Sample records for study cell morphology

  1. Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.

    PubMed

    Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu

    2014-04-01

    Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.

  2. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  3. Dynamic morphology applied to human and animal leukemia cells.

    PubMed

    Haemmerli, G; Felix, H; Sträuli, P

    1979-08-01

    Dynamic morphology, which describes the shape and surface architecture of fixed cells in terms related to their behavior in the living state, is based on the concurrent use of two methods: scanning electron microscopy and microcinematography. This combination has both advantages and disadvantages. In this study on leukemic cells, we were able to draw the following conclusions about the usefulness of dynamic morphology. It confirms that white blood cells do not flatten on a glass substrate; they stay spherical and are either round or polarized. Round cells of similar size, whatever their origin, cannot be classified by dynamic morphology. Polarized cells can be classified as blasts, promyelocytes, myelocytes, granulocytes and lymphocytes, although polarized blast cells of different origins cannot be differentiated. Dynamic morphology cannot classify the same cell type as benign or malignant.

  4. Freezing behavior of adherent neuron-like cells and morphological change and viability of post-thaw cells.

    PubMed

    Uemura, Makoto; Ishiguro, Hiroshi

    2015-04-01

    Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Menstruum induces changes in mesothelial cell morphology.

    PubMed

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely

  6. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  7. Optimizing morphology through blood cell image analysis.

    PubMed

    Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J

    2018-05-01

    Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.

  8. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  9. Morphological Analysis of Live Undifferentiated Cells Derived from Induced Pluripotent Stem Cells.

    PubMed

    Osawa, Yukihiko; Miyamoto, Tomoyuki; Ohno, Setsuyo; Ohno, Eiji

    2018-01-01

    Induced pluripotent stem (iPS) cells possess pluripotency and self-renewal ability. Therefore, iPS cells are expected to be useful in regenerative medicine. However, iPS cells form malignant immature teratomas after transplantation into animals, even after differentiation induction. It has been suggested that undifferentiated cells expressing Nanog that remain after differentiation induction are responsible for teratoma formation. Various methods of removing these undifferentiated cells have therefore been investigated, but few methods involve morphological approaches, which may induce less cell damage. In addition, for cells derived from iPS cells to be applied in regenerative medicine, they must be alive. However, detailed morphological analysis of live undifferentiated cells has not been performed. For the above reasons, we assessed the morphological features of live undifferentiated cells remaining after differentiation induction as a basic investigation into the clinical application of iPS cells. As a result, live undifferentiated cells remaining after differentiation induction exhibited a round or oval cytoplasm about 12 μm in diameter and a nucleus. They exhibited nucleo-cytoplasmic (N/C) ratio of about 60% and eccentric nuclei, and they possessed partially granule-like structures in the cytoplasm and prominent nucleoli. Although they were similar to iPS cells, they were smaller than live iPS cells. Furthermore, very small cells were present among undifferentiated cells after differentiation induction. These results suggest that the removal of undifferentiated cells may be possible using the morphological features of live iPS cells and undifferentiated cells after differentiation induction. In addition, this study supports safe regenerative medicine using iPS cells.

  10. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  11. Cell dynamic morphology classification using deep convolutional neural networks.

    PubMed

    Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen

    2018-05-15

    Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  12. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  13. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    PubMed

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Morphology characterization of organic solar cell materials and blends

    NASA Astrophysics Data System (ADS)

    Roehling, John Daniel

    The organization of polymers and fullerenes, both in their pure states and mixed together, have a large impact on their macroscopic properties. For mixtures used in organic solar cells, the morphology of the mixture has a very large impact upon the mixture's ability to efficiently convert sunlight into useful electrical energy. Understanding how the morphology can change under certain processing conditions and in turn, affect the characteristics of the solar cell is therefore important to improving the function of organic solar cells. Conventional poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells have served as a staple system to study organic solar cell function for nearly a decade. Much of the understanding of how to make these "poorly"conductive organic materials efficiently convert sunlight into electricity has come from the study of P3HT:PCBM. It has long been understood that in order for a polymer:fullerene (electron donor and acceptor, respectively) mixture to function well as a solar cell, two major criteria for the morphology must be met; first, the interface between the two materials must be large to efficiently create charges, and secondly, there must be continous pathways through the "pure" materials for charges to be efficiently collected at the electrodes. This makes it advantageous for OPV materials to phase-separate into interconnected domains with very small domain sizes, a structure that P3HT:PCBM seems to naturally self-assemble. Despite P3HT:PCBM's ability to reach an optimal morphology, a complete understanding of exactly how the morphology affects device performance has not been realized. Completely different morphological models can end up predicting the same device performance characteristics. Much of the problem comes from the assumed morphology within a particular model, which can often be incorrect. The problem lies in the fact that obtaining real, accurate morphological information is difficult. An often

  15. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy.

    PubMed

    Liu, Jinyun; Qu, Yingmin; Wang, Guoliang; Wang, Xinyue; Zhang, Wenxiao; Li, Jingmei; Wang, Zuobin; Li, Dayou; Jiang, Jinlan

    2018-01-01

    This article studies the morphological and mechanical features of multinuclear and mononuclear SW480 colon cancer cells by atomic force microscopy to understand their drug-resistance. The SW480 cells were incubated with the fullerenol concentrations of 1 mg/ml and 2 mg/ml. Morphological and mechanical features including the height, length, width, roughness, adhesion force and Young's modulus of three multinuclear cell groups and three mononuclear cell groups were imaged and analyzed. It was observed that the features of multinuclear cancer cells and mononuclear cancer cells were significantly different after the treatment with fullerenol. The experiment results indicated that the mononuclear SW480 cells were more sensitive to fullerenol than the multinuclear SW480 cells, and the multinuclear SW480 cells exhibited a stronger drug-resistance than the mononuclear SW480 cells. This work provides a guideline for the treatments of multinuclear and mononuclear cancer cells with drugs. © 2017 Wiley Periodicals, Inc.

  17. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  18. The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.

    PubMed

    Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T

    2011-09-30

    Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Morphology based scoring of chromosomal instability and its correlation with cell viability.

    PubMed

    Yadav, Shubhlata; Bhatia, Alka

    2017-09-01

    The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  1. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    PubMed

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  2. A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain.

    PubMed

    Chen, Peng-hui; Cai, Wen-qin; Wang, Li-yan; Deng, Qi-yue

    2008-12-03

    A widespread population of cells in CNS is identified by specific expression of the NG2 chondroitin sulphate proteoglycan and named as oligodendrocyte precursor cell (OPC). OPCs may possess stem cell-like characteristics, including multipotentiality in vitro and in vivo. It was proposed that OPCs in the CNS parenchyma comprise a unique population of glia, distinct from oligodendrocytes and astrocytes. This study confirmed that NG2 immunoreactive OPCs were continuously distributed in cerebral cortex and hippocampus during different postnatal developmental stages. These cells rapidly increased in number over the postnatal 7 days and migrate extensively to populate with abundant processes both in developing cortex and hippocampus. The morphology of OPCs exhibited extremely complex changes with the distribution of long distance primary process gradually increased from neonatal to adult CNS. Immunohistochemical studies showed that OPCs exhibited the morphological properties that can be distinguished from astrocytes. The electrophysiological properties showed that OPCs expressed a small amount of inward Na(+) currents which was distinguished from Na(+) currents in neurons owing to their lower Na-to-K conductance ratio and higher command voltage step depolarized maximum Na(+) current amplitude. These observations suggest that OPCs can be identified as the third type of macroglia because of their distribution in the CNS, the morphological development in process diversity and the electrophysiological difference from astrocyte.

  3. Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells

    PubMed Central

    Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas

    2016-01-01

    ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the

  4. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.

    PubMed

    Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao

    2017-01-01

    RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  5. Whole-Cell Chloride Currents in Rat Astrocytes Accompany Changes in Cell Morphology

    PubMed Central

    Lascola, Christopher D.; Kraig, Richard P.

    2009-01-01

    Astrocytes can change shape dramatically in response to increased physiological and pathological demands, yet the functional consequences of morphological change are unknown. We report the expression of Cl− currents after manipulations that alter astrocyte morphology. Whole-cell Cl− currents were elicited after (1) rounding up cells by brief exposure to trypsin; (2) converting cells from a flat polygonal to a process-bearing (stellate) morphology by exposure to serum-free Ringer’s solution; and (3) swelling cells by exposure to hypo-osmotic solution. Zero-current potentials approximated the Nernst for Cl−, and rectification usually followed that predicted by the constant-field equation. We observed heterogeneity in the activation and inactivation kinetics, as well as in the relative degree of outward versus inward rectification. Cl− conductances were inhibited by 4,4-diisothiocyanostilbene-2,2′-disulfonic acid (200 μM) and by Zn2+ (1 mM). Whole-cell Cl− currents were not expressed in cells without structural change. We investigated whether changes in cytoskeletal actin accompanying changes in astrocytic morphology play a role in the induction of shape-dependent Cl− currents. Cytochalasins, which disrupt actin polymers by enhancing actin-ATP hydrolysis, elicited whole-cell Cl− conductances in flat, polygonal astrocytes. In stellate cells, elevated intracellular Ca2+ (2 μM), which can depolymerize actin, enhanced Cl− currents, and high intracellular ATP (5 mM), required for repolymerization, reduced Cl− currents. Modulation of Cl− current by Ca2+ and ATP was blocked by concurrent whole-cell dialysis with phalloidin and DNase, respectively. Phalloidin stabilizes actin polymers and DNase inhibits actin polymerization. Dialysis with phalloidin also prevented hypo-osmotically activated Cl− currents. These results demonstrate how the expression of astrocyte Cl− currents can be dependent on cell morphology, the structure of actin, Ca2

  6. [Proliferation and morphological differentiation of neurblastoma cells in cultured under the effect of avermectins].

    PubMed

    Miakisheva, S N; Kostenko, M A; Driniaev, V A; Mosin, V A

    2001-01-01

    The effect of natural avermectin complex (Aversectin C) and Abamectin on the processes of proliferation and morphological differentiation of the neural cells was studied using N1E-115 murine neuroblastoma cells (clone C-1300) as a model. Aversectin C in concentrations 10(-7)-10(-8) was shown to induce morphological differentiation of cultured nervous cells. Treatment with Abamectin resulted in the changes of proliferation pattern of the cells. Morphological differentiation of the cultured nervous cells treated with Aversectin C was associated with electrophysiological one.

  7. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  8. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells).

    PubMed

    Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo

    2015-01-15

    DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Tibolone Preserves Mitochondrial Functionality and Cell Morphology in Astrocytic Cells Treated with Palmitic Acid.

    PubMed

    González-Giraldo, Yeimy; Garcia-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2018-05-01

    Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.

  10. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  11. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.

    PubMed

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-19

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  12. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    NASA Astrophysics Data System (ADS)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  13. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  14. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  15. Image processing and machine learning in the morphological analysis of blood cells.

    PubMed

    Rodellar, J; Alférez, S; Acevedo, A; Molina, A; Merino, A

    2018-05-01

    This review focuses on how image processing and machine learning can be useful for the morphological characterization and automatic recognition of cell images captured from peripheral blood smears. The basics of the 3 core elements (segmentation, quantitative features, and classification) are outlined, and recent literature is discussed. Although red blood cells are a significant part of this context, this study focuses on malignant lymphoid cells and blast cells. There is no doubt that these technologies may help the cytologist to perform efficient, objective, and fast morphological analysis of blood cells. They may also help in the interpretation of some morphological features and may serve as learning and survey tools. Although research is still needed, it is important to define screening strategies to exploit the potential of image-based automatic recognition systems integrated in the daily routine of laboratories along with other analysis methodologies. © 2018 John Wiley & Sons Ltd.

  16. Contour Detection of Leukocyte Cell Nucleus Using Morphological Image

    NASA Astrophysics Data System (ADS)

    Supriyanti, R.; Satrio, G. P.; Ramadhani, Y.; Siswandari, W.

    2017-04-01

    Leukocytes are blood cells that do not contain color pigments. Leukocyte function to the tool body’s defenses. Abnormal forms of leukocytes can be a sign of serious diseases such example is leukemia. Most laboratories still use cell morphology examination to assist the diagnosis of illness associated with white blood cells such example is leukemia because of limited resources, both infrastructure, and human resources as happens in developing nations, such as Indonesia. This examination is less expensive and quicker process. However, morphological review requires the expertise of a specialist clinical pathology were limited. This process is sometimes less valid cause in some cases trying to differentiate morphology blast cells into the type of myoblasts, lymphoblast, monoblast, or erythroblast thus potentially misdiagnosis. The goal of this research is to develop a detection device types of blood cells automatically as lower-priced, easy to use and accurate so that the tool can be distributed across all units in existing health services throughout Indonesia and in particular for remote areas. However, because the variables used in the identification of abnormal leukocytes are very complex, in this paper, we emphasize on the contour detection of leukocyte cell nucleus using the morphological image. The results show that this method is promising for further development.

  17. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation

    PubMed Central

    Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.

    2010-01-01

    Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691

  18. [Grape seed extract induces morphological changes of prostate cancer PC-3 cells].

    PubMed

    Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng

    2008-12-01

    To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.

  19. Variations in cell morphology in the canine cruciate ligament complex.

    PubMed

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources.

    PubMed

    Reed, Daniel M; Foldes, Gabor; Kirkby, Nicholas S; Ahmetaj-Shala, Blerina; Mataragka, Stefania; Mohamed, Nura A; Francis, Catherine; Gara, Edit; Harding, Sian E; Mitchell, Jane A

    2014-12-12

    Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required

  1. Morphological classification of plant cell deaths.

    PubMed

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  2. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  3. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line.

    PubMed

    Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi

    2017-01-01

    Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.

  4. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    PubMed

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  5. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    PubMed

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections. Copyright © 2010 Wiley-Liss, Inc.

  6. The ultrastructural surface morphology of oral cancer cells and keratinocytes after exposure to chitosan

    NASA Astrophysics Data System (ADS)

    Fatimah; Sarsito, A. S.; Wimardhani, Y. S.

    2017-08-01

    Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.

  7. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates.

    PubMed

    Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan

    2015-07-01

    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. © 2014 Wiley Periodicals, Inc.

  8. Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR.

    PubMed

    Huang, Wenmin; Xing, Wei; Li, Dunhai; Liu, Yongding

    2009-08-01

    Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 microg mL(-1) and 120 microg mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy, fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 microg mL(-1)) results in apoptosis and that to a higher concentration (120 microg mL(-1)), in necrosis.

  9. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakolinejad, Alireza; Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation wasmore » assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less

  10. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  11. Morphology and force probing of primary murine liver sinusoidal endothelial cells.

    PubMed

    Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M

    2017-07-01

    Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology.

    PubMed

    Liu, Tao; Sims, David; Baum, Buzz

    2009-01-01

    In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.

  13. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  14. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  15. The relationship of fibroblast translocations to cell morphology and stress fibre density.

    PubMed

    Lewis, L; Verna, J M; Levinstone, D; Sher, S; Marek, L; Bell, E

    1982-02-01

    Translocation of human fibroblasts in culture was studied using techniques of time-lapse cinemicrography, indirect immunofluorescence, and computer analysis. An inverse relationship between the velocity of cells during the last hour of life and the density of stress fibers seen by immune staining was demonstrated. Translocating cells generally assumed one of two interconvertible morphologies: a triangular tailed shape or tailed fibroblast (TF), and a tailless form that resembled a half-moon, which we call a half-moon fibroblast (HMF). The tail of TFs formed only on regions of substrate that had been previously traversed by cells. The half-moon morphology developed either on previously used or on virgin substrate. Cells adopted the HMF rather than the TF morphology with a four-fold greater frequency. HMFs translocated slightly faster than TFs. The foregoing observation suggest that the fibroblast tail is not an organelle essential for translocation. Since our technique allowed us to distinguish between cells which were cycling and those which had left cycle, we compared their velocities and found them to be similar. Also the average velocities of cells of different population-doubling levels (10th, 30th, 40th) were approximately equal.

  16. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  17. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  18. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    NASA Astrophysics Data System (ADS)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  19. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices

    PubMed Central

    Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank

    2007-01-01

    Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344

  20. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  1. Normal and leukaemic human haemopoietic cells in diffusion chamber. A morphological and functional CFU-C study.

    PubMed

    Laurent, M; Clémancey-Marcille, G; Hollard, D

    1980-03-01

    Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.

  2. [cAMP mediates the morphological change of cultured olfactory ensheathing cells induced by serum].

    PubMed

    Wang, Ying; Huang, Zhi-Hui

    2011-02-25

    Olfactory ensheathing cells (OECs) are a unique type of glia with common properties of astrocyte and Schwann cells. Cultured OECs have two morphological phenotypes, astrocyte-like OECs and Schwann cell-like OECs. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of these reversible changes is still unknown. The aim of this paper is to establish a method for the morphology plasticity of cultured OECs, and investigate the underlying mechanism. Using the primary culture of OECs and immunocytochemistry, the morphology of OECs was observed under serum, serum free media or dB-cAMP drug treatment. Statistical analysis was performed to test differences among the percentages of OEC subtypes under these conditions. The results showed that under serum free media, (95.2±3.7)% of OECs showed Schwann cell-like morphology, and (4.8±3.7)% of OECs showed astrocyte-like morphology; however, under 10% serum media, (42.5±10.4)% of OECs exhibited Schwann cell-like morphology, and (57.5±10.4)% of OECs exhibited astrocyte-like morphology. When media was changed back to serum free media for 24 h, (94.8±5.0)% of OECs showed Schwann cell-like morphology, and (5.2±5.0)% of OECs showed astrocyte-like morphology. Furthermore, culture condition with or without serum did not affect the expression of OEC cell marker, p-75 and S-100. Finally, dB-cAMP, an analog of cAMP, through inhibiting the formation of F-actin stress fibers and focal adhesion, induced the morphology switch from astrocyte-like to Schwann cell-like morphology under serum condition, promoted the branches and the growth of processes. These results suggest that serum induces the morphology plasticity of cultured OECs, which is mediated by cytoplasmic cAMP level through regulating the formation of F-actin stress fibers and focal adhesion.

  3. On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change.

    PubMed

    Memmolo, Pasquale; Iannone, Maria; Ventre, Maurizio; Netti, Paolo Antonio; Finizio, Andrea; Paturzo, Melania; Ferraro, Pietro

    2012-12-17

    Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.

  4. ["Vestigial cells" of the transitional area of the uterine-cervix. Comparative morphological study with the subcylindrical-reserve-cells (author's transl)].

    PubMed

    Minh, H N; Smadja, A; Lecomte, D; Orcel, L; Coupez, F

    1982-01-01

    The squamo-cylindrical junction represents a transitional area of unstable epithelium. It consists of slightly differentiated cells which disclosed resemblance in morphological pattern with germinal cells of the basal layer in the exocervical squamous epithelium. These unstable cells, according to the authors, may be derived from the cranial, most cephalic extend of the sinusal vaginal plate which had formed the epithelium of the entire vagina and the vaginal portion of the cervix up to the squamo-columnar junction. Ultrastructural analysis disclosed no similarities between cells of the squamo-columnar junction and subcylindrical reserve cells which exhibited sometimes resemblance to the "mesenchymal cells" found within the surrounding stroma.

  5. [Morphological characteristic of Langerhans cells from the human epidermis in case of general hypothermia].

    PubMed

    Stefanenko, E V; Miadelets, O D; Kukhnovets, O A; Miadelets, V O

    2009-01-01

    The objective of this work was to study morphological changes in the Langerhans cells of epidermis and epithelium of hair follicles from subjects who died as a result of general hypothermia. A total of 105 cadaveric skin samples from subjects of either gender aged from 19 to 83 years were available for analysis. Postmortem examination 1-2 days after death was performed at the Department of Forensic Medical Examination for the Vitebsk region. Skin samples were frozen in liquid nitrogen and studied as cryostat sections. Langerhans cells were detected using the ATPase assay as described by Wachstein and Meisel and modified by Robins and Brendon. The Langerhans cells of subjects who died from general hypothermia were shown to undergo marked morphological changes. Moreover, their number significantly decreased as a result of disintegration and transformation into fine-grain material. Surviving cells lost many of their outgrowths and exhibited enhanced ATPase activity in pericarion. The Langerhans cells from dorsal and ventral skin as well as from interfollicular epidermis and the outer sheath of hair follicles underwent virtually identical changes. A unique morphological feature of the skin in those who died from general hypothermia was formation of intraepidermal, subepidermal, and dermal blisters.

  6. Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity.

    PubMed

    Pushchin, Igor I; Karetin, Yuriy A

    2009-10-20

    The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.

  7. Morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants.

    PubMed

    Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K

    2016-04-01

    To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.

  8. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells.

    PubMed

    Cosgrove, C; Cobbett, P

    1991-07-01

    Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.

  9. Morphology of the Epidermis of the Neotropical Catfish Pimelodella lateristriga (Lichtenstein, 1823) with Emphasis in Club Cells

    PubMed Central

    Damasceno, Eduardo Medeiros; Monteiro, Juliana Castro; Duboc, Luiz Fernando; Dolder, Heidi; Mancini, Karina

    2012-01-01

    The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data. PMID:23226253

  10. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  11. SEM Imaging for Observation of Morphological Changes in Anaemic Human Blood Cell

    NASA Astrophysics Data System (ADS)

    Datta, Triparna; Roychoudhury, Uttam

    Scanning Electron Microscopy (SEM) is utilized to elucidate the morphological changes in anaemic human red blood cells. Haemoglobin concentration in human blood is in the range of 11.5-13.5 g/dl in healthy adults. Haemoglobin concentration in anaemic red blood is below the lower limit of normal range. Sometimes, the nature of the abnormal shape of the blood cell determines the cause of anaemia. Normally, there occurs a variation in the diameter of the red blood cell (RBC) for different types of anaemia. Increased variation of size in blood cell is termed anisocytosis (a type of anaemia) (Mohan H, Text book of pathology, New Delhi). In case of anisocytosis, diameter of cells larger than normal cell is observed. The classification of anaemia by the size of blood cell is logical, i.e. common morphological abnormality of human blood cell (Davidson's principle and practice of medicine, Publisher Churchill Livingstone, London). Cells are studied under ZEISS SEM with different magnification and applied potential of kV range. Thus the diameters of RBCs in SEM have been compared with RBCs photographed with light microscope. Anaemic cells are observed overlapped with each other with increasing diameter.

  12. Morphological Characterization of Basally Located Uninucleate Trophoblast Cells as Precursors of Bovine Binucleate Trophoblast Giant Cells.

    PubMed

    Attiger, Jeannette; Boos, Alois; Klisch, Karl

    2018-06-20

    Binucleate trophoblast giant cells (TGCs) are one characteristic feature of the ruminant placenta. In cows, the frequency of TGCs remains constant for most of the duration of pregnancy. As TGCs are depleted by their fusion with uterine epithelial cells, they need to be constantly formed. It is still unclear whether they develop from stem cells within the trophectoderm or whether they can arise from any uninucleate trophoblast cell (UTC). Within the latter, generally accepted theory, a basally located uninucleate cell (BUC) without contact to the feto-maternal interface would represent a transient cell between a UTC and a TGC. So far, no evidence for the existence of such transient cells or for the presence of stem cells has been shown. The aim of the present study is to morphologically characterize the early stages of TGC development. Placentomal tissue of 6 pregnant cows from different gestational stages (gestational days 51-214) was examined for BUCs, UTCs, and TGCs either in serial sections (light and transmission electron microscopy, TEM, n = 3), in single sections (TEM, n = 2), or by serial block face-scanning electron microscopy (n = 1). These investigations revealed the occurrence of BUCs, as well as young TGCs showing contact with the basement membrane (BM), but without apical contact to the feto-maternal interface. The study morphologically defines these 2 cell types as early stages of TGC development and shows that binucleation of TGCs can precede detachment from the BM. © 2018 S. Karger AG, Basel.

  13. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells.

    PubMed

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de

    2017-10-01

    Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  14. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells

    PubMed Central

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa e; Cuervo, Patricia; de Jesus, José Batista

    2017-01-01

    BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis. PMID:28953994

  15. Live morphological analysis of taxol-induced cytoplasmic vacuolization [corrected] in human lung adenocarcinoma cells.

    PubMed

    Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin

    2008-12-01

    Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.

  16. Optimization of cell morphology measurement via single-molecule tracking PALM.

    PubMed

    Frost, Nicholas A; Lu, Hsiangmin E; Blanpied, Thomas A

    2012-01-01

    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in

  17. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    PubMed

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  18. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  19. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  20. Postchemotherapy changes in testicular germ cell tumours: biology and morphology.

    PubMed

    Berney, Daniel M; Lu, Yong-Jie; Shamash, Jonathan; Idrees, Muhammad

    2017-01-01

    Advances in modern chemotherapy and targeted treatments have resulted in lengthened survival in a variety of tumour types in the last decade. Increasingly in the 21st century, postchemotherapy resections are considered as a possible mode of treatment. Due to their exquisite chemosensitivity, resection of postchemotherapy masses has long been part of the armamentarium of treatment in testicular germ cell neoplasia, which has resulted in a variety of new morphological variants being described after treatment. Here we discuss the possible reasons for germ cell tumour chemosensitivity and hypotheses on the biological pathways leading to resistance to treatment, as well as an outline of the diverse morphology of those tumours which prove recalcitrant to standard treatment methods. The large range of morphologies and their diagnostic challenges may throw light upon the future problems to be encountered in non-germ cell solid tumour pathology, as the resection of postchemotherapy masses becomes increasingly important in patient management. © 2016 John Wiley & Sons Ltd.

  1. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  2. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  3. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  4. Neuronize: a tool for building realistic neuronal cell morphologies.

    PubMed

    Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis; Defelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.

  5. Acinic Cell Carcinoma of the Parotid Gland with Four Morphological Features.

    PubMed

    Rosero, David S; Alvarez, Ramiro; Gambó, Paula; Alastuey, María; Valero, Alberto; Torrecilla, Nerea; Roche, A Belén; Simón, Sara

    2016-01-01

    Acinic cell carcinoma arising in salivary glands is a rare tumor, accounting for 2% to 5% of the primary neoplasms of the parotid gland. When these tumors are well-differentiated, the neoplasia has innocuous aspect, due to the similarity to normal parotid tissue. This makes the diagnosis difficult. Initially the malignancy of this tumor was uncertain; however, recent studies have declared it as malignant. The female / male ratio is 3:2. The nodule usually presents as solitary and well defined shape. Several authors have used different terms to describe histomorphological patterns of these tumors. Four descriptive categories (solid, microcystic, papillary-cystic and follicular) are useful for pathologists. Here we report a case of a 49 yr old man with a left parotid nodule of 5 cm. Parotidectomy was performed at the Hospital Universitario Miguel Servet, in Zaragoza (Spain). The microscopy showed a tumor with acinic semblance, having the four morphologic patterns previously described. The morphological and immunohistochemical study was consistent with the diagnosis of acinic cell carcinoma.

  6. Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Rabczenko, Daniel; Smoleńska-Sym, Gabriela; Kurzatkowski, Wiesław

    2013-01-01

    The study evaluated the cell wall carbohydrates fraction in blastoconidia grown in YEPD medium at 30 degrees C and in the conglomerate of true hyphae grown in human serum at 37 degrees C. The clinical isolate obtained from a child with widespread C. albicans infection was used in the study. The cells were broken with glass beads, centrifuged to harvest the cell wall followed by subjection to TFA hydrolysis and in the result of that released monosaccharides were detected by HPAEC-PAD. Both, serum and temperature conditions (37 degrees C) affected germination process influencing the cell wall carbohydrates content when incubation in serum was prolonged from 1 to 18 h. The mannan content of blastoconidia was almost twofold higher compared to filamentous forms (149.25 +/- 299.24 vs 77.26 +/- 122.07). The glucan content was threefold lower in blastoconidia compared to hyphae (251.86 +/- 243.44 vs 755.81 +/- 1299.30). The chitin level was fourfold lower in blastoconidia compared to filaments (23.86 +/- 54.09 vs 106.29 +/- 170.12). The reason for the differences in the carbohydrates content may be related to type of morphology induced in different environmental conditions. Among tested carbohydrates, glucan appeared to be present in appreciably larger amounts in both tested morphological fractions. The ultrastructure of the blastoconidial cell wall revealed striking differences compared to the hyphae indicating the carbohydrates content alterations for wall assembly during hyphal growth at alkaline pH and temp. 37 degrees C. The study provided evidence for the relationship between morphogenesis, cell-cell adhesion induced by serum and changes in the level of carbohydrates content.

  7. Plasma cell morphology in multiple myeloma and related disorders.

    PubMed

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  8. Morphological Analysis of Human Induced Pluripotent Stem Cells During Induced Differentiation and Reverse Programming

    PubMed Central

    Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.

    2014-01-01

    Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857

  9. Cell morphology and flagellation of nitrogen-fixing spirilla.

    PubMed

    Hegazi, N A; Vlassak, K

    1979-01-01

    Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.

  10. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. Copyright 2002 Wiley-Liss, Inc.

  11. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells

    PubMed Central

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  12. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  13. [The morphology of ciliated cells in nasal mucosa during a viral infection].

    PubMed

    Grabowska-Joachimiak, A

    1998-01-01

    Presentation of the morphological changes in virus-infected nasal ciliated cells was the aim of this report. The most typical abnormalities observed in nasal smears were: intracytoplasmic inclusions, multinucleated cells, absence of cilia, ciliocytophthoria, cytoplasm vacuolization, "naked nuclei" and changes in the cellular shape. Cytological pictures of the alterations connected with viral infection were demonstrated. Presented results were consistent with the observations of other authors. Morphological analysis of the epithelial cells is a very important element of cytological examination of the nasal mucosa.

  14. Physiological and morphological characterization of ganglion cells in the salamander retina

    PubMed Central

    Wang, Jing; Jacoby, Roy; Wu, Samuel M.

    2016-01-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645

  15. Application of image flow cytometry for the characterization of red blood cell morphology

    NASA Astrophysics Data System (ADS)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  16. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  17. The morphological change of supporting cells in the olfactory epithelium after bulbectomy.

    PubMed

    Makino, Nobuko; Ookawara, Shigeo; Katoh, Kazuo; Ohta, Yasushi; Ichikawa, Masumi; Ichimura, Keiichi

    2009-02-01

    Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.

  18. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  19. Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology.

    PubMed

    Rule, Kiersten; Chosed, Renee J; Arthur Chang, T; David Wininger, J; Roudebush, William E

    2018-06-04

    Cell-free DNA (cfDNA) which is present in the blastocoel cavity of embryos is believed to result from physiological apoptosis during development. This study assessed cfDNA content and caspase-3 protease activity in day-5 IVF blastocysts to determine if there was a correlation with embryo morphology. Day-5 IVF blastocysts were scored according to the Gardner and Schoolcraft system (modified to generate a numerical value) and cfDNA was collected following laser-induced blastocoel collapsing prior to cryopreservation in 25 μL of media. cfDNA was quantified via fluorospectrometry and apoptotic activity was assessed via a caspase-3 protease assay using a fluorescent peptide substrate. Data were compared by linear regression. A total of 32 embryos were evaluated. There was a significant (p < 0.01) and positive correlation (cfDNA = 104.753 + (11.281 × score); R 2  = 0.200) between embryo score and cfDNA content. A significant (p < 0.05) and positive correlation (cfDNA = 115.9 + (0.05 × caspase-3); R 2 = 0.128) was observed between caspase-3 activity and cfDNA levels. There was no significant relationship between caspase-3 activity and embryo morphology score. This study provides further evidence that cfDNA is present in blastocoel fluid, can be quantified, and positively correlates with embryonic morphology. There is also evidence that at least a portion of the cfDNA present is from intracellular contents of embryonic cells that underwent apoptosis. Additional studies are warranted to determine other physiological sources of the cfDNA in blastocyst fluid and to determine the relationship with cfDNA content, embryo morphology, and chromosomal ploidy status plus implantation potential.

  20. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  1. Acinic Cell Carcinoma of the Parotid Gland with Four Morphological Features

    PubMed Central

    Rosero, David S; Alvarez, Ramiro; Gambó, Paula; Alastuey, María; Valero, Alberto; Torrecilla, Nerea; Roche, A. Belén; Simón, Sara

    2016-01-01

    Acinic cell carcinoma arising in salivary glands is a rare tumor, accounting for 2% to 5% of the primary neoplasms of the parotid gland. When these tumors are well-differentiated, the neoplasia has innocuous aspect, due to the similarity to normal parotid tissue. This makes the diagnosis difficult. Initially the malignancy of this tumor was uncertain; however, recent studies have declared it as malignant. The female / male ratio is 3:2. The nodule usually presents as solitary and well defined shape. Several authors have used different terms to describe histomorphological patterns of these tumors. Four descriptive categories (solid, microcystic, papillary-cystic and follicular) are useful for pathologists. Here we report a case of a 49 yr old man with a left parotid nodule of 5 cm. Parotidectomy was performed at the Hospital Universitario Miguel Servet, in Zaragoza (Spain). The microscopy showed a tumor with acinic semblance, having the four morphologic patterns previously described. The morphological and immunohistochemical study was consistent with the diagnosis of acinic cell carcinoma. PMID:27499783

  2. Immunohistochemical characterisation of the hepatic stem cell niche in feline hepatic lipidosis: a preliminary morphological study.

