Science.gov

Sample records for study cell morphology

  1. Morphological study of endothelial cells during freezing.

    PubMed

    Zhang, A; Xu, L X; Sandison, G A; Cheng, S

    2006-12-01

    Microvascular injury is recognized as a major tissue damage mechanism of ablative cryosurgery. Endothelial cells lining the vessel wall are thought to be the initial target of freezing. However, details of this injury mechanism are not yet completely understood. In this study, ECMatrix 625 was used to mimic the tumour environment and to allow the endothelial cells cultured in vitro to form the tube-like structure of the vasculature. The influence of water dehydration on the integrity of this structure was investigated. It was found that the initial cell shape change was mainly controlled by water dehydration, dependent on the cooling rate, resulting in the shrinkage of cells in the direction normal to the free surface. As the cooling was prolonged and temperature was lowered, further cell shape change could be induced by the chilling effects on intracellular proteins, and focal adhesions to the basement membrane. Quantitative analysis showed that the freezing induced dehydration greatly enhanced the cell surface stresses, especially in the axial direction. This could be one of the major causes of the final breaking of the cell junction and cell detachment. PMID:17110769

  2. Morphology Studies of Polymer Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Moon, Ji Sun

    Energy is a prerequisite for creating and sustaining life. The need for energy increases globally as the world's population and economy grow. However, conventional energy sources---fossil fuels---generate carbon dioxide and contribute to global warming, perhaps the most serious environmental problem of our time. Carbon dioxide-free energy is required to stop global warming. Polymer solar cells have been attracting a great deal of interest as a source of renewable energy with a great potential for low cost. Polymer bulk heterojunction (BHJ) solar cells have been greatly improved; the power conversion efficiency is already up to 9.2% making the future of the polymer solar cell very promising. This thesis is a study of the morphology of polymer:fullerene BHJ, one of the most critical and challenging parts of high efficiency polymer solar cells. To discover the morphology, cross-section as well as top-down transmission electron microscopy were used. The contrast was achieved by utilizing phase contrast microscopy. Thermal annealing, dependence of BHJ thickness, processing additives, solution sequential process and solution sequential process with the use of cosolvent that affects/controls the BHJ morphology are studied in detail.

  3. Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Wei; Chen, Miin Jang; Cheng, Ji-Yen; Wei, Pei-Kuen

    2009-05-01

    The morphologic changes of living cells under drug interactions were studied by using 80-nm gold nanoparticles and dark-field optical section microscopy. The gold nanoparticles were coated with poly (L-lysine), which attached to the membranes of various cells by way of electrostatic attractive force. A three-dimensional (3-D) morphological image was obtained by measuring the peak scattering intensities of gold nanoparticles at different focal planes. An algorithm for the reconstruction of 3-D cell morphology was presented. With the measured nanoparticle images and calculations, we show morphologic changes of lung cancer cells under the interaction of cytochalasin D drug at different times.

  4. EARLY EFFECTS OF TRIMETHYLTIN ON THE DENTATE GYRUS BASKET CELLS: A MORPHOLOGICAL STUDY

    EPA Science Inventory

    Electrophysiological evidence for reduction of recurrent inhibition in the dentate gyrus in animals exposed to trimethyltin (TMT) suggested alterations in the inhibitory neurons (basket cells) by TMT. The present study was designed to investigate the morphology of basket cells af...

  5. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays.

    PubMed

    Noguchi, M; Kanari, Y; Yokoya, A; Narita, A; Fujii, K

    2015-09-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death. PMID:25883301

  6. Morphology and size of stem cells from mouse and whale: observational study

    PubMed Central

    2013-01-01

    Objective To compare the morphology and size of stem cells from two mammals of noticeably different body size. Design Observational study. Setting The Netherlands. Participants A humpback whale (Megaptera novaeangliae) and a laboratory mouse (Mus musculus). Main outcome measures Morphology and size of mesenchymal stem cells from adipose tissue. Results Morphologically, mesenchymal stem cells of the mouse and whale are indistinguishable. The average diameter of 50 mesenchymal stem cells from the mouse was 28 (SD 0.86) m and 50 from the whale was 29 (SD 0.71) m. The difference in cell size between the species was not statistically significant. Although the difference in bodyweight between the species is close to two million-fold, the mesenchymal stem cells of each were of similar size. Conclusions The mesenchymal stem cells of whales and mice are alike, in both morphology and size. PMID:24336001

  7. Development and progression of neoplastic disease. Morphologic and cell culture studies with airway epithelium

    SciTech Connect

    Nettesheim, P.; Terzaghi, M.; Klein-Szanto, A.J.P.

    1981-01-01

    Morphologic and cell culture studies on neoplastic development occurring in airway epithelium are discussed. The morphologic studies suggest that severe disturbances of cell growth, cell replication, and cell maturation exist in pre-neoplastic epithelium. In vivo-in vitro studies demonstrate that non-neoplastic carcinogen altered cells can be detected immediately after carcinogen exposure. These cells are identified by their enhanced in vitro growth capacity, which also makes it possible to select for them. Evidence exists indicating that some of these carcinogen altered cells are the precursors of later appearing cancer cells. With the use of the epithelial focus (EF) assay, the cellular dynamics of neoplastic development, as it occurs in vivo, can be investigated. Studies show that some phases of neoplastic disease continue to develop for many months in carcinogen exposed organs even if the carcinogen dose was subtumorigenic.

  8. Effect of Cold Plasma on Glial Cell Morphology Studied by Atomic Force Microscopy

    PubMed Central

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment. PMID:25803024

  9. New method for studying the relationship between morphological parameters and cell viability

    NASA Astrophysics Data System (ADS)

    Xiong, Jianwen; Dai, Weiping; Chen, Li; Liu, Guixiang; Liu, Mingsheng; Zhang, Zhenxi; Xiao, Hua

    2006-02-01

    Based on the morphological differences between normal, apoptosis and necrosis cell, a new method for detection cell viability is presented in the paper. The Jurkat cells samples were used for studying the relationship between morphological parameters and cell viability in the paper. According to the scatter charts of Jurkat cell roundness, radius ratio and area, the cell areas were mainly distributed from 40 ?m2 to 80 ?m2. The percentage of main areas in the two cells samples were analyzed statistically with values of 62.37% and 75.45 % respectively. Due to the mostly normal cell used by the experiment in the exponent growth period, a conclusion that the areas of normal cells were mainly distributed from 40 ?m2 to 80 ?m2 is presented. And the areas of apoptosis and necrosis cells are distributed in other range, i.e. less than 40 ?m2 or more than 80 ?m2. There are not any chemical medicaments needed to add in the samples by the method based on the videopicture in order to detect the states of cell samples. What it reflected by analyzing morphological parameters of cell are the true states of cell.

  10. Changes in lung morphology and cell number in radiation pneumonitis and fibrosis: a quantitative ultrastructural study

    SciTech Connect

    Vergara, J.A.; Raymond, U.; Thet, L.A.

    1987-05-01

    We used stereologic-morphometric techniques to obtain a detailed quantitative picture of the changes in lung ultrastructure of rats at 12 and 26 weeks after unilateral thoracic irradiation with 3000 cGy. At 12 weeks post-radiation, the total number type 1 epithelial cells, type 2 epithelial cells and capillary endothelial cells were decreased 50-70%, total type 1 epithelial and capillary surface areas were decreased 55-60%, and the total volume of intracapillary blood was decreased 75%. The interstitial cells and matrix together accounted for more than 9% of the peripheral lung tissue volume including air, compared to 3% in controls. The numerical density of interstitial cells was increased to 3-fold the control value. The numerical density of interstitial cells was increased to 3-fold the control value. Although fibroblasts still comprised the largest interstitial cell subgroup, the numerical density of mast cells was increased over 150-fold and other inflammatory and immune cells were increased to a lesser extent. At 26 weeks post-radiation, the number, volume, and surface area of the type 1 epithelium and capillary endothelium had further decreased to only 5-10% of control values. The total number of type 2 epithelial cells was reduced by 75% but the volume density was actually increased because of a 4-fold increase in the mean cell volume. The interstitial cells and matrix now comprised over 77% of total peripheral lung tissue volume including air as compared to 6% in controls. Mast cells and plasma cells comprised 11% and 19% of all interstitial cells respectively and the densities of these cells were 540 and 180-fold the control value respectively. The relation of these morphometric findings to the results of previous morphologic studies is discussed.

  11. Studying subcellular detail in fixed astrocytes: dissociation of morphologically intact glial cells (DIMIGs)

    PubMed Central

    Haseleu, Julia; Anlauf, Enrico; Blaess, Sandra; Endl, Elmar; Derouiche, Amin

    2013-01-01

    Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high resolution light microscopy, antigen localization is difficult to detect due to the small dimensions of these processes, and overlay from antigen in surrounding non-glial cells. Yet, PAPs frequently display antigens related to motility and glia-synaptic interaction. Here, we describe the dissociation of morphologically intact glial cells (DIMIGs), permitting unambiguous antigen localization using epifluorescence microscopy. Astrocytes are dissociated from juvenile (p1315) mouse cortex by applying papain treatment and cytospin centrifugation to attach the cells to a slide. The cells and their complete processes including the PAPs is thus projected in 2D. The entire procedure takes 2.53 h. We show by morphometry that the diameter of DIMIGs, including the PAPs is similar to that of astrocytes in situ. In contrast to cell culture, results derived from this procedure allow for direct conclusions relating to (1) the presence of an antigen in cortical astrocytes, (2) subcellular antigen distribution, in particular when localized in the PAPs. The detailed resolution is shown in an exemplary study of the organization of the astrocytic cytoskeleton components actin, ezrin, tubulin, and GFAP. The distribution of connexin 43 in relation to a single astrocyte's process tree is also investigated. PMID:23653590

  12. Effect of beta-D-xyloside on the renal glomerular cells. II. Morphological studies

    SciTech Connect

    Kanwar, Y.S.; Rosenzweig, L.J.; Jakubowski, M.L.

    1987-02-01

    The effect of p-nitrophenyl-beta-D-xylopyranoside on the renal glomerulus was studied. Rat kidneys were labeled with (35S)sulfate in the presence or absence of beta-xyloside by using an isolated organ perfusion system and were processed subsequently for morphological studies. By using electron microscopy, preferential intracytoplasmic vesiculation of the visceral epithelium was observed in the beta-xyloside-treated kidneys. The vesicles were distributed throughout the cytoplasm, particularly in the vicinity of Golgi apparatus. They were acid-phosphatase negative, devoid of clathrin-coat, and contained osmium-impregnated reaction products. The visceral epithelial foot processes remained firmly attached to the glomerular basement membrane. No loss of cell-surface associated sialoglycoproteins, as evidenced by colloidal iron staining, was observed. No significant change in the morphological features of glomerular endothelial or mesangial cells was noted. By using electron microscopy autoradiography, a significant increase in the number of silver grains over the epithelium, and a decrease in the number over the extracellular matrices was observed. The majority of the grains were either associated with intracytoplasmic vesicles or Golgi apparatus. The mean grain densities (concentration of radiation) increased by 3.6-fold for the epithelium, and decreased by 2.4- and 1.6-fold for the basement membrane and mesangial matrix, respectively. The grain densities over the endothelial and mesangial cells were similar in control and experimental groups. These data indicate that xyloside induces selective alterations in Golgi apparatus of the visceral epithelium and a dramatic imbalance in the de novo synthesized sulfated macromolecules of cellular and extracellular compartments.

  13. Dual-mode digital holographic and fluorescence microscopy for the study of morphological changes in cells under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Toy, M. Fatih; Pache, Christophe; Parent, Jrme; Khn, Jonas; Egli, Marcel; Depeursinge, Christian

    2010-02-01

    A dual mode microscope is developed to study morphological evolution of mouse myoblast cells under simulated microgravity in real time. Microscope operates in Digital Holographic Microscopy (DHM) and widefield epifluorescence microscopy modes in a time sequential basis. DHM provides information on real time cellular morphology. EGFP transfected actin filaments in mouse myoblast cells function as the reporter for the fluorescence microscopy mode. Experimental setup is fixed in the RPM to observe microgravity induced dynamic changes in live cells. Initial results revealed two different modifications. Disorganized structures become visible in the formed lamellipodias, and proteins accumulate in the perinuclear region.

  14. Cystic Renal Oncocytoma and Tubulocystic Renal Cell Carcinoma: Morphologic and Immunohistochemical Comparative Study.

    PubMed

    Skenderi, Faruk; Ulamec, Monika; Vranic, Semir; Bilalovic, Nurija; Peckova, Kvetoslava; Rotterova, Pavla; Kokoskova, Bohuslava; Trpkov, Kiril; Vesela, Pavla; Hora, Milan; Kalusova, Kristyna; Sperga, Maris; Perez Montiel, Delia; Alvarado Cabrero, Isabel; Bulimbasic, Stela; Branzovsky, Jindrich; Michal, Michal; Hes, Ondrej

    2016-02-01

    Renal oncocytoma (RO) may present with a tubulocystic growth in 3% to 7% of cases, and in such cases its morphology may significantly overlap with tubulocystic renal cell carcinoma (TCRCC). We compared the morphologic and immunohistochemical characteristics of these tumors, aiming to clarify the differential diagnostic criteria, which facilitate the discrimination of RO from TCRCC. Twenty-four cystic ROs and 15 TCRCCs were selected and analyzed for: architectural growth patterns, stromal features, cytomorphology, ISUP nucleolar grade, necrosis, and mitotic activity. Immunohistochemical panel included various cytokeratins (AE1-AE3, OSCAR, CAM5.2, CK7), vimentin, CD10, CD117, AMACR, CA-IX, antimitochondrial antigen (MIA), EMA, and Ki-67. The presence of at least focal solid growth and islands of tumor cells interspersed with loose stroma, lower ISUP nucleolar grade, absence of necrosis, and absence of mitotic figures were strongly suggestive of a cystic RO. In contrast, the absence of solid and island growth patterns and presence of more compact, fibrous stroma, accompanied by higher ISUP nucleolar grade, focal necrosis, and mitotic figures were all associated with TCRCC. TCRCC marked more frequently for vimentin, CD10, AMACR, and CK7 and had a higher proliferative index by Ki-67 (>15%). CD117 was negative in 14/15 cases. One case was weakly CD117 reactive with cytoplasmic positivity. All cystic RO cases were strongly positive for CD117. The remaining markers (AE1-AE3, CAM5.2, OSCAR, CA-IX, MIA, EMA) were of limited utility. Presence of tumor cell islands and solid growth areas and the type of stroma may be major morphologic criteria in differentiating cystic RO from TCRCC. In difficult cases, or when a limited tissue precludes full morphologic assessment, immunohistochemical pattern of vimentin, CD10, CD117, AMACR, CK7, and Ki-67 could help in establishing the correct diagnosis. PMID:26180933

  15. Loss of blood group A in acute leukemia. Morphologic and biochemical studies of red cells.

    PubMed

    Atkinson, J B; Tanley, P C; Wallas, C H

    1987-01-01

    A patient with blood type A had acute myelomonocytic leukemia; his red cells (RBCs) typed as O and his serum had anti-B. RBC membranes were isolated from the patient as well as from controls with group A and O red cells. The membranes were incubated with uridine diphosphate (UDP)-N-acetyl-D-14C galactosamine in plasma from the patient and controls with group A and O red cells. RBC membranes from the patient behaved normally in that they incorporated the terminal carbohydrate responsible for blood group A activity. Scanning electron microscopy showed that the patient's RBCs had striking morphologic changes, with marked crenation and numerous knisocytes and dacryocytes. It was concluded that loss of the A antigen in this patient was not due to an abnormality of the enzyme required to convert H substance to A substance. It was postulated that weakening of the A antigen in some patients with leukemia may be related to a steric modification associated with abnormal red cell morphology. PMID:3810823

  16. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    SciTech Connect

    Thomas, Ajith; Elsa Tom, Anju; Ison, V. V. E-mail: praveen@materials.iisc.ernet.in; Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C. E-mail: praveen@materials.iisc.ernet.in; Vinayakan, R.

    2014-03-14

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  17. Studies on morphology and cytochemistry in blood cells of ayu Plecoglossus altivelis altivelis.

    PubMed

    Nakada, Kojin; Fujisawa, Kuniyasu; Horiuchi, Hiroyuki; Furusawa, Shuichi

    2014-05-01

    Peripheral blood cells from ayu, Plecoglossus altivelis altivelis, were separated using a density gradient. Blood cells were then smeared using Shandon Cytospin and subjected to cytochemical staining. Blood cells were categorized based on morphological and cytochemical characteristics, and the density fractionation range and nucleus area/cell area ratio were observed. Lymphocytes are distinguished from neutrophils by their basophilic cytoplasm and Golgi-like field. The features of chromatin in thrombocytes are different from those of lymphocytes or neutrophils, but some small neutrophils have similar chromatin. Therefore, it is necessary to perform peroxidase staining to distinguish small neutrophils from thrombocytes. Basophils have large basophilic granules in cytoplasm. Based on density fractionation of blood cells, thrombocytes in the low-density area were separated from other blood cells. Identification of peripheral blood cells from ayu was possible with these staining methods. Monocytes/macrophages from spleen are specifically positive for esterase staining by ?-naphthyl butyrate. As a result, thrombocytes, lymphocytes, neutrophils, basophils and monocytes/macrophages were identified in smears from peripheral blood or spleen tissue. In this paper, we confirmed that the peripheral blood corpuscles of ayu are able to be identified using the present staining methods. PMID:24476851

  18. Studies on Morphology and Cytochemistry in Blood Cells of Ayu Plecoglossus altivelis altivelis

    PubMed Central

    NAKADA, Kojin; FUJISAWA, Kuniyasu; HORIUCHI, Hiroyuki; FURUSAWA, Shuichi

    2014-01-01

    ABSTRACT Peripheral blood cells from ayu, Plecoglossus altivelis altivelis, were separated using a density gradient. Blood cells were then smeared using Shandon Cytospin and subjected to cytochemical staining. Blood cells were categorized based on morphological and cytochemical characteristics, and the density fractionation range and nucleus area/cell area ratio were observed. Lymphocytes are distinguished from neutrophils by their basophilic cytoplasm and Golgi-like field. The features of chromatin in thrombocytes are different from those of lymphocytes or neutrophils, but some small neutrophils have similar chromatin. Therefore, it is necessary to perform peroxidase staining to distinguish small neutrophils from thrombocytes. Basophils have large basophilic granules in cytoplasm. Based on density fractionation of blood cells, thrombocytes in the low-density area were separated from other blood cells. Identification of peripheral blood cells from ayu was possible with these staining methods. Monocytes/macrophages from spleen are specifically positive for esterase staining by α-naphthyl butyrate. As a result, thrombocytes, lymphocytes, neutrophils, basophils and monocytes/macrophages were identified in smears from peripheral blood or spleen tissue. In this paper, we confirmed that the peripheral blood corpuscles of ayu are able to be identified using the present staining methods. PMID:24476851

  19. An ultrastructural study of the morphology and lectin-binding properties of human mast cell granules.

    PubMed

    Jones, C J; Kirkpatrick, C J; Stoddart, R W

    1988-08-01

    The morphological characteristics and lectin-binding properties of mast cell granules from four human neurofibromata are described. Ultrastructural examination of the granules revealed that some contained dense cores, others had membranous configurations and some forms were intermediate between the two. A round electron-lucent area was present in some granules. After treatment with biotinylated lectins (10 micrograms ml-1) followed by an avidin-peroxidase revealing system (5 micrograms ml-1 in 0.125 M Tris-buffered saline with 0.347 M NaCl, pH 7.6), mast cell granules strongly bound Concanavalin A, garden pea, lentil, wheatgerm, erythro- and leuco-kidney bean lectins. This indicated the presence of abundant N-linked complex-type saccharide sequences. Soybean and peanut lectins showed only weak binding, while the presence of sparse alpha-L-fucosyl terminals was indicated by the weak binding of winged pea lectin. The staining intensity of wheatgerm lectin was considerably reduced when incubated in the presence of its specific competing sugar tri-N-acetylchitotriose. Despite a wide variety of morphological differences between granules, all showed similar staining patterns and all granules within a single cell shared the same binding characteristics. PMID:3198420

  20. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  1. Stereocilia of sensory cells in normal and hearing impaired ears. A morphological, physiological and behavioural study.

