied to an inter-compartment lock that is under significant preloads, and subjected to a drop load.

  16. Structure, dynamics, and evolution of centromeric nucleosomes

    PubMed Central

    Dalal, Yamini; Furuyama, Takehito; Vermaak, Danielle; Henikoff, Steven

    2007-01-01

    Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a “hemisome” consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution. PMID:17893333

  17. The importance of dynamics studies on the design of sandwich structures: a CrB24 case.

    PubMed

    Liu, Lei; Osorio, Edison; Heine, Thomas

    2016-07-21

    Computational prediction and design of sandwich structures have drawn a lot of attention because of their interesting bond characteristics and broad applications. Most studies focus on the thermodynamic stability. In this study, we performed a series of Born-Oppenheimer molecular dynamics (BO-MD) simulations to investigate the dynamic stability of the well-known sandwich structure CrB24. The aim was to find at which temperature the sandwich structure is stable. The MD results showed that the sandwich structure has an extremely poor dynamic stability. Additionally, one highly symmetric endohedral structure with a chromium atom at the center of a B24 cage was found. As a demonstration, we attempted to point out the importance of dynamics studies on the future design of sandwich structures. PMID:27334404

  18. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.

    2016-01-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.

  19. Calcium binding characteristics and structural changes of phosvitin.

    PubMed

    Zhang, Xiaowei; Geng, Fang; Huang, Xi; Ma, Meihu

    2016-06-01

    Phosvitin is a unique highly phosphorylated protein that plays a role in the regulation of calcification. We conducted a comprehensive study of the chemical, thermodynamic and structural aspects of the interaction of phosvitin with calcium ions using a calcium ion selective electrode (ISE), isothermal titration calorimetry (ITC), circular dichroism spectrum (CD) and fluorescence spectroscopy, respectively. The results showed that under neutral and alkaline conditions, distinct high affinity and low affinity binding modes existed in the interaction between phosvitin and calcium. The high affinity association constant was approximately 10(4)mol(-1), while the binding sites contained nearly 30mol of calcium per mole of phosvitin. This reaction was driven by enthalpy. The unordered and β-turn conformations of phosvitin increased, while the β-sheet conformation decreased. The main interaction forces were electrostatic force, hydrogen bonds or van der Waals force. The low affinity association constant and binding sites were not constant, as many calcium ions were sequestered by phosvitin. The binding reaction was driven by entropy, and the β-sheet conformation of phosvitin increased while the unordered conformation decreased. The main interaction force was hydrophobic force. However, under acidic conditions, the interaction between phosvitin and calcium was an entropy-driven endothermic reaction, and the main interaction force was weak hydrophobic force. This calcium-binding characteristic of phosvitin may play a specific role in its biological function. PMID:26953964

  20. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald

    2012-12-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.

  1. Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.

    PubMed

    Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R

    2014-08-01

    Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid. PMID:25025600

  2. Control of complex networks requires both structure and dynamics.

    PubMed

    Gates, Alexander J; Rocha, Luis M

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  3. Control of complex networks requires both structure and dynamics

    PubMed Central

    Gates, Alexander J.; Rocha, Luis M.

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  4. Structure and Dynamics of Transient Gels

    NASA Astrophysics Data System (ADS)

    Tanaka, F.

    A simple transient network model is introduced todescribe creation and annihilation of the junctions in the networks of associating polymers. The time-evolution equation under arbitrary deformation is derived for the number of elastically effective polymer chains in the network. It is found that rheological properties depend rather sensitively on the chain disengagement rate β(r) and recombination probability p of associative groups. The dynamic mechanical moduli are calculated as functions of the frequency ω and the chain disengagement rate. From the peak of the loss modulus, the lifetime τ× of the junction is estimated, and from the high frequency plateau of the storage modulus the number of elastically effective chains in the network is found. On the basis of the Scanlan-Case criterion, the number of elastically effective chains and the number of dangling ends are calculated as functions of the polymer concentration and the temperature. The results are compared with the recent experimental report on the elastic moduli of hydrophobically modified water-soluble polymers.

  5. Structural and Functional Characteristics of the Social Networks of People with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    van Asselt-Goverts, A. E.; Embregts, P. J. C. M.; Hendriks, A. H. C.