    PubMed

    Valtolina, Chiara; Robben, Joris H; Favier, Robert P; Rothuizen, Jan; Grinwis, Guy Cm; Schotanus, Baukje A; Penning, Louis C

    2018-05-01

    Objectives The aim of this study was to describe the cellular and stromal components of the hepatic progenitor cell niche in feline hepatic lipidosis (FHL). Methods Immunohistochemical staining for the progenitor/bile duct marker (K19), activated Kupffer cells (MAC387), myofibroblasts (alpha-smooth muscle actin [α-SMA]) and the extracellular matrix component laminin were used on seven liver biopsies of cats with FHL and three healthy cats. Double immunofluorescence stainings were performed to investigate co-localisation of different cell types in the hepatic progenitor cell (HPC) niche. Results HPCs, Kupffer cells, myofibroblasts and laminin deposition were observed in the liver samples of FHL, although with variability in the expression and positivity of the different immunostainings between different samples. When compared with the unaffected cats where K19 positivity and minimal α-SMA and laminin positivity were seen mainly in the portal area, in the majority of FHL samples K19 and α-SMA-positive cells and laminin positivity were seen also in the periportal and parenchymatous area. MAC387-positive cells were present throughout the parenchyma. Conclusions and relevance This is a preliminary morphological study to describe the activation and co-localisation of components of the HPC niche in FHL. Although the HPC niche in FHL resembles that described in hepatopathies in dogs and in feline lymphocytic cholangitis, the expression of K19, α-SMA, MAC387 and lamin is more variable in FHL, and a common pattern of activation could not be established. Nevertheless, when HPCs were activated, a spatial association between HPCs and their niche could be demonstrated.

  3. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  4. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats.

    PubMed

    Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki

    2009-01-01

    Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

  6. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology.

    PubMed

    Mullen, Brian R; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly; Carpenter, Ellen M

    2016-06-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors-reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon-gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. © The Author(s) 2016.

  7. The relationship between morphological changes of lens epithelial cells and intraocular lens optic material.

    PubMed

    Majima, K

    1998-01-01

    To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.

  8. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    PubMed

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  9. Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours

    PubMed Central

    Molnar, Csaba; Jermyn, Ian H.; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter

    2016-01-01

    The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the “gas of near circles” active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654

  10. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells

    PubMed Central

    HAYASHI, YOSHIHIRO; OSANAI, MAKOTO; LEE, GANG-HONG

    2015-01-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1-positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells. PMID:26252838

  11. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    PubMed

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  12. ACME: Automated Cell Morphology Extractor for Comprehensive Reconstruction of Cell Membranes

    PubMed Central

    Mosaliganti, Kishore R.; Noche, Ramil R.; Xiong, Fengzhu; Swinburne, Ian A.; Megason, Sean G.

    2012-01-01

    The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available

  13. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit amore » density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.« less

  14. Morphological and immunohistochemical characterization of isolated tumor cells by p53 status in gastrointestinal tumors.

    PubMed

    Milsmann, C; Füzesi, L; Heinmöller, E; Krause, P; Werner, C; Becker, H; Horstmann, O

    2008-01-01

    Isolated tumor cells (ITCs) in cancer patients are retrieved mostly using immunohistochemistry with antibodies directed against antiepithelial antigens (for example Ber-EP4), which are supposed not to be present in metastatic-free tissue. To date, there has been ongoing controversy whether those cells have biologic significance and are linked with tumor progression and impaired patient's prognosis. Therefore, the aim of this study was to further characterize Ber-EP4-positive cells in various tissues, with special emphasis on their tumorigenic origin. The frequency and prognostic impact of ITCs in lymph nodes displayed by means of monoclonal antibody Ber-EP4 were evaluated in retrospective (n = 292) and prospective (n = 100) collectives of various gastrointestinal carcinomas free of metastatic disease in conventional histopathology (pN0). Furthermore, the frequency of ITCs in the peritoneal cavity and bone marrow was analyzed in case of absence of overt distant metastasis (pM0) in the prospective collective. Ber-EP4-immunoreactive cells were further characterized for tumorigenic origin using morphological criteria and immunohistochemical double staining for Ber-EP4 and p53. Ber-EP4-positive cells could be revealed in lymph nodes in 44.3% of pN0-gastrointestinal carcinomas, in the peritoneal cavity in 19%, and in the bone marrow in 10%. In lymph nodes, BerEP4-immunoreactive cells exhibited a metastatic-atypical morphology in 59%; however, it was always typical for true tumor cells in the peritoneal cavity or bone marrow. The cumulative 5-year survival rate was adversely affected by Ber-EP4-immunoreactive cells in uni- and multivariate analysis, irrespective of the underlying cell morphology (68% for Ber-EP4 negative, 41% for Ber-EP4 positive with atypical and typical morphology each). In the case of a p53-positive primary tumor, 70% of the corresponding ITCs also overexpressed p53, while the remainder was deemed p53 negative (p = 0.002). ITCs detected by the

  15. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    PubMed

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  17. Correlations between the Dielectric Properties and Exterior Morphology of Cells Revealed by Dielectrophoretic Field-Flow Fractionation

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine

    2013-01-01

    Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680

  18. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  19. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation

    PubMed Central

    Gerami-Nejad, Maryam; Kumamoto, Yosuke; Mohammed, Javed A.; Jarrett, Elizabeth; Drummond, Rebecca A.; Zurawski, Sandra M.; Zurawski, Gerard; Berman, Judith; Iwasaki, Akiko; Brown, Gordon D.; Kaplan, Daniel H.

    2015-01-01

    Summary Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper-17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans, We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1 mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue specific protection. These findings provide insight into compartmentalization of Th responses, C. albicans pathogenesis and have critical implications for vaccine strategies. PMID:25680275

  20. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells.

    PubMed

    Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong

    2017-03-24

    This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  1. Using interactive multimedia e-Books for learning blood cell morphology in pediatric hematology.

    PubMed

    Hsiao, Chih-Cheng; Tiao, Mao-Meng; Chen, Chih-Cheng

    2016-11-14

    This prospective study compares the use of interactive multimedia eBooks (IME) with traditional PowerPoint (TPP) for teaching cell morphology of blood and bone marrow. Fifty-one interns from three Taiwan medical schools training by a single teacher in the pediatric hematology department of Kaohsiung Chang Gung Memorial Hospital, Taiwan, participated in this study. 25 interns were allocated for training with a traditional PowerPoint atlas and 26 interns for training with an interactive multimedia eBook atlas. Learning outcomes were examined by pre-test and post-test using the CellQuiz of CellAtlas App. Attitudes and perceptions were collected by survey questions regarding interest, motivation and effectiveness. There was no difference in the pre-test scores between TPP and IME groups (mean score 27.0 versus 27.9, p = 0.807). However, the interns in the interactive multimedia eBook group achieved significantly better scores in the post-test than the ones in the PowerPoint group (mean score 103.2 versus 70.6; p < 0.001). Overall results of interest, motivation and effectiveness were strongly positive in the multimedia eBook group. Our data supports that interactive multimedia eBooks are more effective than PowerPoint to facilitate learning of cell morphology of blood and bone marrow.

  2. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study.

    PubMed

    Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M

    2007-12-01

    Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

  3. Morphological Changes and Antibiotic-Induced Thermal Resistance in Vegetative Cells of Bacillus subtilis

    PubMed Central

    Dul, Michael J.; McDonald, William C.

    1971-01-01

    The morphology and thermal resistance of vegetative cells of Bacillus subtilis W168 were examined after growth at 37 and 53 C. Vegetative cells grown at 37 C exhibited a typical trilaminar morphology, whereas cells grown at 53 C exhibited a cell wall which was apparently thicker and more loosely organized and had a poorly defined periphery. A concurrent increase in thermal resistance to a heat shock of 60 C occurs with the change in cell wall morphology. The change to the aberrant cell wall form, or its reversal to the normal form, is always accompanied by the gain or the loss of thermal resistance, respectively. The inhibition of protein synthesis by chloramphenicol has little effect upon the acquisition of thermal resistance at 53 C. Addition of the disaccharide pentapeptide subunit to the cell wall peptidoglycan is apparently essential to growth at 53 C and the acquisition of thermal resistance, since both growth and thermal resistance are inhibited by bacitracin. Two antibiotics, penicillin and cycloserine, which inhibit the final cross-linking of the cell wall peptidoglycan at two separate points, do not affect the acquisition of thermal resistance at 53 C. These same antibiotics induce a high degree of thermal resistance at 37 C. It is proposed that a change in the cell wall structure is related to an increased thermal resistance. Images PMID:4995654

  4. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  5. Quantitative phase imaging of platelet: assessment of cell morphology and function

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.

    2017-02-01

    It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.

  6. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  7. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  8. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  9. Morphological features of IFN-γ–stimulated mesenchymal stromal cells predict overall immunosuppressive capacity

    PubMed Central

    Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong

    2017-01-01

    Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659

  10. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  11. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    PubMed

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups.

  12. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay

    PubMed Central

    Bray, Mark-Anthony; Gustafsdottir, Sigrun M; Rohban, Mohammad H; Singh, Shantanu; Ljosa, Vebjorn; Sokolnicki, Katherine L; Bittker, Joshua A; Bodycombe, Nicole E; Dančík, Vlado; Hasaka, Thomas P; Hon, Cindy S; Kemp, Melissa M; Li, Kejie; Walpita, Deepika; Wawer, Mathias J; Golub, Todd R; Schreiber, Stuart L; Clemons, Paul A; Shamji, Alykhan F

    2017-01-01

    Abstract Background Large-scale image sets acquired by automated microscopy of perturbed samples enable a detailed comparison of cell states induced by each perturbation, such as a small molecule from a diverse library. Highly multiplexed measurements of cellular morphology can be extracted from each image and subsequently mined for a number of applications. Findings This microscopy dataset includes 919 265 five-channel fields of view, representing 30 616 tested compounds, available at “The Cell Image Library” (CIL) repository. It also includes data files containing morphological features derived from each cell in each image, both at the single-cell level and population-averaged (i.e., per-well) level; the image analysis workflows that generated the morphological features are also provided. Quality-control metrics are provided as metadata, indicating fields of view that are out-of-focus or containing highly fluorescent material or debris. Lastly, chemical annotations are supplied for the compound treatments applied. Conclusions Because computational algorithms and methods for handling single-cell morphological measurements are not yet routine, the dataset serves as a useful resource for the wider scientific community applying morphological (image-based) profiling. The dataset can be mined for many purposes, including small-molecule library enrichment and chemical mechanism-of-action studies, such as target identification. Integration with genetically perturbed datasets could enable identification of small-molecule mimetics of particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for development of future therapeutics. PMID:28327978

  13. Measurement of red blood cell mechanics during morphological changes

    PubMed Central

    Park, YongKeun; Best, Catherine A.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.; Kuriabova, Tatiana; Henle, Mark L.; Levine, Alex J.; Popescu, Gabriel

    2010-01-01

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell’s morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane’s shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery. PMID:20351261

  14. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    PubMed

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  15. Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells.

    PubMed

    Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C

    2000-09-01

    The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.

  16. Thyroid status alters gill ionic metabolism and chloride cell morphology as evidenced by scanning electron microscopy in a teleost Anabas testudineus (Bloch): short and long term in vivo study.

    PubMed

    Sreejith, P; Beyo, R S; Prasad, G; Sunny, F; Oommen, O V

    2007-12-01

    Gill is the main organ of osmotic regulation in teleosts and chloride cells are the sites of ion transport across gill epithelium. Thyroid hormones are implicated in the regulation of osmotic balance in teleosts also. Treatment with 6-propyl thiouracil (6-PTU) inhibited the membrane bound enzyme Na+K+ ATPase in the gill while triiodothyronine (T3) injection stimulated it in a short-term in vivo study in the teleost Anabas testudineus. Na+, K+ and Ca2+ ions were also decreased in the 6-PTU treated fish and the T3 treatment increased their concentrations in the gill lamellae. The gill morphology also changed according to the thyroid status in the long term study. 6-PTU treatment altered the typical serrated morphology of the gill lamellae, while the T3 treatment reversed it. T3 injection increased the density of pavement and chloride cells as evidenced by scanning electron microscopy. The results demonstrate that physiological status of the thyroid influences gill Na+ pump activity and chloride cell morphological changes. Further, the study suggests a regulatory role of T3 on gill ions (Na+, K+ and Ca2+), Na+K+ and Ca2+ ATPase activity and the different gill cell types in A. testudineus.

  17. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGES

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  18. Morphologic and cytochemical characteristics of blood cells from Hawaiian green turtles

    USGS Publications Warehouse

    Work, Thierry M.; Raskin, R.E.; Balazs, George H.; Whittaker, S.D.

    1998-01-01

    Objective - To identify and characterize blood cells from free-ranging Hawaiian green turtles, Chelonia mydas. Sample Population - 26 green turtles from Puako on the island of Hawaii and Kaneohe Bay on the island of Oahu. Procedure - Blood was examined, using light and electron microscopy and cytochemical stains that included benzidine peroxidase, chloroacetate esterase, alpha naphthyl butyrate esterase, acid phosphatase, Sudan black B, periodic acid-Schiff, and toluidine blue. Results - 6 types of WBC were identified: lymphocytes, monocytes, thrombocytes, heterophils, basophils, and eosinophils (small and large). Morphologic characteristics of mononuclear cells and most granulocytes were similar to those of cells from other reptiles except that green turtles have both large and small eosinophils. Conclusions - Our classification of green turtle blood cells clarifies imporoper nomenclature reported previously and provides a reference for future hematologic studies in this species.

  19. Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina.

    PubMed

    Hellmer, C B; Zhou, Y; Fyk-Kolodziej, B; Hu, Z; Ichinose, T

    2016-02-19

    Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  1. Noninvasive measurement of three-dimensional morphology of adhered animal cells employing phase-shifting laser microscope.

    PubMed

    Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio

    2007-01-01

    Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.

  2. Morphological responses of dissociated sponge cells to different organic substrata.

    PubMed

    Gaino, E; Magnino, G; Burlando, B; Sara', M

    1993-06-01

    To study interactions between sponge cells and components of the extracellular matrix (ECM), cells of the calcareous sponge Clathrina cerebrum were investigated in vitro by scanning electron microscopy. Cells were settled on glass coverslips, used as controls, and on coverslips coated with various ECM components (laminin, collagens and fibronectin), and with an adhesive substance (polylysine). Cells tended to conserve a rounded shape, producing thin, stiff processes (scleropodia) and lamellipodia, whose shape and extension varied according to the substrata. Spreading was observed only on polylysine, inducing cells to assume a fibroblast-like aspect. On laminin, cell adhesion was assured only by scleropodia. On fibronectin, scleropodia and lamellipodia were present, but reduced in size and length. On collagens, laminar processes occurred among prevailing scleropodia. Measurements of cell area and perimeter allowed statistical comparison of substrata, on the basis of their induction of cell flattening and protuberance formation. In summary, sponge cells were found to modulate their morphology in response to the external environment, expressing features for dynamic activities most fully in the presence of substances close to their natural ECM constituents. These results are discussed in the context of tissue rearrangement as a basic adaptation occurring throughout the life span of these organisms.

  3. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  4. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    PubMed Central

    Sopapornamorn, Narumon; Lekskul, Manapon; Panichkul, Suthee

    2008-01-01

    Objective To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors. Methods Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD), coefficient of variation (CV), and percentage of hexagonality. Results The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD), mean percentage of CV (SD) and mean (SD) percentage of hexagonality were 2623.49(325) cell/mm2, 39.43(8.23)% and 51.50(10.99)%, respectively. Statistically, MCD decreased significantly with age (p < 0.01). There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors. Conclusion The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study. PMID:19668398

  5. Comparison of the genotoxic activities of the K-region dihydrodiol of benzo[a]pyrene with benzo[a]pyrene in mammalian cells: morphological cell transformation; DNA damage; and stable covalent DNA adducts.

    PubMed

    Nesnow, Stephen; Davis, Christine; Nelson, Garret B; Lambert, Guy; Padgett, William; Pimentel, Maria; Tennant, Alan H; Kligerman, Andrew D; Ross, Jeffrey A

    2002-11-26

    Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol

  6. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    PubMed

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  7. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Automated classification of cell morphology by coherence-controlled holographic microscopy

    NASA Astrophysics Data System (ADS)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  9. Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex.

    PubMed

    Le Bé, Jean-Vincent; Silberberg, Gilad; Wang, Yun; Markram, Henry

    2007-09-01

    Neocortical pyramidal cells (PCs) project to various cortical and subcortical targets. In layer V, the population of thick tufted PCs (TTCs) projects to subcortical targets such as the tectum, brainstem, and spinal cord. Another population of layer V PCs projects via the corpus callosum to the contralateral neocortical hemisphere mediating information transfer between the hemispheres. This subpopulation (corticocallosally projecting cells [CCPs]) has been previously described in terms of their morphological properties, but less is known about their electrophysiological properties, and their synaptic connectivity is unknown. We studied the morphological, electrophysiological, and synaptic properties of CCPs by retrograde labeling with fluorescent microbeads in P13-P16 Wistar rats. CCPs were characterized by shorter, untufted apical dendrites, which reached only up to layers II/III, confirming previous reports. Synaptic connections between CCPs were different from those observed between TTCs, both in probability of occurrence and dynamic properties. We found that the CCP network is about 4 times less interconnected than the TTC network and the probability of release is 24% smaller, resulting in a more linear synaptic transmission. The study shows that layer V pyramidal neurons projecting to different targets form subnetworks with specialized connectivity profiles, in addition to the specialized morphological and electrophysiological intrinsic properties.

  10. Morphological effects of mesenchymal stem cells and pulsed ultrasound on condylar growth in rats: a pilot study.

    PubMed

    Oyonarte, Rodrigo; Becerra, Daniela; Díaz-Zúñiga, Jaime; Rojas, Victor; Carrion, Flavio

    2013-05-01

    The aim of this study was to assess and describe the morphological effects of an intra-articular iniection of Mesenchymal Stem Cells (MSCs) and/or Low Intensity Pulsed Ultrasound (LIPUS) stimulation on the mandibular condyles of growing rats, using cone beam computed tomography (CBCT) and histology. Twenty-six young (23-day-old) rats were divided into 5 groups identified as LIPUS-stimulated (20 minutes daily using 50 mW/cm2, 1MHz, 0.2 millisecond pulses), MSCs injected (1 x 10(5) cells/kg), LIPUS + MSCs, medium inlected, and untreated controls. All treatments were performed in the left temporomandibular joint of each rat (TMJs). At day 21, CBCTs were obtained for cephalometric analysis and 3D reconstructions. After animal sacrifice, left and right TMJ sections were histologically prepared and examined. The Wilcoxon sign rank test and the Kruskal-Wallis 2 test were applied for statistical comparison. Imaging results showed that left condyles were wider in all LIPUS-treated groups (p < 0.05), while the LIPUS-only group had a greater left sagittal condylar length. LIPUS-treated groups displayed a lower midline shift to the right (p < 0.02). No significant differences were observed in the MSC group. Bone marrow morphology and vascularity differed between the groups as LIPUS-treated groups exhibited increased vascularity in the erosive cartilage zone. It was established that LIPUS and MSC application to the TMJ region of growing rats favoured transverse condylar growth, while LIPUS application alone may enhance sagittal condylar development.The MSC injection model had little effect on sagittal condylar growth.

  11. Physicochemical Constraints on the Distribution of Benthic Foraminiferal Cell Morphology in the Modern Ocean

    NASA Astrophysics Data System (ADS)

    Keating-Bitonti, C.; Payne, J.

    2016-02-01

    Patterns in the sizes and shapes of marine organisms often occur across latitude and water depth gradients as a function of metabolic constraints dictated by the physical environment. However, the environmental factors that maintain these gradients in morphology remain incompletely understood because several oceanographic variables of biological importance are intimately correlated, such as temperature, dissolved oxygen concentration, particulate organic carbon (POC) flux, and carbonate saturation. Benthic foraminifera, a diverse group of single-celled protists that occur in nearly all marine environments, provide an ideal opportunity to test statistically among the various hypothesized environmental controls on cell morphology. Here, we use over 7,000 occurrences of 541 species of recent benthic foraminifera that span more than 60 degrees of latitude and 1,600 meters of water depth around the North American continental margin to assess the relative contributions of temperature, oxygen availability, carbonate saturation, and POC flux on their size and volume-to-surface area ratio in the modern ocean. Seawater temperature and dissolved oxygen concentrations best predict both measures of benthic foraminiferal cell morphology from the North American continental margin. These same variables also explain morphological variations from the Pacific continental margin in isolation, but dissolved oxygen is absent from the best model for the Atlantic. Because our results concur with predictions from first principles of cell physiology, we interpret these findings to reflect the physiological selective pressures on cell morphology as determined by the physical environment. Moreover, these findings suggest that warming waters and the expansion of hypoxic zones associated with anthropogenic-induced climate change are more likely to impact benthic foraminiferal communities than changes in primary productivity or ocean acidification.

  12. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    PubMed

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  13. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Guohua; Zhu, Peng-Peng; Renvoisé, Benoît

    Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATL1, ATL2, and ATL3), and ATL1 and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies. Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. Wemore » have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cerevisiae (Sey1p) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations. - Highlights: • NIH-3T3 cells lacking all three atlastin paralogs were generated using CRISPR/Cas9. • Cells lacking all atlastin GTPases exhibit far fewer 3-way ER tubule junctions. • ER morphology defects in atlastin knockout cells are rescued by distant plant and yeast orthologs. • Atlastin knock out cells

  14. Comparative study of the effect of chloro-, dichloro-, bromo-, and dibromoacetic acid on necrotic, apoptotic and morphological changes in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Michałowicz, Jaromir; Wróblewski, Wojciech; Mokra, Katarzyna; Maćczak, Aneta; Kwiatkowska, Marta

    2015-10-01

    In this study, the effect of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) on human peripheral blood mononuclear cells (PBMCs) was assessed. HAAs studied induced at millimolar concentrations necrotic alterations in PBMCs with the strongest effect noted for MBAA and DBAA. Chloro- and bromoacetic acids also provoked changes in PBMCs morphology because they caused a strong decrease in cell size (particularly DCAA and DBAA) and increase in cell granulation (mainly MBAA and DBAA). All HAAs studied, and DCAA and DBAA in particular (at lower concentrations than those, which caused necrosis) induced apoptotic changes, which was confirmed by analysis of alterations in cell membrane permeability and caspase 8, 9 and 3 activation. Moreover, HAAs examined (mainly dihalogenated acids) strongly increased transmembrane mitochondrial potential and enhanced ROS (mainly hydroxyl radical) formation, which was possibly associated with apoptotic changes provoked by those substances. The results showed that DBAA exhibited the strongest effects on PBMCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3H10T1/2CL8 CELLS

    EPA Science Inventory

    ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3HIOT1/2 CL8 CELLS.

    Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interacti...

  16. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    PubMed Central

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  17. Determination of active layer morphology in all-polymer photovoltaic cells

    DOE PAGES

    Mulderig, Andrew J.; Jin, Yan; Yu, Fei; ...

    2017-08-18

    This paper investigates the structure of films spin-coated from blends of the semiconducting polymers poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly{2,6-[4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene]-alt-4,7(2,1,3-benzo­thiadiazole)} (PCPDTBT). Such blends are of potential use in all-polymer solar cells in which both the acceptor and the donor material generate excitons to contribute to the photocurrent. Prompted by threefold performance gains seen in polymer/fullerene and polymer blend solar cells upon addition of pristine graphene, devices are prepared from P3HT/PCPDTBT blends both with and without graphene. This report focuses on the morphology of the active layer since this is of critical importance in determining performance. Small-angle neutron scattering (SANS) is utilized tomore » study this polymer blend with deuterated P3HT to provide contrast and permit the investigation of buried structure in neat and graphene-doped films. SANS reveals the presence of P3HT crystallites dispersed in an amorphous blend matrix of P3HT and PCPDTBT. The crystallites are approximately disc shaped and do not show any evidence of higher-order structure or aggregation. While the structure of the films does not change with the addition of graphene, there is a perceptible effect on the electronic properties and energy conversion efficiency in solar cells made from such films. Finally, determination of the active layer morphology yields crucial insight into structure–property relationships in organic photovoltaic devices.« less

  18. Determination of active layer morphology in all-polymer photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulderig, Andrew J.; Jin, Yan; Yu, Fei

    This paper investigates the structure of films spin-coated from blends of the semiconducting polymers poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly{2,6-[4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene]-alt-4,7(2,1,3-benzo­thiadiazole)} (PCPDTBT). Such blends are of potential use in all-polymer solar cells in which both the acceptor and the donor material generate excitons to contribute to the photocurrent. Prompted by threefold performance gains seen in polymer/fullerene and polymer blend solar cells upon addition of pristine graphene, devices are prepared from P3HT/PCPDTBT blends both with and without graphene. This report focuses on the morphology of the active layer since this is of critical importance in determining performance. Small-angle neutron scattering (SANS) is utilized tomore » study this polymer blend with deuterated P3HT to provide contrast and permit the investigation of buried structure in neat and graphene-doped films. SANS reveals the presence of P3HT crystallites dispersed in an amorphous blend matrix of P3HT and PCPDTBT. The crystallites are approximately disc shaped and do not show any evidence of higher-order structure or aggregation. While the structure of the films does not change with the addition of graphene, there is a perceptible effect on the electronic properties and energy conversion efficiency in solar cells made from such films. Finally, determination of the active layer morphology yields crucial insight into structure–property relationships in organic photovoltaic devices.« less

  19. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and proteinmore » expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.« less

  20. Morphological study on permeating efficiency and localization of FCLA and HpD through membrane of lung cancer cell

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Tang, Yonghong

    2004-07-01

    It is reported that apoptosis of cancer cells in photodynamic therapy (PDT) is caused by 1O2 generated in photosensitization. In order to study the mechanism of this kind of 1O2-induced apoptosis, it is necessary to establish a special technique to dynamically detect intracellular production and localization of 1O2. FCLA, as a chemiluminescence probe to detect singlet oxygen (1O2) and superoxide (O2-.), has been used successfully in photodynamic and sonodynamic diagnosis in tissue level, recently. This paper reported a preliminary result of morphological study on permeating efficiency and localization of FCLA and hematoporphyrin derivative (HpD) through cellular membrane. Human lung cancer cell line (ASTC-a-1) was used in the experiment. The result of this research showed that both HpD and FCLA could permeate through cellular membrane and localize to prinuclear area, when HpD or FCLA was incubated with cells. Although the molecular weight of HpD is close to FCLA's, the permeating efficiency of HpD through membrane was different from that of FCLA. Intracellular FCLA concentration reached a peak after incubation for only 30 - 45 minutes, but amount of HpD in cells approached the equilibrium after incubation for near 22 h. In the experiment, we did not observe the evidence of FCLA or HpD penetrating into nucleolus. This study suggests that it is possibly to use a specific chemiluminescence probe to dynamcially detect the production and localization of 1O2 or 02-. in cell.

  1. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  2. Cytomorphometric and Morphological Analysis in Women with Trichomonas vaginalis Infection: Micronucleus Frequency in Exfoliated Cervical Epithelial Cells.

    PubMed

    Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz

    2015-01-01

    The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.

  3. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts

    PubMed Central

    Pan, Qian Sheng; Fang, Zhi Ping; Huang, Feng Jie

    2000-01-01

    AIM: To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species. METHODS: Two kinds of immunocytochemical (ICC) techniques of the streptavidin biotin-peroxidase complex (SABC) and streptavidin-peroxidase (S-P) method were used. The identification, localization and morphology of APUD endocrine cells scattered in the mucosa of digestive tract, intermuscular nerve plexus and glandular body of northern snakehead (Channa argus), ricefield eel (Monopterus albus), yellow catfish (Pelteobagrus ful vidraco), mandarinfish (Siniperca chuatsi), largemouth bass (Micropterus salmoides), oriental sheatfish (Silurus asotus), freshwater pomfret (Colossoma brachypomum) and nile tilapia (Tilapia nilotica) were investigated with 8 kinds of antisera. RESULTS: The positive reaction of 5-hydroxytryptamine (5-HT) immunoreactive endocrine (IRE) cells was found in the digestive tract and glandular body of 8 fish species in different degree. Only a few gastrin (GAS)-IRE cells were seen in C. argus, M. albus and P. fulvidraco. Glucagon (GLU)-IRE cells were not found in the digestive tract and glandular body but existed in pancreatic island of most fish species. The positive reaction of growth hormone (GH)-IRE cells was found only in pancreatic island of S. Chuatsi and S. Asotus, no positive reaction in the other 6 fish species. Somatostatin (SOM), calcitonin (CAL), neurofilament (NF) and insulin (INS)-IRE cells in the stomach, intestine and pancreas of 8 kinds of fish were different in distribution and types. The distribution of all 8 APUD cells was the most in gastrointestinal epithelium mucosa and then in digestive glands. The positive reaction of SOM- and 5-HT-IRE cells was found in intermuscular nerve plexus of intestine of P. fulvidraco and S.chuatsi. Only GH-IRE cells were densely scattered in the pancreatic

  4. On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold.

    PubMed

    Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H

    2017-09-01

    In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    PubMed

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary.

    PubMed

    Parvari, Soraya; Abbasi, Mehdi; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-06-19

    An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.

  8. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  9. Multiscale Morphology of Organic Semiconductor Thin Films Controls the Adhesion and Viability of Human Neural Cells

    PubMed Central

    Tonazzini, I.; Bystrenova, E.; Chelli, B.; Greco, P.; Stoliar, P.; Calò, A.; Lazar, A.; Borgatti, F.; D'Angelo, P.; Martini, C.; Biscarini, F.

    2010-01-01

    Abstract We investigate how multiscale morphology of functional thin films affects the in vitro behavior of human neural astrocytoma 1321N1 cells. Pentacene thin film morphology is precisely controlled by means of the film thickness, Θ (here expressed in monolayers (ML)). Fluorescence and atomic force microscopy allow us to correlate the shape, adhesion, and proliferation of cells to the morphological properties of pentacene films controlled by saturated roughness, σ, correlation length, ξ, and fractal dimension, df. At early incubation times, cell adhesion exhibits a transition from higher to lower values at Θ ≈ 10 ML. This is explained using a model of conformal adhesion of the cell membrane onto the growing pentacene islands. From the model fitting of the data, we show that the cell explores the surface with a deformation of the membrane whose minimum curvature radius is 90 (± 45) nm. The transition in the adhesion at ∼10 ML arises from the saturation of ξ accompanied by the monotonic increase of σ, which leads to a progressive decrease of the pentacene local radius of curvature and hence to the surface area accessible to the cell. Cell proliferation is also enhanced for Θ < 10 ML, and the optimum morphology parameter ranges for cell deployment and growth are σ ≤ 6 nm, ξ > 500 nm, and df > 2.45. The characteristic time of cell proliferation is τ ≈ 10 ± 2 h. PMID:20550892

  10. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  11. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  12. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties

    PubMed Central

    Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.

    2015-01-01

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037

  13. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties.

    PubMed

    Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A

    2015-04-21

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).

  14. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    PubMed

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration.

    PubMed

    Dwane, Susan; Durack, Edel; Kiely, Patrick A

    2013-09-11

    Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.

  16. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  17. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    NASA Technical Reports Server (NTRS)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  19. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    PubMed

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.

  20. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I.-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-10-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates.

  1. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    NASA Astrophysics Data System (ADS)

    Genova, J.; Decheva-Zarkova, M.; Pavlič, J. I.

    2016-02-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10-5 g/l in the outer for the liposome's membrane solution. At concentration 10-3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape.

  2. Distinct Morphology of Human T-Cell Leukemia Virus Type 1-Like Particles

    PubMed Central

    Maldonado, José O.; Cao, Sheng; Zhang, Wei; Mansky, Louis M.