    PubMed

    Engström, B

    1983-01-01

    The aim of the present study was to investigate specific structural alterations in the cochlea of ears with sensory neural hearing loss and to determine the relation between structural damage and loss of auditory function. The results show that with the methods used in this study it is possible to obtain well preserved structures with consistent morphological characteristics. Examination and identification of small pathological alterations were thus possible. The stereocilia of the IHCs were found by scanning electron microscopy to be the structure most susceptible to damage by noise in the rabbit. The extent of IHC damage corresponded rather well with the frequency range for loss of auditory function, particularly threshold shift of the MER. The damage of the IHCs consisted of fusion, fracture and inclination of the stereocilia towards the OHCs. The OHC were frequently left unaltered even when the stereocilia of most IHCs exhibited pronounced alterations. In animals with a severe hearing loss and a postexposure time of more than two months, long "giant" cilia and often also a small thin kinocilium were found on the IHCs. IHC ciliary damage was found also in other species including man, but to a smaller extent than in the rabbit. The stereocilia of IHCs were also damaged by noise in ears of rabbits where the OHCs had been experimentally removed prior to the noise exposure. It was concluded that stereocilia damage is an important morphological alteration in ears with sensory neural hearing loss particularly with NIHL, and that cilia damage contributes to the observed loss of auditory function. PMID:6420877

  2. Cell morphology and focal adhesion location alters internal cell stress.

    PubMed

    Mullen, C A; Vaughan, T J; Voisin, M C; Brennan, M A; Layrolle, P; McNamara, L M

    2014-12-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  3. Cell morphology and focal adhesion location alters internal cell stress

    PubMed Central

    Mullen, C. A.; Vaughan, T. J.; Voisin, M. C.; Brennan, M. A.; Layrolle, P.; McNamara, L. M.

    2014-01-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  4. Plastic solar cell interface and morphological characterization

    NASA Astrophysics Data System (ADS)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and momentum blocking layer of lithium fluoride prevents damage which ultimately leads to higher efficiencies. Finally, new materials have been synthesized with better electronic properties and stability. Characterization of the polymer properties and how they assemble is important for high device performance. One new promising polymer, Polybenzo[1,2-b:4,5- b']dithiophene-4,7-dithien-2-yl-2,1,3-benzothiadiazole (PBnDT-DTBT), was characterized with PCBM and it was found that this polymer assembles similarly to previously studied polymers. The efficiency gained with this new polymer is obtained from an improvement in the materials electronic properties since the morphology closely resembles the P3HT:PCBM system.

  5. An extensive morphological and comparative study of clinically early and obvious squamous cell carcinoma of the esophagus.

    PubMed

    Anani, P A; Gardiol, D; Savary, M; Monnier, P

    1991-03-01

    Squamous cell carcinoma of the esophagus appears mainly as an isolated tumor, frequently diagnosed in its latest stage. However, current advances in endoscopy, systematically used for high risk subjects, allow the detection of very early lesions such as epithelial dysplasia or in situ carcinoma. Twenty-eight squamous cell carcinomas were extensively studied: Group A contained 15 clinically "early cancers"; Group B 12 clinically obvious carcinomas and group C one clinically obvious bifocal carcinoma. All 15 "early cancers" were multicentric and composed of large fields of invasive, microinvasive or in situ carcinoma around which were found epithelial dysplasias of various degrees. Lymph node metastases at surgery were found in 26% of these cases. Obvious squamous cell carcinomas were contiguous with dysplastic areas in 16.6% and with in situ carcinomas in 33% of these cases. Half (50%) had lymph node metastases at surgery. There was no dysplasia or in situ carcinoma around the two main tumors of group C. A comparison between the different morphological features of the three groups leads us to question whether the solitary tumor of the esophagus really represents the final evolution of an early multifocal carcinoma. PMID:2068002

  6. Morphological and cytochemical study of extracellular matrix during the migratory phase of human and mouse primordial germ cells.

    PubMed

    Pereda, J; Zorn, T M; Soto, M; Motta, P M

    1998-01-01

    Primordial germ cells (PGCs), the ancestors of functional gametes in mammals, originate in an extragonadal location, and then migrate to and colonize the genital ridges during early organogenesis period. PGCs move actively from their original site, the wall of the hindgut, through the extracellular matrix (ECM) of the dorsal mesentery. This movement is controlled in part by components of the ECM. Cells are known to bind to individual ECM glycoproteins in a complex and poorly understood way. During migration in embryos, PGCs must alter their overall adhesiveness to the endodermal epithelium to allow locomotion. This study examined the ECM material of the migratory route during mouse and human PGCs migration. Mouse embryos obtained from Swiss Rockefeller mouse and normal human embryos between 4 and 7 weeks of development, collected during salpingectomy performed on patients with tubal ectopic pregnancies, were analyzed. The study was based on a morphological analysis using scanning electron microscopy (SEM), and on the histochemical and ultracytochemical identification of glycosaminoglycans (GAGs) and proteoglycans. In each age group, the mesenchyme was widely separated by intercellular spaces and materials. Fine filamentous strands extended between the surface of mesenchymal cells and the surface of PGCs. Hyaluronan and chondroitin and/or dermatan sulfate were localized in the ECM of the PGC migratory pathway both in mouse and human embryos. Hyaluronan was clearly reduced in the later stage of the migratory processes; on the contrary, the chondroitin sulfate reaction product increased. These results are consistent with previous observations showing that hyaluronan is a major component of the ECM, and are also suggestive of the significant role played by hyaluronan, chondroitin sulfate and dermatan sulfate during migration, thus providing a permissive substrate for cell migration during development. The observed temporal and regional patterns suggest that these GAGs are important morphogenetic factors both in the mouse and human although the precise biological function of the proteoglycans are not currently clear. PMID:11315967

  7. Structural, Morphological, and Electron Transport Studies of Annealing Dependent In2O3 Dye-Sensitized Solar Cell

    PubMed Central

    Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.

    2015-01-01

    Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652

  8. Structural, Morphological, and Electron Transport Studies of Annealing Dependent In2O3 Dye-Sensitized Solar Cell.

    PubMed

    Mahalingam, S; Abdullah, H; Shaari, S; Muchtar, A; Asshari, I

    2015-01-01

    Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450 °C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450 °C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652

  9. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  10. Morphological and growth alterations in Vero cells transformed by cisplatin.

    PubMed

    Gonalves, Estela Maria; Ventura, Cludio Angelo; Yano, Tomomasa; Rodrigues Macedo, Maria Lgia; Genari, Selma Candelria

    2006-06-01

    Cisplatin is an antineoplastic agent used to treat solid tumours, such as ovarian, testicular and bladder tumours. However, studies in vitro and in vivo have shown that cisplatin is mutagenic, genotoxic and tumorigenic in other tissues and organs. In this work, we examined the effect of cisplatin on Vero cells, a fibroblast-like cell line. The morphological characteristics were investigated using phase contrast microscopy, scanning electron microscopy and the actin cytoskeleton was labelled with fluorescein isothiocyanate-phalloidin. Cell proliferation was assessed based on the growth curve. Cultured Vero cells treated with cisplatin showed behavioural and morphological alterations associated with cellular transformation. The transformed cells grew in multilayers and formed cellular aggregates. The proliferation and morphological characteristics of the transformed cells were very different from those of control ones. Since transformed Vero cells showed several characteristics related to neoplastic growth, these cells could be a useful model for studying tumour cells in vitro. PMID:16716608

  11. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study

    NASA Astrophysics Data System (ADS)

    Yi, Xin; Gao, Huajian

    2014-06-01

    A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.

  12. Morphologic studies in the skeletal dysplasias.

    PubMed Central

    Sillence, D. O.; Horton, W. A.; Rimoin, D. L.

    1979-01-01

    Considerable progress has been made in the delineation of the genetic skeletal dysplasias, a heterogeneous group of disorders, that consist of over 80 distinct conditions. Morphologic studies have added a further dimension to the delineation of these conditions, their diagnosis, and the investigation of their pathogenetic mechanisms. In certain diseases, the morphologic alterations are characteristic and pathognomonic. In others only nonspecific alterations are observed, whereas in still other disorders growth-plate structure is essentially normal. Histologic, histochemical, and electronmicroscopic studies of growth-plate cartilage have provided new insights into the complexity of morphogenetic events in normal growth through the demonstration of morphologic defects in the genetic disorders of skeletal growth. As yet, very little is known of the biochemical abnormalities underlying the morphologic abnormalities. However, the great variety of morphologic findings points to a number of different pathogenetic defects in the synthesis, release, and assembly of connective tissue macromolecules and in the cells involved in growth-plate metabolism. Images Figure 4 Figure 8 Figure 5 Figure 7 Figure 10 Figure 6 Figure 9 Figure 1 Figure 3 Figure 2 PMID:474720

  13. Juvenile granulosa cell tumors of the testis: a clinicopathologic study of 70 cases with emphasis on its wide morphologic spectrum.

    PubMed

    Kao, Chia-Sui; Cornejo, Kristine M; Ulbright, Thomas M; Young, Robert H

    2015-09-01

    The clinical and pathologic features of 70 juvenile granulosa cell tumors (JGCTs) of the testis are presented. The patients were from 30 weeks gestational age to 10 years old; 60 of 67 (90%) whose ages are known to us were 6 months old or younger. Sixty-two underwent gonadectomy, 6 wedge excision, and 2 only biopsy. Twenty-six tumors were left sided and 22 right sided. Six occurred in an undescended testis and 2 in dysgenetic gonads. The most common presentation was a testicular mass (65%), followed by an "enlarging testis" (25%). Six of 14 patients in whom it was measured had "elevated" serum ?-fetoprotein (AFP), likely physiologically, and 1 had gynecomastia. The tumors measured 0.5 to 5 cm (mean, 1.7 cm; median, 1.5 cm) and were most commonly well circumscribed and typically yellow-tan; approximately 2/3 had a cystic component, whereas 1/3 were entirely solid. Microscopic examination typically showed a lobular growth, punctuated in 67 cases by variably sized and shaped follicles containing material that was basophilic (21%), eosinophilic (44%), or of both characters (35%); 3 lacked follicles. In nonfollicular areas, the tumor cells typically grew diffusely but occasionally had a corded arrangement (26%) or reticular appearance (29%). The stroma was either fibrous or fibromyxoid; hemorrhage associated with hemosiderin-laden macrophages was focally seen in 16%. The tumor cells were mostly small to medium sized with round to oval nuclei containing inconspicuous nucleoli and moderate to abundant, but occasionally scant, pale to lightly eosinophilic, sometimes vacuolated, cytoplasm; nuclear grooves were infrequent (6%). Focal columnar morphology was seen in 27% of the tumors. Mitoses were plentiful in 37%, and apoptosis was prominent in 46%. Intratubular tumor was seen in 43% and entrapped seminiferous tubules in 70%. Lymphovascular invasion was present in 2 cases, rete testis involvement in 4, and necrosis in 1. Rare features/patterns included: regressed tumor with hyalinization and prominent blood vessels (13%), papillary growth (4%), basaloid morphology (1%), spindle cell predominance (1%), microcystic foci (1%), adult granulosa cell-like (1%) patterns, and hyaline globules (1%). Inhibin (16/18), calretinin (8/9), WT1 (6/7), FOXL2 (12/12), SF-1 (12/12), and SOX9 (6/11) were positive, whereas SALL4 and glypican-3 were consistently negative in the neoplastic granulosa cells. Only 1 of 10 tumors was focally positive for ?-fetoprotein. JGCT is a rare neoplasm with a wide morphologic spectrum that also occurs rarely in undescended testes and dysgenetic gonads. The solid and reticular patterns may pose diagnostic challenges, but the lobular appearance and follicular differentiation are characteristic. Immunohistochemical stains may aid in its distinction from other tumors of young male individuals, particularly yolk sac tumor, a neoplasm that peaks at a somewhat later age. Twenty-four patients with follow-up, including 4 of 6 patients treated with wedge resection/biopsy, had no evidence of disease (2 to 348 mo; mean, 83 mo; median, 61 mo). One additional patient was alive at 260 months, but the disease status is unknown. The benign clinical course of all cases of JGCT with follow-up, despite often frequent mitotic activity, supports testis sparing surgery when technically feasible. PMID:26076062

  14. Functional and morphological differences among intrinsically photosensitive retinal ganglion cells.

    PubMed

    Schmidt, Tiffany M; Kofuji, Paulo

    2009-01-14

    A subset of ganglion cells in the mammalian retina express the photopigment melanopsin and are intrinsically photosensitive (ipRGCs). These cells are implicated in non-image-forming visual responses to environmental light, such as the pupillary light reflex, seasonal adaptations in physiology, photic inhibition of nocturnal melatonin release, and modulation of sleep, alertness, and activity. Morphological studies have confirmed the existence of at least three distinct subpopulations of ipRGCs, but studies of the physiology of ipRGCs at the single cell level have focused mainly on M1 cells, the dendrites of which stratify solely in sublamina a (OFF sublamina) of the retinal inner plexiform layer (IPL). Little work has been done to compare the functional properties of M1 cells to those of M2 cells, the dendrites of which stratify solely in sublamina b (ON sublamina) of the IPL. The goal of the current study was to compare the morphology, intrinsic light response, and intrinsic membrane properties of M1 and M2 cells in the mouse retina. Here we demonstrate additional morphological differences between M1 and M2 cells as well as distinct physiological characteristics of both the intrinsic light responses and intrinsic membrane properties. M2 cells displayed a more complex dendritic arborization and higher input resistance, yet showed lower light sensitivity and lower maximal light responses than M1 cells. These data indicate morphological and functional heterogeneity among ipRGCs. PMID:19144848

  15. Morphological and functional studies on the epidermal cells of amphioxus ( Branchiostoma belcheri tsingtauense) at different developmental stages

    NASA Astrophysics Data System (ADS)

    Mao, Bing-Yu; Sun, Xiao-Yang; Zhang, Hong-Wei; Zhang, Shi-Cui; Wu, Xian-Han

    1997-09-01

    Epidermal cells of amphioxus at different developmental stages were investigated by electron microscopy and colloidal carbon tracing experiments. Amphioxus epidermal cells showed different ultrastructural characteristics at larval and adult stages. The epidermal cells at all larval stages studied (24 96 h) had numerous vesicles containing electron dense materials in their apical cytoplasm. In tracing experiments, carbon particles were found in apical vesicles and interoellular spaces. Under scanning electron microscope, many crater-like protrusions were observed on the surface of the cells. These results indicated that amphioxus larval epidermal cells may be capable of endocytosis. The epidermal cells of 3-month and adult amphioxus were obviously secretory ones characterized by well-developed peripheral filaments, a prominent Golgi apparatus and abundant apical secretory vesicles. This study also showed that adult amphioxus body surface mucus contained lectin that could agglutinate human red blood cells. The authors propose that the epidermal cells of amphioxus larva and adult may contribute to the immune defense of the amimal by different means.

  16. Electron microscopic study of the morphological changes of gastric mucous cell induced by Helicobacter pylori in human gastric ulcers.

    PubMed

    Ogata, T; Araki, K

    1996-04-01

    Specimens from 8 cases of human gastric ulcers infected with H. pylori, 3 cases of gastric ulcers without H. pylori infection and mucosal specimens infected with H. pylori from 3 cases of early gastric cancers obtained at surgery were studied by transmission electron microscopy. In the surrounding epithelium of the ulcer, when present, the bacteria were preferentially located at the luminal side of the apical junctional complexes. This was accompanied by dome-like bulging of the apical cytoplasm, but the epithelial continuity was maintained. A consistent finding was the apocrine-like release of the apical cytoplasm into the lumen. In addition, there were cells with marked apical protrusions and cells with dissolution of mucous granules. Degenerative changes, such as cellular edema, vacuole formation and disruption of cell membrane were also observed. The cells which had shed their apical mucous area appeared to degenerate causing massive cell exfoliation and formation of denuded lamina propria. Similar changes of the surface mucous cells were observed in the mucosal specimens infected with H. pylori obtained from early gastric cancers, but such cell pathology was scarce in samples of the gastric ulcers without H. pylori infection. In some ulcers infected with H. pylori, the bacteria were also observed on the surface of the regenerating epithelial cells at the ulcer base. These findings suggest that H. pylori infection is an important factor in the development of gastric ulcers and in the prevention or delay in ulcer healing. PMID:8964050

  17. On-line study of fungal morphology during submerged growth in a small flow-through cell.

    PubMed

    Spohr, A; Dam-Mikkelsen, C; Carlsen, M; Nielsen, J; Villadsen, J

    1998-06-01

    A flow-through cell is designed to measure the growth kinetics of hyphae of Aspergillus oryzae grown submerged in a well controlled environment. The different stages of the growth process are characterized, from the spore to the fully developed hyphal element with up to 60 branches and a total length lt up to 10,000 micrometer. Spore swelling is found to occur without change in the form of the spore (circularity index constant at about 1.06) and the spore volume probably increases exponentially. The germ tube appears after about 4 h. The branching frequency and the rate of germ tube extension is determined. After about 10 h growth at a glucose concentration of 250 mg L-1, 6-7 branches have been set, and both the total hyphal length lt and the number of tips increase exponentially with time. The specific growth rate of the hyphae is 0. 33 h-1 while the average rate of the extension of the growing tips approaches 55 micrometer h-1. The growth kinetics for all the branches on the main hypha have also been found. The main hypha and all the branches grow at a rate which can be modeled by saturation kinetics with respect to the branch length and with nearly equal final tip speeds (160 micrometer h-1). Branches set near the apical tip of the main hypha attain their final tip speed in the shortest time, i.e., the value of the saturation parameter is small. Finally, the influence of substrate (glucose) concentration cs on the values of the morphological parameters has been determined. It is found that saturation type kinetics can be used to describe the influence of cs on the growth. Experiments with recirculation of effluent from the cell back to the inlet strongly suggest that the fungus secretes an inducer for growth and branching. PMID:10099291

  18. Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study

    PubMed Central

    Moscato, Stefania; Ronca, Francesca; Campani, Daniela; Danti, Serena

    2015-01-01

    It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, ?-actin and ?5?1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena. PMID:25590431

  19. Morphological study of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Rane, Shrish Yashwant

    1999-10-01

    This dissertation addresses several unresolved issues pertaining to the morphology of semi-crystalline polymers. The morphology of the simpler semi-crystalline polymers such as, polyethylene (PE) has been well characterized in the literature. Still large gaps exist in the quantitative understanding of the lamellar in the spherulites of these polymers. The intermediate regime between the lamellae and spherulites is still largely unexplored. Further information on this regime will enhance the establishment of vital structure-property relationships in commercially blown PE films. The lamellae may follow fractal scaling laws as they grow from the nucleus to form the spherulite. This mesoscale structure will be investigated by ultra low small angle (Bonse-Hart) scattering. Variables such as the orientation imported during processing and the branch content the effect the macro-properties of the finished polymer product. In the past the orientation of molecular chains has been studied by several authors using diffraction, birefringence and spectroscopic measurements. In this study the orientation of the lamellae will be quantified using small angle x-ray scattering and an attempt will be made to correlate the orientation to properties such as permeability and machine direction tear strength in blown films of commercial grades of high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and the newer metallocene resins. The origin and cause of spherulitic banding in semi-crystalline polymers remains another mystery. The classical formalisms of lamellar banding by Keith and Padden which attribute it to the regular twisting of lamellae are not universal and fail to explain the bands present in other materials such as agates, where there is no evidence of lamellar structures. The phenomena of lamellar banding will be studied in bio-polyester systems, which exhibit distinct, well developed banded spherulites. The effect of copolymerization and thermal treatments during crystallization will be analyzed. This dissertation will focus on these issues with an attempt to generalize these features for a series of olefin and polyesters systems.