    2013-01-01

    In the research on people with intellectual disabilities and their social networks, the functional characteristics of their networks have been examined less often than the structural characteristics. Research on the structural characteristics of their networks is also usually restricted to the size and composition of the networks, moreover, with…

  6. Mathematical approaches to biomolecular structure and dynamics

    SciTech Connect

    Mesirov, J.P.; Sumners, D.W.; Schulten, K.

    1996-12-31

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The papers in this volume cover the spectrum from experiment to computation to simulation to theory. This is one of two volumes based on the proceedings of the 1994 IMA Summer Program on Molecular Biology and comprises Weeks 3 and 4 of the four-week program. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  8. Ditching Investigations of Dynamic Models and Effects of Design Parameters on Ditching Characteristics

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J; Hoffman, Edward L

    1958-01-01

    Data from ditching investigations conducted at the Langley Aeronautical Laboratory with dynamic scale models of various airplanes are presented in the form of tables. The effects of design parameters on the ditching characteristics of airplanes, based on scale-model investigations and on reports of full-scale ditchings, are discussed. Various ditching aids are also discussed as a means of improving ditching behavior.

  9. Dynamic Characteristics of High Intensity Shock Effect for Medium Weight Shock Testing Machine

    NASA Astrophysics Data System (ADS)

    Song, Feng; Sai, Jiangang; Yun, He; Bo, Gao

    This paper analyses the dynamic characteristics of MWMS by optimizing the design of the anvil table to ensure the waveform in allowing limit, simulating the impact of MWMS, and demonstrating the influence of the low-pass filter and the height of hammer drop to test results.

  10. Dynamic and structural control utilizing smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogers, C. A.; Robertshaw, H. H.

    1989-01-01

    An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.

  11. Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.

    1993-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.

  12. Dynamic characteristics of a cable-stayed bridge measured from traffic-induced vibrations

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Chen, Chern-Hwa

    2012-09-01

    This paper studies the dynamic characteristics of the Kao-Ping-Hsi cable-stayed bridge under daily traffic conditions. Experimental data were measured from a structural monitoring system, and system-identification techniques, such as the random decrement (RD) technique and Ibrahim time-domain (ITD) method, were adopted. The first five modes of the bridge were identified for their natural frequencies and damping ratios under different traffic loading conditions, in terms of root-mean-square (RMS) deck velocities. The magnitude of the torsion mode of the Kao-Ping-Hsi cable-stayed bridge is found to be one order-of-magnitude less than the transfer mode, and two orders-of-magnitude less than the vertical modes. Out results indicated that vibrations induced by traffic flow can be used as an indicator to monitor the health of the bridge due to their insensitivity to the natural frequencies of the cable-stayed bridge. Furthermore, the damping ratios may be used as a more sensitive indicator to describe the condition of the bridge.

  13. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Velikovich, A. L.; Rudakov, L. I.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Williamson, K. M.; Stafford, A.; Shlyaptseva, V. V.

    2011-10-01

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev , Phys. PlasmasPHPAEN1070-664X10.1063/1.2896577 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

  14. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches

    SciTech Connect

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V.; Velikovich, A. L.; Rudakov, L. I.; Williamson, K. M.

    2011-10-15

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

  15. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  16. Dynamic Characteristics of Prosthetic Feet: A Comparison Between Modal Parameters of Walking, Running and Sprinting Foot

    NASA Astrophysics Data System (ADS)

    Noroozi, S.; Rahman, A. G. A.; Dupac, M.; Vinney, J. E.

    Current methods of evaluating the performance of Energy Storing and Returning (ESR) prosthesis are subjective and rely on VO2 consumption. Current prosthetic feet are designed for specific applications and the majority are designed for walking and moderate running. These mechanical feet have fixed mechanical and dynamic characteristics. They have to be selected to meet the requirement of the task and any use outside the domain of the task can result in extreme/severe lack of gait symmetry and loss of energy. Poor gait symmetry results is excess consumption of energy, back pain or fatigue. To investigate if a multipurpose foot can be designed to passively adapt to the walking or running condition one must first understand the different dynamics that are involved and are required from the task specific foot. Static tests have shown these feet to have non-linear stiffness, making the prediction of their dynamic response difficult. The most reliable method to test for dynamic characteristics is drop and modal testing. A method approach has been developed as part of this research to test and compare the dynamic characteristics of three different types of foot (natural frequency, mode shapes and damping). This is needed to explore the differences in the responses of these feet that allow one to be used for walking, one to be used for running and one to be used for sprinting with ease.