    2016-01-01

    The Gag polyprotein is the main retroviral structural protein and is essential for the assembly and release of virus particles. In this study, we have analyzed the morphology and Gag stoichiometry of human T-cell leukemia virus type 1 (HTLV-1)-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM). HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, we have observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Other morphological features that have been previously observed with other retroviruses include: (1) a Gag lattice with multiple discontinuities; (2) membrane regions associated with the Gag lattice that exhibited a string of bead-like densities at the inner leaflet; and (3) an arrangement of the Gag lattice resembling a railroad track. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date. PMID:27187442

  3. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection.

    PubMed

    Hua, Tao; Zhang, Xuehua; Tang, Bo; Chang, Chen; Liu, Guoyang; Feng, Lei; Yu, Yang; Zhang, Daohua; Hou, Jibo

    2018-04-24

    Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.

  4. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    PubMed Central

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  5. Characterization of morphological response of red cells in a sucrose solution.

    PubMed

    Rudenko, Sergey V

    2009-01-01

    The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.

  6. Corneal endothelial cell density and morphology in normal Iranian eyes.

    PubMed

    Hashemian, Mohammad Nasser; Moghimi, Sasan; Fard, Masood Aghsaie; Fallah, Mohammad Reza; Mansouri, Mohammad Reza

    2006-03-06

    We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD), mean cell area (MCA) and coefficient of variation (CV) in cell area were analyzed in all of the 525 eyes. MCD was 1961 +/- 457 cell/mm2 and MCA was 537.0 +/- 137.4 microm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively). There was a statistically significant decrease in MCD with age (P < 0.001, r = -0.64). The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P < 0.001,r = 0.56) and CV (P < 0.001, r = 0.30) from 20 to 85 years of age. The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations.

  7. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  8. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  9. Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells.

    PubMed

    Ma, Yan-Mei; Ibeanu, Gordon; Wang, Li-Yao; Zhang, Jian-Zhong; Chang, Yue; Dong, Jian-Da; Li, P Andy; Jing, Li

    2017-01-19

    Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.

  10. Morphological changes and viability of primary cultured human ocular trabecular meshwork cells after exposure to air.

    PubMed

    Kopsachilis, Nikolaos; Tsaousis, Konstantinos T; Carifi, Gianluca; Welge-Luessen, Ulrich

    2014-06-01

    To investigate the possible toxic effect of air exposure for an in vitro model of primary human ocular trabecular meshwork cells (HTM). HTM were isolated from five donor eyes and cultivated at 37 °C. After reaching confluence the cells were seeded on two well chamber slides. The chamber slides were turned upside down in a Petri culture dish full of culture medium and filled with air using a 5 ml syringe, starting this way the exposure of the cells to the air. Subsequently they were placed in the incubation chamber at 37 °C. Six groups of HTM cultures were set up: group 1 consisted of samples in which HTM were exposed to air for 30 min, group 2 for 1 h, group 3 for 3 h, group 4 for 6 h, group 5 for 12 h and group 6 for 24 h. At 3 h after exposure, the morphology of the cells was still intact, at 6 h few cells appeared deformed and exhibited characteristics of more senescent cells. At 12 h after exposure to air the HTM cells started losing their typical morphology and appeared enlarged and compromised. Viability was superior to 94% in groups 1-3 while for groups 4, 5, 6 it was 82.7%, 39.5% and 12.7% respectively. The toxic effect of air exposure for the studied in vitro model of HTM is not significant for the time period of one to three hours. However it starts reducing viability and alternating morphology 6 h after exposure until the time period of 24 h, where the percentage of living cells is drastically decreased. Therefore, we suggest that the use of an air bubble especially in glaucomatous patients should be applied with caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  12. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. DMPS reverts morphologic and mitochondrial damage in OK cells exposed to toxic concentrations of HgCl2.

    PubMed

    Carranza-Rosales, Pilar; Guzmán-Delgado, Nancy E; Cruz-Vega, Delia E; Balderas-Rentería, Isaías; Gandolfi, A Jay

    2007-05-01

    Mercuric chloride (HgCl(2)) is a highly toxic compound, which can cause nephrotoxic damage. In the present study effects of HgCl(2) on mitochondria integrity and energy metabolism, as well as antidotal effects of 2,3-dimercaptopropane-1-sulfonate (DMPS) were investigated in the opossum kidney derived cell line (OK). OK cell monolayers were incubated during 0, 1, 3, 6, and 9 h in serum-free culture medium containing 15 microM HgCl(2), either in the absence or in the presence of 60 microM DMPS in a 1:4 ratio. Intracellular ATP content, MTT reduction, and HSP70/HSP90 induction were studied; confocal, transmission electron microscopy, and light microscopy studies were also performed. For confocal analysis, a mitochondrial selective probe (MitoTracker Red CMXH2Ros) was used. Antioxidant activity of DMPS was also studied by the scavenging of the free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) technique. A decrease of ATP content, an impaired ability to reduce tetrazolium, and dramatic changes on cellular and mitochondrial morphology, and energetic levels were found after either 6 or 9 h of HgCl(2) exposure. Increased expression of HSP90 and HSP70 were also seen. When OK cells were co-incubated with HgCl(2) and DMPS, cellular morphology, viability, intracellular ATP, and mitochondrial membrane potential were partially restored; a protective effect on mitochondrial morphology was also seen. DMPS also showed potent antioxidant activity in vitro. Mitochondrial protection could be the cellular mechanism mediated by DMPS in OK cells exposed to a toxic concentration of HgCl(2).

  14. A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture.

    PubMed

    Pilati, Nadia; Barker, Matthew; Panteleimonitis, Sofoklis; Donga, Revers; Hamann, Martine

    2008-06-01

    The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.

  15. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  16. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    PubMed

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.

  17. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration

    PubMed Central

    2013-01-01

    Background Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. Results The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. Conclusions We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events. PMID:24025096

  18. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo).

    PubMed

    Isayama, Tomoki; O'Brien, Brendan J; Ugalde, Irma; Muller, Jay F; Frenz, Aaron; Aurora, Vikas; Tsiaras, William; Berson, David M

    2009-12-01

    The ferret is the premiere mammalian model of retinal and visual system development, but the spectrum and properties of its retinal ganglion cells are less well understood than in another member of the Carnivora, the domestic cat. Here, we have extensively surveyed the dendritic architecture of ferret ganglion cells and report that the classification scheme previously developed for cat ganglion cells can be applied with few modifications to the ferret retina. We confirm the presence of alpha and beta cells in ferret retina, which are very similar to those in cat retina. Both cell types exhibited an increase in dendritic field size with distance from the area centralis (eccentricity) and with distance from the visual streak. Both alpha and beta cell populations existed as two subtypes whose dendrites stratified mainly in sublamina a or b of the inner plexiform layer. Six additional morphological types of ganglion cells were identified: four monostratified cell types (delta, epsilon, zeta, and eta) and two bistratified types (theta and iota). These types closely resembled their counterparts in the cat in terms of form, relative field size, and stratification. Our data indicate that, among carnivore species, the retinal ganglion cells resemble one another closely and that the ferret is a useful model for studies of the ontogenetic differentiation of ganglion cell types.

  19. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  20. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells.

    PubMed

    Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin

    2017-02-01

    Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.

  1. Role of 4- tert -Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh

    2016-09-14

    Hybrid organic-inorganic materials for high efficiency, low cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for amore » re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long term effects, over 1000 hours, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process and thus this study highlights the need for additive materials with higher boiling points for consistent long term performance of PSCs.« less

  2. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells.

    PubMed

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Devaraj, Arun; Meng, Ying Shirley

    2016-09-14

    Hybrid organic-inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling points for consistent long-term performance of PSCs.

  3. Foveolar Müller Cells of the Pied Flycatcher: Morphology and Distribution of Intermediate Filaments Regarding Cell Transparency.

    PubMed

    Zueva, Lidia; Golubeva, Tatiana; Korneeva, Elena; Makarov, Vladimir; Khmelinskii, Igor; Inyushin, Mikhail

    2016-04-01

    Specialized intermediate filaments (IFs) have critical importance for the clearness and uncommon transparency of vertebrate lens fiber cells, although the physical mechanisms involved are poorly understood. Recently, an unusual low-scattering light transport was also described in retinal Müller cells. Exploring the function of IFs in Müller cells, we have studied the morphology and distribution pattern of IFs and other cytoskeletal filaments inside the Müller cell main processes in the foveolar part of the avian (pied flycatcher) retina. We found that some IFs surrounded by globular nanoparticles (that we suggest are crystallines) are present in almost every part of the Müller cells that span the retina, including the microvilli. Unlike IFs implicated in the mechanical architecture of the cell, these IFs are not connected to any specific cellular membranes. Instead, they are organized into bundles, passing inside the cell from the endfeet to the photoreceptor, following the geometry of the processes, and repeatedly circumventing numerous obstacles. We believe that the presently reported data effectively confirm that the model of nanooptical channels built of the IFs may provide a viable explanation of Müller cell transparency.

  4. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    PubMed

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  5. A morphological and immunophenotypic map of the immune response in Merkel cell carcinoma.

    PubMed

    Walsh, Noreen M; Fleming, Kirsten E; Hanly, John G; Dakin Hache, Kelly; Doucette, Steve; Ferrara, Gerardo; Cerroni, Lorenzo

    2016-06-01

    The susceptibility of Merkel cell carcinoma to the host immune response has prompted a search for effective immunotherapy. CD8-positive T lymphocytes are considered key effectors of this response, but the cellular infiltrates also harbor tumor-protective agents. By developing a comprehensive morphological and immunophenotypic map of tumor-infiltrating lymphocytes (TILS) in Merkel cell carcinoma, we aimed to establish a useful template for future studies. Twenty-two cases (mean age, 79years [range, 52-95]; male-female ratio, 10:12) were studied. TILS were categorized as brisk (7), nonbrisk (9), and absent(6). Merkel cell polyomavirus (MCPyV)-positive (16) and -negative (6) cases were included, as were those with pure (18) and combined (4) morphologies. One MCPyV+ case had undergone spontaneous regression. Immunohistochemical markers included CD3, CD4, CD8, CD20, CD68, FoxP3, PD-1, and CD123. Statistical analysis used Fisher exact tests and Spearman correlations. There was a significant correlation between brisk TILs and MCPyV+ status (P=.025). CD8+ T lymphocytes predominated, were present in significantly higher proportions in brisk infiltrates (P=.003), and showed a significant predilection for the intratumoral environment (P=.003). Immune inhibitors including T regulatory cells (FOXP3+) and PD-1+ "exhausted" immunocytes were present in lower proportions. Our findings support (1) the link between a brisk immune response and MCPyV positivity, (2) the supremacy of CD8+ cells in effecting immunity, and (3) the incorporation of immune inhibitors within the global infiltrate. Efforts to therapeutically arm the "effectors" and disarm the "detractors" are well focused. These will likely have the greatest impact on MCPyV-positive cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells

    PubMed Central

    Irani, Niloufer G; Grotewold, Erich

    2005-01-01

    Background Plant pigmentation is affected by a variety of factors. Light, an important plant developmental signal, influences the accumulation of anthocyanins primarily through the activation of the transcription factors that regulate the flavonoid biosynthetic pathway. In this study, we utilized maize Black Mexican Sweet (BMS) cells expressing the R and C1 regulators of anthocyanin biosynthesis from a light-insensitive promoter as a means to investigate the existence of additional levels of control of pigmentation by light. Results BMS cells expressing the R and C1 regulators from the CaMV 35S constitutive promoter accumulate anthocyanins when grown in complete darkness, suggesting that the transcription factors R and C1 are sufficient for the transcription of the genes corresponding to the structural enzymes of the pathway, with no requirement for additional light-induced regulators. Interestingly, light induces a "darkening" in the color of the purple anthocyanin pigmentation of transgenic BMS cells expressing R and C1. This change in the pigment hue is not associated with a variation in the levels or types of anthocyanins present, or with an alteration of the transcript levels of several flavonoid biosynthetic genes. However, cytological observations show that light drives unexpected changes in the morphology and distribution of the anthocyanins-containing vacuolar compartments. Conclusion By uncoupling the effect of light on anthocyanin accumulation, we have found light to induce the fusion of anthocyanin-containing vacuoles, the coalescence of anthocyanic vacuolar inclusion (AVI)-like structures contained, and the spread of anthocyanins from the inclusions into the vacuolar sap. Similar light-induced alterations in vacuolar morphology are also evident in the epidermal cells of maize floral whorls accumulating anthocyanins. Our findings suggest a novel mechanism for the action of light on the vacuolar storage of anthocyanin. PMID:15907203

  7. "Atypical" Pleomorphic Lipomatous Tumor: A Clinicopathologic, Immunohistochemical and Molecular Study of 21 Cases, Emphasizing its Relationship to Atypical Spindle Cell Lipomatous Tumor and Suggesting a Morphologic Spectrum (Atypical Spindle Cell/Pleomorphic Lipomatous Tumor).

    PubMed

    Creytens, David; Mentzel, Thomas; Ferdinande, Liesbeth; Lecoutere, Evelyne; van Gorp, Joost; Atanesyan, Lilit; de Groot, Karel; Savola, Suvi; Van Roy, Nadine; Van Dorpe, Jo; Flucke, Uta

    2017-11-01

    The classification of the until recently poorly explored group of atypical adipocytic neoplasms with spindle cell features, for which recently the term atypical spindle cell lipomatous tumor (ASLT) has been proposed, remains challenging. Recent studies have proposed ASLT as a unique entity with (in at least a significant subset of cases) a specific genetic background, namely deletions/losses of 13q14, including RB1 and its flanking genes RCBTB2, DLEU1, and ITM2B. Similar genetic aberrations have been reported in pleomorphic liposarcomas (PLSs). This prompted us to investigate a series of 21 low-grade adipocytic neoplasms with a pleomorphic lipoma-like appearance, but with atypical morphologic features (including atypical spindle cells, pleomorphic [multinucleated] cells, pleomorphic lipoblasts and poor circumscription), for which we propose the term "atypical" pleomorphic lipomatous tumor (APLT). Five cases of PLS were also included in this study. We used multiplex ligation-dependent probe amplification to evaluate genetic changes of 13q14. In addition, array-based comparative genomic hybridization was performed on 4 APLTs and all PLSs. Multiplex ligation-dependent probe amplification showed consistent loss of RB1 and its flanking gene RCBTB2 in all cases of APLT. This genetic alteration was also present in all PLSs, suggesting genetic overlap, in addition to morphologic overlap, with APLTs. However, array-based comparative genomic hybridization demonstrated more complex genetic alterations with more losses and gains in PLSs compared with APLTs. APLTs arose in the subcutis (67%) more frequently than in the deep (subfascial) soft tissues (33%). With a median follow-up of 42 months, recurrences were documented in 2 of 12 APLTs for which a long follow-up was available. Herein, we also demonstrate that APLTs share obvious overlapping morphologic, immunohistochemical, genetic and clinical characteristics with the recently defined ASLT, suggesting that they are related

  8. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  9. Corneal endothelial cell density and morphology in normal Iranian eyes

    PubMed Central

    Hashemian, Mohammad Nasser; Moghimi, Sasan; Fard, Masood Aghsaie; Fallah, Mohammad Reza; Mansouri, Mohammad Reza

    2006-01-01

    Background We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Methods Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD), mean cell area (MCA) and coefficient of variation (CV) in cell area were analyzed in all of the 525 eyes. Results MCD was 1961 ± 457 cell/mm2 and MCA was 537.0 ± 137.4 μm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively). There was a statistically significant decrease in MCD with age (P < 0.001, r = -0.64). The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P < 0.001,r = 0.56) and CV (P < 0.001, r = 0.30) from 20 to 85 years of age. Conclusion The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations. PMID:16519812

  10. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.

    PubMed

    Meadows, Adam L; Kong, Becky; Berdichevsky, Marina; Roy, Siddhartha; Rosiva, Rosiva; Blanch, Harvey W; Clark, Douglas S

    2008-01-01

    The metabolic and morphological characteristics of two human epithelial breast cell populations--MCF7 cells, a cancerous cell line, and 48R human mammary epithelial cells (48R HMECs), a noncancerous, finite lifespan cell strain--were compared at identical growth rates. Both cell types were induced to grow rapidly in nutrient-rich media containing 13C-labeled glucose, and the isotopic enrichment of cellular metabolites was quantified to calculate metabolic fluxes in key pathways. Despite their similar growth rates, the cells exhibited distinctly different metabolic and morphological profiles. MCF7 cells have an 80% smaller exposed surface area and contain 26% less protein per cell than the 48R cells. Surprisingly, rapidly proliferating 48R cells exhibited a 225% higher per-cell glucose consumption rate, a 250% higher per-cell lactate production rate, and a nearly identical per-cell glutamine consumption rate relative to the cancer cell line. However, when fluxes were considered on the basis of exposed area, the cancer cells were observed to have higher glucose, lactate, and glutamine fluxes, demonstrating superior transport capabilities per unit area of cell membrane. MCF7 cells also consumed amino acids at rates much higher than are generally required for protein synthesis, whereas 48R cells generally did not. Pentose phosphate pathway activity was higher in MCF7 cells, and the flux of glutamine to glutamate was less reversible. Energy efficiency was significantly higher in MCF7 cells, as a result of a combination of their smaller size and greater reliance on the TCA cycle than the 48R cells. These observations support evolutionary models of cancer cell metabolism and suggest targets for metabolic drugs in metastatic breast cancers.

  11. Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota

    2013-11-01

    Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Hibernating myocardium, morphological studies on intraoperatory myocardial biopsies and on chronic ischemia experimental model.

    PubMed

    Laky, D; Parascan, Liliana

    2007-01-01

    Hibernating myocardium represent a prolonged but potentially reversible myocardial contractile dysfunction, an incomplete adaptation caused by chronic myocardial ischemia and persisting at least until blood flow restored. The purpose of this study was to investigate the morphological changes and weather relations exist among function, metabolism and structure in left ventricular hibernating myocardium. Material and methods. Experimental study is making on 12 dogs incomplete coronary obstruction during six weeks for morphologic studies of ischemic zones. On 48 patients with coronary stenosis myocardial biopsies was effectuated during aorto-coronarian bypass graft. On 60 patients with valvular disease associated with segmental coronary atherosclerotic obstructions during surgical interventions on a effectuated repeatedly biopsies from ischemic zones. Dyskinetic ischemic areas was identified by angiography, scintigraphy, low dose dobutamine echography to identify the cells viability. On myocardial biopsies various histological, histoenzymological, immunohistochemical and ultrastructural methods were performed. The morphological cardiomyocytic changes can summarized: loss of myofilaments, accumulation of glycogen, small mitochondria with reversible lesions, decrease of smooth reticulum, absence of T tubules, depression of titin in puncted pattern, loss of cardiotonin, disorganization of cytoskeleton, dispersed nuclear heterochromatin, embryofetal dedifferentiation, and persistence of viability. Extracellular matrix is enlarged with early matrix protein such fibronectin, tenascin, fibroblasts. In experimental material the morphological changes present similarities with the human biopsies, but intermixed with postinfarction scar tissue. Redifferentiation of hibernanting cells end remodeling of extracellular matrix is possible after quigle revascularization through aorto-coronary bypass grafts.

  13. SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT).

    PubMed

    Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S

    2004-01-01

    In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.

  14. Morphological and genetical changes of endothelial progenitor cells after in-vitro conversion into photoreceptors.

    PubMed

    Qiang, Shi; Alsaeedi, Hiba Amer; Yuhong, Cheng; Yang, Hao; Tong, Li; Kumar, Suresh; Higuchi, Akon; Alarfaj, Abdullah A; Munisvaradass, Rusheni; Ling, Mok Pooi; Cheng, Pei

    2018-06-01

    Retinal degeneration is a condition ensued by various ocular disorders such as artery occlusion, diabetic retinopathy, retrolental fibroplasia and retinitis pigmentosa which cause abnormal loss of photoreceptor cells and lead to eventual vision impairment. No efficient treatment has yet been found, however, the use of stem cell therapy such as bone marrow and embryonic stem cells has opened a new treatment modality for retinal degenerative diseases. The major goal of this study is to analyze the potential of endothelial progenitor cells derived from bone marrow to differentiate into retinal neural cells for regenerative medicine purposes. In this study, endothelial progenitor cells were induced in-vitro with photoreceptor growth factor (taurine) for 21 days. Subsequently, the morphology and gene expression of CRX and RHO of the photoreceptors-induced EPCs were examined through immunostaining assay. The results indicated that the induced endothelial progenitor cells demonstrated positive gene expression of CRX and RHO. Our findings suggested that EPC cells may have a high advantage in cell replacement therapy for treating eye disease, in addition to other neural diseases, and may be a suitable cell source in regenerative medicine for eye disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    PubMed Central

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  16. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation.

  17. Glioma grading using cell nuclei morphologic features in digital pathology images

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  18. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  19. A Rapid Method Combining Golgi and Nissl Staining to Study Neuronal Morphology and Cytoarchitecture

    PubMed Central

    Pilati, Nadia; Barker, Matthew; Panteleimonitis, Sofoklis; Donga, Revers; Hamann, Martine

    2008-01-01

    The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet–labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes. (J Histochem Cytochem 56:539–550, 2008) PMID:18285350

  20. Laser synthesized super-hydrophobic conducting carbon with broccoli-type morphology as a counter-electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra

    2012-10-01

    A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g

  1. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    PubMed

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets

  2. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    NASA Astrophysics Data System (ADS)

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-12-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only 22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  3. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips.

    PubMed

    Moussa, Hassan I; Logan, Megan; Siow, Geoffrey C; Phann, Darron L; Rao, Zheng; Aucoin, Marc G; Tsui, Ting Y

    2017-01-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  4. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  5. Sodium and calcium currents in neuroblastoma x glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP.

    PubMed

    Bodewei, R; Hering, S; Schubert, B; Wollenberger, A

    1985-04-01

    Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.

  6. Quenching influence of cell culture medium on photoluminescence and morphological structure of porous silicon

    NASA Astrophysics Data System (ADS)

    Unal, Bayram

    2011-10-01

    In this work, the degradation of visible photoluminescence of porous silicon (PSi) under the influential actions of cell culture medium has been mainly studied in order to comprehend the quenching mechanisms necessitating the cell growth on spongy-like-silicon structures, which could form either micro- and/or nano-dimensional morphologies after stain-etching of the poly- or single-crystalline Si surfaces. Quenching effect of the neuron culture medium on visibly luminescent and non-luminescent porous silicon is found to be quite obvious so that this step of the culture process, especially, over nanostructured silicon is extremely essential for a variety of bionanotechnological applications.

  7. Antibacterial activity and morphological changes of Pseudomonas aeruginosa cells after exposure to Vernonia cinerea extract.

    PubMed

    Latha, Lachimanan Yoga; Darah, Ibrahim; Kassim, Mohd Jain Noordin Mohd; Sasidharan, Sreenivasan

    2010-08-01

    The antibacterial activity of Vernonia cinerea (L.) extract was investigated using the broth dilution method. The extract showed a favorable antimicrobial activity against Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 3.13 mg/mL. V. cinerea extract at (1/2), 1, or 2 times the MIC significantly inhibited bacterial growth with a noticeable drop in optical density (OD) of the bacterial culture, thus confirming the antibacterial activity of the extract on P. aeruginosa. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated P. aeruginosa. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the bacterial cells. The main reason for this destruction was the severe alterations of the cell wall with the formation of holes, invaginations, and morphological disorganization caused by the extract. The authors conclude that the extract may be used as a candidate for the development of antimicrobial agents.

  8. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age

    PubMed Central

    Waaijer, Mariëtte E. C.; Gunn, David A.; Adams, Peter D.; Pawlikowski, Jeff S.; Griffiths, Christopher E. M.; van Heemst, Diana; Slagboom, P. Eline; Westendorp, Rudi G. J.; Maier, Andrea B.

    2016-01-01

    Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies from 178 participants (aged 45–81 years) of the Leiden Longevity Study. Local elastic fiber morphology, facial wrinkles, and perceived facial age were compared to tertiles of p16INK4a counts, while adjusting for chronological age and other potential confounders. The numbers of epidermal and dermal p16INK4a positive cells were significantly associated with age-associated elastic fiber morphologic characteristics, such as longer and a greater number of elastic fibers. The p16INK4a positive epidermal cells (identified as primarily melanocytes) were also significantly associated with more facial wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin are indicative of both local elastic fiber morphology and the extent of aging visible in the face. PMID:26286607

  9. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia; Chen, Jihua; Khodakovskaya, Mariya

    2016-07-01

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%-46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml-1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by the addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. These established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.

  10. Morphology and function of lacrimal gland acinar cells in primary culture.

    PubMed

    Hann, L E; Tatro, J B; Sullivan, D A

    1989-01-01

    The objectives of the current investigation were fourfold: (1) to establish an effective procedure for the isolation of acinar cells from the rat lacrimal gland; (2) to evaluate the functional capacity of freshly isolated cells; (3) to determine defined culture conditions which permit maintenance of viable, differentiated cells, as well as secretory component (SC) production, during long-term culture; and (4) to characterize the morphological features of cultured cells. Acinar cells were isolated by serial incubation of gland fragments in chelating and enzymatic solutions, followed by centrifugation through a Ficoll gradient. The yield of viable cells/gland appeared to be age-dependent: cell recovery was inversely proportional to the age of the animals. Immunofluorescence analysis of freshly isolated cells showed the presence of SC, the IgA antibody receptor, within isolated cells. In addition, experiments with a labeled analog (Nle4-D-Phe7-alpha MSH) of alpha-melanocyte-stimulating hormone (alpha-MSH) demonstrated specific binding sites on freshly isolated cells; alpha-MSH is a known modulator of acinar protein secretion. Maximum binding of the alpha-MSH analog occurred within 30 min, was dependent upon cell density and was reduced by coincubation with unlabeled alpha-MSH. To determine the culture requirements of acinar cells, cells were cultured on a variety of substrates (plastic or modified plastic [Primaria], coated with or without extracellular matrix [Matrigel]) in the presence or absence of various supplements and/or fetal calf serum (FCS) for 0.7 to 3.5 weeks. Cell attachment, function and long-term viability required an extracellular matrix. Moreover, in long term cultures (25 days), acinar cell attachment was enhanced by the inclusion of supplements to media containing 10% FCS. Replacement of serum with fibroblast growth factor, high-density lipoprotein and an increased concentration of epidermal growth factor resulted in a distinct "cobblestone

  11. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    PubMed

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  13. Semantic processing during morphological priming: an ERP study.

    PubMed

    Beyersmann, Elisabeth; Iakimova, Galina; Ziegler, Johannes C; Colé, Pascale

    2014-09-04

    Previous research has yielded conflicting results regarding the onset of semantic processing during morphological priming. The present study was designed to further explore the time-course of morphological processing using event-related potentials (ERPs). We conducted a primed lexical decision study comparing a morphological (LAVAGE - laver [washing - wash]), a semantic (LINGE - laver [laundry - wash]), an orthographic (LAVANDE - laver [lavender - wash]), and an unrelated control condition (HOSPICE - laver [nursing home - wash]), using the same targets across the four priming conditions. The behavioral data showed significant effects of morphological and semantic priming, with the magnitude of morphological priming being significantly larger than the magnitude of semantic priming. The ERP data revealed significant morphological but no semantic priming at 100-250 ms. Furthermore, a reduction of the N400 amplitude in the morphological condition compared to the semantic and orthographic condition demonstrates that the morphological priming effect was not entirely due to the semantic or orthographic overlap between the prime and the target. The present data reflect an early process of semantically blind morphological decomposition, and a later process of morpho-semantic decomposition, which we discuss in the context of recent morphological processing theories. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus).

    PubMed

    Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung

    2003-01-01

    The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).

  15. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir; Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir; Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs)more » are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue

  16. CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli.

    PubMed

    Franek, M; Legartová, S; Suchánková, J; Milite, C; Castellano, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.

  17. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells

    PubMed Central

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  18. Effect of substrate morphology slope distributions on light scattering, nc-Si:H film growth, and solar cell performance.

    PubMed

    Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro

    2014-12-24

    Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

  19. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  20. Morphologic examination of CD3-CD4(bright) cells in rat liver.

    PubMed

    Yamamoto, Satoshi; Sato, Yosinobu; Abo, Toru; Hatakeyama, Katsuyosi

    2002-01-01

    Recently, we found CD3-CD4(bright) cells with comparative specificity for normal rat liver. In the current study, we investigated the type and form of both CD3-CD4(bright) cells and CD3-CD4(dull) cells in the rat liver. The surface phenotype of hepatic mononuclear cells in Lewis rats was identified by using monoclonal antibodies including anti-CD4, anti-CD3, and antimacrophage in conjunction with two- or three-color immunofluorescence analysis. CD3-CD4(bright) cells and CD3-CD4(dull) cells were examined morphologically using May-Giemsa staining and scanning electron microscopy. The distribution of CD3-CD4(bright) cells and CD3-CD4(dull) cells 48 hours after intravenous administration of liposome-encapsulated dichloromethylene diphosphate was also investigated. In comparison to CD3-CD4(dull) cells, CD3-CD4(bright) cells were slightly larger macrophages with abundant cytoplasmic granules, being present with comparative specificity for normal rat liver and showing negligible effects by intravenous liposome-encapsulated dichloromethylene diphosphate administration. These data suggest that in normal young rat liver these CD3-CD4(dull) and CD3-CD4(bright) cells may be dendritic cells and Kupffer cells that shift from the liver to the spleen or vice versa. These cells may also be able to locally proliferate in liver or spleen due to changes in the developing liver.

  1. Morphological and Compositional (S)TEM Analysis of Multiple Exciton Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Wisnivesky-Rocca-Rivarola, F.; Davis, N. J. L. K.; Bohm, M.; Ducati, C.

    2015-10-01

    Quantum confinement of charge carriers in semiconductor nanocrystals produces optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells. One of these properties is the efficient formation of more than one electron-hole pair from a single absorbed photon, in a process called multiple exciton generation (MEG). In this work we studied the morphology of nanocrystal multilayers of PbSe treated with CdCl2 using complementary imaging and spectroscopy techniques to characterise the chemical composition and morphology of full MEG devices made with PbSe nanorods (NRs). IN the scanning TEM (STEM), plan view images and chemical maps were obtained of the nanocrystal layers, which allowed for the analysis of crystal structure and orientation, as well as size distribution and aspect ratio. These results were complemented by cross-sectional images of full devices, which allowed accessing the structure of each layer that composes the device, including the nanorod packing in the active nanocrystal layer.

  2. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase

  3. Sperm Associated Antigen 6 (SPAG6) Regulates Fibroblast Cell Growth, Morphology, Migration and Ciliogenesis

    PubMed Central

    Li, Wei; Mukherjee, Abir; Wu, Jinhua; Zhang, Ling; Teves, Maria E.; Li, Hongfei; Nambiar, Shanti; Henderson, Scott C.; Horwitz, Alan R.; Strauss III, Jerome F.; Fang, Xianjun; Zhang, Zhibing

    2015-01-01

    Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalized Spag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in the Spag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis. PMID:26585507

  4. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.

    PubMed

    Aina, Valentina; Bergandi, Loredana; Lusvardi, Gigliola; Malavasi, Gianluca; Imrie, Flora E; Gibson, Iain R; Cerrato, Giuseppina; Ghigo, Dario

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells

  5. Quantitative and qualitative morphology of rabbit retinal glia. A light microscopical study on cells both in situ and isolated by papaine.

    PubMed

    Reichenbach, A

    1987-01-01

    Rabbit retinal glia was studied by light microscopy of both stained sections of frozen retinae and enzymatically isolated cells. In the vast majority of this tissue, except for a small region around the optic nerve head, the glia consists solely of radial glia, i.e. Müller cells whose morphology was found to depend markedly on their topographic localization within the retina. Müller cells in the periphery are short and have thick vitreal processes bearing a single large endfoot. Central Müller cells are long and slender; through the thickening nerve fibre layer they send vitreal processes which are subdivided into several fine branches ending with multiple small endfeet. Müller cells in the retinal centre are far more closely packed than those in the periphery; everywhere, however, a constant ratio of Müller cells: neurons of about 1:15 was found, except for the juxta-optic nerve head region where this ratio is slightly reduced. Where the central retina reaches a thickness requiring Müller cell lengths of more than 130 micron, additional non-radial glial cells occur within the nerve fibre layer. The majority of these cells seem to be astrocytes. Their number per retinal area increases with the thickening of both the whole retina and the nerve fibre layer. The occurrence of these non-radial glial cells leads to an enhancement of the glia:neuron index in the retinal centre. Possible mechanisms of physiological control of gliogenesis are discussed.