  20. Morphological characterization of adult mouse Leydig cells in culture.

    PubMed

    Wang, Jian-Qi; Cao, Wen-Guang

    2016-01-22

    The morphology and function of Leydig cells are changed during the development, mature and senility of Leydig cells along the life span of males. This study was to observe the growth morphology of adult mouse Leydig cells in culture, aiming to provide a reference for furthermore understanding of the biological function of Leydig cells by invitro model. Testes of two-month-old mice were decapsulated and then the Leydig cells were isolated by collagenase digestion and were cultured in DMEM/F12 supplemented with 10% FBS. The Leydig cells were identified by HSD3B staining and RT-PCR. After 48-h Leydig cell culture, both the nucleus and the cytoplasm were very clear under the optical microscope. The nucleus was big and round and the cytoplasm was filled with abundant lipid drops with a strong refractivity. After 5-day culture, Leydig cells were fully elongated in spindle, triangular, polygonal, oval or irregular shapes. Some cells grew in aggregation, and some cells grew independently. Leydig cells in aggregation elongated many cellular tentacles for intercellular connections, which formed an epithelium-like appearance. After HSD3B staining, the individual Leydig cells were stained with different extents, demonstrated that the heterogeneity of HSD3B activity in individual Leydig cells in primary culture. RT-PCR results showed that Leydig cells in culture after 5 days could express Leydig cell-specific transcriptions, HSD3B6, CYP17A1 and StAR. These results showed the morphological characterization of adult mouse Leydig cells in culture, which will lay a foundation to elucidate the relationship between the morphology and function of Leydig cells. PMID:26686420

  1. Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    PubMed Central

    Nielsen, Judith N.; Charlier, Caroline; Baltes, Nicholas J.; Chrtien, Fabrice; Heitman, Joseph; Dromer, Franoise; Nielsen, Kirsten

    2010-01-01

    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 m. Cell enlargement was observed in vivo, producing cells up to 100 m. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3a? pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection. PMID:20585559

  2. Morphological classification of plant cell deaths

    PubMed Central

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined. PMID:21494263

  3. Subvisual morphological properties of cells and tissues

    NASA Astrophysics Data System (ADS)

    Haroske, Gunter; Kunze, Klaus-Dietmar

    1990-11-01

    With the development and the increasing use of quantitative morphological techniques the concept of subvisual morphological properties has become the main topic of quantitative morphology in medicine especially in tumour pathology. Subvisual properties of cells and tissues summarize all that structural information of cells and tissues being present in a histological or cytological image but not being to recognize without special tools. As to extract that information the visual perception (also my means of a microscope) has to be substituted by the quantitative measurement of structures. The paper deals with the basic understanding of the " subvisuality" regarding the human seeing. As it will be shown almost all of the recent topics of image analysis with important clinical and theoretical impact can be reduced to the problem of subvisual morphological properties. Roughly 80 of all information we get by our brain are optical ones. During the evolution the eye-brain-system has developed the ability for the rapid and very adaptable recognition of highly complex patterns. Recently and in the foreseeable future this ability is not to substitute by any arteficial system. An essential characteristic of the human seeing is the high propertion of experience and learning processes being involved in the information processing mentioned above. Until now we know only small pieces of this kind of information processing practically nothing is known about " learning" in human pattern recognition. But if such

  4. A novel mechanotactic 3D modeling of cell morphology

    NASA Astrophysics Data System (ADS)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  5. [Dynamics of osteogenesis associated with inoculation of autologous stromal cells from rat adipose tissue (experimental-morphological study)].

    PubMed

    Grigoryan, A S; Orlov, A A; Saburina, I N; Zurina, I M; Sysoev, S D

    2015-01-01

    Experiment was evaluated on 40 male Wistar rats. On the experimental model of mandible injury, bone autologous graft from tibia was placed on the surface of mandible (host bone). In the main experimental group, consisting of 20 animals, autologous rat adipose-derived stromal cells (ADSCs) were inoculated in space between autograph and host bones. ADSCs were not inoculated in the group of comparison. In experimental group with inoculated cells, the formation of a new fibroreticular bone structures in space between autograph and host bone was observed. These structures further underwent secondary reorganization and differentiation during the process of remodeling. As a result of the conducted study it was shown that in the experimental group by the day 180, statistically significant reduction of the area occupied by an immature fibroreticular bone took place. The reported phenomenon could be explained as a result of decline of the number of active cells in the population of inoculated ADSC, which is in consent with theory of limited cell division number due to telomeres shortening, described by Hayflick L. and Moorhead P.S. (1961). PMID:26571800

  6. In vitro study of the cytotoxicity of isolated oxidized lipid low-density lipoproteins fractions in human endothelial cells: relationship with the glutathione status and cell morphology.

    PubMed

    Therond, P; Abella, A; Laurent, D; Couturier, M; Chalas, J; Legrand, A; Lindenbaum, A

    2000-02-15

    Toxic effects of oxidized lipid compounds contained in oxidized LDL to endothelial cells are involved in the pathogenesis of atherosclerosis. Glutathione (GSH) plays an important role in the redox status of the cell and in the protective effect against oxidant injuries. However, little is known about the respective effect of these different oxidized lipid compounds toward cytotoxicity and GSH status of the cell. In this report, we isolated by high-performance liquid chromatography oxidized lipid compounds from low-density lipoproteins (LDL) oxidized by copper and we examined their effects on cultured endothelial cells. Cytotoxicity and GSH status were determined after incubation of endothelial cells with crude LDL or isolated lipid fractions derived from cholesterol, phospholipids, or cholesteryl esters. Their effects on cell morphology were also assessed. Oxidized lipids coming from cholesteryl esters (hydroperoxides or short-chain polar derivatives) induced a slight but significant GSH depletion without inducing cytotoxicity. The same species coming from phospholipids induced a more pronounced GSH depletion and a cytotoxic effect which is only present for the more polar compounds (short-chain polar derivatives) and corresponding to a total GSH depletion. In contrast, fractions containing oxysterols had a larger cytotoxic effect than their effect on GSH depletion suggesting that their cytotoxic effects are mediated by a GSH-independent pathway. All together, these data suggest that LDL-associated oxidized lipids present in copper-oxidized LDL exert cytotoxicity by an additional or synergistic effect on GSH depletion, but also by another mechanism independent of the redox status of the cell. PMID:10719240

  7. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    NASA Astrophysics Data System (ADS)

    Genova, J.; Decheva-Zarkova, M.; Pavlič, J. I.

    2016-02-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10-5 g/l in the outer for the liposome's membrane solution. At concentration 10-3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape.

  8. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells

    NASA Astrophysics Data System (ADS)

    Cheng, Dengfeng; Li, Xiao; Zhang, Guoxin; Shi, Hongcheng

    2014-04-01

    Forced oscillation of spherical and rod-shaped iron oxide magnetic nanoparticles (MNPs) via low-power and low-frequency alternating magnetic field (AMF) was firstly used to kill cancer cells in vitro. After being loaded by human cervical cancer cells line (HeLa) and then exposed to a 35-kHz AMF, MNPs mechanically damaged cell membranes and cytoplasm, decreasing the cell viability. It was found that the concentration and morphology of the MNPs significantly influenced the cell-killing efficiency of oscillating MNPs. In this preliminary study, when HeLa cells were pre-incubated with 100 ?g/mL rod-shaped MNPs (rMNP, length of 200 50 nm and diameter of 50 to 120 nm) for 20 h, MTT assay proved that the cell viability decreased by 30.9% after being exposed to AMF for 2 h, while the cell viability decreased by 11.7% if spherical MNPs (sMNP, diameter of 200 50 nm) were used for investigation. Furthermore, the morphological effect of MNPs on cell viability was confirmed by trypan blue assay: 39.5% rMNP-loaded cells and 15.1% sMNP-loaded cells were stained after being exposed to AMF for 2 h. It was also interesting to find that killing tumor cells at either higher (500 ?g/mL) or lower (20 ?g/mL) concentration of MNPs was less efficient than that achieved at 100 ?g/mL concentration. In conclusion, the relatively asymmetric morphological rod-shaped MNPs can kill cancer cells more effectively than spherical MNPs when being exposed to AMF by virtue of their mechanical oscillations.

  9. Measuring morphological response of endothelial cells in shear flow

    NASA Astrophysics Data System (ADS)

    Leong, Chiamin; Nackman, Gary; Wei, Timothy

    2008-11-01

    The normal physiological endothelial cell response to hemodynamic loadings can be categorized into morphological and biological responses. Cell morphological response includes changes in shape, size, height, and orientation. Cells sense mechanical stimuli and transduce them into chemical signals involving gene and protein expression, mechanotransduction. Abnormal endothelial response has been implicated in the localization of arterial disease like atherosclerosis. Though mechanotransduction involves a coupled (i.e. morphological and biological) process, to date many investigations into endothelial cells are still done in the decoupled way. The ultimate goal of our study is simultaneous flow and biological measurements to better understand arterial disease at the cellular and sub-cellular level. In vitro ? PIV measurements have been made in steady flow over live human aortic endothelial cells flush-mounted in a small rectangular channel. Cells are subjected to a step change in shear stress from zero to 15 dynes/cm^2. Cell surface maps, surface pressure, and wall shear stress are extracted from measurements taken 0, 3, 6, 12, 18, and 24 hours after applying shear. This work has laid a framework for future simultaneous measurements.

  10. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses.

    PubMed

    Fernandes, M N; Paulino, M G; Sakuragui, M M; Ramos, C A; Pereira, C D S; Sadauskas-Henrique, H

    2013-01-15

    Through integrating chemical, biochemical and morphological analyses, this study investigated the effects of multiple pollutants on the gill mitochondria-rich cells (MRCs) in two fish species, Astyanax fasciatus and Pimelodus maculatus, collected from five sites (FU10, FU20, FU30, FU40 and FU50) in the Furnas Hydroelectric Power Station reservoir. Water analyses revealed aluminum, iron and zinc as well as organochlorine (aldrin/dieldrin, endosulfan, heptachlor/heptachlor epoxide and metolachlor) contamination at all of the sites, with the exception of FU10. Copper, chrome, iron and zinc were detected in the gills of both species, and aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide were detected in the gills of fish from all of the sites, with the exception of FU10. Fish collected at FU20, FU30 and FU50 exhibited numerous alterations in the surface architecture of their pavement cells and MRCs. The surface MRC density and MRC fractional area were lower in fish from FU20, FU30, FU40 and FU50 than in those from the reference site (FU10) in the winter, and some variability between the sites was observed in the summer. The organochlorine contamination at FU20 and FU50 was associated with variable changes in the MRCs and inhibition of Na(+)/K(+)-ATPase (NKA) activity, especially in P. maculatus. At FU30, the alterations in the MRCs were associated with the contaminants present, especially metals. A multivariate analysis demonstrated a positive association between the biological responses of both species and environmental contamination, indicating that under realistic conditions, a mixture of organochlorines and metals affected the MRCs by inhibiting NKA activity and inducing morphological changes, which may cause an ionic imbalance. PMID:23220410

  11. The elasmobranch spiracular organ. I. Morphological studies.

    PubMed

    Barry, M A; Hall, D H; Bennett, M V

    1988-05-01

    The spiracular organ is a lateral line derived receptor associated with the first gill cleft (spiracle). Its functional morphology was studied in the little skate, Raja erinacea, and a shark, the smooth dogfish, Mustelus canis, with light and electron microscopy. The spiracular organ is a tube (skate) or pouch (shark) with a single pore opening into the spiracle. The lumen is lined with patches of sensory hair cells, and filled with a gelatinous cupula. In the little skate, hair cells form synapses with afferents but apparently not with efferent fibers. In both species, the spiracular organs are deformed by flexion of the hyomandibular cartilage at its articulation with the cranium. The hyomandibula is a suspensory element of the jaws; hyomandibular flexion results in jaw protrusion. The little skate spiracular organ is anchored at one end to the cranium and at the other to the hyomandibula so that it is stretched or relaxed during hyomandibular extension and flexion, respectively. In Mustelus, the effects of hyomandibular flexion on the spiracular organ are mediated indirectly by the superior post-spiracular ligament which inserts on the distal end of the hyomandibula. Deformation of the dogfish shark cupula during hyomandibular movement was observed. In the little skate, as revealed by transmission electron microscopy, there is a measurable deflection of the hair cell ciliary bundles from spiracular organs fixed with the hyomandibula in the flexed relative to the extended positions. In both species, hyomandibula flexion should result in hair cell depolarization, and sensory afferent excitation, based on the direction of the observed (skate) or expected (shark) deflection of hair cell cilia. PMID:3385671

  12. Relationships among cell morphology, intrinsic cell stiffness and cell-substrate interactions.

    PubMed

    Chiang, Martin Y M; Yangben, Yanzi; Lin, Nancy J; Zhong, Julia L; Yang, Li

    2013-12-01

    Cell modulus (stiffness) is a critical cell property that is important in normal cell functions and increasingly associated with disease states, yet most methods to characterize modulus may skew results. Here we show strong evidence indicating that the fundamental nature of free energies associated with cell/substrate interactions regulates adherent cell morphology and can be used to deduce cell modulus. These results are based on a mathematical model of biophysics and confirmed by the measured morphology of normal and cancerous liver cells adhered on a substrate. Cells select their final morphology by minimizing the total free energy in the cell/substrate system. The key mechanism by which substrate stiffness influences cell morphology is the energy tradeoff between the stabilizing influence of the cell-substrate interfacial adhesive energy and the destabilizing influence of the total elastic energies in the system. Using these findings, we establish a noninvasive methodology to determine the intrinsic modulus of cells by observing global changes in cell morphology in response to substrate stiffness. We also highlight the importance of selecting a relevant morphological index, cell roundness, that reflects the interchange between forms of energy governing cell morphology. Thus, cell-substrate interactions can be rationalized by the underlying biophysics, and cell modulus is easily measured. PMID:24075411

  13. Morphological and ultrastructural characterization of sea urchin immune cells.

    PubMed

    Deveci, Remziye; ?ener, Ecem; ?zzeto?lu, Sava?

    2015-05-01

    The free circulating coelomocytes in the coelomic cavity of echinoderms are considered to be immune effectors by phagocytosis, encapsulation, cytotoxicity, and by the production of antimicrobial agents. Although echinoderms (especially sea urchin embryo) have been used as a model organisms in biology, no uniform criteria exist for classification of coelomocytes in echinoderms, and few studies have reported about the biological functions of their coelomocytes. Hence, we study the coelomocytes in the echinoid sea urchin, Paracentrotus lividus, and describe their morphological and ultrastructural features using light and transmission electron microscopes. We classify the coelomocytes of P. lividus into red spherule and colorless spherule cells, small cells, vibratile cells, and phagocytic cells; petaloid and filopodial cells. To our knowledge, this is the first report describing ultrastructural details of the coelomocytes of P. lividus. PMID:25645676

  14. Studies in red blood cell preservation. 2. Comparison of vesicle formation, morphology, and membrane lipids during storage in AS-1 and CPDA-1.

    PubMed

    Greenwalt, T J; Zehner Sostok, C; Dumaswala, U J

    1990-01-01

    The changes in morphology, the quantitative changes in membrane lipids and the shedding of exocytic vesicles by red blood cells (RBC) stored for 42 and 56 days in AS-1 and CPDA-1 were compared. RBC stored in AS-1 shed significantly less vesicle membrane cholesterol, phospholipid and protein and maintained better morphology scores. RBC membrane cholesterol remained higher after 56 days in AS-1 than in CPDA-1. The data suggest that during the first weeks of storage cholesterol is lost from the RBC membrane followed by a larger release of phospholipids accompanied by alterations in the phosphoinositides. The shedding of exocytic vesicles appears to be secondary to the changes in morphology resulting from the perturbation of the membrane lipids. PMID:2111063

  15. Mechanical and Morphological Analysis of Cancer Cells on Nanostructured Substrates.

    PubMed

    Ning, Dandan; Duong, Binh; Thomas, Gawain; Qiao, Yong; Ma, Liyuan; Wen, Qi; Su, Ming

    2016-03-22

    Cancer metastasis is a major cause of cancer-induced deaths in patients. Mimicking nanostructures of an extracellular matrix surrounding cancer cells can provide useful clues for metastasis. This paper compares the morphology, proliferation, spreading, and stiffness of highly aggressive glioblastoma multiforme cancer cells and normal fibroblast cells seeded on a variety of ordered polymeric nanostructures (nanopillars and nanochannels). Both cell lines survive and proliferate on the nanostructured surface and show more similarity on nanostructured surfaces than on flat surfaces. Although both show similar stiffness on the nanochannel surface, glioblastomas are softer, spread to a larger area, and elongate less than fibroblasts. The nanostructured surfaces are useful for in vitro model of an extracellular matrix to study the cancer cell migratory phenotype. PMID:26920124

  16. Plasma cell morphology in multiple myeloma and related disorders.

    PubMed

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond to malignant changes of PC but are related to abnormal synthesis, trafficking, or excretion of the immunoglobulin that is stored in excess within the cytoplasm. Occurrence of crystalline inclusions within PC may be the first anomaly leading to the diagnosis of adult Fanconi syndrome. After a historical perspective, the authors report on the various morphological aspects of PC that may occur in multiple myeloma and related disorders, and discuss about their clinical and pathophysiological significance. Today, morphological identification and accurate determination of % PC within bone marrow remain ancillary criteria for the diagnosis of MM and help for the diagnosis of rare renal disorders. PMID:25899140

  17. Correlating the morphological and light scattering properties of biological cells

    NASA Astrophysics Data System (ADS)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25 to 45 responded to changes in the surface fluctuation of the cell and the range of 90 to 110 was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness, nuclear size, and mitochondrial volume density and size with over 90% classification accuracy. This study suggested the location of the scattering planes that are most relevant to researchers depending on the desired information about the cell and may provide a quantitative approach to cell discrimination with practical applications in flow cytometry for the diagnosis of diseases.