  17. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    PubMed Central

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed. PMID:22312477

  18. Structure and dynamics of dinucleosomes assessed by atomic force microscopy.

    PubMed

    Filenko, Nina A; Palets, Dmytro B; Lyubchenko, Yuri L

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed. PMID:22312477

  19. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE PAGESBeta

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  20. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  1. Structural Dynamics and Control of Large Space Structures, 1982

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1983-01-01

    Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.

  2. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  3. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  4. Dynamic Identification for Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Ibrahim, S. R.

    1985-01-01

    This is a compilation of reports by the one author on one subject. It consists of the following five journal articles: (1) A Parametric Study of the Ibrahim Time Domain Modal Identification Algorithm; (2) Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique; (3) Computation of Normal Modes from Identified Complex Modes; (4) Dynamic Modeling of Structural from Measured Complex Modes; and (5) Time Domain Quasi-Linear Identification of Nonlinear Dynamic Systems.

  5. Fluorescent tags to explore cell wall structure and dynamics

    PubMed Central

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components. PMID:22783266

  6. Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Elgin, Stephen D.; Sutliff, Thomas J.

    1993-01-01

    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.

  7. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis

    NASA Astrophysics Data System (ADS)

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  8. Structures and Dynamics of Endohedral Scandium Metallofullerenes

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Tansho, M.; Inakuma, M.; Saito, Y.; Sato, H.; Hayashi, N.; Kato, T.; Hashizume, T.; Sakurai, T.

    The endohedral metallofullerenes, such as Sc@C82, Sc2@C84, and Sc3@C82, have been purified and isolated by using two-stage high-performance liquid chromatography (HPLC). The ESR spectrum of the isolated Sc3@C82 exhibits a perfectly symmetric 22 hyperfined splittings with an inherent linewidth of 0.77 Gauss at 220 K, which is consistent with a unique structure that three scandium atoms are encaged triangularly within the C3v isomer of C82. In addition, we report the direct imaging of the isolated discandium fullerene (Sc2@C84) on silicon clean surfaces in an ultrahigh-vacuum environment by utilizing scanning tunneling microscopy (STM). The STM images reveal spherical Sc2@C84 fullerenes, spaced 11.7 Å apart, stacked in close-packed arrays.

  9. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  10. Dynamic spectral structure specifies vowels for children and adultsa

    PubMed Central

    Nittrouer, Susan

    2008-01-01

    When it comes to making decisions regarding vowel quality, adults seem to weight dynamic syllable structure more strongly than static structure, although disagreement exists over the nature of the most relevant kind of dynamic structure: spectral change intrinsic to the vowel or structure arising from movements between consonant and vowel constrictions. Results have been even less clear regarding the signal components children use in making vowel judgments. In this experiment, listeners of four different ages (adults, and 3-, 5-, and 7-year-old children) were asked to label stimuli that sounded either like steady-state vowels or like CVC syllables which sometimes had middle sections masked by coughs. Four vowel contrasts were used, crossed for type (front/back or closed/open) and consonant context (strongly or only slightly constraining of vowel tongue position). All listeners recognized vowel quality with high levels of accuracy in all conditions, but children were disproportionately hampered by strong coarticulatory effects when only steady-state formants were available. Results clarified past studies, showing that dynamic structure is critical to vowel perception for all aged listeners, but particularly for young children, and that it is the dynamic structure arising from vocal-tract movement between consonant and vowel constrictions that is most important. PMID:17902868

  11. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  12. Simulation of the photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Gilbert, Michael G.; Welch, Sharon S.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) uses six video cameras in the Space Shuttle cargo bay to measure vibration of the Russian Mir space station Kvant-ll solar array. It occurs on Shuttle/Mir docking mission STS-74 scheduled for launch in November 1995. The objective of PASDE is to demonstrate photogrammetric technology for measuring 'untargeted' spacecraft appendage structural dynamics. This paper discusses a pre-flight simulation test conducted in July 1995, focusing on the image processing aspects. The flight camera system recorded vibrations of a full-scale structural test article having grids of white lines on black background, similar in appearance to the Mir solar array. Using image correlation analysis, line intersections on the structure are tracked in the video recordings to resolutions of less than 0.1 pixel. Calibration and merging of multiple camera views generated 3-dimensional displacements from which structural modal parameters are then obtained.