  6. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    PubMed Central

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-01-01

    Abstract Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability. PMID:29152017

  7. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  8. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  9. Fluid front morphologies in gap-modulated Hele-Shaw cells

    NASA Astrophysics Data System (ADS)

    Díaz-Piola, Lautaro; Planet, Ramon; Campàs, Otger; Casademunt, Jaume; Ortín, Jordi

    2017-09-01

    We consider the displacement of an inviscid fluid (air) by a viscous fluid (oil) in a narrow channel with gap-thickness modulations. The interfacial dynamics of this problem is strongly nonlocal and exhibits competing effects from capillarity and permeability. We derive analytical predictions of steady-state front morphologies, which are exact at linear level in the case of a persistent modulation in the direction of front advancement. The theoretical predictions are in good agreement with experimental measurements of steady-state front morphologies obtained in a Hele-Shaw cell with modulations of the channel depth, consisting on three parallel tracks of reduced depth, for small gap modulations. The relative average distance between theoretical and experimental fronts in the region around the central track is smaller than about 4 % , provided that the height of the tracks is less than 13 % of the total channel depth and the local distortion of the front height h is small enough (|∇ h |<0.8 ) for the linear approximation to hold.

  10. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.

    PubMed

    Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang

    2010-02-01

    The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness

    PubMed Central

    Denisov, Evgeny V.; Skryabin, Nikolay A.; Gerashchenko, Tatiana S.; Tashireva, Lubov A.; Wilhelm, Jochen; Buldakov, Mikhail A.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Vtorushin, Sergey V.; Zavyalova, Marina V.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.

    2017-01-01

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion. PMID:28977854

  12. Transmission and scanning electron microscopy study of the characteristics and morphology of pericytes and novel desmin-immunopositive perivascular cells before and after castration in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Kouki, Tom; Yashiro, Takashi

    2012-09-01

    Pericytes are perivascular cells associated with microcirculation. Typically, they are localized close to the capillary wall, underneath the basement membrane, and have sparse cytoplasm and poorly developed cell organelles. However, the specific properties of pericytes vary by organ and the conditions within organs. We recently demonstrated that pericytes in rat anterior pituitary gland produce type I and III collagens. The present study attempted to determine the morphological characteristics of these pituitary pericytes. Castrated rats were used as a model of hormonal and vascular changes in the gland. Pericytes, as determined by desmin immunohistochemistry, were more numerous and stained more intensely in castrated rats. Transmission electron microscopy revealed that pituitary pericytes displayed the typical characteristics of pericytes. In pituitary sections from castrated rats, the Golgi apparatus of pericytes was well developed and the rough endoplasmic reticulum was elongated. Additionally, scanning electron microscopy revealed four pericyte shapes: oval, elongate, triangular, and multiangular. As compared with normal rats, the proportion of oval pericytes was lower, and the proportions of the other three shapes were higher, in castrated rats. These results suggest that pericytes change their fine structure and cell shape in response to hormonal and vascular changes in the anterior pituitary gland. In addition, a novel type of perivascular cell was found by desmin immunoelectron microscopy. The morphological properties of these cells were dissimilar to those of pericytes. The cells were localized in the perivascular space, had no basement membrane, and contained dilated rough endoplasmic reticulum. This new cell type will require further study of its origin and characteristics.

  13. Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.

    PubMed

    Wu, Chenggang; Reardon-Robinson, Melissa Elizabeth; Ton-That, Hung

    2016-01-01

    Sortase is a cysteine-transpeptidase that anchors LPXTG-containing proteins on the Gram-positive bacterial cell wall. Previously, sortase was considered to be an important factor for bacterial pathogenesis and fitness, but not cell growth. However, the Actinomyces oris sortase is essential for cell viability, due to its coupling to a glycosylation pathway. In this chapter, we describe the methods to generate conditional srtA deletion mutants and identify srtA suppressors by Tn5 transposon mutagenesis. We also provide procedures for analyzing cell morphology of this mutant by thin-section electron microscopy. These techniques can be applied for analyses of other essential genes in A. oris.

  14. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  15. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  16. Novel cell-biological ideas deducible from morphological observations on "dark" neurons revisited.

    PubMed

    Gallyas, Ferenc

    2007-05-30

    The origin, nature and fate of "dark" (dramatically shrunken and hyperbasophilic) neurons are century-old problems in both human and experimental neuropathology. Until a few years ago, hardly any cell-biological conclusion had been drawn from their histological investigation. On the basis of light and electron microscopic findings in animal experiments performed during the past few years, my research team has put forward novel ideas concerning 1. the nature of "dark" neurons (malfunction of an energy-storing gel-structure that is ubiquitously present in all intracellular spaces between the ultrastructural elements), 2. the mechanism of their formation (non-programmed initiation of a whole-cell phase-transition in this gel-structure), 3. their capability of recovery (programmed for some physiological purpose), 4. their death mode (neither necrotic nor apoptotic), and 5. their relationship with the apoptotic cell death (the gel structure in question is programmed for the morphological execution of ontogenetic apoptosis). Based on morphological observations, this paper revisits these ideas in order to bring them to the attention of researchers who are in a position to investigate their validity by means of experimental paradigms other than those used here.

  17. The sow endosalpinx at different stages of the oestrous cycle and at anoestrus: studies on morphological changes and infiltration by cells of the immune system.

    PubMed

    Jiwakanon, J; Persson, E; Kaeoket, K; Dalin, A-M

    2005-02-01

    The aim of this study was to investigate the morphological changes of the sow endosalpinx and the distribution of leukocytes throughout the oestrous cycle and at anoestrus. Nineteen crossbred sows (Swedish Landrace x Swedish Yorkshire) at late dioestrus (three), prooestrus (three), oestrus (three), early dioestrus (three), dioestrus (three) and anoestrus (four) were used. Oviductal samples from three different parts (isthmus, ampulla and infundibulum), taken immediately after slaughter, were fixed, embedded in plastic resin and stained with toluidine blue or stored in a freezer at -70 degrees C until analysed by immunohistochemistry (prooestrus and anoestrus) with an avidin-biotin peroxidase method. Quantitative and qualitative examinations of oviductal epithelium and subepithelial connective tissue were performed by light microscopy. During all stages, a lower degree of morphological changes (pseudostratification, mitosis and secretory granules) was found in the isthmus compared with ampulla and infundibulum. In ampulla and infundibulum, pseudostratification, mitotic activity and secretory granules of the epithelium were high at prooestrus/oestrus. Cytoplasmic protrusions of epithelial cells with some extruded nuclei were prominent in ampulla and infundibulum at all stages except for oestrus and early dioestrus. Lymphocytes as well as CD2- and CD3-positive cells were the predominant immune cells in the epithelial layer. The numbers of lymphocytes and CD3-positive cells did not differ among segments and stages. Numbers of CD2-positive cells did not differ between prooestrus and anoestrus while the numbers were significantly higher in the infundibulum than in ampulla and isthmus. Neutrophils were only occasionally found and mainly in the infundibulum. In the subepithelial connective tissue layer, the two most commonly observed immune cell types were lymphocytes and plasma cells. The numbers of lymphocytes as well as CD2- and CD3-positive cells was lower in isthmus

  18. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    PubMed

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only.

  19. Morphological computation and morphological control: steps toward a formal theory and applications.

    PubMed

    Füchslin, Rudolf M; Dzyakanchuk, Andrej; Flumini, Dandolo; Hauser, Helmut; Hunt, Kenneth J; Luchsinger, Rolf H; Reller, Benedikt; Scheidegger, Stephan; Walker, Richard

    2013-01-01

    Morphological computation can be loosely defined as the exploitation of the shape, material properties, and physical dynamics of a physical system to improve the efficiency of a computation. Morphological control is the application of morphological computing to a control task. In its theoretical part, this article sharpens and extends these definitions by suggesting new formalized definitions and identifying areas in which the definitions we propose are still inadequate. We go on to describe three ongoing studies, in which we are applying morphological control to problems in medicine and in chemistry. The first involves an inflatable support system for patients with impaired movement, and is based on macroscopic physics and concepts already tested in robotics. The two other case studies (self-assembly of chemical microreactors; models of induced cell repair in radio-oncology) describe processes and devices on the micrometer scale, in which the emergent dynamics of the underlying physical system (e.g., phase transitions) are dominated by stochastic processes such as diffusion.

  20. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.

    PubMed

    Wang, Li; Chen, Siyuan; Ding, Yiming; Zhu, Qiang; Zhang, Nijia; Yu, Shuqing

    2018-01-01

    The present work determines the anticancer activity of bio-mediated synthesized cadmium sulfide nanoparticles using the ionic liquid and bacterial cells (Shewanella oneidensis). Bacterial cells have been exposed to be important resources that hold huge potential as ecofriendly, cost-effective, evading toxic of dangerous chemicals and the alternative of conventional physiochemical synthesis. The Shewanella oneidensis is an important kind of metal reducing bacterium, known as its special anaerobic respiratory and sulfate reducing capacity. The crystalline nature, phase purity and surface morphology of biosynthesized cadmium sulfide nanoparticles were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive spectroscopy and Transmission electron microscopy. The use of imidazolium based ionic liquids as soft templating agent for controlling self-assembly and crystal growth direction of metal sulfide nanoparticles has also advanced as an important method. The microscopic techniques showed that the nanoparticles are designed on the nano form and have an excellent spherical morphology, due to the self-assembled mechanism of ionic liquid assistance. The antitumor efficiency of the cadmium sulfide nanoparticles was investigated against brain cancer cell lines using rat glioma cell lines. The effectively improved nano-crystalline and morphological structure of CdS nanoparticles in the presence of IL exhibit excellent cytotoxicity and dispersion ability on the cell shape is completely spread out showing a nice toxic environment against cancer cells. The cytotoxicity effect of cadmium sulfide nanoparticles was discussed with a diagrammatic representation. Copyright © 2017. Published by Elsevier B.V.

  1. Immortalization of cat iris sphincter smooth muscle cells by SV40 virus: growth, morphological, biochemical and pharmacological characteristics.

    PubMed

    Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A

    1995-11-01

    The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as

  2. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%–46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml –1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by themore » addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. Furthermore, these established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.« less

  3. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    DOE PAGES

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia; ...

    2016-05-19

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%–46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml –1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by themore » addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. Furthermore, these established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.« less

  4. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.

    PubMed

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12g/mL and 20kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120min and 5M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. Copyright © 2016. Published by Elsevier B.V.

  5. Use of specular microscopy to determine corneal endothelial cell morphology and morphometry in enucleated cat eyes.

    PubMed

    Franzen, Angela A; Pigatto, João A T; Abib, Fernando C; Albuquerque, Luciane; Laus, José L

    2010-07-01

    The purpose of this study was to investigate the effect of age on endothelial morphology and morphometry in cats. The corneal endothelium was studied using a contact specular microscope. A total of 18 cats (Felis catus Linnaeus, 1758) were evaluated in this study. The subjects were divided into three groups of six cats each in function of age: G1 (1 to 3 months old), G2 (5 to 12 months old), and G3 (24 to 40 months old). The examination presented data as endothelial cell density (ECD), average cell area, corneal thickness, polymegathism, and pleomorphism. Results revealed ECD decrease in corneas of normal cats with age, as well as a corresponding increase in endothelial cell area and pleomorphism. The present work suggests that the endothelial parameters evaluated change with advancing age.

  6. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  7. Structural, Morphological, and Electron Transport Studies of Annealing Dependent In2O3 Dye-Sensitized Solar Cell

    PubMed Central

    Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.

    2015-01-01

    Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652

  8. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  9. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.; ...

    2018-03-01

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  10. Morphological Study of the Persian Leopard (Panthera pardus saxicolor) Tongue.

    PubMed

    Sadeghinezhad, J; Sheibani, M T; Memarian, I; Chiocchetti, R

    2017-06-01

    This study described the morphological features of the Persian leopard (Panthera pardus saxicolor) tongue using light and scanning electron microscopy techniques. The keratinized filiform papillae were distributed all over the entire dorsal surface of the tongue and contained small processes. They were changed into a cylindrical shape in the body and conical shape in the root. The fungiform papillae were found on the apex and margin of the tongue. Few taste pores were observed on the dorsal surface of each papilla. The foliate papillae on the margins of the tongue were composed of several laminae and epithelial fissures. Taste buds were not seen within the non-keratinized epithelium. The vallate papillae were six in total and arranged in a "V" shape just rostral to the root. Each papilla was surrounded by a groove and pad. Taste buds were seen within their lateral walls. Lyssa was visible on the ventral surface of the tongue tip and was found as cartilaginous tissue surrounded by thin connective tissue fibres. The core of the tongue was composed of lingual glands, skeletal muscle and connective tissue. These glands were confined to the posterior portion of the tongue and were composed of many serous cells and a few mucous cells. The results of this study contributed to the knowledge of the morphological characteristics of the tongue of wild mammals and provided data for the comparison with other mammals. © 2017 Blackwell Verlag GmbH.

  11. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology

    PubMed Central

    Ballas, Nurit; Lioy, Daniel T.; Grunseich, Christopher; Mandel, Gail

    2011-01-01

    The neurodevelopmental disorder Rett Syndrome (RTT) is caused by sporadic mutations in the transcriptional factor methyl-CpG binding protein 2 (MeCP2). Although it is thought that the primary cause of RTT is cell autonomous due to lack of functional MeCP2 in neurons, whether non-cell autonomous factors contribute to the disease, is unknown. Here, we show that loss of MeCP2 occurs not only in neurons but also in glial cells of RTT brain. Using an in vitro co-culture system, we find that mutant astrocytes from a RTT mouse model, and their conditioned medium, fail to support normal dendritic morphology of either wild-type or mutant hippocampal neurons. Our studies suggest that in RTT brain, astrocytes carrying MeCP2 mutations have a non-cell autonomous effect on neuronal properties, likely due to aberrant secretion of soluble factor(s). PMID:19234456

  12. Brain morphology in children with nevoid basal cell carcinoma syndrome.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Miyashita, Toshiyuki; Mizuochi, Hiromi; Uchikawa, Hideki; Shimojo, Naoki

    2017-04-01

    Brain morphology is tightly regulated by diverse signaling pathways. Hedgehog signaling is a candidate pathway considered responsible for regulating brain morphology. Nevoid basal cell carcinoma syndrome (NBCCS), caused by a PTCH1 mutation in the hedgehog signaling pathway, occasionally exhibits macrocephaly and medulloblastoma. Although cerebellar enlargement occurs in ptch1 heterozygous-deficient mice, its impact on human brain development remains unknown. We investigated the brain morphological characteristics of children with NBCCS. We evaluated brain T1-weighted images from nine children with NBCCS and 15 age-matched normal control (NC) children (mean [standard deviation], 12.2 [2.8] vs. 11.6 [2.3] years old). The diameters of the cerebrum, corpus callosum, and brain stem and the cerebellar volume were compared using two-tailed t-tests with Welch's correction. The transverse diameters (150.4 [9.9] vs. 136.0 [5.5] mm, P = 0.002) and longitudinal diameters (165.4 [8.0] vs. 151.3 [8.7] mm, P = 0.0007) of the cerebrum, cross-sectional area of the cerebellar vermis (18.7 [2.6] vs. 11.8 [1.7] cm 2 , P = 0.0001), and total volume of the cerebellar hemispheres (185.1 [13.0] vs. 131.9 [10.4] cm 3 , P = 0.0001) were significantly larger in the children with NBCCS than in NC children. Thinning of the corpus callosum and ventricular enlargement were also confirmed in children with NBCCS. We demonstrate that, on examination of the brain morphology, an increase in the size of the cerebrum, cerebellum, and cerebral ventricles is revealed in children with NBCCS compared to NC children. This suggests that constitutively active hedgehog signaling affects human brain morphology and the PI3K/AKT and RAS/MAPK pathways. © 2017 Wiley Periodicals, Inc.

  13. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.

    PubMed

    Shi, Pujiang; Laude, Augustinus; Yeong, Wai Yee

    2017-04-01

    In this article, mouse fibroblast cells (L929) were seeded on 2%, 5%, and 10% alginate hydrogels, and they were also bio-printed with 2%, 5%, and 10% alginate solutions individually to form constructs. The elastic and viscous moduli of alginate solutions, their interior structure and stiffness, interactions of cells and alginate, cell viability, migration and morphology were investigated by rheometer, MTT assay, scanning electron microscope (SEM), and fluorescent microscopy. The three types of bio-printed scaffolds of distinctive stiffness were prepared, and the seeded cells showed robust viability either on the alginate hydrogel surfaces or in the 3D bio-printed constructs. Majority of the proliferated cells in the 3D bio-printed constructs weakly attached to the surrounding alginate matrix. The concentration of alginate solution and hydrogel stiffness influenced cell migration and morphology, moreover the cells formed spheroids in the bio-printed 10% alginate hydrogel construct. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1009-1018, 2017. © 2017 Wiley Periodicals, Inc.

  14. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology.

    PubMed

    Zhao, Guohua; Zhu, Peng-Peng; Renvoisé, Benoît; Maldonado-Báez, Lymarie; Park, Seong Hee; Blackstone, Craig

    2016-11-15

    Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATL1, ATL2, and ATL3), and ATL1 and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies. Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. We have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cerevisiae (Sey1p) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations. Published by Elsevier Inc.

  15. Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies

    PubMed Central

    Ramakrishnan, N.; Radhakrishnan, Ravi

    2016-01-01

    An intriguing question in cell biology is “how do cells regulate their shape?” It is commonly believed that the observed cellular morphologies are a result of the complex interaction among the lipid molecules (constituting the cell membrane), and with a number of other macromolecules, such as proteins. It is also believed that the common biophysical processes essential for the functioning of a cell also play an important role in cellular morphogenesis. At the cellular scale—where typical dimensions are in the order of micrometers—the effects arising from the molecular scale can either be modeled as equilibrium or non-equilibrium processes. In this chapter, we discuss the dynamically triangulated Monte Carlo technique to model and simulate membrane morphologies at the cellular scale, which in turn can be used to investigate several questions related to shape regulation in cells. In particular, we focus on two specific problems within the framework of isotropic and anisotropic elasticity theories: namely, (i) the origin of complex, physiologically relevant, membrane shapes due to the interaction of the membrane with curvature remodeling proteins, and (ii) the genesis of steady state cellular shapes due to the action of non-equilibrium forces that are generated by the fission and fusion of transport vesicles and by the binding and unbinding of proteins from the parent membrane. PMID:27087801

  16. Morphological Changes in Blood Cells After Implantation of Titanium and Plastic Clips in the Neurocranium - Experimental Study on Dogs.

    PubMed

    Katica, Muhamed; Celebicic, Mirza; Gradascevic, Nedzad; Obhodzas, Muamer; Suljić, Enra; Ocuz, Muhamed; Delibegovic, Samir

    2017-04-01

    Various studies confirm the biocompatibility and efficacy of clips for certain target tissues, but without any comparative analysis of hematological parameters. Therefore, we conducted a study to assess the possible association of the implantation of titanium and plastic clips in the neurocranium with possible morphological changes in the blood cells of experimental animals. As a control, the peripheral blood smears were taken before surgery from 12 adult dogs that were divided into two experimental groups. After placing titanium and plastic clips in the neurocranium, the peripheral blood of the first group was analyzed on the seventh postoperative day, while the peripheral blood of the second group was analyzed on the sixtieth day. By microscopy of the blood smears, the following parameters were analyzed: the presence of poikilocytosis of the red blood cells, degenerative changes in the leukocytes and leukogram. There were no statistically significant differences between the mean values of the groups. Monocytosis was detected (first group 22.83 % and second 16.30 %), as well as neutropenia (46.80 %, in the second group). Degenerative changes to neutrophils and the occurrence of atypical lymphocytes were observed in the second experimental group (60 th postoperative day). A mild adverse effect from the biomaterials present in the neurocranium of dogs was detected, affecting the majority of leukocytic cells. A chronic recurrent inflammatory process was caused by the presence of the plastic and titanium clips in the brain tissue. No adverse effect of biomaterials on erythrocytes in the neurocranium was detected in the dogs studied. Further studies are necessary to explain the occurrence of degenerative changes in the neutrophils and lymphocytes.

  17. Morphological Changes in Blood Cells After Implantation of Titanium and Plastic Clips in the Neurocranium - Experimental Study on Dogs

    PubMed Central

    Katica, Muhamed; Celebicic, Mirza; Gradascevic, Nedzad; Obhodzas, Muamer; Suljić, Enra; Ocuz, Muhamed; Delibegovic, Samir

    2017-01-01

    Introduction: Various studies confirm the biocompatibility and efficacy of clips for certain target tissues, but without any comparative analysis of hematological parameters. Therefore, we conducted a study to assess the possible association of the implantation of titanium and plastic clips in the neurocranium with possible morphological changes in the blood cells of experimental animals. Materials and Methods: As a control, the peripheral blood smears were taken before surgery from 12 adult dogs that were divided into two experimental groups. After placing titanium and plastic clips in the neurocranium, the peripheral blood of the first group was analyzed on the seventh postoperative day, while the peripheral blood of the second group was analyzed on the sixtieth day. By microscopy of the blood smears, the following parameters were analyzed: the presence of poikilocytosis of the red blood cells, degenerative changes in the leukocytes and leukogram. Results: There were no statistically significant differences between the mean values of the groups. Monocytosis was detected (first group 22.83 % and second 16.30 %), as well as neutropenia (46.80 %, in the second group). Degenerative changes to neutrophils and the occurrence of atypical lymphocytes were observed in the second experimental group (60th postoperative day). Conclusion: A mild adverse effect from the biomaterials present in the neurocranium of dogs was detected, affecting the majority of leukocytic cells. A chronic recurrent inflammatory process was caused by the presence of the plastic and titanium clips in the brain tissue. No adverse effect of biomaterials on erythrocytes in the neurocranium was detected in the dogs studied. Further studies are necessary to explain the occurrence of degenerative changes in the neutrophils and lymphocytes. PMID:28790535

  18. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    PubMed

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-20

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  19. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis

    PubMed Central

    Deakin, Nicholas O.; Turner, Christopher E.

    2011-01-01

    Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. PMID:21148292

  20. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway

  1. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    PubMed Central

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  2. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    PubMed

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  3. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    PubMed Central

    Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412

  4. Reverse genetics studies on the filamentous morphology of influenza A virus.

    PubMed

    Bourmakina, Svetlana V; García-Sastre, Adolfo

    2003-03-01

    We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1-162 amino acids or the carboxy-terminal 163-252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.

  5. Automated Morphological Analysis of Microglia After Stroke.

    PubMed

    Heindl, Steffanie; Gesierich, Benno; Benakis, Corinne; Llovera, Gemma; Duering, Marco; Liesz, Arthur

    2018-01-01

    Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.

  6. In vitro characterization of cancer cell morphology, chemokinesis, and matrix invasion using a novel microfabricated system

    NASA Astrophysics Data System (ADS)

    Blaha, Laura

    A diagnosis of metastatic cancer reduces a patient's 5-year survival rate by nearly 80% compared to a primary tumor diagnosed at an early stage. While gene expression arrays have revealed unique gene signatures for metastatic cancer cells, we are lacking an understanding of the tangible physical changes that distinguish metastatic tumor cells from each other and from their related primary tumors. At the fundamental level, this translates into first characterizing the phenotype of metastatic cancer cells in vitro both in 2D - looking at morphology and migration - and in 3D - focusing on matrix invasion. While 2D in vitro studies have provided insight into the effects of specific environmental conditions on specific cancer cell lines, the unique details included in each experimental design make it challenging to compare cell phenotype across different in vitro platforms as well as between laboratories and disciplines that share the goal of understanding cancer. While 3D phenotype studies have employed more standardized and ubiquitous assays, most available tools lack the imaging capability and geometry to effectively characterize all factors driving 3D matrix invasion. In this work, we present protocols and platforms aimed at addressing the problems identified in the tools currently available for studying metastatic cancer in vitro. First, we present a 2D study of morphology and migration using widely accepted protocols. The study is applied to characterizing phenotypes of three breast cancer cell lines with different metastatic organ tropisms. The results show that general populations of cells from each of the 3 lines are unique in shape and motility despite being derived from the same tumor line and that the observed phenotype differences may be related to differences in focal adhesion assembly. More broadly, these studies suggest that standardizing phenotype studies using commonly available techniques may provide a platform by which to compare phenotypic studies

  7. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Qing, Quan; Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong; Hu, Jin-Lian; Qin, Ting-Wu

    2016-12-01

    The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  8. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells

    PubMed Central

    Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin

    2017-01-01

    Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368

  9. LRSAM1 Depletion Affects Neuroblastoma SH-SY5Y Cell Growth and Morphology: The LRSAM1 c.2047-1G>A Loss-of-Function Variant Fails to Rescue The Phenotype.

    PubMed

    Minaidou, Anna; Nicolaou, Paschalis; Christodoulou, Kyproula

    2018-10-01

    Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype. Copyright© by Royan Institute. All rights reserved.

  10. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    PubMed

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  11. Effect of platelet activating factor with and without receptor antagonist (WEB2170) on morphology of isolated cochlear outer hair cells.

    PubMed

    Jung, Timothy T K; John, Earnest O; Park, Seong Kook; Park, Yong Soo; Rhee, Chong-Ku

    2004-02-01

    Platelet activating factor (PAF), generated from biologically active phospholipids, has been implicated as a potent inflammatory mediator and has been shown to be involved in many pathological processes, especially in inflammation and allergy. It has been suspected that PAF may be one of the inflammatory mediators in middle ear effusion that can induce sensorineural hearing loss, as observed in chronic otitis media. The PAF receptor antagonist WEB2170 has been studied extensively, and its inhibitory effects against various PAF actions are well proven in otologic systems. The purpose of our study was to determine the effect of superfusion of PAF and WEB2170 on morphological changes in isolated cochlear outer hair cells (OHCs). Isolated OHCs from adult chinchilla cochleas were exposed to albumin-phosphate-buffered saline solution (1 mg/mL), WEB2170 (5 mg/30 mL), PAF (1 micromol/L), or both PAF (I micromol/L) and WEB2170 (5 mg/30 mL). All experiments were performed at an osmolality of 305 +/- 5 mOsm at room temperature for 30 minutes. The cells were observed with an inverted microscope; the images were stored and analyzed on the Image Pro-Plus program. The OHCs exposed to control albumin-phosphate-buffered saline solution or to WEB2170 did not show any significant change in cell shape or length. The cells exposed to 1 micromol/L of PAF showed ballooning and significant shortening of the mean cell length in 15 to 20 minutes. These morphological changes in OHCs can be prevented by pretreating OHCs with WEB2170. This study demonstrated that exposure to PAF causes morphological changes in isolated OHCs that can be prevented by the PAF receptor antagonist WEB2170.

  12. Rhabdomyosarcoma of the urinary bladder in adults: predilection for alveolar morphology with anaplasia and significant morphologic overlap with small cell carcinoma.

    PubMed

    Paner, Gladell P; McKenney, Jesse K; Epstein, Jonathan I; Amin, Mahul B

    2008-07-01

    Rhabdomyosarcoma (RMS) represents the most common malignant soft tissue tumor in children and adolescents with the urinary bladder representing a frequent site. Most of these urinary bladder tumors are embryonal RMS, predominantly the botryoid subtype. RMSs of the urinary bladder in adults are distinctively rare and the subject of only case reports. We report the clinicopathologic features of 5 bladder neoplasms with rhabdomyosarcomatous differentiation in adults and emphasize the differential diagnosis in the adult setting. The patients, 4 men and 1 woman, ranged in age from 23 to 85 years (mean 65.4 y). Gross hematuria was the most common initial symptom, although 2 patients had metastatic disease at presentation. Four cases were pure primary RMSs of the bladder and 1 case was a sarcomatoid urothelial carcinoma with RMS representing the extensive heterologous component. All 5 cases demonstrated a diffuse growth pattern (ie, non-nested), of which 4 cases had nuclear anaplasia (Wilms criteria without the atypical mitotic figure requirement); only 1 case (the sarcomatoid carcinoma) showed obvious rhabdomyoblastic differentiation (ie, strap cells). Three cases were of the alveolar subtype (1 admixed with embryonal histology) and 2 were RMS, not further classified. Microscopically, all tumors had a primitive undifferentiated morphology with cells containing scant cytoplasm, varying round to fusiform nuclei with even chromatin distribution, and frequent mitoses. The degree of morphologic overlap with small cell carcinoma of the bladder, a relatively more common round cell tumor in adults, was striking. The epithelial component of the sarcomatoid carcinoma was high-grade invasive urothelial carcinoma with glandular differentiation. No other case had previous history of bladder cancer or concurrent carcinoma in situ or invasive urothelial carcinoma. All tumors showed immunohistochemical expression for desmin, myogenin, and/or MyoD1. Synaptophysin was performed in 4 cases

  13. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  14. The Limits on Trypanosomatid Morphological Diversity

    PubMed Central

    Wheeler, Richard John; Gluenz, Eva; Gull, Keith

    2013-01-01

    Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology. PMID:24260255

  15. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.

    PubMed

    Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H

    2012-06-01

    The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Proliferation and morphological transformation of RMK cells exposed to hydroquinine containing ionomers.

    PubMed

    Harvey, Veronica; Benghuzzi, Hamed; Tucci, Michell; Puckett, Aaron; Cason, Zelma

    2002-01-01

    Recent research in our laboratories has been directed towards the development of ionomeric polymers and monomers for use in biomedical applications such as adhesives, drug delivery matrices and tissue scaffolds. The chemical Hydroquinone (HQ) aids as a stabilizer and represents a major component in the development of the ionomers. However, hydroquinone in high concentration has the potential to initiate carcinogenic effects on cells. The curing reactions are based on free radical chemistry that require a radical scavenger, ascorbic acid (Asc) to adjust working and setting times and shelf-life stability. The few studies published on HQ have suggested that high dosages of HQ may stimulate apoptosis as well as an increased cellular leakage, however the effect of HQ on the biocompatability is unknown. Therefore the objectives of this study were to measure the functional capacity, cell proliferation and structural integrity of Rhesus monkey kidney epithelial (RMK) cells exposed to ionomer formulations containing 4 different levels of HQ. A total of 90 tubes of RMK (40,000 cells per tube) cells were divided equally into five equal groups. Group I served as a control and group II-V were subjected to ionomers containing 0, 500, 1000, and 2000 ppm HQ. Cell numbers, morphology, cellular and supermatant MDA levels, and total protein analysis were performed. The results suggest: (I) All ionomer groups increased cellular proliferation except for the 2000 ppm HQ group, (II) MDA levels were increased in cells containing 2000 ppm HQ at 24 hours; and 0 ppm at 48 hours. It may be concluded that HQ concentrations over 1000 ppm may adversely affect biocompatability.

  17. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology

    PubMed Central

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.

    2013-01-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall. PMID:23783036

  18. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.

    PubMed

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L

    2013-08-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.

  19. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID

  20. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch.

    PubMed

    Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi

    2017-06-01

    This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.

  1. Hollow fibers - Their applications to the study of mammalian cell function

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Angeline, M.; Harkness, J.; Chu, M.; Grindleland, R.

    1984-01-01

    The use of hollow fiber technology in cell culture and transplantation is examined. The morphologies of encapsulated pituitary cells before and after implantation into the rat are defined. Implantation experiments using hollow fibers to study mammalian cell functions are described. Consideration is given to examining somatotroph, prolactin, prostrate, fibroblast, and retinal cell functions. These experiments demonstrate that hollow fiber technology is applicable for studying mammalian cell functions.

  2. The sow endometrium at different stages of the oestrous cycle: studies on morphological changes and infiltration by cells of the immune system.

    PubMed

    Kaeoket, K; Persson, E; Dalin, A M

    2001-01-31

    The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Blood samples were collected from the jugular vein 1h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy. The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively. The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively. In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus. The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively. The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0

  3. Pinus Monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems.

    NASA Astrophysics Data System (ADS)

    Van De Water, P. K.

    2016-12-01

    The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size

  4. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells

    PubMed Central

    Shaari, Khozirah; Rosli, Rozita

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases. PMID:29723199

  5. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells.

    PubMed

    Jaafaru, Mohammed Sani; Nordin, Norshariza; Shaari, Khozirah; Rosli, Rozita; Abdull Razis, Ahmad Faizal

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.