  18. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    NASA Astrophysics Data System (ADS)

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  19. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.

    PubMed

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-01-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells. PMID:26581407

  20. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    PubMed Central

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-01-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells. PMID:26581407

  1. Quantifying morphological features of actin cytoskeletal filaments in plant cells based on mathematical morphology.

    PubMed

    Kimori, Yoshitaka; Hikino, Kazumi; Nishimura, Mikio; Mano, Shoji

    2016-01-21

    By quantifying the morphological properties of biological structures, we can better evaluate complex shapes and detect subtle morphological changes in organisms. In this paper, we propose a shape analysis method based on morphological image processing, and apply it to image analysis of actin cytoskeletal filaments in root hair cells of Arabidopsis thaliana. In plant cells, the actin cytoskeletal filaments have critical roles in various cellular processes such as vesicle trafficking and organelle motility. The dynamics of vesicles and organelles in plant cells depend on actin cytoskeletal filaments, regulating cell division and cell enlargement. To better understand the actin-dependent organelle motility, we attempted to quantify the organization of actin filaments in the root hair cells of the root hair defective 3 (rhd3) mutant. RHD3 is involved in actin organization, and its defect has been reported to affect the dynamics of various vesicles and organelles. We measured three shape features of the actin filaments in wild-type and mutant plants. One feature (thickness) was depicted on a grayscale; the others (describing the complexity of the filament network patterns in two-dimensional space) were depicted as binary features. The morphological phenotypes of the cytoskeletal filaments clearly differed between wild-type and mutant. Subtle variations of filament morphology among the mutants were detected and statistically quantified. PMID:26551157

  2. Regulation of nuclear morphology by actomyosin components and cell geometry.

    PubMed

    Ramdas, Nisha M; Qingsen Li; Shivashankar, G V

    2015-08-01

    Extracellular microenvironmental signals modulate the coupling between cytoskeleton to nuclear links to regulate gene expression profiles. However the influence of actomyosin assembly on the morphology of the nucleus is not well understood. In this paper, we quantitatively demonstrate the role of cell geometry and specific actomyosin molecular components in their control of nuclear morphology. PMID:26736269

  3. [Study on morphology and anatomy of Akebia trifoliate seeds].

    PubMed

    Zhan, Xiao-Ri; Li, Xiao-Lin; Dong, Hong-Ran; Li, Jun-De; Huang, Lu-Qi

    2014-12-01

    Akebia trifoliate has been reported to have many pharmacological activities and the roots, petioles and seeds are used to different symptoms. However, the structure and anatomy of its seeds was almost not reported until now. In the present study, we investigated the morphological characters of the fruit and seed, and the anatomical characters of the testa, micropyle, embryo and endosperm, which could provide evidences for the study on classification, identification and application of A. trifoliate. Our results showed that the testa of A. trifoliate consisted of an epidermic cell layer, the sclerenchyma cells layer, the parenchyma cells layer and an innermost pigment layer. At the micropylar region, the outermost epidermal cells were specialized the white caruncle-like structure and the testa included a lot of lignified tissues. Endosperm comprises two layer cells. Outermost yellowish-brown layer cells contains lots of fat droplets, and innermost white layer cells contains lots of aleurone grains and crystalloids. PMID:25911805

  4. Impulse encoding across the dendritic morphologies of retinal ganglion cells.

    PubMed

    Sheasby, B W; Fohlmeister, J F

    1999-04-01

    Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every ganglion cell, were supplied with five voltage- or ligand-gated ion channels (plus leakage), which were distributed in accordance with those found in a recent study that employed an equivalent dendritic cylinder. A wide variety of impulse-entrainment responses was observed, including regular low-frequency firing, impulse doublets, and more complex patterns involving impulse propagation failures (or aborted spikes) within the encoder region, all of which have been observed experimentally. The impulse-frequency response curves of the cells fell into three groups called FAST, MEDIUM, and SLOW in approximate proportion as seen experimentally. In addition to these, a new group was found among the traced cells that exhibited an impulse-frequency response twice that of the FAST category. The total amount of soma-dendritic surface area exhibited by a given cell is decisive in determining its electrophysiological classification. On the other hand, we found only a weak correlation between the electrophysiological group and the morphological classification of a given cell, which is based on the complexity of dendritic branching and the physical reach or "receptive field" area of the cell. Dendritic morphology determines discharge patterns to dendritic (synaptic) stimulation. Orthodromic impulses can be initiated on the axon hillock, the thin axonal segment, the soma, or even the proximal axon beyond the thin segment, depending on stimulus magnitude, soma-dendritic membrane area, channel distribution, and state within the repetitive impulse cycle. Although a sufficiently high dendritic Na-channel density can lead to dendritic impulse initiation, this does not occur with our "standard" channel densities and is not seen experimentally. Even so, impulses initiated elsewhere do invade all except very thin dendritic processes. Impulse-encoding irregularities increase when channel conductances are reduced in the encoder region, and the F/I properties of the cells are a strong function of the calcium- and Ca-activated K-channel densities. Use of equivalent dendritic cylinders requires more soma-dendritic surface area than real dendritic trees, and the source of the discrepancy is discussed. PMID:10200204

  5. Alteration in murine epidermal Langerhans cell population by various UV irradiations: quantitative and morphologic studies on the effects of various wavelengths of monochromatic radiation on Ia-bearing cells

    SciTech Connect

    Obata, M.; Tagami, H.

    1985-02-01

    The present study was undertaken in order to clarify the exact mode of the Langerhans cell (LC) depleting process caused by UV irradiation. Following irradiation with a single dose of various wavelengths of monochromatic UV radiation (UVR), the number of Ia-positive cells were studied in mouse epidermal sheets quantitatively, particularly with regard to dose-response relationships, action spectrum, and time course change. In addition, morphologic alterations of these cells were studied using electron- and immunoelectron microscopy (EM and IEM). The authors obtained the following results after a single dose of UVB radiation (200 mJ/cm2 of 300 nm) or PUVA (1% of 8-methoxypsoralen (8-MOP) 20 microliter and 1 J/cm2 of 360 nm): (1) EM and IEM showed that while some LCs simply lost their Ia marker without any structural alterations, the majority of the LCs disappeared due to actual cell damage. (2) During an ''injury phase,'' the initial 48 h, and a ''recovery phase,'' lasting from 4-14 days after irradiation, enlargement of the size of remaining Ia-positive LCs occurred. The degree of enlargement was closely related to the degree of reduction in number, suggesting a process compensating for the loss of the LC population. (3) It was found that the recovery rate of LCs after irradiation damage was slower than that of keratinocytes, indicating different cell kinetics between these distinct cell populations in the epidermis, i.e., restoration of LCs after irradiation seems to be achieved at least partially through a repopulation process originating in the bone marrow.

  6. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  7. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  8. A Study of the Effect of Heat-Treatment on the Morphology of Nafion Ionomer Dispersion for Use in the Passive Direct Methanol Fuel Cell (DMFC).

    PubMed

    Yuan, Ting; Zhang, Haifeng; Zou, Zhiqing; Khatun, Sufia; Akins, Daniel; Adam, Yara; Suarez, Sophia

    2012-01-01

    Aggregation in heat-treated Nafion ionomer dispersion and 117 membrane are investigated by 1H and 19F Nuclear Magnetic Resonance (NMR) spectra, spin-lattice relaxation time, and self-diffusion coefficient measurements. Results demonstrate that heat-treatment affects the average Nafion particle size in aqueous dispersions. Measurements on heat-treated Nafion 117 membrane show changes in the 1H isotropic chemical shift and no significant changes in ionic conductivity. Scanning electron microscopy (SEM) analysis of prepared cathode catalyst layer containing the heat-treated dispersions reveals that the surface of the electrode with the catalyst ink that has been pretreated at ca. 80 C exhibits a compact and uniform morphology. The decrease of Nafion ionomer's size results in better contact between catalyst particles and electrolyte, higher electrochemically active surface area, as well as significant improvement in the DMFC's performance, as verified by electrochemical analysis and single cell evaluation. PMID:24958431

  9. A Study of the Effect of Heat-Treatment on the Morphology of Nafion Ionomer Dispersion for Use in the Passive Direct Methanol Fuel Cell (DMFC)

    PubMed Central

    Yuan, Ting; Zhang, Haifeng; Zou, Zhiqing; Khatun, Sufia; Akins, Daniel; Adam, Yara; Suarez, Sophia

    2012-01-01

    Aggregation in heat-treated Nafion ionomer dispersion and 117 membrane are investigated by 1H and 19F Nuclear Magnetic Resonance (NMR) spectra, spin-lattice relaxation time, and self-diffusion coefficient measurements. Results demonstrate that heat-treatment affects the average Nafion particle size in aqueous dispersions. Measurements on heat-treated Nafion 117 membrane show changes in the 1H isotropic chemical shift and no significant changes in ionic conductivity. Scanning electron microscopy (SEM) analysis of prepared cathode catalyst layer containing the heat-treated dispersions reveals that the surface of the electrode with the catalyst ink that has been pretreated at ca. 80 C exhibits a compact and uniform morphology. The decrease of Nafion ionomers size results in better contact between catalyst particles and electrolyte, higher electrochemically active surface area, as well as significant improvement in the DMFCs performance, as verified by electrochemical analysis and single cell evaluation. PMID:24958431

  10. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates.

    PubMed

    Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan

    2015-07-01

    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. PMID:24733741

  11. Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources.

    PubMed

    Reed, Daniel M; Foldes, Gabor; Kirkby, Nicholas S; Ahmetaj-Shala, Blerina; Mataragka, Stefania; Mohamed, Nura A; Francis, Catherine; Gara, Edit; Harding, Sian E; Mitchell, Jane A

    2014-12-12

    Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required. However, for other applications, because of low ET-1 release hESC-EC may prove to be protected from vascular inflammation. PMID:25449267

  12. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  13. Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell

    PubMed Central

    Elbez, Remy; McNaughton, Brandon H.; Patel, Lalit; Pienta, Kenneth J.; Kopelman, Raoul

    2011-01-01

    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing. PMID:22180784

  14. Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell.

    PubMed

    Elbez, Remy; McNaughton, Brandon H; Patel, Lalit; Pienta, Kenneth J; Kopelman, Raoul

    2011-01-01

    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing. PMID:22180784

  15. Breast Cancer Cell Line Aggregate Morphology Does Not Predict Invasive Capacity

    PubMed Central

    Ziperstein, Michelle J.; Guzman, Asja; Kaufman, Laura J.

    2015-01-01

    To invade and metastasize to distant loci, breast cancer cells must breach the layer of basement membrane surrounding the tumor and then invade through the dense collagen I-rich extracellular environment of breast tissue. Previous studies have shown that breast cancer cell aggregate morphology in basement membrane extract correlated with cell invasive capacity in some contexts. Moreover, cell lines from the same aggregate morphological class exhibited similarities in gene expression patterns. To further assess the capacity of cell and aggregate morphology to predict invasive capacity in physiologically relevant environments, six cell lines with varied cell aggregate morphologies were assessed in a variety of assays including a 3D multicellular invasion assay that recapitulates cell-cell and cell-environment contacts as they exist in vivo in the context of the primary breast tumor. Migratory and invasive capacities as measured through a 2D gap assay and a 3D spheroid invasion assay reveal that breast cancer cell aggregate morphology alone is insufficient to predict migratory speed in 2D or invasive capacity in 3D. Correlations between the 3D spheroid invasion assay and gene expression profiles suggest this assay as an inexpensive functional method to predict breast cancer invasive capacity. PMID:26418047

  16. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation.

    PubMed

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. PMID:26150354

  17. Morphological study of the northern pike (Esox lucius) tongue.

    PubMed

    Sadeghinezhad, Javad; Rahmati-holasoo, Hooman; Fayyaz, Sahel; Zargar, Ashkan

    2015-09-01

    The northern pike (Esox lucius) is a fresh water species belonging to the Esocidae family. It is a carnivorous fish feeding mostly on invertebrates and fishes. Due to the scantiness of relevant literature regarding the morphology of the tongue in fish we carried out this study with the aim of providing information on the dorsal surface morphology and histological structures of the tongue in E. lucius. The tongues of five E. lucius were examined using light- and scanning electron- microscopy (SEM) techniques. The SEM studies revealed the presence of numerous teeth, longitudinal mucosal strands and scattered taste buds spread on the tongue surface. Histological studies using hematoxylin and eosin and Masson's trichrome staining showed that the musculature was not visible in the tongue of E. lucius. The tongue is composed of mucosa, and submucosa supported by osteocartilagionous skeleton. The mucosa consists of several layers of unicellular mucous cells interrupted by numerous teeth. The derivation of teeth from the underlying bronchial skeleton was visible in longitudinal section. The scattered taste buds with a typical onion shape were also present. Overall, the morphological features of the E. lucius tongue together suggested its mechanical and sensory roles. The findings of this study together with morphological and physiological data from other fishes contribute to the knowledge of the nutrition and feeding behavior in aquaculture species. PMID:25205560

  18. Very Small Embryonic- Like stem cells (VSELs) are present in adult murine organs: ImageStream based morphological analysis and distribution studies

    PubMed Central

    Zuba-Surma, Ewa K.; Kucia, Magdalena; Wu, Wan; Klich, Izabela; Lillard, James W.; Ratajczak, Janina; Ratajczak, Mariusz Z.

    2009-01-01

    Recently, we purified a population of CXCR4+/Oct-4+/SSEA-1+/Sca-1+/Lin-/CD45- Very Small Embryonic-Like stem cells (VSELs) from adult murine bone marrow (BM). After employing flow cytometry, ImageStream analysis, confocal microscopy, and real time RT-PCR, we report that similar cells could be also identified and isolated from several organs in adult mice. The highest total numbers of Oct-4+ VSELs were found in the brain, kidneys, muscles, pancreas, and BM. These observations support our hypothesis that a population of very primitive cells expressing germ line/epiblast markers (Oct-4, SSEA-1) is deposited early during embryogenesis in various organs and survives into adulthood. Further studies are needed to determine whether these cells, after being isolated from various adult human organs similarly to their murine BM-derived counterparts, are endowed with pluripotent stem cell properties. PMID:18951465

  19. Co-Culture of ? TC-6 Cells and ? TC-1 Cells: Morphology and Function

    PubMed Central

    Kim, Sung Man; Lee, Eun Ju; Jung, Hye Sook; Han, Na; Kim, You Jeong; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Park, Jeong Hyun; Rhee, Byoung Doo

    2015-01-01

    Background In vitro experiments using only ?-cell lines instead of islets are limited because pancreatic islets are composed of four different types of endocrine cells. Several recent studies have focused on cellular interactions among these cell types, especially ?- and ?-cells. Because islet isolation needs time and experience, we tested a simple co-culture system with ?- and ?-cells. Their morphology and function were assessed by comparison to each single cell culture and pancreatic islets. Methods ? TC-6 cells and ? TC-1 cells were maintained in Dulbecco's Minimal Essential Medium containing 5 mM glucose and 10% fetal bovine serum. Cells were mixed at a 1:1 ratio (5105) in 6-well plates and cultured for 24, 48, and 72 hours. After culture, cells were used for insulin and glucagon immunoassays and tested for glucose-stimulated insulin secretion (GSIS). Results ? TC-6 and ? TC-1 cells became condensed by 24 hours and were more strongly compacted after 48 hours. ? TC-1 cells showed both ?-? and ?-? cell contacts. GSIS increased with increasing glucose concentration in co-cultured cells, which showed lower secreted insulin levels than ? TC-1 cells alone. The increase in the secreted insulin/insulin content ratio was significantly lower for co-cultured cells than for ?-cells alone (P=0.04). Compared to islets, the ?-/?-cell co-culture showed a higher ratio of GSIS to insulin content, but the difference was not statistically significant (P=0.09). Conclusion ? TC-6 and ? TC-1 cells in the co-culture system showed cell-to-cell contacts and a similar stimulated insulin secretion pattern to islets. The co-culture system may be used to better mimic pancreatic islets in in vitro assessments. PMID:25325280

  20. Mitochondrial morphology in human fetal and adult female germ cells.

    PubMed

    Motta, P M; Nottola, S A; Makabe, S; Heyn, R

    2000-07-01

    The aim of this study has been to observe, by electron microscopy, the morphological changes affecting mitochondria and associated organelles in the human female germ cell during oogenesis, maturation and fertilization. In the primordial germ cell (PGC), rounded mitochondria with a pale matrix and small vesicular cristae are disposed near the nucleus and significantly increase in number during PGC migration and settlement in the gonadal ridge, where they differentiate into oogonia. In these early stages of mammalian oogenesis, aggregates of mitochondria are typically clustered around or in close relationship with the nuage. In oocytes at early prophase stage, mitochondria proliferate while aligned along the outer surface of the nuclear membrane, contain a more dense matrix than before, and have lamellar cristae. Oocytes of primordial and primary follicles mostly contain round or irregular mitochondria whose matrix has become very light. These mitochondria show typical parallel, arched cristae, and are clustered near the nucleus with other organelles forming the Balbiani's vitelline body. When follicles grow, the mitochondria of the oocytes become even more numerous and are dispersed in the ooplasm. Both paranuclear accumulation and subsequent dispersion of mitochondria in the cytoplasm are likely to be regulated by microtubules. By ovulation, mitochondria are the most prominent organelles in the ooplasm. They form voluminous aggregates with smooth endoplasmic reticulum (SER) tubules and vesicles. These mitochondrial-SER aggregates (M-SER) and the mitochondrial-vesicle complexes (MV) could be involved in the production of a reservoir of substances or membranes anticipating subsequent fertilization and early embryogenesis. Just after fertilization, the mitochondria of the oocyte undergo a further substantial change in size, shape, and microtopography. In the pronuclear zygote, mitochondria concentrate around the pronuclei. During the first embryonic cleavage divisions, round or oval mitochondria with a dense matrix and few arched cristae are gradually replaced by elongated ones with a less dense matrix and numerous transverse cristae. A progressive reduction in size and number of M-SER aggregates and MV complexes also occurs. In summary, oocyte mitochondria show dynamic morphological changes as they increase in number and populate different cell domains within the oocyte. They form complex relationships with other cell organelles, according to the different energetic -metabolic needs of the cell during differentiation, maturation, and fertilization, and are ultimately inherited by the developing embryo, where they eventually assume a more typical somatic cell form. PMID:11041520

  1. Effects of risedronate on the morphology and viability of gingiva-derived mesenchymal stem cells

    PubMed Central

    KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2015-01-01

    Risedronate has been used for the prevention and treatment of postmenopausal and corticosteroid-induced osteoporosis. The present study was performed to evaluate the effects of risedronate on the morphology and viability of human stem cells derived from the gingiva. Stem cells derived from the gingiva were grown in the presence of risedronate at concentrations that ranged from 1 to 10 M. The morphology of the cells was viewed under an inverted microscope, and cell proliferation was analyzed with a cell counting kit-8 (CCK-8) on days 2, 4 and 7. The untreated control group showed a spindle-shaped, fibroblast-like morphology. The shapes of the cells treated with 1 and 5 M risedronate were similar to that of the control group on day 2. However, morphology of the 10 M group markedly differed from that of the control group. The shapes of the cells in the 1, 5 and 10 M groups were rounder, and pronounced alterations when compared with the untreated control group were noted in all groups on day 7. The cultures growing in the presence of risedronate showed decreased CCK-8 values on day 7. In conclusion, risedronate produced notable alterations in the morphology of the cells and reduced the viability of gingival mesenchymal stem cells. PMID:26623028

  2. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions.