  13. Nickel-aluminum alloy clusters -- structural and dynamical properties

    SciTech Connect

    Jellinek, J.; Krissinel, E.B.

    1997-08-01

    Structural and dynamical properties of mixed Ni{sub n}Al{sub m} alloy clusters mimicked by a many-body potential are studied computationally for all the possible compositions n and m such that n + m = 13. It is shown that the manifold of the usually very large number of the different possible structural forms can be systematized by introducing classes of structures corresponding to the same concentration of the components, geometry and type of the central atom. General definitions of mixing energy and mixing coefficient are introduced, and it is shown that the energy ordering of the structural forms within each class is governed by the mixing coefficient. The peculiarities of the solid-to-liquid-like transition are described as a function of the concentration of the two types of atoms. These peculiarities are correlated with and explained in terms of the energy spectra of the structural forms. Class-dependent features of the dynamics are described and analyzed.

  14. Dynamic and thermal analyses of flexible structures in orbit

    NASA Astrophysics Data System (ADS)

    Lin, Chijie

    Due to the launch cost and functional requirements, space structures, such as satellite antenna, deployable structures, solar sails, the space station, and solar panels, are necessarily built lightweight, large, and very flexible. These space structures undergo large orbital rigid body motions as well as large structural deformations caused by gravitational force and other disturbances, such as shuttle jet impingement loading, deployment factor, thermal effects, and debris impact. It is of utmost importance to study thoroughly the dynamic behavior of flexible structures in orbit under various external forces. In this study, first a finite element methodology program based on the absolute nodal coordinate formulation is developed to determine the coupled structural and orbital response of the flexible structure under gravitational and external loading, i.e., gravitational force, impact force, and jet impingement, and thermal loading. It is found from the simulation results that pitch and structural response of the flexible structures are greatly impacted by the initial and loading conditions, such as orbit eccentricity, initial misalignment, etc. The absolute nodal coordinate formulation may lead to inaccurate results due to the fact that the orbit radius is used for element coordinate, which is much greater than the amplitude of the pitch (attitude) motion and deformations of the orbiting structures. Therefore, to improve the accuracy of structural response in the simulation, a floating (moving) frame that is attached with the orbiting structure's center of mass and that moves parallel to the inertia frame fixed at the Earth's center is introduced to separate the attitude motion and structural deformation from the orbit radius. The finite element formulation is developed in this parallel reference frame system for two and three dimensional beam structures. It is then used to study dynamic response of flexible structures in two and three dimensional orbits. In some

  15. Workshop on Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Davis, L. P.; Wilson, J. F.; Jewell, R. E.

    1987-01-01

    The Hubble Space Telescope features the most exacting line of sight jitter requirement thus far imposed on a spacecraft pointing system. Consideration of the fine pointing requirements prompted an attempt to isolate the telescope from the low level vibration disturbances generated by the attitude control system reaction wheels. The primary goal was to provide isolation from axial component of wheel disturbance without compromising the control system bandwidth. A passive isolation system employing metal springs in parallel with viscous fluid dampers was designed, fabricated, and space qualified. Stiffness and damping characteristics are deterministic, controlled independently, and were demonstrated to remain constant over at least five orders of input disturbance magnitude. The damping remained purely viscous even at the data collection threshold of .16 x .000001 in input displacement, a level much lower than the anticipated Hubble Space Telescope disturbance amplitude. Vibration attenuation goals were obtained and ground test of the vehicle has demonstrated the isolators are transparent to the attitude control system.

  16. Fast structural dynamics in reduced and oxidized cytochrome c.

    PubMed

    Liu, Weixia; Rumbley, Jon N; Englander, S Walter; Wand, A Joshua

    2009-03-01

    The sub-nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide (15)N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c. PMID:19241377

  17. Cluster structure and dynamics in gels and glasses

    NASA Astrophysics Data System (ADS)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  18. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    NASA Astrophysics Data System (ADS)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  19. Dynamics of Opinion Forming in Structurally Balanced Social Networks

    PubMed Central

    Altafini, Claudio

    2012-01-01

    A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends. PMID:22761667

  20. Structural dynamics and control of large space structures. [conference

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1981-01-01

    The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.