  6. Quantitative assessment of cancer cell morphology and movement using telecentric digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh C.; Nehmetallah, George; Lam, Van; Chung, Byung Min; Raub, Christopher

    2017-02-01

    Digital holographic microscopy (DHM) provides label-free and real-time quantitative phase information relevant to the analysis of dynamic biological systems. A DHM based on telecentric configuration optically mitigates phase aberrations due to the microscope objective and linear high frequency fringes due to the reference beam thus minimizing digital aberration correction needed for distortion free 3D reconstruction. The purpose of this work is to quantitatively assess growth and migratory behavior of invasive cancer cells using a telecentric DHM system. Together, the height and lateral shape features of individual cells, determined from time-lapse series of phase reconstructions, should reveal aspects of cell migration, cell-matrix adhesion, and cell cycle phase transitions. To test this, MDA-MB-231 breast cancer cells were cultured on collagen-coated or un-coated glass, and 3D holograms were reconstructed over 2 hours. Cells on collagencoated glass had an average 14% larger spread area than cells on uncoated glass (n=18-22 cells/group). The spread area of cells on uncoated glass were 15-21% larger than cells seeded on collagen hydrogels (n=18-22 cells/group). Premitotic cell rounding was observed with average phase height increasing 57% over 10 minutes. Following cell division phase height decreased linearly (R2=0.94) to 58% of the original height pre-division. Phase objects consistent with lamellipodia were apparent from the reconstructions at the leading edge of migrating cells. These data demonstrate the ability to track quantitative phase parameters and relate them to cell morphology during cell migration and division on adherent substrates, using telecentric DHM. The technique enables future studies of cell-matrix interactions relevant to cancer.

  7. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.

    PubMed

    Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R

    2017-07-01

    The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  8. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons.

    PubMed

    Alp, Murat; Cucinotta, Francis A

    2018-03-01

    Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions

  9. Selection of appropriate isolation method based on morphology of blastocyst for efficient derivation of buffalo embryonic stem cells.

    PubMed

    Kumar, R; Ahlawat, S P S; Sharma, M; Verma, O P; Sai Kumar, G; Taru Sharma, G

    2014-03-01

    The efficiency of embryonic stem cell (ESC) derivation from all species except for rodents and primates is very low. There are however, multiple interests in obtaining pluripotent cells from these animals with main expectations in the fields of transgenesis, cloning, regenerative medicine and tissue engineering. Researches are being carried out in laboratories throughout the world to increase the efficiency of ESC isolation for their downstream applications. Thus, the present study was undertaken to study the effect of different isolation methods based on the morphology of blastocyst for efficient derivation of buffalo ESCs. Embryos were produced in vitro through the procedures of maturation, fertilization and culture. Hatched blastocysts or isolated inner cell masses (ICMs) were seeded on mitomycin-C inactivated buffalo fetal fibroblast monolayer for the development of ESC colonies. The ESCs were analyzed for alkaline phosphatase activity, expression of pluripotency markers and karyotypic stability. Primary ESC colonies were obtained after 2-5 days of seeding hatched blastocysts or isolated ICMs on mitomycin-C inactivated feeder layer. Mechanically isolated ICMs attached and formed primary cell colonies more efficiently than ICMs isolated enzymatically. For derivation of ESCs from poorly defined ICMs intact hatched blastocyst culture was the most successful method. Results of this study implied that although ESCs can be obtained using all three methods used in this study, efficiency varies depending upon the morphology of blastocyst and isolation method used. So, appropriate isolation method must be selected depending on the quality of blastocyst for efficient derivation of ESCs.

  10. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle

    PubMed Central

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia

    2016-01-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151

  11. Nuclear morphology for the detection of alterations in bronchial cells from lung cancer: an attempt to improve sensitivity and specificity.

    PubMed

    Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc

    2011-08-01

    To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.

  12. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    PubMed

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparative study on morphologic changes and cell attachment of periodontitis-affected root surfaces following conditioning with CO2 and Er:YAG laser irradiations.

    PubMed

    Belal, Mahmoud Helmy; Watanabe, Hisashi

    2014-10-01

    Clinical application of lasers in periodontal therapy has continued to expand in last decades; however there are still some controversies. The present study aimed to compare the conditioning effects of the carbon dioxide (CO2) or erbium-doped: yttrium, aluminum and garnet (Er:YAG) laser on periodontally diseased root surfaces following scaling and root planing (SRP) in terms of the alteration of morphologies as well as the attachment of periodontal ligament cells. Forty-five periodontally affected root specimens were prepared and randomly assigned into three groups: I control (untreated diseased), II. SRP+CO2 laser (pulsed, noncontact mode), and III. SRP+Er:YAG laser (slight contact mode). After treatment, five specimens in each group were used for surface topographic examination. The remaining 10 specimens in each group were incubated with human periodontal ligament cell suspension. All the specimens were finally evaluated by scanning electron microscopy. The control specimens showed the lowest number of cultured cells, mostly in oval shape, with no tightly attached cells. The CO2 lased specimens showed a significant increase in the number of attached cells compared with controls, but demonstrated some major thermal alterations on the surfaces. The Er:YAG lased specimens showed the significantly highest number of attached cells, mostly in flat form, and did not show distinct thermal damage. The present study suggests that compared with the CO2 laser, the Er:YAG laser may constitute a more useful conditioning tool for enhancing periodontal cell attachment to periodontally diseased root surfaces, with fewer undesirable thermal side effects.

  14. Effect of triamcinolone in keloids morphological changes and cell apoptosis.

    PubMed

    dos Santos, João Márcio Prazeres; de Souza, Cláudio; de Vasconcelos, Anílton César; Nunes, Tarcizo Afonso

    2015-06-01

    to assess the effects of injectable triamcinolone on keloid scars length, height and thickness, and on the number of cells undergoing apoptosis. This study consists in a prospective, controlled, randomized, single-blinded clinical trial, conducted with fifteen patients with ear keloids divided into two groups: group 1 - seven patients undergoing keloid excisions, and group 2 - eight patients undergoing keloid excisions after three sessions of infiltration with one ml of Triamcinolone hexacetonide (20mg/ml) with three week intervals between them and between the last session and surgery. The two groups were homogeneous regarding age, gender and evolution of the keloid scar. The keloid scars of patients in group 2 were measured for the length, height and thickness before triamcinolone injection and before surgery. A blinded observer performed morphological detailing and quantification of cells in hematoxylin-eosin-stained surgical specimens. An apoptotic index was created. The apoptotic index in group 1 was 56.82, and in group 2, 68.55, showing no significant difference as for apoptosis (p=0.0971). The reduction in keloid dimensions in Group 2 was 10.12% in length (p=0.6598), 11.94% in height (p=0.4981) and 15.62% in thickness (p=0.4027). This study concluded that the infiltration of triamcinolone in keloid scars did not increase the number of apoptosit and did not reduce keloids' size, length, height or thickness.

  15. Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.

    PubMed

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-09-02

    Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas.

  16. The influence of surface properties of plasma-etched polydimethylsiloxane (PDMS) on cell growth and morphology.

    PubMed

    Pennisi, Cristian P; Zachar, Vladimir; Gurevich, Leonid; Patriciu, Andrei; Struijk, Johannes J

    2010-01-01

    Polydimethylsiloxane (PDMS) or silicone rubber is a widely used implant material. Approaches to promote tissue integration to PDMS are desirable to avoid clinical problems associated with sliding and friction between tissue and implant. Plasma-etching is a useful way to control cell behavior on PDMS without additional coatings. In this work, different plasma processing conditions were used to modify the surface properties of PDMS substrates. Surface nanotopography and wettability were measured to study their effect on in vitro growth and morphology of fibroblasts. While fluorinated plasma treatments produced nanorough hydrophobic and superhydrophobic surfaces that had negative or little influences on cellular behavior, water vapor/oxygen plasma produced smooth hydrophillic surfaces that enhanced cell growth.

  17. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D.

    PubMed

    Tymchenko, Nina; Nilebäck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia

    2012-12-01

    The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.

  18. Hydrodynamics in Cell Studies

    PubMed Central

    2018-01-01

    Hydrodynamic phenomena are ubiquitous in living organisms and can be used to manipulate cells or emulate physiological microenvironments experienced in vivo. Hydrodynamic effects influence multiple cellular properties and processes, including cell morphology, intracellular processes, cell–cell signaling cascades and reaction kinetics, and play an important role at the single-cell, multicellular, and organ level. Selected hydrodynamic effects can also be leveraged to control mechanical stresses, analyte transport, as well as local temperature within cellular microenvironments. With a better understanding of fluid mechanics at the micrometer-length scale and the advent of microfluidic technologies, a new generation of experimental tools that provide control over cellular microenvironments and emulate physiological conditions with exquisite accuracy is now emerging. Accordingly, we believe that it is timely to assess the concepts underlying hydrodynamic control of cellular microenvironments and their applications and provide some perspective on the future of such tools in in vitro cell-culture models. Generally, we describe the interplay between living cells, hydrodynamic stressors, and fluid flow-induced effects imposed on the cells. This interplay results in a broad range of chemical, biological, and physical phenomena in and around cells. More specifically, we describe and formulate the underlying physics of hydrodynamic phenomena affecting both adhered and suspended cells. Moreover, we provide an overview of representative studies that leverage hydrodynamic effects in the context of single-cell studies within microfluidic systems. PMID:29420889

  19. Morphological study of tooth development in podoplanin-deficient mice.

    PubMed

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  20. Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling

    PubMed Central

    Zhang, Baoping; Li, Long; Li, Zhiqiang; Liu, Yang; Zhang, Hong; Wang, Jizeng

    2016-01-01

    A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy. PMID:27731354

  1. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae.

    PubMed

    Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi

    2018-05-14

    Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Morphological and immunohistochemical diversity of endometrial stromal sarcoma in rats.

    PubMed

    Kumabe, Shino; Sato, Junko; Tomonari, Yuki; Takahashi, Miwa; Inoue, Kaoru; Yoshida, Midori; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru

    2018-04-01

    To clarify the histopathological characteristics of rat endometrial stromal sarcoma (ESS), we morphologically reviewed 12 malignant uterine tumors protruding into the lumen in previous rat carcinogenicity studies. The 12 cases were classified into the following 6 types based on their morphological features: spindle cell and collagen rich type, pleomorphic/spindle cell and compact type, decidual alteration type, histiocytic and multinucleated giant cell mixture type, Antoni A-type schwannoma type, and Antoni B-type schwannoma type. Immunohistochemically, tumor cells in all cases exhibited focal or diffuse positive reactions for vimentin, and 11 of the 12 cases were positive for S-100. Interestingly, 9 cases were positive for desmin or αSMA, indicating tumor cells expressing smooth muscle properties. Both Antoni A- and B-type schwannoma types showed low reactions for both muscle markers. Positive results for estrogen receptor α in the 11 cases suggested that they were derived from endometrial stromal cells. On the basis of their immunohistochemical profiles, they were considered to be derived from endometrial stromal cells while they showed morphological variation. The detection of a basement membrane surrounding tumor cells might not be a definitive indicator for differential diagnosis of ESS from malignant schwannoma. In conclusion, ESS could exhibit wide morphological and immunohistochemical variation including features of schwannoma or smooth muscle tumor.

  3. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    PubMed

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  4. Morphology Control for Fully Printable Organic-Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer.

    PubMed

    Kato, Takehito; Oinuma, Chihiro; Otsuka, Munechika; Hagiwara, Naoki

    2017-01-10

    The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.

  5. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delaymore » of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.« less

  6. Effects of nicotine in the presence and absence of vitamin E on morphology, viability and osteogenic gene expression in MG-63 osteoblast-like cells.

    PubMed

    Torshabi, Maryam; Esfahrood, Zeinab Rezaei; Gholamin, Parisan; Karami, Elahe

    2016-11-01

    Evidence shows that oxidative stress induced by nicotine plays an important role in bone loss. Vitamin E with its antioxidative properties may be able to reverse the effects of nicotine on bone. This study aimed to assess the effects of nicotine in the presence and absence of vitamin E on morphology, viability and osteogenic gene expression in MG-63 (osteosarcoma) human osteoblast-like cells. We treated the cells with 5 mM nicotine. The viability and morphology of cells were evaluated respectively using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and crystal violet assays. The effect of nicotine on osteogenic gene expression in MG-63 cells was assessed by real-time reverse-transcription polymerase chain reaction of osteoblast markers, namely, alkaline phosphatase, osteocalcin and bone sialoprotein. The results revealed that survival and proliferation of MG-63 cells were suppressed following exposure to nicotine, and cytoplasm vacuolization occurred in the cells. Nicotine significantly down-regulated the expression of osteogenic marker genes. Such adverse effects on morphology, viability and osteogenic gene expression of MG-63 cells were reversed by vitamin E therapy. In conclusion, vitamin E supplementation may play a role in proliferation and differentiation of osteoblasts, and vitamin E can be considered as an anabolic agent to treat nicotine-induced bone loss.

  7. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  8. Gia/Mthl5 is an aorta specific GPCR required for Drosophila heart tube morphology and normal pericardial cell positioning.

    PubMed

    Patel, Meghna V; Zhu, Jun-Yi; Jiang, Zhiping; Richman, Adam; VanBerkum, Mark F A; Han, Zhe

    2016-06-01

    G-protein signaling is known to be required for cell-cell contacts during the development of the Drosophila dorsal vessel. However, the identity of the G protein-coupled receptor (GPCR) that regulates this signaling pathway activity is unknown. Here we describe the identification of a novel cardiac specific GPCR, called Gia, for "GPCR in aorta". Gia is the only heart-specific GPCR identified in Drosophila to date and it is specifically expressed in cardioblasts that fuse at the dorsal midline to become the aorta. Gia is the only Drosophila gene so far identified for which expression is entirely restricted to cells of the aorta. Deletion of Gia led to a broken-hearted phenotype, characterized by pericardial cells dissociated from cardioblasts and abnormal distribution of cell junction proteins. Both phenotypes were similar to those observed in mutants of the heterotrimeric cardiac G proteins. Lack of Gia also led to defects in the alignment and fusion of cardioblasts in the aorta. Gia forms a protein complex with G-αo47A, the alpha subunit of the heterotrimeric cardiac G proteins and interacts genetically with G-αo47A during cardiac morphogenesis. Our study identified Gia as an essential aorta-specific GPCR that functions upstream of cardiac heterotrimeric G proteins and is required for morphological integrity of the aorta during heart tube formation. These studies lead to a redefinition of the bro phenotype, to encompass morphological integrity of the heart tube as well as cardioblast-pericardial cell spatial interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  10. Morphologic observation and classification criteria of atretic follicles in guinea pigs.

    PubMed

    Wang, Wei; Liu, Hong-Lin; Tian, Wei; Zhang, Fen-Fen; Gong, Yan; Chen, Jin-Wei; Mao, Da-Gan; Shi, Fang-Xiong

    2010-05-01

    There is a lack of appropriate classification criteria for the determination of atretic follicles in guinea pigs. In the present study, new criteria were established based on the latest morphologic criteria for cell death proposed by the Nomenclature Committee on Cell Death (NCCD) in 2009. Ovaries of guinea pigs were sampled on different stages of estrous cycle, and the morphologic observations of atretic follicles were investigated in serial sections. The results showed that the process of follicular atresia could be classified into four continuous stages: (1) the granulosa layer became loose, and some apoptotic bodies began to appear; (2) the granulosa cells were massively eliminated; (3) the theca interna cells differentiated; and (4) the residual follicular cells degenerated. In addition, the examination revealed that these morphologic criteria were accurate and feasible. In conclusion, this study provides new criteria for the classification of atretic follicles in guinea pigs, and this knowledge can inform future research in the area.

  11. Morphological and functional characteristics of human gingival junctional epithelium.

    PubMed

    Jiang, Qian; Yu, Youcheng; Ruan, Hong; Luo, Yin; Guo, Xuehua

    2014-04-03

    This study aims to observe the morphological characteristics and identify the function characteristics of junctional epithelium (JE) tissues and cultured JE cells. Paraffin sections of human molar or premolar on the gingival buccolingual side were prepared from 6 subjects. HE staining and image analysis were performed to measure and compare the morphological difference among JE, oral gingival epithelium (OGE) and sulcular epithelium (SE). Immunohistochemistry was applied to detect the expression pattern of cytokeratin 5/6, 7, 8/18, 10/13, 16, 17, 19, and 20 in JE, OGE and SE. On the other hand, primary human JE and OGE cells were cultured in vitro. Cell identify was confirmed by histology and immunohistochemistry. In a co-culture model, TEM was used to observe the attachment formation between JE cells and tooth surface. Human JE was a unique tissue which was different from SE and OGE in morphology. Similarly, morphology of JE cells was also particular compared with OGE cells cultured in vitro. In addition, JE cells had a longer incubation period than OGE cells. Different expression of several CKs illustrated JE was in a characteristic of low differentiation and high regeneration. After being co-cultured for 14 d, multiple cell layers, basement membrane-like and hemidesmosome-like structures were appeared at the junction of JE cell membrane and tooth surface. JE is a specially stratified epithelium with low differentiation and high regeneration ability in gingival tissue both in vivo and in vitro. In co-culture model, human JE cells can form basement membrane-like and hemidesmosome-like structures in about 2 weeks.

  12. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  13. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology.

    PubMed

    Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian

    2011-07-01

    Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E

  14. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells.

    PubMed

    Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori

    2017-10-01

    We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.

  15. Phase contrast microscopy of living cells within the whole lens: spatial correlations and morphological dynamics

    PubMed Central

    Kong, Zhiying; Zhu, Xiangjia; Zhang, Shenghai; Wu, Jihong

    2012-01-01

    Purpose Images from cultured lens cells do not convey enough spatial information, and imaging of fixed lens specimens cannot reveal dynamic changes in the cells. As such, a real-time, convenient approach for monitoring label-free imaging of dynamic processes of living cells within the whole lens is urgently needed. Methods Female Wistar rat lenses were kept in organ culture. Insulin-like growth factor-I was added to the culture medium to induce cell mitosis. A novel method of ultraviolet (UV) irradiation was used to induce cell apoptosis and fiber damage. The cellular morphological dynamics within the whole lens were monitored by inverted phase contrast microscopy. Apoptosis was assessed using a commercial kit with Hoechst 33342/YO-PRO®-1/propidium iodide (PI). Results The intrinsic transparency and low-light scattering property of the rat lens permitted direct imaging of the lens epithelial cells (LECs) and the superficial fiber cells. We visualized the processes of mitosis and apoptosis of the LECs, and we obtained dynamic images of posterior fiber cells following UVA irradiation. Conclusions This method opens a new window for observing lens cells in their physiologic location, and it can be readily applied in studies on lens physiology and pathology. PMID:22879736

  16. Morphology and dynamics of tumor cell colonies propagating in epidermal growth factor supplemented media

    NASA Astrophysics Data System (ADS)

    Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.

    2018-07-01

    The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium

  17. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  18. mDia2 and CXCL12/CXCR4 chemokine signaling intersect to drive tumor cell amoeboid morphological transitions.

    PubMed

    Wyse, Meghan M; Goicoechea, Silvia; Garcia-Mata, Rafael; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2017-03-04

    Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.

  20. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  1. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells.

    PubMed

    Prauzner-Bechcicki, Szymon; Raczkowska, Joanna; Madej, Ewelina; Pabijan, Joanna; Lukes, Jaroslav; Sepitka, Josef; Rysz, Jakub; Awsiuk, Kamil; Bernasik, Andrzej; Budkowski, Andrzej; Lekka, Małgorzata

    2015-01-01

    A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples: texture-based classification of tissue morphologies

    NASA Astrophysics Data System (ADS)

    Turkki, Riku; Linder, Nina; Kovanen, Panu E.; Pellinen, Teijo; Lundin, Johan

    2016-03-01

    The characteristics of immune cells in the tumor microenvironment of breast cancer capture clinically important information. Despite the heterogeneity of tumor-infiltrating immune cells, it has been shown that the degree of infiltration assessed by visual evaluation of hematoxylin-eosin (H and E) stained samples has prognostic and possibly predictive value. However, quantification of the infiltration in H and E-stained tissue samples is currently dependent on visual scoring by an expert. Computer vision enables automated characterization of the components of the tumor microenvironment, and texture-based methods have successfully been used to discriminate between different tissue morphologies and cell phenotypes. In this study, we evaluate whether local binary pattern texture features with superpixel segmentation and classification with support vector machine can be utilized to identify immune cell infiltration in H and E-stained breast cancer samples. Guided with the pan-leukocyte CD45 marker, we annotated training and test sets from 20 primary breast cancer samples. In the training set of arbitrary sized image regions (n=1,116) a 3-fold cross-validation resulted in 98% accuracy and an area under the receiver-operating characteristic curve (AUC) of 0.98 to discriminate between immune cell -rich and - poor areas. In the test set (n=204), we achieved an accuracy of 96% and AUC of 0.99 to label cropped tissue regions correctly into immune cell -rich and -poor categories. The obtained results demonstrate strong discrimination between immune cell -rich and -poor tissue morphologies. The proposed method can provide a quantitative measurement of the degree of immune cell infiltration and applied to digitally scanned H and E-stained breast cancer samples for diagnostic purposes.

  3. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens.

    PubMed

    Gao, Weixia; Zhang, Zhongxiong; Feng, Jun; Dang, Yulei; Quan, Yufen; Gu, Yanyan; Wang, Shufang; Song, Cunjiang

    2016-09-01

    Actin-like MreB paralogs play important roles in cell shape maintenance, cell wall synthesis and the regulation of the D,L-endopeptidases, CwlO and LytE. The gram-positive bacteria, Bacillus amyloliquefaciens LL3, is a poly-γ-glutamic acid (γ-PGA) producing strain that contains three MreB paralogs: MreB, Mbl and MreBH. In B. amyloliquefaciens, CwlO and LytE can degrade γ-PGA. In this study, we aimed to test the hypothesis that modulating transcript levels of MreB paralogs would alter the synthesis and degradation of γ-PGA. The results showed that overexpression or inhibition of MreB, Mbl or MreBH had distinct effects on cell morphology and the molecular weight of the γ-PGA products. In fermentation medium, cells of mreB inhibition mutant were 50.2% longer than LL3, and the γ-PGA titer increased by 55.7%. However, changing the expression level of mbl showed only slight effects on the morphology, γ-PGA molecular weight and titer. In the mreBH inhibition mutant, γ-PGA production and its molecular weight increased by 56.7% and 19.4%, respectively. These results confirmed our hypothesis that suppressing the expression of MreB paralogs might reduce γ-PGA degradation, and that improving the cell size could strengthen γ-PGA synthesis. This is the first report of enhanced γ-PGA production via suppression of actin-like MreB paralogs. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Effects of Above-Optimum Growth Temperature and Cell Morphology on Thermotolerance of Listeria monocytogenes Cells Suspended in Bovine Milk

    PubMed Central

    Rowan, Neil J.; Anderson, John G.

    1998-01-01

    The thermotolerances of two different cell forms of Listeria monocytogenes (serotype 4b) grown at 37 and 42.8°C in commercially pasteurized and laboratory-tyndallized whole milk (WM) were investigated. Test strains, after growth at 37 or 42.8°C, were suspended in WM at concentrations of approximately 1.5 × 108 to 3.0 × 108 cells/ml and were then heated at 56, 60, and 63°C for various exposure times. Survival was determined by enumeration on tryptone-soya-yeast extract agar and Listeria selective agar, and D values (decimal reduction times) and Z values (numbers of degrees Celsius required to cause a 10-fold change in the D value) were calculated. Higher average recovery and higher D values (i.e., seen as a 2.5- to 3-fold increase in thermotolerance) were obtained when cells were grown at 42.8°C prior to heat treatment. A relationship was observed between thermotolerance and cell morphology of L. monocytogenes. Atypical Listeria cell types (consisting predominantly of long cell chains measuring up to 60 μm in length) associated with rough (R) culture variants were shown to be 1.2-fold more thermotolerant than the typical dispersed cell form associated with normal smooth (S) cultures (P ≤ 0.001). The thermal death-time (TDT) curves of R-cell forms contained a tail section in addition to the shoulder section characteristic of TDT curves of normal single to paired cells (i.e., S form). The factors shown to influence the thermoresistance of suspended Listeria cells (P ≤ 0.001) were as follows: growth and heating temperatures, type of plating medium, recovery method, and cell morphology. Regression analysis of nonlinear data can underestimate survival of L. monocytogenes; the end point recovery method was shown to be a better method for determining thermotolerance because it takes both shoulders and tails into consideration. Despite their enhanced heat resistance, atypical R-cell forms of L. monocytogenes were unable to survive the low-temperature, long

  5. Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A(T1)C1-3 cells by cancer chemotherapeutic agents.

    PubMed

    Benedict, W F; Banerjee, A; Gardner, A; Jones, P A

    1977-07-01

    Various cancer chemotherapeutic agents including alkylating agents, antimetabolites, and antibiotics or natural products were studied for their ability to produce morphological transformation in the C3H/10T1/2 clone 8 mouse cell line and chromosomal damage in the A(T1)C1-3 hamster cell line following a 24-hr exposure of each agent at different concentrations. Those drugs that were known to be carcinogenic in vivo also produced morphological transformation and chromosomal damage, whereas those agents that have not been shown to be carcinogenic in vivo produced neither transformation nor chromosomal lesions. The concentrations used for these studies were in general similar to those actually reached in the plasma of patients treated with these same drugs for malignant, as well as certain nonmalignant, conditions.

  6. Corneal endothelial cell density and morphology in normal Filipino eyes.

    PubMed

    Padilla, Ma Dominga B; Sibayan, Santiago Antonio B; Gonzales, Clarissa S A

    2004-03-01

    To describe the corneal endothelial cell density and morphology in normal adult Filipino eyes. Specular microscopy was performed in 640 eyes of 320 normal Filipino volunteers aged 20 to 86 years. Of these, 163 were male, and 157 were female. Mean cell density (MCD), mean cell area (MCA), coefficient of variation (CV) in cell size (polymegathism), and hexagonality were recorded and analyzed in relation to fellow eyes, gender, and age. MCD was 2798 +/- 307.2 cells/mm, and MCA was 363.0 +/- 40.3 microm. Results showed that women had a MCD 7.8% greater than men (P < 0.01). Regression analysis showed a consistent decrease in MCD (r = -0.47) and increase in MCA (r = 0.45) from 20 to 60 years of age. This was followed by a marked decrease in correlation and apparent trend reversal for both variables in the groups above 60 years (MCD r = 0.18, MCA r = -0.04) accompanied by a marked increase in CV in cell size (20-60 years r = -0.04, >60 years r = 0.33). A very low negative correlation (r = -0.10) was noted between hexagonality and increasing age through all age groups. The first normative data for the endothelium of Filipino eyes are reported. There are statistically significant differences in MCD between genders, and a consistent decrease in MCD and increase in MCA with age only until 60 years old, after which correlation between age and these variables decreases. Polymegathism and correlation between CV in cell size and age markedly increase after age 60.

  7. Morphological priming by itself: a study of Portuguese conjugations.

    PubMed

    Veríssimo, João; Clahsen, Harald

    2009-07-01

    Does the language processing system make use of abstract grammatical categories and representations that are not directly visible from the surface form of a linguistic expression? This study examines stem-formation processes and conjugation classes, a case of 'pure' morphology that provides insight into the role of grammatical structure in language processing. We report results from a cross-modal priming experiment examining 1st and 3rd conjugation verb forms in Portuguese. Although items were closely matched with respect to a range of non-morphological factors, distinct priming patterns were found for 1st and 3rd conjugation stems. We attribute the observed priming patterns to different representations of conjugational stems, combinatorial morphologically structured ones for 1st conjugation and un-analyzed morphologically unstructured ones for 3rd conjugation stems. Our findings underline the importance of morphology for language comprehension indicating that morphological analysis goes beyond the identification of grammatical morphemes.

  8. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    PubMed

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  9. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

    PubMed Central

    2013-01-01

    Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS

  10. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy

    PubMed Central

    Jonas, Kristina; Tomenius, Henrik; Kader, Abdul; Normark, Staffan; Römling, Ute; Belova, Lyubov M; Melefors, Öjar

    2007-01-01

    Background Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM) and light microscopy. Results AFM imaging was performed on colonies of Salmonella Typhimurium grown on agar plates for 24 h and on biofilms grown for 4, 8, 16 or 24 h on mica slides submerged in standing cultures. Our data show that in the wild type curli were visible as extracellular material on and between the cells and as fimbrial structures at the edges of biofilms grown for 16 h and 24 h. In contrast to the wild type, which formed a three-dimensional biofilm within 24 h, a curli mutant and a strain mutated in the global regulator CsgD were severely impaired in biofilm formation. A mutant in cellulose production retained some capability to form cell aggregates, but not a confluent biofilm. Extracellular matrix was observed in this mutant to almost the same extent as in the wild type. Overexpression of CsgD led to a much thicker and a more rapidly growing biofilm. Disruption of BapA altered neither colony and biofilm morphology nor the ability to form a biofilm within 24 h on the submerged surfaces. Besides curli, the expression of flagella and pili as well as changes in cell shape and cell size could be monitored in the growing biofilms. Conclusion Our work demonstrates that atomic force microscopy can efficiently be used as a tool to monitor the morphology of bacteria grown as colonies on agar plates or within biofilms formed in a liquid at high resolution. PMID:17650335

  11. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.

    PubMed

    Jonas, Kristina; Tomenius, Henrik; Kader, Abdul; Normark, Staffan; Römling, Ute; Belova, Lyubov M; Melefors, Ojar

    2007-07-24

    Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM) and light microscopy. AFM imaging was performed on colonies of Salmonella Typhimurium grown on agar plates for 24 h and on biofilms grown for 4, 8, 16 or 24 h on mica slides submerged in standing cultures. Our data show that in the wild type curli were visible as extracellular material on and between the cells and as fimbrial structures at the edges of biofilms grown for 16 h and 24 h. In contrast to the wild type, which formed a three-dimensional biofilm within 24 h, a curli mutant and a strain mutated in the global regulator CsgD were severely impaired in biofilm formation. A mutant in cellulose production retained some capability to form cell aggregates, but not a confluent biofilm. Extracellular matrix was observed in this mutant to almost the same extent as in the wild type. Overexpression of CsgD led to a much thicker and a more rapidly growing biofilm. Disruption of BapA altered neither colony and biofilm morphology nor the ability to form a biofilm within 24 h on the submerged surfaces. Besides curli, the expression of flagella and pili as well as changes in cell shape and cell size could be monitored in the growing biofilms. Our work demonstrates that atomic force microscopy can efficiently be used as a tool to monitor the morphology of bacteria grown as colonies on agar plates or within biofilms formed in a liquid at high resolution.

  12. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates

    PubMed Central

    Syed, Sana; Schober, Joseph; Blanco, Alexandra

    2017-01-01

    Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration. PMID:29136040

  13. Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake.

    PubMed

    Di Silvio, Desirè; Rigby, Neil; Bajka, Balazs; Mackie, Alan; Baldelli Bombelli, Francesca

    2016-06-01

    Nanoparticles (NPs) in biological fluids immediately interact with proteins forming a biomolecular corona (PC) that imparts their biological identity. While several studies on the formation of the PC in human plasma have been reported, the PC of orally administrated NPs has been less investigated, mostly in the presence of a food matrix. In fact, food matrixes when digested are subject of several dynamic changes that will certainly affect the PC formed on the NPs. The lack of studies on this topic is clearly related to the difficulty in isolating representative PC NPs from such a complex environment. In this work magnetite NPs were added to in vitro simulated digestion simultaneously with bread and PC NPs were isolated after gastric and duodenal phases by sucrose gradient ultracentrifugation (UC). The PC NPs were characterized in terms of size and protein composition. Translocation studies were then performed on Caco-2 monolayers in a serum free environment and cell morphology was characterized by confocal microscopy. PC NPs isolated from gastric and duodenal phases were different in size, surface charge and protein corona composition. NP cellular uptake was enhanced by the digestive PC inducing morphology changes in the cell monolayer. Overall, in this work we were able to isolate PC NPs from digested fluids in the presence of a food matrix and study their biological response on Caco-2 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells.

    PubMed

    Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun

    2015-01-01

    Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.

  15. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  16. Shock wave trauma leads to inflammatory response and morphological activation in macrophage cell lines, but does not induce iNOS or NO synthesis.