    PubMed

    Kapustina, Maryna; Tsygankov, Denis; Zhao, Jia; Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C; Wang, Qi; Jacobson, Ken; Forest, M Gregory

    2016-03-01

    Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D) or the "seed and growth" model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts. PMID:27015526

  3. Physiological and morphological development of the rat cerebellar Purkinje cell

    PubMed Central

    McKay, Bruce E; Turner, Ray W

    2005-01-01

    Cerebellar Purkinje cells integrate multimodal afferent inputs and, as the only projection neurones of the cerebellar cortex, are key to the coordination of a variety of motor- and learning-related behaviours. In the neonatal rat the cerebellum is undeveloped, but over the first few postnatal weeks both the structure of the cerebellum and cerebellar-dependent behaviours mature rapidly. Maturation of Purkinje cell physiology is expected to contribute significantly to the development of cerebellar output. However, the ontogeny of the electrophysiological properties of the Purkinje cell and its relationship to maturation of cell morphology is incompletely understood. To address this problem we performed a detailed in vitro electrophysiological analysis of the spontaneous and intracellularly evoked intrinsic properties of Purkinje cells obtained from postnatal rats (P0 to P90) using whole-cell patch clamp recordings. Cells were filled with neurobiotin to enable subsequent morphological comparisons. Three stages of physiological and structural development were identified. During the early postnatal period (P0 to ?P9) Purkinje cells were characterized by an immature pattern of Na+-spike discharge, and possessed only short multipolar dendrites. This was followed by a period of rapid maturation (from ?P12 to ?P18), consisting of changes in Na+-spike discharge, emergence of repetitive bursts of Na+ spikes terminated by Ca2+ spikes (Ca2+Na+ bursts), generation of the trimodal pattern, and a significant expansion of the dendritic tree. During the final stage (> P18 to P90) there were minor refinements of cell output and a plateau in dendritic area. Our results reveal a rapid transition of the Purkinje cell from morphological and physiological immaturity to adult characteristics over a short developmental window, with a close correspondence between changes in cell output and dendritic growth. The development of Purkinje cell intrinsic electrophysiological properties further matches the time course of other measures of cerebellar structural and functional maturation. PMID:16002452

  4. Morphology control of the perovskite films for efficient solar cells.

    PubMed

    Zheng, Lingling; Zhang, Danfei; Ma, Yingzhuang; Lu, Zelin; Chen, Zhijian; Wang, Shufeng; Xiao, Lixin; Gong, Qihuang

    2015-06-21

    In the past two years, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has significantly increased up to 20.1%. These state-of-the-art new devices surpass other third-generation solar cells to become the most promising rival to the silicon-based solar cells. Since the morphology of the perovskite film is one of the most crucial factors to affect the performance of the device, many approaches have been developed for its improvement. This review provides a systematical summary of the methods for morphology control. Introductions and discussions on the mechanisms and relevant hotspots are also given. Understanding the growth process of perovskite crystallites has great benefits for further efficiency improvement and enlightens us to exploit new technologies for large-scale, low-cost and high-performance perovskite solar cells. PMID:25800254

  5. Correlating cell morphology and stochastic gene expression using fluorescence spectroscopy and GPU-enabled image analysis

    NASA Astrophysics Data System (ADS)

    Shepherd, Douglas; Shapiro, Evan; Perillo, Evan; Werner, James

    2014-03-01

    Biological processes at the microscopic level appear stochastic, requiring precise measurement and analytical techniques to determine the nature of the underlying regulatory networks. Single-molecule, single-cell studies of gene expression have provided insights into how cells respond to external stimuli. Recent work has suggested that macroscopic cell properties, such as cell morphology, are correlated with gene expression. Here we present single-cell studies of a signal-activated gene network: Interleukin 4 (IL4) RNA production in rat basophil leukemia (RBL) cells during the allergic response. We fluorescently label individual IL4 RNA transcripts in populations of RBL cells, subject to varying external stimuli. A custom super-resolution microscope is used to measure the number of fluorescent labeled IL4 transcripts in populations of RBL cells on a cell-by-cell basis. To test the hypothesis that cell morphology is connected genotype, we analyze white light images of RBL cells and cross-reference cell morphology with IL4 RNA levels. We find that the activation of RBL cells, determined by white-light imaging, is well correlated with IL4 mRNA expression.

  6. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells).

    PubMed

    Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgrtner, Wolfgang; Spitzbarth, Ingo

    2015-01-15

    DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (? 13) and late (? 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. PMID:25534080

  7. MORPHOLOGICAL AND HISTOCHEMICAL CHARACTERIZATION OF THE SEMINIFEROUS EPITHELIAL AND LEYDIG CELLS OF THE TURKEY.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike mammals, there is little fundamental information about spermatogenesis in birds. This study was undertaken to clarify the morphology, histochemistry, and lectin affinity of the seminiferous epithelial cells and Leydig cells in the pre-pubertal (8- to I5-wk old) and adult (40-to 44-wk old) do...

  8. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    PubMed

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates. PMID:3235468

  9. Dynamic and reversible surface topography influences cell morphology

    PubMed Central

    Kiang, Jennifer D.; Wen, Jessica H.; del lamo, Juan C.; Engler, Adam J.

    2015-01-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ?RRMS, ranged from 0.05 to 0.70 m and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 m, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness. PMID:23355509

  10. Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells.

    PubMed

    Robertson, A M; Bird, C C; Waddell, A W; Currie, A R

    1978-11-01

    Morphological aspects of cell death associated with a cytolethal concentration of methylprednisolone sodium succinate (500 micrograms/ml) on the BLA1 lymphoblastoid cell line were studied over a 48-hr incubation period by light, transmission and scanning electron microscopy. Studies revealed two distinctive morphological changes induced by the steroid from 1 hr onwards after treatment. One showed contortion and "blebbing" of the cytoplasm and nucleus accompanied or followed by nuclear pyknosis, resulting in the formation of membrane-bounded bodies containing apparently normal cytoplasmic organelles with or without nuclear fragments. The other showed "rounding up" of the cell with loss of cytoplasmic protrusions and long slender surface processes, aggregation of well-preserved cytoplasmic organelles, accompanied by nuclear pyknosis and fragmentation. In both cases many of the features are typical of apoptosis. The subsequent degeneration of cells and fragments not unexpectedly resembled in vitro autolysis. This in-vitro system is suitable for studying the early biochemical events and intracellular control mechanisms of apoptosis. PMID:745025

  11. Effect of surface potential on epithelial cell adhesion, proliferation and morphology.

    PubMed

    Chang, Hsun-Yun; Kao, Wei-Lun; You, Yun-Wen; Chu, Yi-Hsuan; Chu, Kuo-Jui; Chen, Peng-Jen; Wu, Chen-Yi; Lee, Yu-Hsuan; Shyue, Jing-Jong

    2016-05-01

    Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area. PMID:26852101

  12. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  13. Morphological diversity of dying cells during regression of the human tail.

    PubMed

    Sapunar, D; Vilovi?, K; England, M; Saraga-Babi?, M

    2001-05-01

    During normal human development a number of transient structures form and subsequently regress completely. One of the most prominent structures that regress during development is the human tail. We report here a histological and ultrastructural study of cell death in the cranial and caudal (tail) parts of the neural tube in 4 to 6-week-old human embryos. Initially, the human tail is composed of tail bud mesenchyme which differentiates into caudal somites, secondary neural tube, notochord and tail gut. Later on, these structures gradually regress by cell death. During the investigated period, we observed two morphologically distinct types of dying cells. The well-described apoptotic type of cell death was observed only in the cranial neural tube that forms during primary neurulation. The other type of cell death characterized by necrotic morphology was observed in the tail mesenchyme and in the caudal neural tube that forms during secondary neurulation. This morphological diversity suggests that besides differences in origin and fate there are different mechanisms of developmental cell death between two parts of the human neural tube. We can speculate that the apoptotic type of cell death is associated with the precise control of cell numbers and that the other morphologically distinct type of cell death is responsible for the massive removal of transitory structures. PMID:11396790

  14. Differences in Morphology and Traction Generation of Cell Lines Representing Different Stages of Osteogenesis.

    PubMed

    Poellmann, Michael J; Estrada, Jonathan B; Boudou, Thomas; Berent, Zachary T; Franck, Christian; Wagoner Johnson, Amy J

    2015-12-01

    Osteogenesis is the process by which mesenchymal stem cells differentiate to osteoblasts and form bone. The morphology and root mean squared (RMS) traction of four cell types representing different stages of osteogenesis were quantified. Undifferentiated D1, differentiated D1, MC3T3-E1, and MLO-A5 cell types were evaluated using both automated image analysis of cells stained for F-actin and by traction force microscopy (TFM). Undifferentiated mesenchymal stem cell lines were small, spindly, and exerted low traction, while differentiated osteoblasts were large, had multiple processes, and exerted higher traction. Size, shape, and traction all correlated with the differentiation stage. Thus, cell morphology evolved and RMS traction increased with differentiation. The results provide a foundation for further work with these cell lines to study the mechanobiology of bone formation. PMID:26501398

  15. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  16. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  17. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells.

    PubMed

    Haruk, Alexander M; Mativetsky, Jeffrey M

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  18. Similar morphological and molecular signatures shared by female and male germline stem cells

    PubMed Central

    Xie, Wenhai; Wang, Hu; Wu, Ji

    2014-01-01

    The existence of mammalian female germline stem cells (FGSCs) indicates that mammalian ovaries possess germline stem cells analogous to testis, and continue to produce gametes postnatally, which provides new insights into female fertility. In this study, we compared the morphological and molecular characteristics between FGSCs and spermatogonial stem cells (SSCs) by analysis of morphology, immunofluorescence, alkaline phosphatase activity assay, reverse transcription polymerase chain reaction (RT-PCR) and microarray hybridization. The results demonstrated that the morphology and growth patterns of FGSCs are similar to those of SSCs. Microarray analysis of global gene expression profiles of FGSCs and SSCs showed similar signatures in the transcriptome level. A list of 853 co-highly expressed genes (CEG) in female and male germline stem cells may be responsible for the morphological and molecular similarity. We constructed a continuous network of the CEG based on I2D protein-protein interaction database by breadth first search. From the network, we could observe the interactions of the CEG may be responsible for maintaining the properties of germline stem cells. This study was the first attempt to compare morphological and molecular characteristics between FGSCs and SSCs. These findings would provide some clues for further research on mammalian FGSCs. PMID:24993338

  19. Clear Cell Renal Cell Carcinoma With Borderline Features of Clear Cell Papillary Renal Cell Carcinoma: Combined Morphologic, Immunohistochemical, and Cytogenetic Analysis.

    PubMed

    Williamson, Sean R; Gupta, Nilesh S; Eble, John N; Rogers, Craig G; Michalowski, Susan; Zhang, Shaobo; Wang, Mingsheng; Grignon, David J; Cheng, Liang

    2015-11-01

    Clear cell papillary renal cell carcinoma is increasingly recognized as a distinct tumor with unique morphology, immunohistochemistry, and cytogenetics. Histopathology often mimics clear cell renal cell carcinoma; however, metastasis has not been reported, emphasizing the clinical value of recognizing these likely nonaggressive tumors. We studied tumors with borderline morphology of clear cell papillary renal cell carcinoma, utilizing immunohistochemistry and fluorescence in situ hybridization or karyotyping. Tumors from 22 patients (ages 33 to 82 y) were analyzed. Clear cell papillary renal cell carcinoma-like morphology varied from 10% to 90% of the tumor (median 25%). Sources of resemblance included: branched glands (95%), nuclear alignment (68%), small papillary tufts (32%), focal branching papillae (27%), and prominent papillary structures (9%). Carbonic anhydrase IX uniformly revealed diffuse positivity. Staining for cytokeratin 7 (CK7) was focal (64%) or negative (18%) in most tumors (82%); however, >50% labeling was present in 4 (18%). Reactivity for both CD10 and α-methyl-acyl-CoA-racemase (AMACR) was usually present (median 80% and 60% of cells). Seven tumors showed reactivity for high-molecular weight keratin (32%). Chromosome 3p loss was confirmed in 15 tumors (68%), including 4/7 with labeling for high-molecular weight keratin or >50% reactivity for CK7. A discordant immunohistochemical pattern typically correlates with loss of material from chromosome 3p in tumors with incomplete morphology of clear cell papillary renal cell carcinoma, supporting classification as clear cell renal cell carcinoma. Diffuse labeling for CK7 can uncommonly be observed in clear cell renal cell carcinomas confirmed to have chromosome 3p loss, although these do not exhibit the expected staining pattern of clear cell papillary renal cell carcinoma, including positivity for CD10 and AMACR. PMID:26457355

  20. Three-Dimensional Numerical Model of Cell Morphology during Migration in Multi-Signaling Substrates

    PubMed Central

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cells physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the mechanotaxis effect. Besides, the stronger stimulus imposes a greater cell elongation and more cell membrane area. The present model not only provides new insights into cell morphology in a multi-signaling micro-environment but also enables us to investigate in more precise way the cell migration in the presence of different stimuli. PMID:25822332

  1. Fra-1 Induces Morphological Transformation and Increases In Vitro Invasiveness and Motility of Epithelioid Adenocarcinoma Cells

    PubMed Central

    Kustikova, Olga; Kramerov, Dmitrii; Grigorian, Mariam; Berezin, Vladimir; Bock, Elisabeth; Lukanidin, Eugene; Tulchinsky, Eugene

    1998-01-01

    Two cell lines originating from a common ancestral tumor, CSML0 and CSML100, were used as a model to study AP-1 transcription factors at different steps of tumor progression. CSML0 cells have an epithelial morphology; they express epithelial but not mesenchymal markers and are invasive neither in vitro nor in vivo. CSML100 possesses all characteristics of a highly progressive carcinoma. These cells do not form tight contacts, are highly invasive in vitro, and are metastatic in vivo. AP-1 activity was considerably higher in CSML100 cells than in CSML0 cells. There was a common predominant Jun component, namely, JunD, detected in both cell lines. We found that the enhanced level of AP-1 in CSML100 cells was due to high expression of Fra-1 and Fra-2 proteins, which were undetectable in CSML0 nuclear extracts. Analysis of the transcription of different AP-1 members in various cell lines derived from tumors of epithelial origin revealed a correlation of fra-1 expression with mesenchymal characteristics of carcinoma cells. Moreover, we show here for the first time that the expression of exogenous Fra-1 in epithelioid cells results in morphological changes that resemble fibroblastoid conversion. Cells acquire an elongated shape and become more motile and invasive in vitro. Morphological alterations were accompanied by transcriptional activation of certain genes whose expression is often induced at late stages of tumor progression. These data suggest a critical role of the Fra-1 protein in the development of epithelial tumors. PMID:9819396

  2. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  3. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  4. Targeted cellular ablation based on the morphology of malignant cells.

    PubMed

    Ivey, Jill W; Latouche, Eduardo L; Sano, Michael B; Rossmeisl, John H; Davalos, Rafael V; Verbridge, Scott S

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100??s) is enhanced for larger cells, short pulses (~1??s) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  5. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  6. Effects of hypoxia and its relationship with apoptosis, stem cells, and angiogenesis on the thymus of children with congenital heart defects: a morphological and immunohistochemical study

    PubMed Central

    Ceyran, A Bahar; ?enol, Serkan; Gzelmeri, Fsun; Tuner, Eylem; Tongut, Aybala; zbek, Babrhan; ?avluk, mer; Ayd?n, Abdullah; Ceyran, Hakan

    2015-01-01

    Introduction: The thymus slowly involutes with age after puberty. Various stress conditions accelerate the involution of the thymus and cause changes in the histologic structure of the gland. Objective: The present study performed histomorphological and immunohistochemical (IHC) evaluations of the thymus glands removed during surgical repair in patients with cyanotic or acyanotic congenital heart disease (CHD). The thymus glands in the hypoxic group were compared to those in the non-hypoxic group. This study suggested that the activation of HIF-1 alpha promotes tumor progression and impair prognosis due to the inhibition of apoptosis, increased population of stem cells, and induction of angiogenesis also suggested that inactivation of HIF-1 alpha in tumor-infiltrated tissues could halt tumor progression and improve prognosis. Materials and methods: The study included 76 thymus glands removed from patients who underwent an operation due to CHD. Of these cases, 38 had cyanotic CHD, and constituted the hypoxic group. The remaining 38 patients had acyanotic CHD, and constituted the non-hypoxic group. IHC procedures were performed for HIF-1 alpha, FoxP3, CD44, Bcl-2, and CD34. Results: There were statistically significant differences between the hypoxic and non-hypoxic groups only in terms of medullary enlargement toward the cortex and effacement of the corticomedullary junction. In the immunohistochemical examination for five markers, staining intensity and staining rates increased with decreasing oxygen saturation. Conclusion: It can be concluded that the activation of HIF-1 alpha promotes tumor progression and impair prognosis due to the inhibition of apoptosis, increased population of stem cells, and induction of angiogenesis. PMID:26339370

  7. Investigation of cell morphology by the TRUImagE digital holographic microscopy system

    NASA Astrophysics Data System (ADS)

    Chee, Oi Choo; Qu, Weijuan; Chai, Kim Kheong; Asundi, Anand

    2012-06-01

    We report the development of the Three-dimensional Real-time Uninvasive Imaging and Evaluation (TRUImagE) system based on digital holographic microscopy to study the morphological changes in cells undergoing photodynamic therapyinduced cell death. The optical system, based on the Michelson interferometer and configured in transmission mode, and the sample holder incorporating a stage incubator have been developed for monitoring various tumorigenic cell samples without the use of markers. Off-axis digital holograms were recorded with a CCD sensor and numerically reconstructed to provide quantitative phase imaging and 3D morphology of the cells in real time. The system was used to continuously monitor and study, at different time points, the changes in cells after incubation with the photosensitizer followed by activation by the appropriate light dose. Results obtained from the TRUImagE system and biochemical assays will be given.

  8. Morphological, pharmacokinetic, and hematological studies of lead-exposed pigeons

    SciTech Connect

    Anders, E.; Dietz, D.D.; Bagnell, C.R. Jr.; Gaynor, J.; Krigman, M.R.; Ross, D.W.; Leander, J.D.; Mushak, P.