    PubMed

    Günther, Mattias; Plantman, Stefan; Gahm, Caroline; Sondén, Anders; Risling, Mårten; Mathiesen, Tiit

    2014-12-01

    Experimental CNS trauma results in post-traumatic inflammation for which microglia and macrophages are vital. Experimental brain contusion entails iNOS synthesis and formation of free radicals, NO and peroxynitrite. Shock wave trauma can be used as a model of high-energy trauma in cell culture. It is known that shock wave trauma causes sub-lytic injury and inflammatory activation in endothelial cells. Mechanical disruption of red blood cells can induce iNOS synthesis in experimental systems. However, it is not known whether trauma can induce activation and iNOS synthesis in inflammatory cell lines with microglial or macrophage lineage. We studied the response and activation in two macrophage cell lines and the consequence for iNOS and NO formation after shock wave trauma. Two macrophage cell lines from rat (NR8383) and mouse (RAW264.7) were exposed to shock wave trauma by the Flyer Plate method. The cellular response was investigated by Affymetrix gene arrays. Cell survival and morphological activation was monitored for 24 h in a Cell-IQ live cell imaging system. iNOS induction and NO synthesis were analyzed by Western blot, in cell Western IR-immunofluorescence, and Griess nitrite assay. Morphological signs of activation were detected in both macrophage cell lines. The activation of RAW264.7 was statistically significant (p < 0.05), but activation of NR8383 did not pass the threshold of statistical significance alpha (p > 0.05). The growth rate of idle cells was unaffected and growth arrest was not seen. Trauma did not result in iNOS synthesis or NO induction. Gene array analyses showed high enrichment for inflammatory response, G-protein coupled signaling, detection of stimulus and chemotaxis. Shock wave trauma combined with low LPS stimulation instead led to high enrichment in apoptosis, IL-8 signaling, mitosis and DNA-related activities. LPS/IFN-ɣ stimulation caused iNOS and NO induction and morphological activation in both cell lines. Shock wave trauma by the

  17. [Morphological changes in tongue cancer after cryosurgery].

    PubMed

    Zhou, X D; Mao, T Q

    1993-01-01

    Tca 8113 (human tongue cancer cell line) cell transplanted tumors in nude mice were treated with cryosurgery for three freeze-thaw cycles. Tumor samples were obtained by biopsies pre- and post-cryosurgery for morphological study. The results showed intercellular adhesion damage, nuclear pyknosis, cell death, etc. One week after, the deep parts of the frozen samples were similar to that of the untreated ones. Our study indicates the change of biomembrance may be also important as of nuclei in cell death and may play an important role in the treatment of cancer by cryochemistry.

  18. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3

  19. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    NASA Astrophysics Data System (ADS)

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  20. A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung's disease utilizing ls/ls model mice.

    PubMed

    Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro

    2005-06-01

    Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.

  1. HPV- and non-HPV-related subtypes of penile squamous cell carcinoma (SCC): Morphological features and differential diagnosis according to the new WHO classification (2015).

    PubMed

    Sanchez, Diego F; Cañete, Sofía; Fernández-Nestosa, María José; Lezcano, Cecilia; Rodríguez, Ingrid; Barreto, José; Alvarado-Cabrero, Isabel; Cubilla, Antonio L

    2015-05-01

    The majority of penile carcinomas are squamous cell carcinomas originating in the squamous mucosa covering the glans, coronal sulcus, or inner surface of the foreskin, the 3 latter sites comprising the penile anatomical compartments. There is a variegated spectrum of subtypes of penile squamous cell carcinomas according to recent classification schemes. Currently, because of etiological and prognostic considerations, 2 morphologically and molecularly distinctive groups of subtypes of penile SCCs based on the presence of HPV were delineated. The predominant cell composition of tumors associated with HPV is the basaloid cell, which is the hallmark and best tissue marker for the virus. Tumors negative for the virus, however, are preferentially of lower grade and keratinizing maturing neoplasms with the exception of sarcomatoid carcinoma. HPV is detected in research studies by PCR or in situ hybridization (ISH) technologies, but p16 immunohistochemical stain is an adequate and less-expensive surrogate that is useful in the routine practice of pathology. The aim of this review is to demonstrate the variable morphological phenotypic expression of penile tumors separating non-HPV- and HPV-related neoplasms and to add morphological information that will justify subclassifying squamous cell carcinomas in a number of special subtypes. A brief discussion of the differential diagnosis in each category is also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A combined electrophysiological and morphological study of neuropeptide Y–expressing inhibitory interneurons in the spinal dorsal horn of the mouse

    PubMed Central

    Iwagaki, Noboru; Ganley, Robert P.; Dickie, Allen C.; Polgár, Erika; Hughes, David I.; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J.; Riddell, John S.

    2015-01-01

    Abstract The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread. PMID:26882346

  3. Direct transdifferentiation of spermatogonial stem cells to morphological, phenotypic and functional hepatocyte-like cells via the ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E

    PubMed Central

    2013-01-01

    Background Severe shortage of liver donors and hepatocytes highlights urgent requirement of extra-liver and stem cell source of hepatocytes for treating liver-related diseases. Here we hypothesized that spermatogonial stem cells (SSCs) can directly transdifferentiate to hepatic stem-like cells capable of differentiating into mature hepatocyte-like cells in vitro without an intervening pluripotent state. Results SSCs first changed into hepatic stem-like cells since they resembled hepatic oval cells in morphology and expressed Ck8, Ck18, Ck7, Ck19, OV6, and albumin. Importantly, they co-expressed CK8 and CK19 but not ES cell markers. Hepatic stem-like cells derived from SSCs could differentiate into small hepatocytes based upon their morphological features and expression of numerous hepatic cell markers but lacking of bile epithelial cell hallmarks. Small hepatocytes were further coaxed to differentiate into mature hepatocyte-like cells, as identified by their morphological traits and strong expression of Ck8, Ck18, Cyp7a1, Hnf3b, Alb, Tat, Ttr, albumin, and CYP1A2 but not Ck7 or CK19. Notably, these differentiated cells acquired functional attributes of hepatocyte-like cells because they secreted albumin, synthesized urea, and uptake and released indocyanine green. Moreover, phosphorylation of ERK1/2 and Smad2/3 rather than Akt was activated in hepatic stem cells and mature hepatocytes. Additionally, cyclin A, cyclin B and cyclin E transcripts and proteins but not cyclin D1 or CDK1 and CDK2 transcripts or proteins were reduced in mature hepatocyte-like cells or hepatic stem-like cells derived from SSCs compared to SSCs. Conclusions SSCs can transdifferentiate to hepatic stem-like cells capable of differentiating into cells with morphological, phenotypic and functional characteristics of mature hepatocytes via the activation of ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. This study thus provides an invaluable source

  4. Morphological Heterogeneity and Attachment of Phaeobacter inhibens.

    PubMed

    Segev, Einat; Tellez, Adèle; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The Roseobacter clade is a key group of bacteria in the ocean exhibiting diverse metabolic repertoires and a wide range of symbiotic life-styles. Many Roseobacters possess remarkable capabilities of attachment to both biotic and abiotic surfaces. When attached to each other, these bacteria form multi-cellular structures called rosettes. Phaeobacter inhibens, a well-studied Roseobacter, exhibits various cell sizes and morphologies that are either associated with rosettes or occur as single cells. Here we describe the distribution of P. inhibens morphologies and rosettes within a population. We detect an N-acetylglucosamine-containing polysaccharide on the poles of some cells and at the center of all rosettes. We demonstrate that rosettes are formed by the attachment of individual cells at the polysaccharide-containing pole rather than by cell division. Finally, we show that P. inhibens attachment to abiotic surfaces is hindered by the presence of DNA from itself, but not from other bacteria. Taken together, our findings demonstrate that cell adhesiveness is likely to play a significant role in the life cycle of P. inhibens as well as other Roseobacters.

  5. Morphological Heterogeneity and Attachment of Phaeobacter inhibens

    PubMed Central

    Segev, Einat; Tellez, Adèle; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The Roseobacter clade is a key group of bacteria in the ocean exhibiting diverse metabolic repertoires and a wide range of symbiotic life-styles. Many Roseobacters possess remarkable capabilities of attachment to both biotic and abiotic surfaces. When attached to each other, these bacteria form multi-cellular structures called rosettes. Phaeobacter inhibens, a well-studied Roseobacter, exhibits various cell sizes and morphologies that are either associated with rosettes or occur as single cells. Here we describe the distribution of P. inhibens morphologies and rosettes within a population. We detect an N-acetylglucosamine-containing polysaccharide on the poles of some cells and at the center of all rosettes. We demonstrate that rosettes are formed by the attachment of individual cells at the polysaccharide-containing pole rather than by cell division. Finally, we show that P. inhibens attachment to abiotic surfaces is hindered by the presence of DNA from itself, but not from other bacteria. Taken together, our findings demonstrate that cell adhesiveness is likely to play a significant role in the life cycle of P. inhibens as well as other Roseobacters. PMID:26560130

  6. The salivary glands of Ameiva ameiva (Teiidae, Lacertilia). A morphological, morphometric and histochemical study.

    PubMed

    Lopes, R A; Costa, J R; Piccolo, A M; Petenusci, S O

    1982-01-01

    The authors studied morphological, morphometric, and histochemically the mucosubstances and proteins in the salivary glands of the lizard Ameiva. Based on the results, the authors concluded: 1. The labial salivary gland is formed by small mucous and mucoserous glands; the sublingual gland by mucoserous cells. 2. Mucous cells show neutral and sulphated mucosubstances and sialic acid. Mucoserous cells of the labial gland show neutral mucosubstance, sialic acid, hyaluronic acid and protein radicals. Mucoserous cells of the sublingual gland show neutral mucosubstance, sialic acid and protein radicals. 3. The average values for acinar area were: 1,198.11 microns 2 for mucoserous acini and 2,105.95 microns 2 for mucous acini of the labial salivary gland. The average values for nucleus volume were: 47.41 microns 3 for mucoserous cells and 38.97 microns 4 for mucous cells. 4. The average values for acinar area and nuclear volume of the mucoserous cells of the subingual gland were respectively: 1,474.62 microns 2 and 67.77 microns 3.

  7. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs

    PubMed Central

    Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G.

    2016-01-01

    Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule

  8. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.

    PubMed

    Li, Shuai; Mitchell, Joe; Briggs, Deidrie J; Young, Jaime K; Long, Samuel S; Fuerst, Peter G

    2016-01-01

    Rod spherules are the site of the first synaptic contact in the retina's rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules

  9. Location, morphology and function of nephrocytes in termites.

    PubMed

    Costa-Leonardo, Ana Maria; Janei, Vanelize; Laranjo, Lara Teixeira; Haifig, Ives

    2015-07-01

    Insect nephrocytes are cells bathed in hemolymph and considered to have an excretory function. These cells have ambiguous nomenclature and are understudied in termites. This study is the first report on the occurrence, morphology and function of nephrocytes in different termite castes. Cytological characteristics in specific developmental stages and castes enable physiological functions to be inferred. Perforate diaphragms indicate a role in filtration, while the extensive peripheral invaginations of the cell membrane suggest active endocytosis. A sequence of morphologies in putative digestive vacuoles infers a lysosomal system and the occurrence of phosphatases suggests a function involving detoxification of substances sequestered from hemolymph. Pericardical nephrocytes took up the dye trypan blue injected in live termites, suggesting their activity connected to the filtration of the hemolymph. Additionally, histochemical tests showed the existence of stored proteins in their cytoplasm. These cells present a well-developed Golgi apparatus and abundant rough endoplasmic reticulum, consistent with protein synthesis. This study highlights the importance of nephrocytes in Isoptera and opens perspectives for further research of these cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Specialized mouse embryonic stem cells for studying vascular development.

    PubMed

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  11. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology.

    PubMed

    Cao, Li; Guilak, Farshid; Setton, Lori A

    2011-02-01

    Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress-strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell-PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell-matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9-3.7 and 1.4-2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell-matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.

  12. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction

    PubMed Central

    Mostofi, Sepideh; Bonyadi Rad, Ehsan; Wiltsche, Helmar; Fasching, Ulrike; Szakacs, Gabor; Ramskogler, Claudia; Srinivasaiah, Sriveena; Ueçal, Muammer; Willumeit, Regine; Weinberg, Annelie-Martina; Schaefer, Ute

    2016-01-01

    This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic

  13. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.

    PubMed

    Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie

    2010-03-01

    Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.

  14. Morphological study of electrophoretically deposited TiO2 film for DSSC application

    NASA Astrophysics Data System (ADS)

    Patel, Alkesh B.; Patel, K. D.; Soni, S. S.; Sonigara, K. K.

    2018-05-01

    In the immerging field of eco-friendly and low cost photovoltaic devices, dye sensitized solar cell (DSSC) [1] has been investigated as promising alternative to the conventional silicon-based solar cells. In the DSSC device, photoanode is crucial component that take charge of holding sensitizer on it and inject the electrons from the sensitizer to current collector. Nanoporous TiO2 is the most relevant candidate for the preparation of photoanode in DSSCs. Surface properties, morphology, porosity and thickness of TiO2 film as well as preparation technique determine the performance of device. In the present work we have report the study of an effect of nanoporous anatase titanium dioxide (TiO2) film thickness on DSSC performance. Photoanode TiO2 (P25) film was deposited on conducting substrate by electrophoresis technique (EPD) and film thickness was controlled during deposition by applying different current density for a constant time interval. Thickness and surface morphology of prepared films was studied by SEM and transmittance analysis. The same set of photoanode was utilized in DSSC devices using metal free organic dye sensitizer to evaluate the photovoltaic performance. Devices were characterized through Current-Voltage (I-V) characteristic, electrochemical impedance spectroscopy (EIS) and open circuit voltage decay curves. Dependency of device performance corresponding to TiO2 film thickness is investigated through the lifetime kinetics of electron charge transfer mechanism trough impedance fitting. It is concluded that appropriate thickness along with uniformity and porosity are required to align the dye molecules to respond efficiently the incident light photons.

  15. Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70BM blend

    DOE PAGES

    Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.; ...

    2015-02-13

    The distribution of electron donor and acceptor in the active layer is known to strongly influence the electrical performance of polymer solar cells for most of the high performance polymer:fullerene systems. The formulation of the solution from which the active layer is spincoated plays an important role in the quest for morphology control. We have studied how the choice of solvent and the use of small amounts of a low vapour pressure additive in the coating solution influence the film morphology and the solar cell performance for blends of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and [6,6]-phenyl C 71-butyric acid methyl ester (PC 70BM).more » We have investigated the lateral morphology using atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM), the vertical morphology using dynamic secondary ion mass spectrometry (d-SIMS) and variable-angle spectroscopic ellipsometry (VASE), and the surface composition using near-edge X-ray absorption fine structure (NEXAFS). The lateral phase-separated domains observed in films spincoated from single solvents, increase in size with increasing solvent vapour pressure and decreasing PC 70BM solubility, but are not observed when 1-chloronaphthalene (CN) is added. A strongly TQ1-enriched surface layer is formed in all TQ1:PC 70BM blend films and rationalized by surface energy differences. The photocurrent and power conversion efficiency strongly increased upon the addition of CN, while the leakage current decreased by one to two orders of magnitude. The higher photocurrent correlates with the finer lateral structure and stronger TQ1-enrichment at the interface with the electron-collecting electrode. This indicates that the charge transport and collection are not hindered by this polymer-enriched surface layer. Neither the open-circuit voltage nor the series resistance of the devices are sensitive to the differences in morphology.« less

  16. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients.

    PubMed

    Pecorelli, Alessandra; Cervellati, Franco; Belmonte, Giuseppe; Montagner, Giulia; Waldon, PhiAnh; Hayek, Joussef; Gambari, Roberto; Valacchi, Giuseppe

    2016-01-01

    A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    PubMed

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Morphologic diversity of syringocystadenocarcinoma papilliferum based on a clinicopathologic study of 6 cases and review of the literature.

    PubMed

    Kazakov, Dmitry V; Requena, Luis; Kutzner, Heinz; Fernandez-Figueras, Maria Teresa; Kacerovska, Denisa; Mentzel, Thomas; Schwabbauer, Peter; Michal, Michal

    2010-06-01

    Syringocystadenocarcinoma papilliferum is an extremely rare cutaneous adnexal neoplasm. The purpose of our investigation was to study a series of syringocystadenocarcinoma papilliferum to document morphologic variations of the neoplasm. This is a light-microscopic study of 6 cases of syringocystadenocarcinoma papilliferum obtained from the combined archival, institutional, and consultations files of the authors over 60 years, complemented by a literature review. Syringocystadenocarcinoma papilliferum invariably occurred in association with syringocystadenoma papilliferum and presented as an in situ adenocarcinoma and/or invasive adenocarcinoma. Additionally, an invasive component was represented by squamous cell carcinoma. Variable present features included pagetoid migration of the neoplastic cells, dirty necrosis, mucinous ductal metaplasia, and ductal changes analogous to those seen in the breast. The ductal changes included patterns identical to columnar cell change (flat epithelial atypia), usual ductal hyperplasia, atypical ductal hyperplasia, and ductal carcinoma in situ. A combination of the above patterns in a single lesion was noted. It is concluded that morphologic diversity of syringocystadenocarcinoma papilliferum is substantial. Its association with the benign counterpart and ductal changes suggests a transformation that may involve usual ductal hyperplasia-atypical ductal hyperplasia-(ductal) adenocarcinoma in situ-invasive adenocarcinoma pathway.

  19. Morphology in Malay-English Biliteracy Acquisition: An Intervention Study

    ERIC Educational Resources Information Center

    Zhang, Dongbo

    2016-01-01

    This intervention study examined the effect of English morphological instruction on the development of English as well as Malay morphological awareness and word reading abilities among Malay-English bilingual fourth graders in Singapore, where English is the medium of instruction. The intervention group experienced semester-long instruction in…

  20. Biphasic papillary renal cell carcinoma is a rare morphological variant with frequent multifocality: a study of 28 cases.

    PubMed

    Trpkov, Kiril; Athanazio, Daniel; Magi-Galluzzi, Cristina; Yilmaz, Helene; Clouston, David; Agaimy, Abbas; Williamson, Sean R; Brimo, Fadi; Lopez, Jose I; Ulamec, Monika; Rioux-Leclercq, Nathalie; Kassem, Maysoun; Gupta, Nilesh; Hartmann, Arndt; Leroy, Xavier; Bashir, Samir Al; Yilmaz, Asli; Hes, Ondřej

    2018-04-01

    To further characterise biphasic squamoid renal cell carcinoma (RCC), a recently proposed variant of papillary RCC. We identified 28 tumours from multiple institutions. They typically showed two cell populations-larger cells with eosinophilic cytoplasm and higher-grade nuclei, surrounded by smaller, amphophilic cells with scanty cytoplasm. The dual morphology was variable (median 72.5% of tumour, range 5-100%); emperipolesis was found in all cases. The male/female ratio was 2:1, and the median age was 55 years (range 39-86 years). The median tumour size was 20 mm (range 9-65 mm). Pathological stage pT1a was found in 21 cases, pT1b in three, and pT3a and pT3b in one each (two not available). Multifocality was found in 32%: multifocal biphasic RCC in one case, biphasic + papillary RCC in two cases, biphasic + clear cell RCC in three cases, biphasic + low-grade urothelial carcinoma of the renal pelvis in one case, and biphasic + Birt-Hogg-Dubé syndrome in one case. Positive immunostains included: PAX8, cytokeratin (CK) 7, α-methylacyl-CoA racemase, epithelial membrane antigen, and vimentin. Cyclin D1 was expressed only in the larger cells. The Ki67 index was higher in the larger cells (median 5% versus ≤1%). Negative stains included: carbonic anhydrase 9, CD117, GATA-3, WT1, CK5/6, and CK20; CD10 and 34βE12 were variably expressed. Gains of chromosomes 7 and 17 were found in two evaluated cases. Follow-up was available for 23 patients (median 24 months, range 1-244 months): 19 were alive without disease, one was alive with recurrence, and one had died of disease (two had died of other causes). Biphasic papillary RCC is a rare variant of papillary RCC, and is often multifocal. © 2017 John Wiley & Sons Ltd.

  1. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    PubMed

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  2. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo

  3. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo

  4. Microfasciculation: a morphological pattern in leprosy nerve damage.

    PubMed

    Antunes, Sérgio L G; Medeiros, Mildred F; Corte-Real, Suzana; Jardim, Márcia R; Nery, José A da Costa; Hacker, Mariana A V B; Valentim, Vânia da Costa; Amadeu, Thaís Porto; Sarno, Euzenir N

    2011-01-01

    To study Microfasciculation, a perineurial response found in neuropathies, emphasizing its frequency, detailed morphological characteristics and biological significance in pure neural leprosy (PNL), post-treatment leprosy neuropathy (PTLN) and non-leprosy neuropathies (NLN). Morphological characteristics of microfascicles were examined via histological staining methods, immunohistochemical expression of neural markers and transmission electronmicroscopy. The detection of microfasciculation in 18 nerve biopsy specimens [12 PNL, six PTLN but not in the NLN group, was associated strongly with perineurial damage and the presence of a multibacillary inflammatory process in the nerves, particularly in the perineurium. Immunoreactivity to anti-S100 protein, anti-neurofilament, anti-nerve growth receptor and anti-myelin basic protein immunoreactivity was found within microfascicles. Ultrastructural examination of three biopsies showed that fibroblast-perineurial cells were devoid of basement membrane despite perineurial-like NGFr immunoreactivity. Morphological evidence demonstrated that multipotent pericytes from inflammation-activated microvessels could be the origin of fibroblast-perineurial cells. A microfasciculation pattern was found in 10% of leprosy-affected nerves. The microfascicles were composed predominantly of unmyelinated fibres and denervated Schwann cells (SCs) surrounded by fibroblast-perineurial cells. This pattern was found more frequently in leprosy nerves with acid-fast bacilli (AFB) and perineurial damage while undergoing an inflammatory process. Further experimental studies are necessary to elucidate microfascicle formation. © 2011 Blackwell Publishing Limited.

  5. Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses.

    PubMed

    Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P

    2017-01-01

    It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.

  6. Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor.

    PubMed

    Vandermies, Marie; Kar, Tambi; Carly, Frédéric; Nicaud, Jean-Marc; Delvigne, Frank; Fickers, Patrick

    2018-04-26

    In the present study, we have isolated and characterized a Yarrowia lipolytica morphological mutant growing exclusively in the pseudohyphal morphology. The gene responsible for this phenotype, YALI0E06519g, was identified as homologous to the mitosis regulation gene HSL1 from Saccharomyces cerevisiae. Taking advantage of its morphology, we achieved the immobilization of the Δhsl1 mutant on the metallic structured packing of immobilized-cell bioreactors. We obtained significant cell retention and growth on the support during shake flask and bioreactor experiments without an attachment step prior to the culture. The system of medium aspersion on the packing ensured oxygen availability in the absence of agitation and minimized the potential release of cells in the culture medium. Additionally, the metallic packing proved its facility of cleaning and sterilization after fermentation. This combined use of morphological mutation and bioreactor design is a promising strategy to develop continuous processes for the production of recombinant protein and metabolites using Y. lipolytica. Graphical Abstract.

  7. Effect of hyaluronic acid on morphological changes to dentin surfaces and subsequent effect on periodontal ligament cell survival, attachment, and spreading.

    PubMed

    Mueller, Andrea; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Lussi, Adrian; Sculean, Anton; Schmidlin, Patrick R; Miron, Richard J

    2017-05-01

    Hyaluronic acid (HA) is a natural constituent of connective tissues and plays an important role in their development, maintenance, and regeneration. Recently, HA has been shown to improve wound healing. However, no basic in vitro study to date has investigated its mode of action. Therefore, the purpose of this study was to examine morphological changes of dentin surfaces following HA coating and thereafter investigate the influence of periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs. HA was coated onto dentin discs utilizing either non-cross-linked (HA) or cross-linked (HA cl) delivery systems. Morphological changes to dentin discs were then assessed using scanning electron microscopy (SEM). Thereafter, human PDL cells were seeded under three in vitro conditions including (1) dilution of HA (1:100), (2) dilution of HA (1:10), and (3) HA coated directly to dentin discs. Samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, cell adhesion assay, and SEM imaging, respectively. While control dentin discs demonstrated smooth surfaces both at low and high magnification, the coating of HA altered surface texture of dentin discs by increasing surface roughness. HA cl further revealed greater surface texture/roughness likely due to the cross-linking carrier system. Thereafter, PDL cells were seeded on control and HA coated dentin discs and demonstrated a near 100 % survival rate for all samples demonstrating high biocompatibility of HA at dilutions of both 1:100 and 1:10. Interestingly, non-cross-linked HA significantly increased cell numbers at 8 h, whereas cross-linked HA improved cell spreading as qualitatively assessed by SEM. The results from the present study demonstrate that both carrier systems for HA were extremely biocompatible and demonstrated either improved cell numbers or cell spreading onto dentin discs. Future in vitro and animal research is necessary to further

  8. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle

    PubMed Central

    Sorokin, Dmitry V; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, Pavel; Kozubek, Stanislav; Matula, Pavel; Skalníková, Magdalena; Raška, Ivan; Bártová, Eva

    2015-01-01

    The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase. PMID:26208041

  9. Calcium signaling mediates five types of cell morphological changes to form neural rosettes.

    PubMed

    Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man

    2018-02-12

    Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.

  10. THE K-REGION DIHYDRODIOL OF BENZO[A]PYRENE INDUCES DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN C3H10T1/2CL8 MOUSE EMBRYO CELLS WITHOUT THE FORMATION OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts

    Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...

  11. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to

  12. Form matters: morphological aspects of lateral root development

    PubMed Central

    Szymanowska-Pułka, Joanna

    2013-01-01

    Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952

  13. Exfoliation of gastric pit-parietal cells into the gastric lumen associated with a stimulation of isolated rat gastric mucosa in vitro: a morphological study by the application of cryotechniques.

    PubMed

    Aoyama, Fumiyo; Sawaguchi, Akira; Ide, Soyuki; Kitamura, Kazuo; Suganuma, Tatsuo

    2008-06-01

    It is clinicopathologically important to elucidate the cell kinetics for the maintenance of normal gastric epithelium. In a rat gastric mucosa isolated after stimulation, a number of cells were exfoliated into the gastric lumen of the pit region. The present study was undertaken to clarify the origin of exfoliated cells and their histochemical profiles by taking the advantages of cryotechniques. As results, most of the exfoliated cells were identified as pit-parietal cells labeled with both peanut-lectin and anti-H+/K+-ATPase antibody. Quantitative analysis verified a time-dependent increase in the number of exfoliated cells in the gastric mucosa isolated after stimulation. The exfoliated cells exhibited a diffuse intracellular staining for E-cadherin, suggesting a dissociation of the adhesion molecule prior to the cell exfoliation. It should be noted that most of the exfoliated cells were negative to the apoptotic markers (TUNEL staining and caspase-3). Ultrastructurally, autophagosome-like structures consisting of H+/K+-ATPase positive membranes were frequently seen in the exfoliated pit-parietal cells. In addition, the pit-parietal cell exfoliation was accompanied by sealing of their basal portion with the cytoplasmic processes of adjacent surface mucous cells. The present morphological findings provide a new insight into the cell kinetics in the gastric epithelium in vitro.

  14. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism

    PubMed Central

    Nagy, J; Kobolák, J; Berzsenyi, S; Ábrahám, Z; Avci, H X; Bock, I; Bekes, Z; Hodoscsek, B; Chandrasekaran, A; Téglási, A; Dezső, P; Koványi, B; Vörös, E T; Fodor, L; Szél, T; Németh, K; Balázs, A; Dinnyés, A; Lendvai, B; Lévay, G; Román, V

    2017-01-01

    The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD. PMID:28742076

  15. Changes in cell proliferation and morphology in the large intestine of normal and DMH-treated rats following colostomy.

    PubMed

    Barkla, D H; Tutton, P J

    1987-04-01

    Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.

  16. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000; Chen, Hai-Xiao, E-mail: Hxchen-1@163.net

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not formmore » a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.« less

  17. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture: promotion of morphological heterogeneity, modulation of progestin receptor induction; cell-substrate interactions on collagen gels.

    PubMed

    Pourreau-Schneider, N; Berthois, Y; Mittre, H; Charpin, C; Jacquemier, J; Martin, P M

    1984-12-01

    In this study we observed the incidence of hormone sensitivity in the response of MCF-7 cells to estrogen stimulation when the cells were cultured in different contact environments (hydrophilic plastic, bovine corneal extracellular matrix, type I collagen and in suspension culture). The major purpose was to describe the influence of cell to cell and cell to substrate contacts on the morphological response to estrogen treatment. However, other parameters including growth and induction of progestin receptor were also explored, keeping in mind that the MCF-7 cell line, although representative of normal mammary epithelium in that it contains a similar hormone receptivity, was selected in vitro from a metastatic population in a pleural effusion. Although substrate conditions did not modify growth enhancement by estrogens, progestin receptor levels were significantly higher in three-dimensional spheroid cultures in which cell to cell contacts were optimal due to elimination of basal contact. A careful morphological survey of large surfaces lead to an objective opinion of the overall effect of the hormone treatment on the non-cloned cell line in which a marked heterogeneity in the response of individual cells was observed. In terms of morphofunctional differentiation, the edification of acini with dense microvillus coating was best in suspension culture. When sections were made perpendicular to the plane of cultures on collagen gel rafts two other phenomena were noted: decrease in intercellular junctions, resulting in reduced cell to cell cohesion, and accumulation biodegradation products in the collagen lattice. This suggested a hormone-mediated interaction between the metastatic cells and the fibrillar substrate, collagen I, one of the major constituents of tissue stroma. This estrogen response might be related to the metastatic phenotype and must be distinct from their hormone sensitivity in terms of growth and differentiation since hormone receptivity is generally

  18. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    PubMed

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.

    PubMed

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2017-03-28

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.

  20. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA

    PubMed Central

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S.

    2017-01-01

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients. PMID:28206954

  1. Lithium secondary batteries: Role of polymer cathode morphology

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.

    1988-06-01

    Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.

  2. Comparative SEM and LM foliar epidermal and palyno-morphological studies of Amaranthaceae and its taxonomic implications.

    PubMed

    Hussain, Amara Noor; Zafar, Muhammad; Ahmad, Mushtaq; Khan, Raees; Yaseen, Ghulam; Khan, Muhammad Saleem; Nazir, Abdul; Khan, Amir Muhammad; Shaheen, Shabnum

    2018-05-01

    Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera. © 2018 Wiley Periodicals, Inc.

  3. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  4. Tailoring vessel morphology in vivo

    NASA Astrophysics Data System (ADS)

    Gould, Daniel Joseph

    . Resulting induced vessels did match in morphology to the target vessels. Several other covalently bound signals were then analyzed in the assay and resulting morphology of vessels was compared in several studies which further highlighted the utility of the micropocket assay in conjunction with the image based tool for vessel morphological quantification. Finally, an alternative method to provide rapid vasculature to the constructs, which relied on pre-seeded hydrogels encapsulated endothelial cells was also developed and shown to allow anastamosis between induced host vessels and the implanted construct within 48 hours. These results indicate great promise in the rational design of synthetic, bioactive hydrogels, which can be used as a platform to study microvascular induction for regenerative medicine and angiogenesis research. Future applications of this research may help to develop therapeutic strategies to ameliorate human disease by replacing organs or correcting vessel morphology in the case of ischemic diseases and cancer.

  5. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  6. Beach morphology monitoring in the Columbia River Littoral Cell: 1997-2005

    USGS Publications Warehouse

    Ruggiero, Peter; Eshleman, Jodi L.; Kingsley, Etienne; Thompson, David M.; Voigt, Brian; Kaminsky, George M.; Gelfenbaum, Guy

    2007-01-01

    This report describes methods used, data collected, and results of the Beach Morphology Monitoring Program in the Columbia River Littoral Cell (CRLC) from 1997 to 2005. A collaborative group primarily consisting of the US Geological Survey and the Washington State Department of Ecology performed this work. Beach Monitoring efforts consisted of collecting topographic and bathymetric horizontal and vertical position data using a Real Time Kinematic Differential Global Positioning System (RTK-DGPS). Sediment size distribution data was also collected as part of this effort. The monitoring program was designed to: 1) quantify the short- to medium-term (seasonal to interannual) beach change rates and morphological variability along the CRLC and assess the processes responsible for these changes; 2) collect beach state data (i.e., grain size, beach slope, and dune/sandbar height/position) to enhance the conceptual understanding of CRLC functioning and refine predictions of future coastal change and hazards; 3) compare and contrast the scales of environmental forcing and beach morphodynamics in the CRLC to other coastlines of the world; and 4) provide beach change data in a useful format to land use managers.

  7. Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers

    NASA Astrophysics Data System (ADS)

    Alidaei, Maryam; Izadifard, Morteza; Ghazi, Mohammad E.; Ahmadi, Vahid

    2018-01-01

    Perovskite solar cells have been heavily investigated due to their unique properties such as high power conversion efficiency (PCE), low-cost fabrication by solution processes, high diffusion length, large absorption coefficient, and direct and tunable band gap. PCE of perovskite devices is strongly dependent on the absorber layer properties such as morphology, crystallinity, and compactness, which are required to be optimized. In this work, the CH3NH3PbI3 (170-480 nm) absorber layers with various methylammonium iodine (MAI) concentrations (7, 10, 20 and 40 mg ml-1) and perovskite solar cells with the fluorine-doped tin oxide (400 nm)/C-TiO2 (30 nm)/Meso-TiO2 (400 nm)/CH3NH3PbI3 (170-480 nm)/P3HT (30 nm)/Au (100 nm) structure were fabricated. A two-step solution process was used for deposition of the CH3NH3PbI3 absorber layers. The morphology, crystal structure, and optical properties of the perovskite layer grown on glass and also the photovoltaic properties of the fabricated solar cells were studied. The results obtained showed that by controlling the deposition conditions, due to the reduction in charge recombination, PCE enhancement of the perovskite solar cell (up to 11.6%) was accessible.

  8. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    PubMed

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

    PubMed Central

    Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2018-01-01

    Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071

  10. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    NASA Technical Reports Server (NTRS)

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  11. [Immunohistochemical study of perivascular epithelioid cell neoplasms].

    PubMed

    Xia, Qiu-Yuan; Rao, Qiu; Shen, Qin; Liu, Biao; Li, Li; Shi, Qun-Li; Shi, Shan-Shan; Yu, Bo; Zhang, Ru-Song; Ma, Heng-Hui; Lu, Zhen-Feng; Wang, Xuan; Tu, Pin; Zhou, Xiao-Jun

    2013-06-01

    To study the clinicopathologic features, immunophenotype and genetic changes of perivascular epithelioid cell neoplasms (PEComa). A total of 25 cases of PEComa located in various anatomic sites were selected for immunohistochemical staining (SP or EnVision method). TFE3 fluorescence in-situ hybridization was also performed to determine the TFE3 gene status. The age of patient ranged from 21 to 61 years (mean = 43 years). The male-to-female ratio was 1: 1.3. Histologically, 22 cases represented conventional angiomyolipomas, composed of a mixture of adipose tissue, spindle element, epithelioid smooth muscle cells and abnormal thick-walled blood vessels in various proportions. Three cases involving lung, soft tissue and broad ligament had subtle but distinctive morphologic features. Nested or sheet-like architecture with epithelioid or spindle cells was observed. Immunohistochemical study showed that HMB 45, melan A, smooth muscle actin and cathepsin K were expressed in 80% (20/25), 88% (22/25), 88% (22/25) and 100% (25/25) of PEComa, respectively. Within positive cases, the average proportion of positive tumor cells was 36%, 41%, 35% and 90% respectively for HMB 45, melan A, smooth muscle actin and cathepsin K. TFE3 was negative in all of the 22 renal and hepatic PEComa studied, while it was positive in the 3 cases of extra-hepatorenal PEComa. None of the 25 cases exhibited evidence of TFE3 gene fusion or amplification. Extra-hepatorenal PEComa have distinctive morphologic features and are associated with TFE3 overexpression. Cathepsin K immunostaining demonstrates high sensitivity and specificity in PEComa, better than other commonly employed immunomarkers. This marker is thus useful in diagnosis of PEComa and distinction with other neoplasms.

  12. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses.

    PubMed

    Fernandes, M N; Paulino, M G; Sakuragui, M M; Ramos, C A; Pereira, C D S; Sadauskas-Henrique, H

    2013-01-15

    Through integrating chemical, biochemical and morphological analyses, this study investigated the effects of multiple pollutants on the gill mitochondria-rich cells (MRCs) in two fish species, Astyanax fasciatus and Pimelodus maculatus, collected from five sites (FU10, FU20, FU30, FU40 and FU50) in the Furnas Hydroelectric Power Station reservoir. Water analyses revealed aluminum, iron and zinc as well as organochlorine (aldrin/dieldrin, endosulfan, heptachlor/heptachlor epoxide and metolachlor) contamination at all of the sites, with the exception of FU10. Copper, chrome, iron and zinc were detected in the gills of both species, and aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide were detected in the gills of fish from all of the sites, with the exception of FU10. Fish collected at FU20, FU30 and FU50 exhibited numerous alterations in the surface architecture of their pavement cells and MRCs. The surface MRC density and MRC fractional area were lower in fish from FU20, FU30, FU40 and FU50 than in those from the reference site (FU10) in the winter, and some variability between the sites was observed in the summer. The organochlorine contamination at FU20 and FU50 was associated with variable changes in the MRCs and inhibition of Na(+)/K(+)-ATPase (NKA) activity, especially in P. maculatus. At FU30, the alterations in the MRCs were associated with the contaminants present, especially metals. A multivariate analysis demonstrated a positive association between the biological responses of both species and environmental contamination, indicating that under realistic conditions, a mixture of organochlorines and metals affected the MRCs by inhibiting NKA activity and inducing morphological changes, which may cause an ionic imbalance. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not

  14. Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment

    PubMed Central

    Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel

    2017-01-01

    Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943

  15. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.

    PubMed

    Vardjan, Nina; Kreft, Marko; Zorec, Robert

    2014-04-01

    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.

  16. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4.

    PubMed

    Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang

    2007-01-01

    The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.

  17. Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation.

    PubMed

    Chiriac, G; Herten, M; Schwarz, F; Rothamel, D; Becker, J

    2005-09-01

    The aim of the present study was to investigate the influence of a new piezoelectric device, designed for harvesting autogenous bone chips from intra-oral sites, on chip morphology, cell viability and differentiation. A total of 69 samples of cortical bone chips were randomly gained by either (1) a piezoelectric device (PS), or (2) conventional rotating drills (RD). Shape and size of the bone chips were compared by means of morphometrical analysis. Outgrowing osteoblasts were identified by means of alkaline phosphatase activity (AP), immunhistochemical staining for osteocalcin (OC) synthesis and reverse transcriptase-polymerase chain reaction phenotyping. In 88.9% of the RD and 87.9% of the PS specimens, an outgrowth of adherent cells nearby the bone chips was observed after 6-19 days. Confluence of cells was reached after 4 weeks. Positive staining for AP and OC identified the cells as osteoblasts. The morphometrical analysis revealed a statistically significant more voluminous size of the particles collected with PS than RD. Within the limits of the present study, it may be concluded that both the harvesting methods are not different from each other concerning their detrimental effect on viability and differentiation of cells growing out of autogenous bone chips derived from intra-oral cortical sites.

  18. Morphology and rheology in filamentous cultivations.

    PubMed

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  19. [Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise].

    PubMed

    2017-06-18

    To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree

  20. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    PubMed

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  1. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  2. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage.

    PubMed

    Carranza-Rosales, Pilar; Said-Fernández, Salvador; Sepúlveda-Saavedra, Julio; Cruz-Vega, Delia E; Gandolfi, A Jay

    2005-06-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short

  3. Perturbation of Human T-Cell Leukemia Virus Type 1 Particle Morphology by Differential Gag Co-Packaging

    PubMed Central

    Angert, Isaac; Cao, Sheng; Berk, Serkan; Zhang, Wei; Mueller, Joachim D.

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an important cancer-causing human retrovirus that has infected approximately 15 million individuals worldwide. Many aspects of HTLV-1 replication, including virus particle structure and assembly, are poorly understood. Group-specific antigen (Gag) proteins labeled at the carboxy terminus with a fluorophore protein have been used extensively as a surrogate for fluorescence studies of retroviral assembly. How these tags affect Gag stoichiometry and particle morphology has not been reported in detail. In this study, we used an HTLV-1 Gag expression construct with the yellow fluorescence protein (YFP) fused to the carboxy-terminus as a surrogate for the HTLV-1 Gag-Pol to assess the effects of co-packaging of Gag and a Gag-YFP on virus-like particle (VLP) morphology and analyzed particles by cryogenic transmission electron microscopy (cryo-TEM). Scanning transmission electron microscopy (STEM) and fluorescence fluctuation spectroscopy (FFS) were also used to determine the Gag stoichiometry. We found that ratios of 3:1 (Gag:Gag-YFP) or greater resulted in a particle morphology indistinguishable from that of VLPs produced with the untagged HTLV-1 Gag, i.e., a mean diameter of ~113 nm and a mass of 220 MDa as determined by cryo-TEM and STEM, respectively. Furthermore, FFS analysis indicated that HTLV-1 Gag-YFP was incorporated into VLPs in a predictable manner at the 3:1 Gag:Gag-YFP ratio. Both STEM and FFS analyses found that the Gag copy number in VLPs produced with a 3:1 ratio of Gag:Gag-YFP was is in the range of 1500–2000 molecules per VLP. The observations made in this study indicate that biologically relevant Gag–Gag interactions occur between Gag and Gag-YFP at ratios of 3:1 or higher and create a Gag lattice structure in VLPs that is morphologically indistinguishable from that of VLPs produced with just untagged Gag. This information is useful for the quantitative analysis of Gag–Gag interactions that occur

  4. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chien; Lee, Kuan-Lin; Wu, Wen-Ti; Hsu, Chien-Feng; Tseng, Zong-Liang; Sun, Xiao Hong; Kao, Yu-Ting

    2018-05-01

    In this study, the perovskite layers were prepared by two-step wet process with different CH3NH3I (MAI) concentrations. The cell structure was glass/FTO/TiO2-mesoporous/CH3NH3PbI3 (MAPbI3)/spiro-OMeTAD/Ag. The MAPbI3 perovskite films were prepared using high and low MAI concentrations in a two-step process. The perovskite films were optimized at different spin coating speed and different annealing temperatures to enhance the power conversion efficiency (PCE) of perovskite solar cells. The PCE of the resulting device based on the different perovskite morphologies was discussed. The PCE of the best cell was up to 17.42%, open circuit voltage of 0.97 V, short current density of 24.06 mA/cm2, and fill factor of 0.747.

  5. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells.

    PubMed

    Chen, Lung-Chien; Lee, Kuan-Lin; Wu, Wen-Ti; Hsu, Chien-Feng; Tseng, Zong-Liang; Sun, Xiao Hong; Kao, Yu-Ting

    2018-05-08

    In this study, the perovskite layers were prepared by two-step wet process with different CH 3 NH 3 I (MAI) concentrations. The cell structure was glass/FTO/TiO 2 -mesoporous/CH 3 NH 3 PbI 3 (MAPbI 3 )/spiro-OMeTAD/Ag. The MAPbI 3 perovskite films were prepared using high and low MAI concentrations in a two-step process. The perovskite films were optimized at different spin coating speed and different annealing temperatures to enhance the power conversion efficiency (PCE) of perovskite solar cells. The PCE of the resulting device based on the different perovskite morphologies was discussed. The PCE of the best cell was up to 17.42%, open circuit voltage of 0.97 V, short current density of 24.06 mA/cm 2 , and fill factor of 0.747.

  6. The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells.

    PubMed

    Danoux, Charlène; Pereira, Daniel; Döbelin, Nicola; Stähli, Christoph; Barralet, Jake; van Blitterswijk, Clemens; Habibovic, Pamela

    2016-07-01

    Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Morphologic and Histologic Comparison of Hypertrophic Scar in Nude Mice, T-Cell Receptor, and Recombination Activating Gene Knockout Mice.

    PubMed

    Momtazi, Moein; Ding, Jie; Kwan, Peter; Anderson, Colin C; Honardoust, Dariush; Goekjian, Serge; Tredget, Edward E

    2015-12-01

    Proliferative scars in nude mice have demonstrated morphologic and histologic similarities to human hypertrophic scar. Gene knockout technology provides the opportunity to study the effect of deleting immune cells in various disease processes. The authors' objective was to test whether grafting human skin onto T-cell receptor (TCR) αβ-/-γδ-/-, recombination activating gene (RAG)-1-/-, and RAG-2γ-/-c-/- mice results in proliferative scars consistent with human hypertrophic scar and to characterize the morphologic, histologic, and cellular changes that occur after removing immune cells. Nude TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice (n = 20 per strain) were grafted with human skin and euthanized at 30, 60, 120, and 180 days. Controls (n = 5 per strain) were autografted with mouse skin. Scars and normal skin were harvested at each time point. Sections were stained with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry for anti-human leukocyte antigen-ABC, α-smooth muscle actin, decorin, and biglycan. TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice grafted with human skin developed firm, elevated scars with histologic and immunohistochemical similarities to human hypertrophic scar. Autografted controls showed no evidence of pathologic scarring. Knockout animals demonstrated a capacity for scar remodeling not observed in nude mice where reductions in α-smooth muscle actin staining pattern and scar thickness occurred over time. Human skin transplanted onto TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice results in proliferative scars with morphologic and histologic features of human hypertrophic scar. Remodeling of proliferative scars generated in knockout animals is analogous to changes in human hypertrophic scar. These animal models may better represent the natural history of human hypertrophic scar.

  8. Effects of chondroitin sulfate and interleukin-1beta on human chondrocyte cultures exposed to pressurization: a biochemical and morphological study.

    PubMed

    Nerucci, F; Fioravanti, A; Cicero, M R; Collodel, G; Marcolongo, R

    2000-07-01

    Objective This study investigated the in vitro effects of chondroitin sulfate (CS) on human articular chondrocytes cultivated in the presence or in the absence of interleukin-1beta (IL-1beta) during 10 days of culture with and without pressurization cycles. Design The effects of CS (10 and 100 microg/ml) with and without IL-1beta were assessed in the culture medium of cells exposed to pressurization cycles in the form of synusoidal waves (minimum pressure 1 Mpa, maximum pressure 5 Mpa) and a frequency of 0.25 Hz for 3 h by immunoenzymatic method on microplates for the quantitative measurement of human proteoglycans (PG). On the 4th and 10th day of culture the cells were used for morphological analysis by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results The presence of IL-1beta determines a significant decrease in PG concentration measured in the culture medium. When the cells are cultured in the presence of IL-1beta and CS, a statistically significant restoration of PG levels is observed. Under pressurization conditions, we observed that PG concentration in the medium of cells presents a significant increase at baseline conditions, in the presence of IL-1beta+CS10 and IL-1beta+CS100, but not with IL-1beta alone. The results concerning metabolic evaluation are confirmed by the morphologic findings obtained by TEM and SEM. Conclusions These in vitro studies confirm the protective role of CS, which counteracts the IL-1beta induced effects and they confirm the importance of pressure on chondrocyte metabolism and morphology.

  9. Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method.

    PubMed

    Hofman, V; Long, E; Ilie, M; Bonnetaud, C; Vignaud, J M; Fléjou, J F; Lantuejoul, S; Piaton, E; Mourad, N; Butori, C; Selva, E; Marquette, C H; Poudenx, M; Sibon, S; Kelhef, S; Vénissac, N; Jais, J P; Mouroux, J; Molina, T J; Vielh, P; Hofman, P

    2012-02-01

    Recurrence rates after surgery for non-small cell lung cancer (NSCLC) range from 25 to 50% and 5-year survival is only 60-70%. Because no biomarkers are predictive of recurrence or the onset of metastasis, pathological TNM (pTNM) staging is currently the best prognostic factor. Consequently, the preoperative detection of circulating tumour cells (CTCs) might be useful in tailoring therapy. The aim of this study was to characterize morphologically any circulating non-haematological cells (CNHCs) in patients undergoing surgery for NSCLC using the isolation by size of epithelial tumour cell (ISET) method. Of 299 blood samples tested, 250 were from patients with resectable NSCLC and 59 from healthy controls. The presence of CNHCs was assessed blindly and independently by 10 cytopathologists on May-Grünwald-Giemsa stained filters and the cells classified into three groups: (i) malignant cells, (ii) uncertain malignant cells, and (iii) benign cells. We assessed interobserver agreement using Kappa (κ) analysis as the measure of agreement. A total of 123 out of 250 (49%) patients showed CNHCs corresponding to malignant, uncertain malignant and benign cells, in 102/250 (41%), 15/250 (6%) and 6/250 (2%) cases, respectively. No CNHCs were detected in the blood of healthy subjects. Interobserver diagnostic variability was absent for CNHCs, low for malignant cells and limited for uncertain malignant and benign cells. Identification of CTCs in resectable NSCLC patients, using ISET technology and according to cytopathological criteria of malignancy, appears to be a new and promising field of cytopathology with potential relevance to lung oncology. © 2011 Blackwell Publishing Ltd.

  10. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression.

    PubMed

    Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue

    2015-12-01

    Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.

  11. Evaluating the Effectiveness of a Morphological Awareness Intervention: A Pilot Study

    ERIC Educational Resources Information Center

    Brimo, Danielle

    2016-01-01

    Researchers have established that morphological awareness is an important skill because it contributes unique variance to word-level reading and reading comprehension; however, few studies include students with reading disorders. The purpose of this pilot study was to investigate whether training morphological awareness would improve morphological…

  12. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.

  13. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology

    PubMed Central

    Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.

    2015-01-01

    Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137

  14. Modifications in plasma membrane lipid composition and morphological features of AH-130 hepatoma cells by polyenylphosphatidylcholine in vivo treatment.

    PubMed

    Cinosi, Vincenzo; Antonini, Roberto; Crateri, Pasqualina; Arancia, Giuseppe

    2011-07-01

    The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v. with 20 mg/kg/day PPC, when compared to those of control cells, did not show significantly different amounts of cholesterol or phospholipids relative to protein content, but, surprisingly, the individual phospholipid distribution inside the two membrane leaflets changed dramatically. Phosphatidylcholine (PC), the major phospholipid in the external membrane leaflet, increased ~47% (p<0.001). By contrast, phosphatidylethanolamine (PE), the most important component of the inner leaflet, decreased nearly 37% (p<0.001), while sphingomyelin (SM) also decreased ~17%, (p=0.1). Tumor cells collected from control rats at the same time interval and observed by scanning electron microscopy, exhibited a spherical shape with numerous and randomly distributed long microvilli, the same morphological and ultrastructural features displayed by the implanted cells. Conversely, tumor cells from PPC-treated rats no longer showed the roundish cell profile, and microvilli appeared shortened and enlarged, with the formation of surface blebs. Transmission electron microscopy observations confirmed the morphological and ultrastructural cell changes, mainly seen as loss of microvilli and intense cytoplasmic vacuolization. Taken together, these results indicate that the new phospholipid class distribution in the plasma membrane leaflets, modifying tumor cell viable structures, produced heavy cell damage and in many cases brought about complete cellular disintegration.

  15. Association between trochlear morphology and chondromalacia patella: an MRI study.

    PubMed

    Duran, Semra; Cavusoglu, Mehtap; Kocadal, Onur; Sakman, Bulent

    This study aimed to compare trochlear morphology seen in magnetic resonance imaging between patients with chondromalacia patella and age-matched control patients without cartilage lesion. Trochlear morphology was evaluated using the lateral trochlear inclination, medial trochlear inclination, sulcus angle and trochlear angle on the axial magnetic resonance images. Consequently, an association between abnormal trochlear morphology and chondromalacia patella was identified in women. In particular, women with flattened lateral trochlea are at an increased risk of patellar cartilage structural damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase

    NASA Astrophysics Data System (ADS)

    Radbeh, R.; Parbaile, E.; Bouclé, J.; Di Bin, C.; Moliton, A.; Coudert, V.; Rossignol, F.; Ratier, B.

    2010-01-01

    Despite the constant improvement of their power conversion efficiencies, organic solar cells based on an interpenetrating network of a conjugated polymer as donor and fullerene derivatives as acceptor materials still need to be improved for commercial use. In this context, we present a study on the optimization of solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) by varying a specific cell parameter, namely the concentration of the active layer components in the liquid phase before blend film deposition, in order to improve device performance and to better understand the relation between morphology and device operation. Our study shows a significant increase of the short-circuit current, open-circuit voltage and cell efficiency by properly choosing the formulation of the initial blend before film deposition. We demonstrate that the active layer morphology, which is strongly dependent on the initial material concentrations and the processing conditions, can greatly impact the electronic characteristics of the device, especially regarding charge recombination dynamics at the donor-acceptor interface. Our optimized P3HT:PCBM device exhibits both slow recombination and high photocurrent generation associated with an overall power conversion efficiency of 4.25% under 100 mW cm-2 illumination (AM1.5G).

  17. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  18. Differential KrasV12 protein levels control a switch regulating lung cancer cell morphology and motility

    PubMed Central

    Schäfer, C.; Mohan, A.; Burford, W.; Driscoll, M. K.; Ludlow, A. T.; Wright, W. E.; Shay, J. W.; Danuser, G.

    2016-01-01

    Introduction Oncogenic Kras mutations are important drivers of lung cancer development and metastasis. They are known to activate numerous cellular signaling pathways implicated in enhanced proliferation, survival, tumorigenicity and motility during malignant progression. Objectives Most previous studies of Kras in cancer have focused on the comparison of cell states in the absence or presence of oncogenic Kras mutations. Here we show that differential expression of the constitutively active mutation KrasV12 has profound effects on cell morphology and motility that drive metastatic processes. Methods The study relies on lung cancer cell transformation models, patient-derived lung cancer cell lines, and human lung tumor sections combined with molecular biology techniques, live-cell imaging and staining methods. Results Our analysis shows two cell functional states driven by KrasV12 protein levels: a non-motile state associated with high KrasV12 levels and tumorigenicity, and a motile state associated with low KrasV12 levels and cell dissemination. Conversion between the states is conferred by differential activation of a mechano-sensitive double-negative feedback between KrasV12/ERK/Myosin II and matrix-adhesion signaling. KrasV12 expression levels change upon cues such as hypoxia and integrin-mediated cell-matrix adhesion, rendering KrasV12 levels an integrator of micro-environmental signals that translate into cellular function. By live cell imaging of tumor models we observe shedding of mixed high and low KrasV12 expressers forming multi-functional collectives with potentially optimal metastatic properties composed of a highly mobile and a highly tumorigenic unit. Discussion Together these data highlight previously unappreciated roles for the quantitative effects of expression level variation of oncogenic signaling molecules in conferring fundamental alterations in cell function regulation required for cancer progression. PMID:29057096

  19. Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells.

    PubMed

    Halevas, E; Nday, C M; Salifoglou, A

    2016-10-01

    Morphological alterations compromising inter-neuronal connectivity may be directly linked to learning-memory deficits in Central Nervous System neurodegenerative processes. Cu(II)-mediated oxidative stress plays a pivotal role in regulating redox reactions generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), known contributors to Alzheimer's disease (AD) pathology. The antioxidant properties of flavonoid catechin have been well-documented in neurodegenerative processes. However, the impact that catechin encapsulation in nanoparticles may have on neuronal survival and morphological lesions has been poorly demonstrated. To investigate potential effects of nano-encapsulated catechin on neuronal survival and morphological aberrations in primary rat hippocampal neurons, poly(ethyleneglycol) (PEG) and cetyltrimethylammonium bromide (CTAB)-modified silica nanoparticles were synthesized. Catechin was loaded on silica nanoparticles in a concentration-dependent fashion, and release studies were carried out. Further physicochemical characterization of the new nano-materials included elemental analysis, particle size, z-potential, FT-IR, Brunauer-Emmett-Teller (BET), thermogravimetric (TGA), and scanning electron microscopy (SEM) analysis in order to optimize material composition linked to the delivery of loaded catechin in the hippocampal cellular milieu. The findings reveal that, under Cu(II)-induced oxidative stress, the loading ability of the PEGylated/CTAB silica nanoparticles was concentration-dependent, based on their catechin release profile. The overall bio-activity profile of the new hybrid nanoparticles a) denoted their enhanced protective activity against oxidative stress and hippocampal cell survival compared to previously reported quercetin, b) revealed that morphological lesions affecting neuronal integrity can be counterbalanced at high copper concentrations, and c) warrants in-depth perusal of molecular events underlying neuronal

  20. Marinobufagin, a molecule from poisonous frogs, causes biochemical, morphological and cell cycle changes in human neoplasms and vegetal cells.

    PubMed

    Machado, Kátia da Conceição; Sousa, Lívia Queiroz de; Lima, Daisy Jereissati Barbosa; Soares, Bruno Marques; Cavalcanti, Bruno Coêlho; Maranhão, Sarah Sant'Anna; Noronha, Janaina da Costa de; Rodrigues, Domingos de Jesus; Militão, Gardenia Carmen Gadelha; Chaves, Mariana Helena; Vieira-Júnior, Gerardo Magela; Pessoa, Cláudia; Moraes, Manoel Odorico de; Sousa, João Marcelo de Castro E; Melo-Cavalcante, Ana Amélia de Carvalho; Ferreira, Paulo Michel Pinheiro

    2018-03-15

    Skin toad secretion present physiologically active molecules to protect them against microorganisms, predators and infections. This work detailed the antiproliferative action of marinobufagin on tumor and normal lines, investigate its mechanism on HL-60 leukemia cells and its toxic effects on Allium cepa meristematic cells. Initially, cytotoxic action was assessed by colorimetric assays. Next, HL-60 cells were analyzed by morphological and flow cytometry techniques and growing A. cepa roots were examined after 72 h exposure. Marinobufagin presented high antiproliferative action against all human tumor lines [IC 50 values ranging from 0.15 (leukemia) to 7.35 (larynx) μM] and it failed against human erythrocytes and murine lines. Human normal peripheral blood mononuclear cells (PBMC) were up to 72.5-fold less sensitive [IC 50: 10.88 μM] to marinobufagin than HL-60 line, but DNA strand breaks were no detected. Leukemia treaded cells exhibited cell viability reduction, DNA fragmentation, phosphatidylserine externalization, binucleation, nuclear condensation and cytoplasmic vacuoles. Marinobufagin also reduced the growth of A. cepa roots (EC 50 : 7.5 μM) and mitotic index, caused cell cycle arrest and chromosomal alterations (micronuclei, delays and C-metaphases) in meristematic cells. So, to find out partially targeted natural molecules on human leukemia cells, like marinobufagin, is an amazing and stimulating way to continue the battle against cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Raman study of bulk-heterojunction morphology in photoactive layers treated with solvent-vapor annealing

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Ishima, Yasuhisa; Izumi, Daisuke; Takahashi, Kazuyuki

    2018-03-01

    The effect of solvent-vapor annealing (SVA) on bulk-heterojunction morphology in photoactive layers composed of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was analyzed using Raman spectroscopy. We prepared the photoactive layers by electrostatic spray deposition (ESD) and fabricated organic photovoltaic devices with a conventional cell structure. Although postdeposition annealing can be omitted when the photoactive layer is deposited using ESD under dry condition, the surface is relatively rough owing to the existence of a number of droplet traces. The SVA treatment can eliminate such droplet traces, while excessive SVA resulted in a significant decrease in open-circuit voltage. The Raman study of the bulk-heterojunction morphology demonstrated the accumulation of P3HT molecules on the surface during SVA, which induced the recombination of photogenerated charges at the interface of the cathode/photoactive layer and thereby decreased the open-circuit voltage.

  2. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy.

    PubMed

    Karim, Asima; Amin, Anish K; Hall, Andrew C

    2018-04-01

    Chondrocytes are the major cell type present in hyaline cartilage and they play a crucial role in maintaining the mechanical resilience of the tissue through a balance of the synthesis and breakdown of extracellular matrix macromolecules. Histological assessment of cartilage suggests that articular chondrocytes in situ typically occur singly and demonstrate a rounded/elliptical morphology. However, there are suggestions that their grouping and fine shape is more complex and that these change with cartilage degeneration as occurs in osteoarthritis. In the present study we have used confocal laser scanning microscopy and fluorescently labelled in situ human chondrocytes and advanced imaging software to visualise chondrocyte clustering and detailed morphology within grade-0 (non-degenerate) and grade-1 (mildly degenerate) cartilage from human femoral heads. Graded human cartilage explants were incubated with 5-chloromethylfluorescein diacetate and propidium iodide to identify the morphology and viability, respectively, of in situ chondrocytes within superficial, mid- and deep zones. In grade-0 cartilage, the analysis of confocal microscope images showed that although the majority of chondrocytes were single and morphologically normal, clusters (i.e. three or more chondrocytes within the enclosed lacunar space) were occasionally observed in the superficial zone, and 15-25% of the cell population exhibited at least one cytoplasmic process of ~ 5 μm in length. With degeneration, cluster number increased (~ 50%) but not significantly; however, the number of cells/cluster (P < 0.001) and the percentage of cells forming clusters increased (P = 0.0013). In the superficial zone but not the mid- or deep zones, the volume of clusters and average volume of chondrocytes in clusters increased (P < 0.001 and P < 0.05, respectively). The percentage of chondrocytes with processes, the number of processes/cell and the length of processes/cell increased in the superficial

  3. Morphological Changes of Myoepithelial Cells in the Rat Submandibular Gland Following the Application of Surgical Stimuli.

    PubMed

    Kawabe, Yoshihiro; Mizobe, Kenich; Bando, Yasuhiko; Sakiyama, Koji; Taira, Fuyoko; Tomomura, Akito; Araki, Hisao; Amano, Osamu

    2016-12-28

    Myoepithelial cells (MECs) exist on the basal surface of acini in major exocrine glands, include myofilaments and various constructive proteins, and share characteristics with smooth muscle and epithelial cells. MECs project several ramified processes to invest acini, and possibly contract to compress acini to support the secretion by the glandular cells. However, the functional roles of MECs in salivary secretion are still unclear. We investigated morphological changes in immunostained MECs using the anti-α-smooth muscle actin (αSMA) antibody in operated or non-operated contralateral (NC) submandibular glands after partial or total resection. Furthermore, we investigated and discuss other salivary glands of rats. MECs in the parotid, sublingual and submandibular gland of adult rats exhibited different shapes and localizations. After surgery, in both operated and NC glands, the number of MECs and αSMA-immunopositive areas increased significantly. Three-dimensional analysis using a confocal laser-scanning microscope revealed that substantial and significant enhancement became evident in the number, length, and thickness of MEC-processes covering acini of the operated and NC submandibular glands. The preset findings indicate that MECs alter the morphology of their processes in operated and NC glands after surgery of the partial or total resection. It is suggested that MECs promote salivary secretion using elongated, thickened, and more ramified processes.

  4. Diagnosis of Diabetes Mellitus by Extraction of Morphological Features of Red Blood Cells Using an Artificial Neural Network.

    PubMed

    Palanisamy, Vinupritha; Mariamichael, Anburajan

    2016-10-01

    Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition.

    PubMed

    Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N

    2018-06-01

    Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.

  6. Reappraisal of Morphologic Differences Between Renal Medullary Carcinoma, Collecting Duct Carcinoma, and Fumarate Hydratase-deficient Renal Cell Carcinoma.

    PubMed

    Ohe, Chisato; Smith, Steven C; Sirohi, Deepika; Divatia, Mukul; de Peralta-Venturina, Mariza; Paner, Gladell P; Agaimy, Abbas; Amin, Mitual B; Argani, Pedram; Chen, Ying-Bei; Cheng, Liang; Colecchia, Maurizio; Compérat, Eva; Werneck da Cunha, Isabela; Epstein, Jonathan I; Gill, Anthony J; Hes, Ondřej; Hirsch, Michelle S; Jochum, Wolfram; Kunju, Lakshmi P; Maclean, Fiona; Magi-Galluzzi, Cristina; McKenney, Jesse K; Mehra, Rohit; Nesi, Gabriella; Osunkoya, Adeboye O; Picken, Maria M; Rao, Priya; Reuter, Victor E; de Oliveira Salles, Paulo Guilherme; Schultz, Luciana; Tickoo, Satish K; Tomlins, Scott A; Trpkov, Kiril; Amin, Mahul B

    2018-03-01

    Renal medullary carcinomas (RMCs) and collecting duct carcinomas (CDCs) are rare subsets of lethal high-stage, high-grade distal nephron-related adenocarcinomas with a predilection for the renal medullary region. Recent findings have established an emerging group of fumarate hydratase (FH)-deficient tumors related to hereditary leiomyomatosis and renal cell carcinoma (HLRCC-RCCs) syndrome within this morphologic spectrum. Recently developed, reliable ancillary testing has enabled consistent separation between these tumor types. Here, we present the clinicopathologic features and differences in the morphologic patterns between RMC, CDC, and FH-deficient RCC in consequence of these recent developments. This study included a total of 100 cases classified using contemporary criteria and ancillary tests. Thirty-three RMCs (SMARCB1/INI1-deficient, hemoglobinopathy), 38 CDCs (SMARCB1/INI1-retained), and 29 RCCs defined by the FH-deficient phenotype (FH/2SC or FH/2SC with FH mutation, regardless of HLRCC syndromic stigmata/history) were selected. The spectrum of morphologic patterns was critically evaluated, and the differences between the morphologic patterns present in the 3 groups were analyzed statistically. Twenty-five percent of cases initially diagnosed as CDC were reclassified as FH-deficient RCC on the basis of our contemporary diagnostic approach. Among the different overlapping morphologic patterns, sieve-like/cribriform and reticular/yolk sac tumor-like patterns favored RMCs, whereas intracystic papillary and tubulocystic patterns favored FH-deficient RCC. The tubulopapillary pattern favored both CDCs and FH-deficient RCCs, and the multinodular infiltrating papillary pattern favored CDCs. Infiltrating glandular and solid sheets/cords/nested patterns were not statistically different among the 3 groups. Viral inclusion-like macronucleoli, considered as a hallmark of HLRCC-RCCs, were observed significantly more frequently in FH-deficient RCCs. Despite the

  7. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.