    1982-08-01

    Adult white Carneaux pigeons were orally dosed with inorganic lead (6.25 mg Pb/kg/day, gastric intubation) for up to 64 weeks and the following studies were carried out: (1) the subcellular distribution of lead in erythrocytes; (2) the changes in tissue lead levels with time; (3) morphological assessment of tissue responses to lead; and (4) hematological effects of lead, the major systemic evidence of toxicity. In the early stage of exposure, there is some lead accumulation in the erythrocyte nucleus relative to its proportion of total cell volume, but such accumulation disappears with time. The kinetic behavior of lead in seven tissues--blood, brain, kidney, liver, femur, sciatic nerve, and crop--was seen to conform to two mathematical methods of lead distribution; brain, kidney, and femur lead increased with dosing time and reached or appeared to approach an upper plateau; lead in blood, liver, sciatic nerve, and crop increased to a maximum, followed by a decline to a lower plateau level. Morphologically, renal tubule cells showed the presence of lead-containing inclusion bodies while CNS mitochondria appeared to have accumulated lead. No evidence of segmental demyelination was seen. Lead exposure induced a marked and rapid hypochromic normocytic anemia in these birds, as well as an elevation in erythrocyte porphyrin. No disturbance in mechanical fragility or osmotic resistance was noted.

  9. Morphological cladistic study of coregonine fishes

    USGS Publications Warehouse

    Smith, G.R.; Todd, T.N.

    1992-01-01

    A cladistic analysis of 50 characters from 26 taxa of coregonine fishes and two outgroup taxa yields a phylogenetic tree with two major branches, best summarized as two genera - Prosopium and Coregonus. Presence of teeth on the palatine, long maxillae, and long supra-maxillae are primitive, whereas loss of teeth, short or notched maxillae, and short supermaxillae are derived traits. P. coulteri and C. huntsmani are morphologically and phylogenetically primitive members of their groups. The widespread species, P. cylindraceum and P. williamsoni are morphologically advanced in parallel with the subgenus Coregonus (whitefishes): they share subterminal mouths, short jaws, and reduced teeth. Prosopium gemmifer parallels the ciscoes, subgenus Leucichthys. The whitefishes, C. ussuriensis, C. lavaretus, C. clupeaformis, and C. nasus are a monophyletic group, the subgenus Coregonus. The subgenus Leucichthys is a diverse, relatively plesiomorphic assemblage, widespread in the Holarctic region. This assemblage includes the inconnu, Stenodus.

  10. Chronic progressive nephropathy: functional, morphological, and morphometrical studies.

    PubMed

    Fiori, Mariana C; Ossani, Georgina P; Lago, Nstor R; Amorena, Carlos; Monserrat, Alberto J

    2010-01-01

    Some aspects of the functional, morphological, and morphometrical characteristics of chronic progressive nephropathy occurring in 18- to 26-month-old male rats and in 3-month-old control rats were studied. Rats with chronic progressive nephropathy were proteinuric and showed a slight increase in serum creatinine and no changes in blood pressure. The morphological changes were studied by light microscopy, high-resolution light microscopy, and electron microscopy. They showed focal and segmental or global glomerulosclerosis, the three types of atrophic tubules ("classic," "thyroid-like," and "endocrine") described by Nadasdy et al, as well as interstitial fibrosis with mononuclear cell infiltrates. On certain occasions, small vessels showed hyalinosis. Glomerular morphometrical studies showed a biphasic pattern in the glomeruli progressing toward obsolescence. Vascular morphometrical studies showed significant increase in media wall thickness and media cross-sectional area in the 18- to 26-month-old rats. These results support the hypothesis that changes in the vascular system are not of utmost importance in the pathogenesis of chronic progressive nephropathy, and that glomerular sequential changes seem to be of paramount significance in the progression of the disease. PMID:20113276

  11. Functional differences between two morphologically distinct cell subpopulations within a human colorectal carcinoma cell line.

    PubMed

    Solimene, A C; Carneiro, C R; Melati, I; Lopes, J D

    2001-05-01

    The LISP-I human colorectal adenocarcinoma cell line was isolated from a hepatic metastasis at the Ludwig Institute, So Paulo, SP, Brazil. The objective of the present study was to isolate morphologically different subpopulations within the LISP-I cell line, and characterize some of their behavioral aspects such as adhesion to and migration towards extracellular matrix components, expression of intercellular adhesion molecules and tumorigenicity in vitro. Once isolated, the subpopulations were submitted to adhesion and migration assays on laminin and fibronectin (crucial proteins to invasion and metastasis), as well as to anchorage-independent growth. Two morphologically different subpopulations were isolated: LISP-A10 and LISP-E11. LISP-A10 presents a differentiated epithelial pattern, and LISP-E11 is fibroblastoid, suggesting a poorly differentiated pattern. LISP-A10 expressed the two intercellular adhesion molecules tested, carcinoembryonic antigen (CEA) and desmoglein, while LISP-E11 expressed only low amounts of CEA. On the other hand, adhesion to laminin and fibronectin as well as migration towards these extracellular matrix proteins were higher in LISP-E11, as expected from its poorly differentiated phenotype. Both subpopulations showed anchorage-independent growth on a semi-solid substrate. These results raise the possibility that the heterogeneity found in the LISP-I cell line, which might have contributed to its ability to metastasize, was due to at least two different subpopulations herein identified. PMID:11323753

  12. Morphological Awareness and Chinese Children's Literacy Development: An Intervention Study

    ERIC Educational Resources Information Center

    Wu, Xiaoying; Anderson, Richard C.; Li, Wenling; Wu, Xinchun; Li, Hong; Zhang, Jie; Zheng, Qiu; Zhu, Jin; Shu, Hua; Jiang, Wei; Chen, Xi; Wang, Qiuying; Yin, Li; He, Yeqin; Packard, Jerome; Gaffney, Janet S.

    2009-01-01

    The purpose of this study was to investigate the relationship between morphological awareness and Chinese children's literacy development. Of the 169 children from elementary schools in Beijing, China, who participated in the study, about half received enhanced instruction on the morphology of characters and words in the first and second grade. At

  13. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    NASA Technical Reports Server (NTRS)

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  14. An Unbiased Cell MorphologyBased Screen for New, Biologically Active Small Molecules

    PubMed Central

    2005-01-01

    We have implemented an unbiased cell morphologybased screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM) automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinaseinhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP) of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1), a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates. PMID:15799708

  15. Diabetic neuropathy: electrophysiological and morphological study of peripheral nerve degeneration and regeneration in transgenic mice that express IFNbeta in beta cells.

    PubMed

    Serafín, Anna; Molín, Jessica; Márquez, Merce; Blasco, Ester; Vidal, Enric; Foradada, Laia; Añor, Sonia; Rabanal, Rosa M; Fondevila, Dolors; Bosch, Fàtima; Pumarola, Martí

    2010-05-01

    Diabetic neuropathy is one of the most frequent complications in diabetes but there are no treatments beyond glucose control, due in part to the lack of an appropriate animal model to assess an effective therapy. This study was undertaken to characterize the degenerative and regenerative responses of peripheral nerves after induced sciatic nerve damage in transgenic rat insulin I promoter / human interferon beta (RIP/IFNbeta) mice made diabetic with a low dose of streptozotocin (STZ) as an animal model of diabetic complications. In vivo, histological and immunohistological studies of cutaneous and sciatic nerves were performed after left sciatic crush. Functional tests, cutaneous innervation, and sciatic nerve evaluation showed pronounced neurological reduction in all groups 2 weeks after crush. All animals showed a gradual recovery but this was markedly slower in diabetic animals in comparison with normoglycemic animals. The delay in regeneration in diabetic RIP/IFNbeta mice resulted in an increase in active Schwann cells and regenerating neurites 8 weeks after surgery. These findings indicate that diabetic-RIP/IFNbeta animals mimic human diabetic neuropathy. Moreover, when these animals are submitted to nerve crush they have substantial deficits in nerve regrowth, similar to that observed in diabetic patients. When wildtype animals were treated with the same dose of STZ, no differences were observed with respect to nontreated animals, indicating that low doses of STZ and the transgene are not implicated in development of the degenerative and regenerative events observed in our study. All these findings indicate that RIP/IFNbeta transgenic mice are a good model for diabetic neuropathy. PMID:19918773

  16. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  17. Effects of xenobiotics on fish tissues: morphological studies

    SciTech Connect

    Hawkes, J.W.

    1980-12-01

    Current applications of light and electron microscopy to investigations of changes in various tissues from fish exposed to xenobiotics have been reviewed. Emphasis has been placed on two types of contaminants, petroleum hydrocarbons and chlorobiphenyls, as examples of important xenobiotics found in the marine environment. Although the data are fragmentary because of the small number of studies, they clearly contribute new and valuable information to an understanding of the impact of these contaminants on the olfactory organ, liver, lens, and intestine from several species of fish. The morphological aspects of damage to the olfactory organs of fish exposed to petroleum hydrocarbons included hyperplasia and attenuation of the chemosensory cilia. In the liver of fish exposed to chlorobiphenyls, one of the most evident cellular anomalies was whorls of smooth endoplasmic reticulum. The rough endoplasmic reticulum appeared proliferated and its cisternae were dilated. Changes in the amount of lipid stored in the hepatocytes have been observed in fish exposed to both petroleum hydrocarbons and chlorobiphenyls. Some hydrocarbons affected eye tissues. Structural alterations that occurred during hydration of lens fiber cells and cataract formation were elucidated. A synopsis of the morphological changes in the intestine of fish exposed to petroleum hydrocarbons alone, chlorobiphenyls alone, and the combined contaminants is presented. All three groups of contaminant-exposed fish have subcellular inclusions that are distinctly abnormal. Recommendations for future studies include the need for further characterization of the range of normal tissue structure, comparative studies of additional species, and multiple contaminant exposures.

  18. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization

    PubMed Central

    Touil, Yasmine S.; Fellous, Arlette; Scherman, Daniel; Chabot, Guy G.

    2009-01-01

    Flavonoids are common components of the human diet and appear to be of interest in cancer prevention or therapy, but their structure-activity relationships (SAR) remain poorly defined. In this study, were compared 24 flavonoids for their cytotoxicity on cancer cells (B16 and Lewis lung), and their morphological effect on endothelial cells (EC) that could predict antiangiogenic activity. Ten flavonoids presented inhibitory concentrations for 50% of cancer cells (IC50, 48 h) below 50 ?M: rhamnetin, 3?,4?-dihydroxyflavone, luteolin, 3-hydroxyflavone, acacetin, apigenin, quercetin, baicalein, fisetin, and galangin. Important SAR for cytotoxicity included the C2-C3 double bond and 3?,4?-dihydroxylation. Concerning the morphological effects on EC, only fisetin, quercetin, kaempferol, apigenin, and morin could induce the formation of cell extensions and filopodias at non cytotoxic concentrations. The SAR for morphologic activity differed from cytotoxicity and involved hydroxylation at C-7 and C-4?. Fisetin, the most active agent, presented cell morphology that was distinct compared to colchicine, combretastatin A-4, docetaxel, and cytochalasin D. Resistance to cold depolymerization and a 2.4-fold increase in acetylated ?-tubulin demonstrated that fisetin was a microtubule stabilizer. In conclusion, this study disclosed several SAR that could guide the choice or the rational synthesis of improved flavonoids for cancer prevention or therapy. PMID:19373604

  19. Experimental Study of the Morphology and Dynamics of Gas-Laden Layers Under the Anodes in an Air-Water Model of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Vkony, Klra; Kiss, Lszl I.

    2012-10-01

    The bubble layer formed under an anode and the bubble-induced flow play a significant role in the aluminum electrolysis process. The bubbles covering the anode bottom reduce the efficient surface that can carry current. In our experiments, we filmed and studied the bubble layer under the anode in a real-size air-water electrolysis cell model. Three different flow regimes were found depending on the gas generation rate. The covering factor was found to be proportional to the gas generation rate and inversely proportional to the angle of inclination. A correlation between the average height of the entire bubble layer and the position under the anode was determined. From this correlation and the measured contact sizes, the volume of the accumulated gas was calculated. The sweeping effect of large bubbles was observed. Moreover, the small bubbles under the inner edge of the anode were observed to move backward as a result of the escape of huge gas pockets, which means large momentum transport occurs in the bath.

  20. Evaluation of the effects of Cimicifugae Rhizoma on the morphology and viability of mesenchymal stem cells

    PubMed Central

    JEONG, SU-HYEON; LEE, JI-EUN; KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2015-01-01

    Cimicifugae Rhizoma is a traditional herbal medicine used to treat various diseases in Korea, China and Japan. Cimicifugae Rhizoma is primarily derived from Cimicifuga heracleifolia Komarov or Cimicifuga foetida Linnaeus. Cimicifugae Rhizoma has been used as an anti-inflammatory, analgesic and antipyretic remedy. The present study was performed to evaluate the extracts of Cimicifugae Rhizoma on the morphology and viability of human stem cells derived from gingiva. Stem cells derived from gingiva were grown in the presence of Cimicifugae Rhizoma at final concentrations that ranged from 0.001 to 1,000 g/ml. The morphology of the cells was viewed under an inverted microscope and the analysis of cell proliferation was performed using a Cell Counting kit-8 (CCK-8) assay on days 1, 3, 5 and 7. Under an optical microscope, the control cells exhibited a spindle-shaped, fibroblast-like morphology. The shapes of the cells in the groups treated with 0.001, 0.01, 0.1, 1 and 10 g/ml Cimicifugae Rhizoma were similar to the shapes in the control group. Significant alterations in morphology were noted in the 100 and 1,000 g/ml groups when compared with the control group. The cells in the 100 and 1,000 g/ml groups were rounder, and fewer cells were present. The cultures that were grown in the presence of Cimicifugae Rhizoma at a concentration of 0.001 g/ml on day 1 had an increased CCK-8 value. The cultures grown in the presence of Cimicifugae Rhizoma at a concentration of 10 g/ml on day 7 had a reduced CCK-8 value. Within the limits of this study, Cimicifugae Rhizoma influenced the viability of stem cells derived from the gingiva, and its direct application onto oral tissues may have adverse effects at high concentrations. The concentration and application time of Cimicifugae Rhizoma should be meticulously controlled to obtain optimal results. PMID:26622366

  1. Experimental Modeling of Proliferative Vitreoretinopathy. An Experimental Morphological Study.

    PubMed

    Khoroshilova-Maslova, I P; Leparskaya, N L; Nabieva, M M; Andreeva, L D

    2015-05-01

    A model of proliferative vitreoretinopathy induced by simultaneous intravitreal injection of recombinant IL-1β and platelet concentrate is created and its main morphological manifestations are studied on Chinchilla rabbits. The model reflects pathogenesis of proliferative vitreoretinopathy: epiretinal membrane with the formation of retinal plication, traction detachment of the retina; moderate inflammatory reaction in the uveal tract, in the optic nerve infundibulum, in the vitreous body; intact structural elements of the retina, dissociation of the retinal pigmented epithelium cells with their subsequent migration. The model is adequate to the clinical picture of proliferative vitreoretinopathy in humans, which recommends it for experimental studies of the efficiency of drug therapy and prevention of this disease. PMID:26033599

  2. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends.

    PubMed

    Motealleh, Behrooz; Zahedi, Payam; Rezaeian, Iraj; Moghimi, Morvarid; Abdolghaffari, Amir Hossein; Zarandi, Mohammad Amin

    2014-07-01

    For the first time, it has been tried to achieve optimum conditions for electrospun poly(ε-caprolactone)/polystyrene (PCL/PS) nanofibrous samples as active wound dressings containing chamomile via D-optimal design approach. In this work, systematic in vitro and in vivo studies were carried out by drug release rate, antibacterial and antifungal evaluations, cell culture, and rat wound model along with histology observation. The optimized samples were prepared under the following electrospinning conditions: PCL/PS ratio (65/35), PCL concentration 9%(w/v), PS concentration 14%(w/v), distance between the syringe needle tip and the collector 15.5 cm, applied voltage 18 kV, and solution flow rate 0.46 mL h(-1) . The FE-SEM micrographs showed electrospun PCL/PS (65/35) nanofibrous sample containing 15% chamomile had a minimum average diameter (∼175 nm) compared to the neat samples (∼268 nm). The drug released resulted in a gradual and high amount of chamomile from the optimized PCL/PS nanofibrous sample (∼70%) in respect to PCL and PS nanofibers after 48 h. This claim was also confirmed by antibacterial and antifungal evaluations in which an inhibitory zone with a diameter of about 7.6 mm was formed. The rat wound model results also indicated that the samples loaded with 15% chamomile extract were remarkably capable to heal the wounds up to 99 ± 0.5% after 14 days post-treatment periods. The adhesion of mesenchymal stem cells and their viability on the optimized samples were confirmed by MTT analysis. Also, the electrospun nanofibrous mats based on PCL/PS (65/35) showed a high efficiency in the wound closure and healing process compared to the reference sample, PCL/PS nanofibers without chamomile. Finally, the histology analysis revealed that the formation of epithelial tissues, the lack of necrosis and collagen fibers accumulation in the dermis tissues for the above optimized samples. PMID:24259351

  3. Structure-function relationships in rat brainstem subnucleus interpolaris: XII. neonatal deafferentation effects on cell morphology.

    PubMed

    Jacquin, M F; Renehan, W E

    1995-01-01

    In the developing whisker-barrel neuraxis, it is known that pattern formation, receptive fields, axon projections, and even cell survival are under the control of peripheral signals transmitted through the infraorbital nerve. However, afferent influences upon the development of single-cell morphologies have not received thorough study. Intracellular recording, antidromic activation, receptive field mapping, dye injection, and computer-assisted cell reconstruction methods were used to assess the morphology of trigeminal (V) brainstem neurons in adult rats whose infraorbital nerves were transected at birth. Projection and local-circuit neurons in the spinal V subnucleus interpolaris (SpVi; n = 43) and local-circuit neurons in the adjacent subnucleus caudalis (SpVc; n = 11) were compared with similar cell types in normal control rats, as well as with spinal V neurons located outside of the deafferented region in experimental rats. SpVi cells displayed abnormally convergent and discontinuous receptive fields that included greater-than-normal numbers of vibrissae and other receptor organs. However, their morphologies did not differ significantly from normal on any quantitative measure, including soma size, number of proximal dendrites, or dendritic tree area, perimeter, or shape. Moreover, SpVi cells near deafferented brainstem territories did not display dendritic tree polarity toward or away from the deafferented region. In SpVc, laminae I-V cells had responses and morphologies that were indistinguishable from those of controls. Thus, (1) altered receptive fields of neonatally deafferented SpVi neurons are not attributable to changes in their morphology; (2) SpVc cells are resilient following deafferentation; and (3) the development of SpV dendrites and local axon collaterals is controlled by factors other than those directly conveyed by primary afferents. PMID:8834299

  4. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  5. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  6. Variable Cell Morphology Approach for Individual-Based Modeling of Microbial Communities

    PubMed Central

    Storck, Tomas; Picioreanu, Cristian; Virdis, Bernardino; Batstone, DamienJ.

    2014-01-01

    An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures. PMID:24806936

  7. Filopodial morphology correlates to the capture efficiency of primary T-cells on nanohole arrays.

    PubMed

    Kim, Dong-Joo; Kim, Gil-Sung; Seol, Jin-Kyeong; Hyung, Jung-Hwan; Park, No-Won; Lee, Mi-Ri; Lee, Myung Kyu; Fan, Rong; Lee, Sang-Kwon

    2014-06-01

    Nanostructured surfaces emerge as a new class of material for capture and separation of cell populations including primary immune cells and disseminating rare tumor cells, but the underlying mechanism remains elusive. Although it has been speculated that nanoscale topological structures on cell surface are involved in the cell capture process, there are no studies that systematically analyze the relation between cell surface structures and the capture efficiency. Here we report on the first mechanistic study by quantifying the morphological parameters of cell surface nanoprotrusions, including filopodia, lamellipodia, and microvilli in the early stage of cell capture (< 20 min) in correlation to the efficiency of separating primary T lymphocytes. This was conducted by using a set of nanohole arrays (NHAs) with varying hole and pitch sizes. Our results showed that the formation of filopodia (e.g., width of filopodia and the average number of the filopodial filaments per cell) depends on the feature size of the nanostructures and the cell separation efficiency is strongly correlated to the number of filopodial fibers, suggesting a possible role of early stage mechanosensing and cell spreading in determining the efficiency of cell capture. In contrast, the length of filopodial filaments was less significantly correlated to the cell capture efficiency and the nanostructure dimensions of the NHAs. This is the first mechanistic study on nanostructure-based immune cell capture and provides new insights to not only the biology of cell-nanomaterial interaction but also the design of new rare cell capture technologies with improved efficiency and specificity. PMID:24749397

  8. Cell-Substrate Interactions Feedback to Direct Cell Migration along or against Morphological Polarization.

    PubMed

    Kumar, Girish; Ho, Chia-Chi; Co, Carlos C

    2015-01-01

    In response to external stimuli, cells polarize morphologically into teardrop shapes prior to moving in the direction of their blunt leading edge through lamellipodia extension and retraction of the rear tip. This textbook description of cell migration implies that the initial polarization sets the direction of cell migration. Using microfabrication techniques to control cell morphologies and the direction of migration without gradients, we demonstrate that after polarization, lamelipodia extension and attachment can feedback to change and even reverse the initial morphological polarization. Cells do indeed migrate faster in the direction of their morphologically polarization. However, feedback from subsequent lamellipodia extension and attachment can be so powerful as to induce cells to reverse and migrate against their initial polarization, albeit at a slower speed. Constitutively active mutants of RhoA show that RhoA stimulates cell motility when cells are guided either along or against their initial polarization. Cdc42 activation and inhibition, which results in loss of directional motility during chemotaxis, only reduces the speed of migration without altering the directionality of migration on the micropatterns. These results reveal significant differences between substrate directed cell migration and that induced by chemotactic gradients. PMID:26186588

  9. Cell-Substrate Interactions Feedback to Direct Cell Migration along or against Morphological Polarization

    PubMed Central

    Kumar, Girish; Ho, Chia-Chi; Co, Carlos C.

    2015-01-01

    In response to external stimuli, cells polarize morphologically into teardrop shapes prior to moving in the direction of their blunt leading edge through lamellipodia extension and retraction of the rear tip. This textbook description of cell migration implies that the initial polarization sets the direction of cell migration. Using microfabrication techniques to control cell morphologies and the direction of migration without gradients, we demonstrate that after polarization, lamelipodia extension and attachment can feedback to change and even reverse the initial morphological polarization. Cells do indeed migrate faster in the direction of their morphologically polarization. However, feedback from subsequent lamellipodia extension and attachment can be so powerful as to induce cells to reverse and migrate against their initial polarization, albeit at a slower speed. Constitutively active mutants of RhoA show that RhoA stimulates cell motility when cells are guided either along or against their initial polarization. Cdc42 activation and inhibition, which results in loss of directional motility during chemotaxis, only reduces the speed of migration without altering the directionality of migration on the micropatterns. These results reveal significant differences between substrate directed cell migration and that induced by chemotactic gradients. PMID:26186588

  10. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.

  11. Nanostructured surfaces investigated by quantitative morphological studies.

    PubMed

    Perani, Martina; Carapezzi, Stefania; Mutta, Geeta Rani; Cavalcoli, Daniela

    2016-05-01

    The morphology of different surfaces has been investigated by atomic force microscopy and quantitatively analyzed in this paper. Two different tools have been employed to this scope: the analysis of the height-height correlation function and the determination of the mean grain size, which have been combined to obtain a complete characterization of the surfaces. Different materials have been analyzed: SiO x N y , InGaN/GaN quantum wells and Si nanowires, grown with different techniques. Notwithstanding the presence of grain-like structures on all the samples analyzed, they present very diverse surface design, underlying that this procedure can be of general use. Our results show that the quantitative analysis of nanostructured surfaces allows us to obtain interesting information, such as grain clustering, from the comparison of the lateral correlation length and the grain size. PMID:27004458

  12. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  13. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  14. Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina.

    PubMed

    Hellmer, C B; Zhou, Y; Fyk-Kolodziej, B; Hu, Z; Ichinose, T

    2016-02-19

    Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features. PMID:26704635

  15. Determining Drug Efficacy Using Plasmonically Enhanced Imaging of the Morphological Changes of Cells upon Death

    PubMed Central

    2015-01-01

    Recently, we utilized the optical properties of gold nanoparticles (AuNPs) for plasmonically enhanced Rayleigh scattering imaging spectroscopy (PERSIS), a new technique that enabled the direct observation of AuNP localization. In this study, we employ PERSIS by using AuNPs as light-scattering probes to compare the relative efficacy of three chemotherapeutic drugs on human oral squamous carcinoma cells. Although the drugs induced apoptotic cell death through differing mechanisms, morphological changes including cell membrane blebbing and shrinkage, accompanied by an increase in white light scattering, were visually evident. By utilizing the AuNPs to increase the cells inherent Rayleigh scattering, we have obtained the time profile of cell death from the anticancer drugs using a single sample of cells in real time, using inexpensive equipment available in any lab. From this time profile, we calculated cell death enhancement factors to compare the relative efficacies of the different drugs using our technique, which corresponded to those calculated from the commonly used XTT cell viability assay. Although this technique does not impart molecular insights into cell death, the ability to quantitatively correlate cell death to morphological changes suggests the potential use of this technique for the rapid screening of drug analogues to determine the most effective structure against a disease or cell line. PMID:25346800

  16. Changes in surface morphology associated with ageing and carcinogen treatment of Chinese hamster lung cells.

    PubMed Central

    Harrison, C. J.; Connell, J. R.; Allen, T. D.; Ockey, C. H.

    1980-01-01

    The relationship between ageing and transformation has been investigated by a serial study of the changes in cell-surface morphology as normal and carcinogen-treated cells progressed in culture. A progressive increase in the density of cell surface microvilli occurred in association with the adoption of a more rounded profile and concomitant increase in the rate of cell detachment. These changes occurred earlier after carcinogen treatment, which appeared to indicate a carcinogen-induced acceleration of ageing. The alterations have also been described as characteristic of the transformed state. The observations suggest that the expression of in vitro transformation may be the result of continuous selection from a population with genetic instability and variable morphology. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:6775654

  17. Influence of curvature on the morphology of brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 ?m and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  18. Deficiency of cardiolipin synthase causes abnormal mitochondrial function and morphology in germ cells of Caenorhabditis elegans.

    PubMed

    Sakamoto, Taro; Inoue, Takao; Otomo, Yukae; Yokomori, Nagaharu; Ohno, Motoki; Arai, Hiroyuki; Nakagawa, Yasuhito

    2012-02-10

    Cardiolipin (CL) is a major membrane phospholipid specifically localized in mitochondria. At the cellular level, CL has been shown to have a role in mitochondrial energy production, mitochondrial membrane dynamics, and the triggering of apoptosis. However, the in vivo role of CL in multicellular organisms is largely unknown. In this study, by analyzing deletion mutants of a CL synthase gene (crls-1) in Caenorhabditis elegans, we demonstrated that CL depletion selectively caused abnormal mitochondrial function and morphology in germ cells but not in somatic cell types such as muscle cells. crls-1 mutants reached adulthood but were sterile with reduced germ cell proliferation and impaired oogenesis. In the gonad of crls-1 mutants, mitochondrial membrane potential was significantly decreased, and the structure of the mitochondrial cristae was disrupted. Contrary to the abnormalities in the gonad, somatic tissues in crls-1 mutants appeared normal with respect to cell proliferation, mitochondrial function, and mitochondrial morphology. Increased susceptibility to CL depletion in germ cells was also observed in mutants of phosphatidylglycerophosphate synthase, an enzyme responsible for producing phosphatidylglycerol, a precursor phospholipid of CL. We propose that the contribution of CL to mitochondrial function and morphology is different among the cell types in C. elegans. PMID:22174409

  19. Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells.

    PubMed

    Yoshida, Shotaro; Teshima, Tetsuhiko; Kuribayashi-Shigetomi, Kaori; Takeuchi, Shoji

    2016-02-01

    A microfabricated device that enables morphological control and assembly of cultured single neural cells is described. Assembly of morphologically controlled single neural cells allows neuroengineers to design in vitro neural circuits with a single-cell resolution. Compared to conventional cell-patterning techniques, the device allows for the highly precise positioning of neural somas and neurites in a reproducible fashion. PMID:26712104

  20. Intratumoral morphologic and molecular heterogeneity of rhabdoid renal cell carcinoma: challenges for personalized therapy.

    PubMed

    Singh, Rajesh R; Murugan, Paari; Patel, Lalit R; Voicu, Horatiu; Yoo, Suk-Young; Majewski, Tadeusz; Mehrotra, Meenakshi; Wani, Khalida; Tannir, Nizar; Karam, Jose A; Jonasch, Eric; Wood, Christopher G; Creighton, Chad J; Medeiros, L Jeffrey; Broaddus, Russell R; Tamboli, Pheroze; Baggerly, Keith A; Aldape, Kenneth D; Czerniak, Bogdan; Luthra, Rajyalakshmi; Sircar, Kanishka

    2015-09-01

    Rhabdoid histology in clear-cell renal cell carcinoma is associated with a poor prognosis. The prognosis of patients with clear-cell renal cell carcinoma may also be influenced by molecular alterations. The aim of this study was to evaluate the association between histologic features and salient molecular changes in rhabdoid clear-cell renal cell carcinoma. We macrodissected the rhabdoid and clear-cell epithelioid components from 12 cases of rhabdoid clear-cell renal cell carcinoma. We assessed cancer-related mutations from eight cases using a clinical next-generation exome-sequencing platform. The transcriptome of rhabdoid clear-cell renal cell carcinoma (n=8) and non-rhabdoid clear-cell renal cell carcinoma (n=37) was assessed by RNA-seq and gene expression microarray. VHL (63%) showed identical mutations in all regions from the same tumor. BAP1 (38%) and PBRM1 (13%) mutations were identified in the rhabdoid but not in the epithelioid component and were mutually exclusive in 3/3 cases and 1 case, respectively. SETD2 (63%) mutations were discordant between different histologic regions in 2/5 cases, with mutations called only in the epithelioid and rhabdoid components, respectively. The transcriptome of rhabdoid clear-cell renal cell carcinoma was distinct from advanced-stage and high-grade clear-cell renal cell carcinoma. The diverse histologic components of rhabdoid clear-cell renal cell carcinoma, however, showed a similar transcriptomic program, including a similar prognostic gene expression signature. Rhabdoid clear-cell renal cell carcinoma is transcriptomically distinct and shows a high rate of SETD2 and BAP1 mutations and a low rate of PBRM1 mutations. Driver mutations in clear-cell renal cell carcinoma are often discordant across different morphologic regions, whereas the gene expression program is relatively stable. Molecular profiling of clear-cell renal cell carcinoma may improve by assessing for gene expression and sampling tumor foci from different histologic regions. PMID:26111976

  1. Morphology and photoluminescence study of titania nanoparticles.

    PubMed

    Memesa, Mine; Lenz, Sebastian; Emmerling, Sebastian G J; Nett, Sebastian; Perlich, Jan; Mller-Buschbaum, Peter; Gutmann, Jochen S

    2011-06-01

    Titania nanoparticles are prepared by sol-gel chemistry with a poly(ethylene oxide) methyl ether methacrylate-block-poly(dimethylsiloxane)-block-poly(ethylene oxide) methyl ether methacrylate triblock copolymer acting as the templating agent. The sol-gel components-hydrochloric acid, titanium tetraisopropoxide, and triblock copolymer-are varied to investigate their effect on the resulting titania morphology. An increased titania precursor or polymer content yields smaller primary titania structures. Microbeam grazing incidence small-angle X-ray scattering measurements, which are analyzed with a unified fit model, reveal information about the titania structure sizes. These small structures could not be observed via the used microscopy techniques. The interplay among the sol-gel components via our triblock copolymer results in different sized titania nanoparticles with higher packing densities. Smaller sized titania particles, (?13-20nm in diameter) in the range of exciton diffusion length, are formed by 2% by weight polymer and show good crystallinity with less surface defects and high oxygen vacancies. PMID:21765580

  2. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. PMID:11948807

  3. Nuclear nano-morphology markers of histologically normal cells detect the "field effect" of breast cancer.

    PubMed

    Bista, Rajan K; Wang, Pin; Bhargava, Rohit; Uttam, Shikhar; Hartman, Douglas J; Brand, Randall E; Liu, Yang

    2012-08-01

    Accurate detection of breast malignancy from histologically normal cells ("field effect") has significant clinical implications in a broad base of breast cancer management, such as high-risk lesion management, personalized risk assessment, breast tumor recurrence, and tumor margin management. More accurate and clinically applicable tools to detect markers characteristic of breast cancer "field effect" that are able to guide the clinical management are urgently needed. We have recently developed a novel optical microscope, spatial-domain low-coherence quantitative phase microscopy, which extracts the nanoscale structural characteristics of cell nuclei (i.e., nuclear nano-morphology markers), using standard histology slides. In this proof-of-concept study, we present the use of these highly sensitive nuclear nano-morphology markers to identify breast malignancy from histologically normal cells. We investigated the nano-morphology markers from 154 patients with a broad spectrum of breast pathology entities, including normal breast tissue, non-proliferative benign lesions, proliferative lesions (without and with atypia), "malignant-adjacent" normal tissue, and invasive carcinoma. Our results show that the nuclear nano-morphology markers of "malignant-adjacent" normal tissue can detect the presence of invasive breast carcinoma with high accuracy and do not reflect normal aging. Further, we found that a progressive change in nuclear nano-morphology markers that parallel breast cancer risk, suggesting its potential use for risk stratification. These novel nano-morphology markers that detect breast cancerous changes from nanoscale structural characteristics of histologically normal cells could potentially benefit the diagnosis, risk assessment, prognosis, prevention, and treatment of breast cancer. PMID:22706633

  4. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentn, Pilar; Cataln, rsula; Fernndez-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Sol, Rosa; Pallars, Josep; Marsal, Llus F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. PMID:26017716

  5. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    PubMed Central

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays. PMID:25717323

  6. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion

    PubMed Central

    Choi, Siyoung

    2015-01-01

    Previous studies have demonstrated the influence of calcium phosphate (CaP) mineral coating characteristics on cell attachment, proliferation, and differentiation. However, the wide range of mineral properties that can potentially influence cell behavior calls for an efficient platform to screen for the effects of specific mineral properties. To address this need, we have developed an efficient well-plate format to probe for the effects of mineral coating properties on stem cell behavior. Specifically, here we systematically controlled mineral coating morphology by modulating ion concentrations in modified simulated body fluids (mSBF) during mineral nucleation and growth. We found that mineral micro-morphology could be gradually changed from spherulitic, to plate-like, to net-like depending on [Ca2+] and [PO43?] in mSBF solutions, while other mineral properties (Ca/P ratio, crystallinity, dissolution rate) remained constant. Differences in mineral morphology resulted in significant differences in stem cell attachment and expansion in vitro. These findings suggest that an enhanced throughput mineral coating format may be useful to identify mineral coating properties for optimal stem cell attachment and expansion, which may ultimately permit efficient intraoperative seeding of patient derived stem cells. PMID:25663752

  7. Neural Correlates of Morphological Decomposition in a Morphologically Rich Language: An fMRI Study

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Vorobyev, Victor A.; Hugdahl, Kenneth; Tuokkola, Terhi; Laine, Matti

    2006-01-01

    By employing visual lexical decision and functional MRI, we studied the neural correlates of morphological decomposition in a highly inflected language (Finnish) where most inflected noun forms elicit a consistent processing cost during word recognition. This behavioral effect could reflect suffix stripping at the visual word form level and/or

  8. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. PMID:25875951

  9. Bone marrow stromal cell adhesion and morphology on micro- and sub-micropatterned titanium.

    PubMed

    Cipriano, Aaron F; De Howitt, Natalie; Gott, Shannon C; Miller, Christopher; Rao, Masaru P; Liu, Huinan

    2014-04-01

    The objective of this study was to investigate the adhesion and morphology of bone marrow derived stromal cells (BMSCs) on bulk titanium (Ti) substrates with precisely-patterned surfaces consisting of groove-based gratings with groove widths ranging from 50 micro m down to 0.5 micro m (500 nm). Although it is well known that certain surface patterning enhances osteoblast (bone-forming cell) functions, past studies on cell-pattern interactions reported in the literature have heavily relied on surface patterning on materials with limited clinical relevance for orthopedic applications, such as polymeric substrates. The clinical need for improving osseointegration and juxtaposed bone formation around load-bearing Ti implants motivated this in vitro study. BMSCs were selected as model cells due to their important role in bone regeneration. The results showed significantly greater BMSC adhesion density and more favorable cell morphology on sub-micropatterned gratings when compared with larger micropatterned gratings and non-patterned control surfaces after both 24 hr and 72 hr cultures. We observed increasing cellular alignment and elongation with decreasing feature size. We also identified two distinctive cellular morphologies: Type I-Attached and spread cells that elongated along the pattern axes; and Type II-Superficially adhered round cells. Sub-micropatterned gratings demonstrated significantly greater Type I cell density than the non-patterned control, and lower Type II cell density than the larger micropatterned gratings. Collectively, these results suggest potential for rationally designing nano-scale surface topography on Ti implants to improve osseointegration. PMID:24734518

  10. The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration.

    PubMed

    Feng, Chia-hsiang; Cheng, Yu-chen; Chao, Pen-hsiu Grace

    2013-03-01

    Cells reside in a complex microenvironment in situ, with a number of chemical and physical parameters interacting to modulate cell phenotype and activities. To understand cell behavior in three dimensions recent studies have utilized natural or synthetic hydrogel or fibrous materials. Taking cues from the nucleation and growth characteristics of collagen fibrils in shear flow, we generate cell-laden three-dimensional collagen hydrogels with aligned collagen fibrils using a simple microfluidic device driven by hydrostatic flow. Furthermore, by regulating the collagen hydrogel thickness, the effective surface stiffness can be modulated to change the mechanical environment of the cell. Dimensionality, topography, and substrate thickness/stiffness change cell morphology and migration. Interactions amongst these parameters further influence cell behavior. For instance, while cells responded similarly to the change in substrate thickness/stiffness on two-dimensional random gels, dimensionality and fiber alignment both interacted with substrate thickness/stiffness to change cell morphology and motility. This economical, simple to use, and fully biocompatible platform highlights the importance of well-controlled physical parameters in the cellular microenvironment. PMID:23201017

  11. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    PubMed Central

    Shams, Neda; Sadatmansouri, Saeed; Bonakdar, Shahin

    2015-01-01

    Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces. Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP) activity was determined. The t-test was used to compare the two groups. Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05). Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized. PMID:26884776

  12. Identification of morphological differences between avian influenza A viruses grown in chicken and duck cells.

    PubMed

    Al-Mubarak, Firas; Daly, Janet; Christie, Denise; Fountain, Donna; Dunham, Stephen P

    2015-03-01

    Although wild ducks are considered to be the major reservoirs for most influenza A virus subtypes, they are typically resistant to the effects of the infection. In contrast, certain influenza viruses may be highly pathogenic in other avian hosts such as chickens and turkeys, causing severe illness and death. Following in vitro infection of chicken and duck embryo fibroblasts (CEF and DEF) with low pathogenic avian influenza (LPAI) viruses, duck cells die more rapidly and produce fewer infectious virions than chicken cells. In the current study, the morphology of viruses produced from CEF and DEF cells infected with low pathogenic avian H2N3 was examined. Transmission electron microscopy showed that viruses budding from duck cells were elongated, while chicken cells produced mostly spherical virions; similar differences were observed in viral supernatants. Sequencing of the influenza genome of chicken- and duck-derived H2N3 LPAI revealed no differences, implicating host cell determinants as responsible for differences in virus morphology. Both DEF and CEF cells produced filamentous virions of equine H3N8 (where virus morphology is determined by the matrix gene). DEF cells produced filamentous or short filament virions of equine H3N8 and avian H2N3, respectively, even after actin disruption with cytochalasin D. These findings suggest that cellular factors other than actin are responsible for the formation of filamentous virions in DEF cells. The formation of elongated virions in duck cells may account for the reduced number of infectious virions produced and could have implications for virus transmission or maintenance in the reservoir host. PMID:25613009

  13. Morphological Study of Directionally Freeze-Cast Nickel Foams

    NASA Astrophysics Data System (ADS)

    Jo, Hyungyung; Kim, Min Jeong; Choi, Hyelim; Sung, Yung-Eun; Choe, Heeman; Dunand, David C.