    PubMed

    Barata, David; Spennati, Giulia; Correia, Cristina; Ribeiro, Nelson; Harink, Björn; van Blitterswijk, Clemens; Habibovic, Pamela; van Rijt, Sabine

    2017-09-07

    Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.

  8. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells.

    PubMed

    Haraguchi, Misako; Sato, Masahiro; Ozawa, Masayuki

    2015-01-01

    Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO) by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  9. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition.

    PubMed

    Li, Guangkun; Chi, Mengshan; Chen, Huizhen; Sui, Yuan; Li, Yan; Liu, Yongsheng; Zhang, Xiaojing; Sun, Zhiqiang; Liu, Guoqing; Wang, Qi; Liu, Jia

    2016-02-01

    As an eco-friendly management method, biological control of postharvest diseases, utilizing antagonistic yeasts, is a research topic receiving considerable attention. Detailed knowledge on the biology of yeast antagonists is crucial when considering their potential application and development as biocontrol products. Changes in the growth form, such as single-cell to pseudohyphae, have been associated with the mode of action in postharvest biocontrol yeasts. In this study, the antagonistic yeast, Candida diversa, reversibly shifted from a single-cell morphology on yeast peptone dextrose (YPD) medium with 2 % agar to a pseudohyphal morphology on YPD with 0.3 % agar. The tolerance of the pseudohyphal form to heat and oxidative stresses, as well as the biocontrol efficacy against Botrytis cinerea on apple and kiwifruit stored at 25 and 4 °C, was significantly higher as compared to the single-cell form. This study provides new information on the ability of C. diversa to change its morphology and the impact of the morphology shift on stress tolerance and biocontrol performance.

  10. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  12. Surface morphology and electrochemical studies on polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.

    2018-05-01

    An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).

  13. MRI with DWI for the Detection of Posttreatment Head and Neck Squamous Cell Carcinoma: Why Morphologic MRI Criteria Matter.

    PubMed

    Ailianou, A; Mundada, P; De Perrot, T; Pusztaszieri, M; Poletti, P-A; Becker, M

    2018-04-01

    Although diffusion-weighted imaging combined with morphologic MRI (DWIMRI) is used to detect posttreatment recurrent and second primary head and neck squamous cell carcinoma, the diagnostic criteria used so far have not been clarified. We hypothesized that precise MRI criteria based on signal intensity patterns on T2 and contrast-enhanced T1 complement DWI and therefore improve the diagnostic performance of DWIMRI. We analyzed 1.5T MRI examinations of 100 consecutive patients treated with radiation therapy with or without additional surgery for head and neck squamous cell carcinoma. MRI examinations included morphologic sequences and DWI ( b =0 and b =1000 s/mm 2 ). Histology and follow-up served as the standard of reference. Two experienced readers, blinded to clinical/histologic/follow-up data, evaluated images according to clearly defined criteria for the diagnosis of recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment, post-radiation therapy inflammatory edema, and late fibrosis. DWI analysis included qualitative (visual) and quantitative evaluation with an ADC threshold. Recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment was present in 36 patients, whereas 64 patients had post-radiation therapy lesions only. The Cohen κ for differentiating tumor from post-radiation therapy lesions with MRI and qualitative DWIMRI was 0.822 and 0.881, respectively. Mean ADCmean in recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment (1.097 ± 0.295 × 10 -3 mm 2 /s) was significantly lower ( P < .05) than in post-radiation therapy inflammatory edema (1.754 ± 0.343 × 10 -3 mm 2 /s); however, it was similar to that in late fibrosis (0.987 ± 0.264 × 10 -3 mm 2 /s, P > .05). Although ADCs were similar in tumors and late fibrosis, morphologic MRI criteria

  14. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    PubMed

    Barkla, D H; Tutton, P J

    1983-03-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.

  15. Present status and perspective of laboratory hematology in Japan: On the standardization of blood cell morphology including myelodysplasia: On behalf of the Japanese Society for Laboratory Hematology.

    PubMed

    Tohyama, K

    2018-05-01

    The Japanese Society for Laboratory Hematology (JSLH) was launched in 2000 and has been developed by a mutual collaboration of hematologists, medical technologists, and the companies involved in hematological laboratory testing. The aim of JSLH is the progress and development of laboratory hematology by academic conferences, periodic publication of academic journal, training and education (in the meeting, the journal, or the website), promotion of the standardization of laboratory hematology, and certification of the laboratory hematology specialists. Among 3 specialized committees organized for the standardization of laboratory hematology, the standardization committee on blood cell morphology has been dealing with the various projects on peripheral/bone marrow blood cells and normal/abnormal morphology. Another independent organization, the Japanese National Research Group on idiopathic bone marrow failure syndromes (BMF), has raised the importance of the dysplasia of myelodysplastic syndromes (MDS) and has been conducting the prospective registration, central review, and follow-up study of MDS. This group recently proposed the grading system for diagnostic accuracy of MDS, and the detailed procedure of morphological diagnosis of MDS is presented in the specialized color atlas with typical photographs of various dysplasia. JSLH has also approved the grading system for diagnostic accuracy of MDS and adopted this standardized diagnostic system to the educational item for certification of the laboratory hematology specialists, aiming at a nationwidely expanding morphological evaluation of myelodysplasia. Further and significant progress in the standardization of blood cell morphology will be expected in Japan through the activity of JSLH. © 2018 John Wiley & Sons Ltd.

  16. Influence of the morphology of organic heterojunction on the photovoltaic cell performance

    NASA Astrophysics Data System (ADS)

    Podhájecká, K.; Pfleger, J.

    2006-12-01

    We present a series of organic photovoltaic (PV) cells based on the bulk-distributed heterojunction where π -conjugated polymer poly[1-(4-trimethylsilylphenyl)-2-phenylvinylene], PSDPhV, acts as the donor upon photoexcitation and the substituted perylene based low-molecular-weight compound: N,N`-di(pent-3-yl)-perylene-3,4:9,10-bis(dicarboximide), DPe-PTCDI, as the acceptor of photogenerated electrons. According to both absorption spectra and AFM images of the thin films spin-coated from solution of DPe-PTCDI and PSDPhV in toluene, the DPe-PTCDI is molecularly dissolved in conjugated polymer matrix. Upon exposition of layers to toluene vapors, microcrystals of DPe-PTCDI are progressively formed. The influence of the morphology of DPe-PTCDI inside the polymer matrix on PV cell performance is investigated. This paper has been presented at “ECHOS06”, Paris, 28 30 juin 2006.

  17. Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study

    PubMed Central

    Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2011-01-01

    In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from

  18. A mental retardation gene, motopsin/prss12, modulates cell morphology by interaction with seizure-related gene 6.

    PubMed

    Mitsui, Shinichi; Hidaka, Chiharu; Furihata, Mutsuo; Osako, Yoji; Yuri, Kazunari

    2013-07-12

    A serine protease, motopsin (prss12), plays a significant role in cognitive function and the development of the brain, since the loss of motopsin function causes severe mental retardation in humans and enhances social behavior in mice. Motopsin is activity-dependently secreted from neuronal cells, is captured around the synaptic cleft, and cleaves a proteoglycan, agrin. The multi-domain structure of motopsin, consisting of a signal peptide, a proline-rich domain, a kringle domain, three scavenger receptor cysteine-rich domains, and a protease domain at the C-terminal, suggests the interaction with other molecules through these domains. To identify a protein interacting with motopsin, we performed yeast two-hybrid screening and found that seizure-related gene 6 (sez-6), a transmembrane protein on the plasma membrane of neuronal cells, bound to the proline-rich/kringle domain of motopsin. Pull-down and immunoprecipitation analyses indicated the interaction between these proteins. Immunocytochemical and immunohistochemical analyses suggested the co-localization of motopsin and sez-6 at neuronal cells in the developmental mouse brain and at motor neurons in the anterior horn of human spinal cords. Transient expression of motopsin in neuro2a cells increased the number and length of neurites as well as the level of neurite branching. Interestingly, co-expression of sez-6 with motopsin restored the effect of motopsin at the basal level, while sez-6 expression alone showed no effects on cell morphology. Our results suggest that the interaction of motopsin and sez-6 modulates the neuronal cell morphology. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells.

    PubMed

    Sharenko, Alexander; Toney, Michael F

    2016-01-20

    Solution-processed lead halide perovskite thin-film solar cells have achieved power conversion efficiencies comparable to those obtained with several commercial photovoltaic technologies in a remarkably short period of time. This rapid rise in device efficiency is largely the result of the development of fabrication protocols capable of producing continuous, smooth perovskite films with micrometer-sized grains. Further developments in film fabrication and morphological control are necessary, however, in order for perovskite solar cells to reliably and reproducibly approach their thermodynamic efficiency limit. This Perspective discusses the fabrication of lead halide perovskite thin films, while highlighting the processing-property-performance relationships that have emerged from the literature, and from this knowledge, suggests future research directions.

  20. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    PubMed

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  1. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    PubMed Central

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842

  2. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation.

    PubMed

    Teschendorff, Andrew E; Jones, Allison; Fiegl, Heidi; Sargent, Alexandra; Zhuang, Joanna J; Kitchener, Henry C; Widschwendter, Martin

    2012-03-27

    Recently, it has been proposed that epigenetic variation may contribute to the risk of complex genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in advance of the first signs of morphological transformation, can predict the risk of such transformation. We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA (Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions. We observed many CpGs that were differentially variable between women who developed a non-invasive cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively). We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with the accuracy needed for clinical application. The ARTISTIC trial is registered with the International Standard Randomised

  3. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation

    PubMed Central

    2012-01-01

    Background Recently, it has been proposed that epigenetic variation may contribute to the risk of complex genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in advance of the first signs of morphological transformation, can predict the risk of such transformation. Methods We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA (Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions. Results We observed many CpGs that were differentially variable between women who developed a non-invasive cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively). Conclusions We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with the accuracy needed for clinical application. Trial registration The ARTISTIC trial

  4. Effects of a dragonfly (Anax i.) homeopathic remedy on learning, memory and cell morphology in mice.

    PubMed

    Mutlu, Oguz; Ulak, Guner; Kokturk, Sibel; Komsuoglu Celikyurt, Ipek; Tanyeri, Pelin; Akar, Furuzan; Erden, Faruk

    2016-02-01

    Homeopathy is a form of alternative medicine in which uses highly diluted preparations that are believed to cause healthy people to exhibit symptoms similar to those exhibited by patients. The aim of this study was to investigate the effects of dragonfly (Anax imperator, Anax i.) on learning and memory in naive mice using the Morris water maze (MWM) test; moreover, the effects of dragonfly on MK-801-induced cognitive dysfunction were evaluated. Male balb-c mice were treated with dragonfly (30C and 200C) or MK-801 (0.2 mg/kg) alone or concurrently (n = 10). Dragonfly (D) and MK-801 were administered subchronically for 6 days intraperitoneally 60 min and 30 min, respectively, before the daily performance of the MWM test. This study revealed that in the familiarization session and first session of the MWM test, Anax i. D30 significantly decreased escape latency compared to the control group, although MK-801, D30 and D200 significantly increased escape latency at the end of five acquisition sessions. Anax i. combined with dizocilpine maleate (MK-801) also significantly decreased escape latency in the familiarization session and first session of the MWM test, although this combination increased escape latency compared to the MK-801 alone group at the end of the test. Time spent in escape platform's quadrant in the probe trial significantly decreased while mean distance to platform significantly increased in MK-801, D30 and D200 groups. In the MWM test, Anax i. combined with MK-801 significantly decreased speed of the animals compared to the MK-801 alone group. General cell morphology was disturbed in the MK-801 group while D30 and D200 seemed to improve cell damage in the MK-801 group. These results suggest that the homeopathic Anax i. can impair learning acquisition and reference memory, and it has beneficial effects on disturbed cell morphology. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  5. Morphological variability, lectin binding and Na+,K+-activated adenosine triphosphatase activity of isolated Müller (glial) cells from the rabbit retina.

    PubMed

    Reichenbach, A; Dettmer, D; Brückner, G; Neumann, M; Birkenmeyer, G

    1985-03-22

    Rabbit retinal Müller cells were isolated by means of papaine and mechanical dissociation. These cells were shown to have a well preserved morphology and to preserve viability for many hours. Intense wheat germ agglutinin binding occurs on the photoreceptor side of Müller cells, especially in the microvillous region. Rabbit retinal Müller cells have a Na+,K+-activated adenosine triphosphatase activity in the same order of magnitude as brain astroglial cells.

  6. [Morphological fibroblastic changes in cytomegalovirus infection].

    PubMed

    Parkhomenko, Iu V; Solnyshkova, T G; Tishkivich, O A; Shakhgil'dian, V I; Nikonova, E A

    2006-01-01

    Cytomegalovirus (CMV) infection is widely spread among population. While immunocompetent patients suffer rarely from this virus, it can lead to a lethal outcome in immunocompromised patients. An electron microscopic study has detected fibroblastic morphological changes of a definite cytodestructive character. The nuclei of some fibroblasts have chromatine condensation. A clear zone arising due to vacuolization near this inclusion may reflect nuclear rearrangement leading to further CMV metamorphosis of the cell. This metamorphosis is characteristic of the changes developing in the cells of different parenchymatous organs.

  7. Effect of simulated transport stress on the rat small intestine: A morphological and gene expression study.

    PubMed

    Wan, Changrong; Yin, Peng; Xu, Xiaolong; Liu, Mingjiang; He, Shasha; Song, Shixiu; Liu, Fenghua; Xu, Jianqin

    2014-04-01

    The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study.

    PubMed

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda

    2018-01-01

    Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.

  9. A helical perylene diimide-based acceptor for non-fullerene organic solar cells: synthesis, morphology and exciton dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wu, Mingliang; Shao, Guangwei; Hu, Jiahua; He, Guiying; Bu, Tongle; Yi, Jian-Peng; Xia, Jianlong

    2018-05-01

    Helical perylene diimide-based (hPDI) acceptors have been established as one of the most promising candidates for non-fullerene organic solar cells (OSCs). In this work, we report a novel hPDI-based molecule, hPDI2-CN2, as an electron acceptor for OSCs. Combining the hPDI2-CN2 with a low-bandgap polymeric donor (PTB7-Th), the blending film morphology exhibited high sensitivity to various treatments (such as thermal annealing and addition of solvent additives), as evidenced by atomic force microscope studies. The power conversion efficiency (PCE) was improved from 1.42% (as-cast device) to 2.76% after thermal annealing, and a PCE of 3.25% was achieved by further addition of 1,8-diiodooctane (DIO). Femtosecond transient absorption (TA) spectroscopy studies revealed that the improved thin-film morphology was highly beneficial for the charge carrier transport and collection. And a combination of fast exciton diffusion rate and the lowest recombination rate contributed to the best performance of the DIO-treated device. This result further suggests that the molecular conformation needs to be taken into account in the design of perylene diimide-based acceptors for OSCs.

  10. Aspects of vertebrate gustatory phylogeny: morphology and turnover of chick taste bud cells.

    PubMed

    Ganchrow, J R; Ganchrow, D; Royer, S M; Kinnamon, J C

    1993-10-01

    The taste bud is a receptor form observed across vertebrates. The present report compares chick taste buds to those of other vertebrates using light and electron microscopy. Unlike mammals, but common to many modern avians, the dorsal surface of chick anterior tongue lacks taste papillae and taste buds. Ultrastructurally, chick buds located in the anterior floor of the mouth (as in some reptiles and amphibians) and palate contain dark, intermediate, light, and basal cell types. Dark, intermediate, and light cells extend microvilli into intragemmal lumina and pores communicating with the oral cavity. As specialized features, dark cell apices lack dense granules and exhibit short microvilli relative to light and intermediate cells. Dark cell cytoplasmic fingers envelop intragemmal nerve fibers and cells as in other species, and sometimes contain abundant clear vesicles. Nerve profile expansions often are located adjacent to dark, intermediate, and light cell nuclei. Classical afferent synaptic contacts are rarely observed. Taste cell turnover is suggested by mitotic and degenerating figures in chick buds. In addition, tritiated thymidine injected into hatchlings, whose anterior mandibular oral taste bud population approximates that in adults, reveals a turnover rate of about 4.5 days. This is about half that observed in altricial mammals, reflecting a species difference or developmental factor in precocial avians. It is concluded that chick taste buds exhibit morphologic features common to other vertebrate buds with specializations reflecting the influences of niche, glandular relations, and/or age.

  11. [Morphological studies of rat adrenal glands after space flight on "Kosmos-1667"].

    PubMed

    Prodan, N G; Bara'nska, V

    1989-01-01

    Histological and histomorphometric examinations of rat adrenals after a 7-day flight revealed the following changes: blood congestion in the cortex and medulla, progressive delipoidization of the cortex, slight enlargement of the nuclear volume of glomerular and fascicular zones, vacuolization of the cytoplasm of medulla cells, reduction of the area of noradrenocyte islets and cell nuclei of the medulla; the adrenal weight remained however unchanged. It is concluded that an early period of adaptation to microgravity was accompanied by a weak stress-reaction. Upon return to Earth the rats developed an acute gravitational stress. From the morphological point of view the stress manifested as: increased volume of nuclei in fascicular cells, decreased content of lipids in them, and greater vacuolization of the cytoplasm of medulla cells. The lack of medulla hypertrophy, reduction of the area of noradrenocyte islets and nuclei of medulla cells suggest that 7-day exposure to microgravity did not exert of stimulating effect on the sympathetic system of rats.

  12. The insecticide buprofezin induces morphological transformation and kinetochore-positive micronuclei in cultured Syrian hamster embryo cells in the absence of detectable DNA damage.

    PubMed

    Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U

    1993-11-01

    The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.

  13. Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.

    PubMed

    Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P

    2017-01-29

    Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.

  14. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells

    PubMed Central

    Wang, Hongjiang; Li, Jing; Chi, Hongjie; Zhang, Fan; Zhu, Xiaoming; Cai, Jun; Yang, Xinchun

    2015-01-01

    Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3′ untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis. PMID:25898913

  15. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells – Relevance to Capsular Opacification

    PubMed Central

    Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation. PMID:27832099

  16. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  17. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our

  18. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution

    PubMed Central

    Merkulova, Maria; Hurtado-Lorenzo, Andrés; Hosokawa, Hiroyuki; Zhuang, Zhenjie; Brown, Dennis; Ausiello, Dennis A.

    2011-01-01

    Previously, we demonstrated that the vacuolar-type H+-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1–a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: KD = 2.84 × 10−10 M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms. PMID:21307348

  19. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†

    PubMed Central

    Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee; Kammin, Tammy; Atkin, Joan F.; Hickey, Scott E.; Xi, Qiongchao J.; Zepeda, Cinthya J.; Gusella, James F.; Talkowski, Michael E.; Morton, Cynthia C.; Maas, Richard L.; Liao, Eric C.

    2016-01-01

    CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb−/− mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb−/− mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb−/− mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis. PMID:26758871

  1. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  2. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono- and bis-fullerene adducts.

    PubMed

    Muth, Mathis-Andreas; Mitchell, William; Tierney, Steven; Lada, Thomas A; Xue, Xiang; Richter, Henning; Carrasco-Orozco, Miguel; Thelakkat, Mukundan

    2013-12-06

    Herein, we analyze charge carrier mobility and morphology of the active blend layer in thin film organic solar cells and correlate them with device parameters. A low band gap donor-acceptor copolymer in combination with phenyl-C61-butyric acid methyl ester (PCBM) or two bis-adduct fullerenes, bis-PCBM and bis-o-quino-dimethane C60 (bis-oQDMC), is investigated. We study the charge transport of polymer:fullerene blends in hole- and electron-only devices using the space-charge limited current method. Lower electron mobilities are observed in both bis-adduct fullerene blends. Hole mobility, however, is decreased only in the blend containing bis-oQDMC. Both bis-adduct fullerene blends show very high open circuit voltage in solar cell devices, but poor photocurrent compared to the standard PCBM blend for an active layer thickness of 200 nm. Therefore, a higher short circuit current is feasible for the polymer:bis-PCBM blend by reducing the active layer thickness in order to compensate for the low electron mobility, which results in a PCE of 4.3%. For the polymer:bis-oQDMC blend, no such improvement is achieved due to an unfavorable morphology in this particular blend system. The results are supported by external quantum efficiency measurements, atomic force microscopy, transmission electron microscopy and UV/vis spectroscopy. Based on these results, the investigations presented herein give a more scientific basis for the optimization of solar cells.

  3. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering.

    PubMed

    Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang

    2016-06-22

    Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).

  4. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Treesearch

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  5. Neural Correlates of Morphological Decomposition in a Morphologically Rich Language: An fMRI Study

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Vorobyev, Victor A.; Hugdahl, Kenneth; Tuokkola, Terhi; Laine, Matti

    2006-01-01

    By employing visual lexical decision and functional MRI, we studied the neural correlates of morphological decomposition in a highly inflected language (Finnish) where most inflected noun forms elicit a consistent processing cost during word recognition. This behavioral effect could reflect suffix stripping at the visual word form level and/or…

  6. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    PubMed

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  8. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  9. Morphology and dynamics of explosive vents

    NASA Astrophysics Data System (ADS)

    Gisler, Galen R.; Galland, Olivier; Haug, Øystein T.

    2014-05-01

    Eruptive processes in nature produce a wide variety of morphologies, including cone sheets, dykes, sills, and pipes. The choice of a particular eruptive style is determined partly by local inhomogeneities, and partly by the gross overall properties of the country rock and the physical properties of the eruptive fluid. In this study we report on experimental and numerical designed to capture a range of morphologies in an eruptive system. Using dimensional analysis we link the experimental and numerical work together and draw implications for field studies. Our experimental work uses silica flour in a Hele-Shaw cell, with air as the eruptive fluid. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high pressure or low depth of fill and diagonal ones at low pressure or high depth of fill. In the numerical work the eruptive fluid is a mixture of basaltic magma, supercritical water, and carbon dioxide, and the ambient material is a fill of basalt with varying material properties. In the numerical work we see three distinct morphologies: vertical pipes are produced at high pressures and softer backgrounds, diagonal pipes at lower pressures and stiffer backgrounds, while horizontal sills are produced in intermediate regimes.

  10. Laser synthesized super-hydrophobic conducting carbon with broccoli-type morphology as a counter-electrode for dye sensitized solar cells.

    PubMed

    Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra

    2012-11-07

    A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.

  11. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression.more » Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.« less

  12. Morphological study of the prostate gland in viscacha (Lagostomus maximus maximus) during periods of maximal and minimal reproductive activity.

    PubMed

    Chaves, Maximiliano; Aguilera-Merlo, Claudia; Cruceño, Albana; Fogal, Teresa; Mohamed, Fabian

    2015-11-01

    The viscacha (Lagostomus maximus maximus) is a rodent with photoperiod-dependent seasonal reproduction. The aim of this work was to study the morphological variations of the prostate during periods of maximal (summer, long photoperiod) and minimal (winter, short photoperiod) reproductive activity. Prostates of adult male viscachas were studied by light and electron microscopy, immunohistochemistry for androgen receptor, and morphometric analysis. The prostate consisted of two regions: peripheral and central. The peripheral zone exhibited large adenomeres with a small number of folds and lined with a pseudostratified epithelium. The central zone had small adenomeres with pseudostratified epithelium and the mucosa showed numerous folds. The morphology of both zones showed variations during periods of maximal and minimal reproductive activity. The prostate weight, prostate-somatic index, luminal diameter of adenomeres, epithelial height and major nuclear diameter decreased during the period of minimal reproductive activity. Principal cells showed variations in their shape, size and ultrastructural characteristics during the period of minimal reproductive activity in comparison with the active period. The androgen receptor expression in epithelial and fibromuscular stromal cells was different between the studied periods. Our results suggest a reduced secretory activity of viscacha prostate during the period of minimal reproductive activity. Thus, the morphological variations observed in both the central and peripheral zones of the viscacha prostate agree with the results previously obtained in the gonads of this rodent of photoperiod-dependent reproduction. Additionally, the variations observed in the androgen receptors suggest a direct effect of the circulating testosterone on the gland. © 2015 Wiley Periodicals, Inc.

  13. National collection of embryo morphology data into Society for Assisted Reproductive Technology Clinic Outcomes Reporting System: associations among day 3 cell number, fragmentation and blastomere asymmetry, and live birth rate.

    PubMed

    Racowsky, Catherine; Stern, Judy E; Gibbons, William E; Behr, Barry; Pomeroy, Kimball O; Biggers, John D

    2011-05-01

    To evaluate the validity of collecting day 3 embryo morphology variables into the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS). Retrospective. National database-SART CORS. Fresh autologous assisted reproductive technology (ART) cycles from 2006-2007 in which embryos were transferred singly (n=1,020) or in pairs (n=6,508) and embryo morphology was collected. None. Relationship between live birth, maternal age, and morphology of transferred day 3 embryos as defined by cell number, fragmentation, and blastomere symmetry. Logistic multiple regressions and receiver operating characteristic curve analyses were applied to determine specificity and sensitivity for correctly classifying embryos as either failures or successes. Live birth rate was positively associated with increasing cell number up to eight cells (<6 cells: 2.9%; 6 cells: 9.6%; 7 cells: 15.5%; 8 cells: 24.3%; and >8 cells: 16.2%), but was negatively associated with maternal age, increasing fragmentation, and asymmetry scores. An area under the receiver operating curve of 0.753 (95% confidence interval 0.740-0.766) was derived, with a sensitivity of 45.0%, a specificity of 83.2%, and 76.4% of embryos being correctly classified with a cutoff probability of 0.3. This analysis provides support for the validity of collecting morphology fields for day 3 embryos into SART CORS. Standardization of morphology collections will assist in controlling for embryo quality in future database analyses. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. ERMO3/MVP1/GOLD36 Is Involved in a Cell Type-Specific Mechanism for Maintaining ER Morphology in Arabidopsis thaliana

    PubMed Central

    Nakano, Ryohei Thomas; Matsushima, Ryo; Nagano, Atsushi J.; Fukao, Yoichiro; Fujiwara, Masayuki; Kondo, Maki; Nishimura, Mikio; Hara-Nishimura, Ikuko

    2012-01-01

    The endoplasmic reticulum (ER) has a unique, network-like morphology. The ER structures are composed of tubules, cisternae, and three-way junctions. This morphology is highly conserved among eukaryotes, but the molecular mechanism that maintains ER morphology has not yet been elucidated. In addition, certain Brassicaceae plants develop a unique ER-derived organelle called the ER body. This organelle accumulates large amounts of PYK10, a β-glucosidase, but its physiological functions are still obscure. We aimed to identify a novel factor required for maintaining the morphology of the ER, including ER bodies, and employed a forward-genetic approach using transgenic Arabidopsis thaliana (GFP-h) with fluorescently-labeled ER. We isolated and investigated a mutant (designated endoplasmic reticulum morphology3, ermo3) with huge aggregates and abnormal punctate structures of ER. ERMO3 encodes a GDSL-lipase/esterase family protein, also known as MVP1. Here, we showed that, although ERMO3/MVP1/GOLD36 was expressed ubiquitously, the morphological defects of ermo3 were specifically seen in a certain type of cells where ER bodies developed. Coimmunoprecipitation analysis combined with mass spectrometry revealed that ERMO3/MVP1/GOLD36 interacts with the PYK10 complex, a huge protein complex that is thought to be important for ER body-related defense systems. We also found that the depletion of transcription factor NAI1, a master regulator for ER body formation, suppressed the formation of ER-aggregates in ermo3 cells, suggesting that NAI1 expression plays an important role in the abnormal aggregation of ER. Our results suggest that ERMO3/MVP1/GOLD36 is required for preventing ER and other organelles from abnormal aggregation and for maintaining proper ER morphology in a coordinated manner with NAI1. PMID:23155454

  15. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    NASA Astrophysics Data System (ADS)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  16. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study

    PubMed Central

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A.; Chauhan, Sunanda

    2018-01-01

    Background: Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. Materials and Methods: We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. Results: We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Conclusions: Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material. PMID:29643653

  17. Dynamics of morphological evolution in experimental Escherichia coli populations.

    PubMed

    Cui, F; Yuan, B

    2016-08-30

    Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.

  18. Morphological characterization of sprouting and intussusceptive angiogenesis by SEM in oral squamous cell carcinoma.

    PubMed

    Oliveira de Oliveira, Laura Beatriz; Faccin Bampi, Vinícius; Ferreira Gomes, Carolina; Braga da Silva, Jefferson Luis; Encarnação Fiala Rechsteiner, Sandra Mara

    2014-01-01

    The word angiogenesis indicates the formation of new vascular segments from existing vessels such as capillaries and venules. Blood vessel formation in tumors is the result of rapid, disorganized vascular growth through two distinct mechanisms: sprouting and intussusceptive angiogenesis. The objective of this study was to elucidate the morphological aspects of these two vascular growth mechanisms in oral squamous cell carcinoma induced in hamster buccal pouch. Eight Syrian golden hamsters had their right buccal pouch treated with DMBA 0.5% and 10% carbamide peroxide for 90 days in order to produce squamous cell carcinoma in this site. Next, buccal pouches of the animals were submitted to the vascular corrosion technique and then analyzed by scanning electron microscopy. The vascular figures of sprouts were observed in the entire vascular network of the buccal pouches, as opposed to the intussusceptive angiogenesis that was predominantly observed in the sub-epithelial network. It was possible to differentiate the figures of sprouts from artifacts by the analysis of the blind ending of these structures. Intussusceptive angiogenesis was identified by the presence of holes trespassing the lumen of the capillaries. Vascular expansion occurred through intussusceptive angiogenesis in two ways: by the fusion of the pillars to form a new capillary and, by increasing the girth of the pillar to form meshes. The method of corrosion associated with scanning electron microscopy proved to be an excellent tool to study the two types of angiogenesis in oral squamous cell carcinoma in the hamster buccal pouch. © 2013 Wiley Periodicals, Inc.

  19. Morphological study of Cyclotella choctawhatcheeana Prasad (Stephanodiscaceae) from a saline Mexican lake

    PubMed Central

    Oliva, Maria Guadalupe; Lugo, Alfonso; Alcocer, Javier; Cantoral-Uriza, Enrique A

    2008-01-01

    Background Cyclotella choctawhatcheeana Prasad 1990 is a small centric diatom found in the plankton of water bodies with a wide range of salt concentrations. This paper describes the morphological features of the valve of C. choctawhatcheeana, from Alchichica lake, a hyposaline lake located in Central Mexico, and provides information about their ecology with respect to water chemistry and distribution in the water column along the annual cycle. Alchichica, and their neighbor lake Atexcac, are the only Mexican water bodies where C. choctawhatcheeana has been registered. Results Morphological differences were found with respect to the original description. The valves of C. choctawhatcheeana from Alchichica exceeded the diameter (5–12 μm) given for the type material (3.0–9.5 μm), and it does not forms or seldom forms short chains (2–3 cells) in contrast of up to 20 cell chains. Other difference was the presence of irregularly distributed small silica granules around the margin of the external view of the valve, meanwhile in Prasad's diagnosis a ring of siliceous granules is present near the valve margin; all other features were within the range of variation of the species. Maximum densities (up to 3877 cells ml-1) of C. choctawhatcheeana were found in Alchichica lake from June to October, along the stratificated period of the lake. Low densities (48 cells ml-1) when the water column was mixed, in January and February. C. choctawhatcheeana of Lake Alchichica was found in an ample depth range from 20 m down to 50 m. Conductivity (K25) ranged between 13.3 and 14.5 mS cm-1 and the pH between 8.8 and 10.0. Water temperature fluctuated between 14.5 and 20°C. Dissolved oxygen ranged from anoxic (non detectable) up to saturation (7 mg l-1). Conclusion The morphology of C. choctawhatcheeana from Alchichica corresponded to the original description, with exception of some secondary traits. C. choctawhatcheeana can grow in several different environmental conditions. It

  20. A 3-D well-differentiated model of pediatric bronchial epithelium demonstrates unstimulated morphological differences between asthmatic and nonasthmatic cells.

    PubMed

    Parker, Jeremy; Sarlang, Severine; Thavagnanam, Surendran; Williamson, Grace; O'donoghue, Dara; Villenave, Remi; Power, Ultan; Shields, Michael; Heaney, Liam; Skibinski, Grzegorz

    2010-01-01

    There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.