    2016-03-01

    Nickel foams, consisting of 51 to 62 pct aligned, elongated pores surrounded by a network of Ni walls, were fabricated by reduction and sintering of directionally cast suspensions of nanometric NiO powders in water. Use of dispersant in the slurry considerably affected the foam morphology and microstructure at both the micro- and macro-scale, most likely by modifying ice solidification into dendrites (creating the aligned, elongated macro-pores) and NiO powder accumulation in the inter-dendritic space (creating the Ni walls with micro-pores). The mean width of the Ni walls, in foams solidified with and without dispersant, was 21 ± 5 and 75 ± 13 µm, respectively. Additionally, the foams with the dispersant showed less dense walls and rougher surfaces than those without the dispersant. Moreover, the fraction of closed pores present in the foam walls with the dispersant was higher than that of the samples without dispersant. We finally verified the potential energy application of the Ni foam produced in this study by carrying out a preliminary single-cell performance test with the Ni foam sample as the gas diffusion layer on the anode side of a polymer electrolyte membrane fuel cell.

  14. MORPHOLOGICAL AND PHYSIOLOGICAL STUDIES OF RAT KIDNEY CORTEX SLICES UNDERGOING ISOSMOTIC SWELLING AND ITS REVERSAL: A POSSIBLE MECHANISM FOR OUABAIN-RESISTANT CONTROL OF CELL VOLUME

    EPA Science Inventory

    Slices of rat kidney cortex were induced to swell by preincubation at 1C in an isotonic Ringer's solution, and their capacity to reverse swelling, by net extrusion of cellular water, was studied during subsequent incubation at 25C. The recovery from swelling was prevented by the ...

  15. Time Dependent Assessment of Morphological Changes: Leukodepleted Packed Red Blood Cells Stored in SAGM

    PubMed Central

    2016-01-01

    Usually packed red blood cells (pRBCs) require specific conditions in storage procedures to ensure the maximum shelf life of up to 42 days in 2–6°C. However, molecular and biochemical consequences can affect the stored blood cells; these changes are collectively labeled as storage lesions. In this study, the effect of prolonged storage was assessed through investigating morphological changes and evaluating oxidative stress. Samples from leukodepleted pRBC in SAGM stored at 4°C for 42 days were withdrawn aseptically on day 0, day 14, day 28, and day 42. Morphological changes were observed using scanning electron microscopy and correlated with osmotic fragility and hematocrit. Oxidative injury was studied through assessing MDA level as a marker for lipid peroxidation. Osmotic fragility test showed that extended storage time caused increase in the osmotic fragility. The hematocrit increased by 6.6% from day 0 to day 42. The last 2 weeks show alteration in the morphology with the appearance of echinocytes and spherocytes. Storage lesions and morphological alterations appeared to affect RBCs during the storage period. Further studies should be performed to develop strategies that will aid in the improvement of stored pRBC quality and efficacy. PMID:26904677

  16. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells

    PubMed Central

    Fujiwara, Nagatoshi; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  17. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells.

    PubMed

    Fujiwara, Nagatoshi; Ohara, Naoya; Ogawa, Midori; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc(2)155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc(2)155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc(2)155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  18. Cell morphology, ultrastructure, and calcification pattern of Oocardium stratum, a peculiar lotic desmid.

    PubMed

    Rott, E; Holzinger, A; Gesierich, D; Kofler, W; Sanders, D

    2010-07-01

    Cell morphology and ultrastructure of the desmid Oocardium stratum and its habitat conditions in two limestone-precipitating spring habitats in the Alps were studied. In spite of specific cell geometry, we found ultrastructural features (nucleus with nucleolus, Golgi apparatus, chloroplast structure, lipid bodies, cell wall texture) closely related to other desmids. The type of the mucilage pore apparatus perforating in high densities extended areas of the cell wall of Oocardium is of the Cosmarium type. Oocardium contrasts to Cosmarium by a peculiar bilateral cell geometry (lateral sphenoid shape) which is combined with a dislocated nucleus. Although the cell features of Oocardium did not differ between the two habitats, different calcification types (rhombohedral calcite versus fascicular-fibrous calcite) and calcification intensities were recorded. The spatial positioning and extension of the Oocardium niches differed considerably between the two springs in spite of high CO(2) oversaturation at both sites. PMID:19455279

  19. Performance of the CellaVision DM96 system for detecting red blood cell morphologic abnormalities

    PubMed Central

    Horn, Christopher L.; Mansoor, Adnan; Wood, Brenda; Nelson, Heather; Higa, Diane; Lee, Lik Hang; Naugler, Christopher

    2015-01-01

    Background: Red blood cell (RBC) analysis is a key feature in the evaluation of hematological disorders. The gold standard light microscopy technique has high sensitivity, but is a relativity time-consuming and labor intensive procedure. This study tested the sensitivity and specificity of gold standard light microscopy manual differential to the CellaVision DM96 (CCS; CellaVision, Lund, Sweden) automated image analysis system, which takes digital images of samples at high magnification and compares these images with an artificial neural network based on a database of cells and preclassified according to RBC morphology. Methods: In this study, 212 abnormal peripheral blood smears within the Calgary Laboratory Services network of hospital laboratories were selected and assessed for 15 different RBC morphologic abnormalities by manual microscopy. The same samples were reassessed as a manual addition from the instrument screen using the CellaVision DM96 system with 8 microscope high power fields (100 objective and a 22 mm ocular). The results of the investigation were then used to calculate the sensitivity and specificity of the CellaVision DM96 system in reference to light microscopy. Results: The sensitivity ranged from a low of 33% (RBC agglutination) to a high of 100% (sickle cells, stomatocytes). The remainder of the RBC abnormalities tested somewhere between these two extremes. The specificity ranged from 84% (schistocytes) to 99.5% (sickle cells, stomatocytes). Conclusions: Our results showed generally high specificities but variable sensitivities for RBC morphologic abnormalities. PMID:25774322

  20. Putative role of border cells in generating spontaneous morphological activity within Klliker's organ.

    PubMed

    Dayaratne, M W Nishani; Vlajkovic, Srdjan M; Lipski, Janusz; Thorne, Peter R

    2015-12-01

    Klliker's organ is a transient epithelial structure, comprising a major part of the organ of Corti during pre-hearing stages of development. The auditory system is spontaneously active during development, which serves to retain and refine neural connections. Klliker's organ is considered a key candidate for generating such spontaneous activity, most likely through purinergic (P2 receptor) signalling and inner hair cell (IHC) activation. Associated with the spontaneous neural activity, ATP released locally by epithelial cells induces rhythmic morphological changes within Klliker's organ, the purpose of which is not understood. These changes are accompanied by a shift in cellular refractive index, allowing optical detection of this activity in real-time. Using this principle, we investigated the origin of spontaneous morphological activity within Klliker's organ. Apical turns of Wistar rat cochleae (P9-11) were dissected, and the purinergic involvement was studied following acute tissue exposure to a P2 receptor agonist (ATP?S) and antagonist (suramin). ATP?S induced a sustained darkening throughout Klliker's organ, reversed by suramin. This effect was most pronounced in the region closest to the inner hair cells, which also displayed the highest frequency of intrinsic morphological events. Additionally, suramin alone induced swelling of this region, suggesting a tight regulation of cell volume by ATP-mediated mechanisms. Histological analysis of cochlear tissues demonstrates the most profound volume changes in the border cell region immediately adjacent to the IHCs. Together, these results underline the role of purinergic signalling in initiating morphological events within Klliker's organ, and suggest a key involvement of border cells surrounding IHCs in regulating this spontaneous activity. This article is part of a Special Issue entitled . PMID:26119178

  1. [Collagenous colitis. Morphologic and immunohistochemical study].

    PubMed

    Genova, G; Arena, N; Guddo, F; Vita, C; Reitano, R; Nagar, C; Tralongo, V

    1993-01-01

    Collagenous colitis is a clinico-pathological entity characterized by chronic diarrhoeas and deposition of collagen beneath the epithelium surface of large bowel. We revised 265 endoscopy biopsy specimens of the large bowel from 198 consecutive patients with "aspecific chronic colitis". Morphometric study showed that were not significant differences among various tracts in the same patients regarding to the thickness of basament membrane. It was more than 11.9 +/- 0.49 mu only in 13 pts (6.6%), while it was 3.96 +/- 1.4 mu in the others. Immunohistochemistry study confirmed the normality of subepithelial basement membrane and the below deposition of the large quantity of collagen IV. PMID:8127630

  2. Primary cutaneous mantle cell lymphoma of the leg with blastoid morphology and aberrant immunophenotype: a diagnostic challenge.

    PubMed

    Cesinaro, Anna Maria; Bettelli, Stefania; Maccio, Livia; Milani, Marina

    2014-02-01

    Mantle cell lymphoma rarely affects the skin and is usually a secondary involvement. The present case illustrates a primary cutaneous mantle cell lymphoma of the leg, with blastoid morphology and aberrant expression of CD10 and bcl-6, which was misinterpreted at the beginning as diffuse large B-cell lymphoma. A larger panel of immunohistochemical markers, including cyclin-D1, and molecular investigation showing the typical translocation (t11;14), pointed toward the correct diagnosis. Cutaneous diffuse B-cell lymphomas with unusual morphology should be interpreted cautiously, and the diagnosis made on the basis of an appropriate panel of antibodies and molecular studies. PMID:23612032

  3. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGESBeta

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; Xue, Qifan; Liu, Feng; Russell, Thomas P.; Huang, Fei; Yip, Hin -Lap; Cao, Yong

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  4. Functional morphology of the gas-gland cells of the air-bladder of Oreochromis alcalicus grahami (teleostei: cichlidae): an ultrastructural study on a fish adapted to a severe, highly alkaline environment.

    PubMed

    Maina, J N

    2000-04-01

    Oreochromis alcalicus grahami is a small cichlid fish that lives in shallow peripheral lagoons of Lake Magadi, Kenya. The internal surface of the air-bladder is highly vascularized, illustrating possible utilization as an accessory respiratory organ. The wall of the bladder consists of five distinct tissue layers. From the outer to the inner surfaces are: a squamous, undifferentiated epithelial cell; a collagen-elastic tissue space; a smooth muscle tissue band; an inner connective tissue space; and columnar gas-gland cells projecting into the lumen. The cell membrane over the perikarya of the gas-gland cells was sporadically broken. The disruptions were ascribed to possible physical damage by discharging gas-bubbles. Juxtaluminally, the gas-gland cells attached across tight junctions. The cells have highly euchromatic nuclei and conspicuously large intracytoplasmic secretory bodies. On the blood capillary facing (basal) aspect, the cell membrane of the gas-gland cells is highly amplified. The cells insert onto a smooth muscle tissue band. The morphological features and the topographical arrangement of the gas-gland cells in O. a. grahami are indicative of an operative exchange of materials between them and the underlying tissue components especially the blood capillaries. For a fish that subsists in hot, highly saline and alkaline water heavily invested by avian predators and where the partial pressure of oxygen diurnally shifts from virtual anoxia to hyperoxia, development of a versatile air-bladder for efficient buoyancy control conforms to the functional demands placed on it by a unique environment. Illustratively, instead of the gas-gland morphology in O. a. grahami resembling that in the freshwater fishes, the group from which the fish has evolved, it compares more closely to that of the marine fish. This similarity suggests amazing parallel evolutionary adaptation to biophysically corresponding aquatic milieus. PMID:10855697

  5. The Eisenmenger malformation: a morphologic study.

    PubMed

    Restivo, Angelo; di Gioia, Cira R T; Anderson, Robert H; Carletti, Raffaella; Gallo, Pietro

    2016-02-01

    We studied 11 autopsied cases of the Eisenmenger malformation, comparing the findings with 11 hearts with intact ventricular septal structures, and nine hearts having perimembranous ventricular septal defects in the absence of aortic overriding. We found variable lengths for the subpulmonary infundibulum in the hearts with Eisenmenger defects. It was well developed in three hearts, of intermediate length in seven, and very short in one of the specimens. The muscular outlet septum was also of variable length compared with the free-standing subpulmonary infundibular sleeve. Except for one, all hearts had fibrous continuity between the aortic and tricuspid valvar leaflets, such that the ventricular septal defect was then perimembranous. In the remaining case, there was a completely subaortic muscular infundibulum, with the ventricular septal defect showing only muscular borders. The medial papillary muscle was absent in the majority of cases, but was well formed in three hearts, all with relatively short muscular outlet septums. We identified mild, intermediate, and severe degrees of rightward rotation of the aortic valve, and these findings correlated with the extent of aortic valvar overriding. In nine of the 11 hearts, the ventriculo-arterial connections were concordant, but there was double-outlet from the right ventricle in the other two specimens. Based on our anatomic and morphometric observations, we conclude that the hearts we have defined as having Eisenmenger defects show marked individual variation in their specific phenotypic anatomy. PMID:25687391

  6. Early Postnatal Respiratory Viral Infection Alters Hippocampal Neurogenesis, Cell Fate, and Neuron Morphology in the Neonatal Piglet

    PubMed Central

    Conrad, Matthew S.; Harasim, Samantha; Rhodes, Justin S.; Van Alstine, William G.; Johnson, Rodney W.

    2014-01-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affect by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development. PMID:25176574

  7. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    PubMed

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development. PMID:25176574

  8. Morphologic Features of ALK-negative Anaplastic Large Cell Lymphomas With DUSP22 Rearrangements.

    PubMed

    King, Rebecca L; Dao, Linda N; McPhail, Ellen D; Jaffe, Elaine S; Said, Jonathan; Swerdlow, Steven H; Sattler, Christopher A; Ketterling, Rhett P; Sidhu, Jagmohan S; Hsi, Eric D; Karikehalli, Shridevi; Jiang, Liuyan; Gibson, Sarah E; Ondrejka, Sarah L; Nicolae, Alina; Macon, William R; Dasari, Surendra; Parrilla Castellar, Edgardo; Feldman, Andrew L

    2016-01-01

    Systemic anaplastic large cell lymphomas (ALCLs) are classified into ALK-positive and ALK-negative types. We recently reported that ALK-negative ALCLs are genetically heterogenous. The largest subset, representing 30% of cases, had rearrangements of the DUSP22 locus. These cases had favorable outcomes similar to ALK-positive ALCL, and superior to other ALK-negative ALCLs. Here, we examined the morphologic features of these cases in more detail. First, we conducted blinded review of hematoxylin and eosin slides of 108 ALCLs from our previous study, scoring cases for the presence of 3 histologic patterns and 5 cell types. Cases then were unblinded and re-reviewed to understand these features further. DUSP22-rearranged ALCLs were more likely than other ALK-negative ALCLs to have so-called doughnut cells (23% vs. 5%; P=0.039), less likely to have pleomorphic cells (23% vs. 49%; P=0.042), and nearly always (95%) had areas with sheet-like growth (common pattern). To examine the reproducibility of these findings, we conducted blinded review of hematoxylin and eosin slides of 46 additional ALK-negative ALCLs using a 0 to 3 scoring system to predict likelihood of DUSP22 rearrangement, the results of which correlated strongly with subsequent findings by fluorescence in situ hybridization (P<0.0001). Although all ALCLs share certain morphologic features, ALCLs with DUSP22 rearrangements show significant differences from other ALK-negative ALCLs, typically showing sheets of hallmark cells with doughnut cells and few large pleomorphic cells. These morphologic findings and our previous outcome data suggest that ALK-positive ALCLs and DUSP22-rearranged ALCLs represent prototypical ALCLs, whereas ALCLs lacking rearrangements of both DUSP22 and ALK require further study. PMID:26379151

  9. Advanced image processing and modeling system for the analysis of cell micrographs in morphology

    NASA Astrophysics Data System (ADS)

    Wei, Qing; Reme, Ch.; Stucki, Peter

    1993-07-01

    Quantitative analysis of cell-level structures is attracting substantial attention in biomedical studies. This paper presents an advanced digital image processing and modelling system for the automatic analysis of cell micrographs in morphology. For reference, photoreceptors of the rat retina are used. The system implements a new index-based quantitative method developed for the evaluation of light induced lesions in retinal Rod Outer Segments (ROS). The automatic determination of indexes greatly simplifies the description of such damages and permits the statistical analysis of morphological data. A three dimensional synthetic model of retinal ROS was built to interactively simulate the damage mechanisms. The methods reported in this paper are implemented on a graphics super-workstation hardware platform that allows the interactive development of algorithms and procedures through quasi-instant visual feedback.

  10. Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration

    SciTech Connect

    Trewyn, B.; Nieweg, J.; Zhao, Y,; Lin, V.

    2007-11-24

    Two MCM-41 type, fluorescein-labeled mesoporous silica nanomaterials (MSNs) consisting of spherical and tube-shaped particles were synthesized and characterized. Both materials have hexagonally arranged mesopores with high surface area (>950 m{sup 2}/g) and a narrow distribution of pore diameters. The cellular uptake efficiency and kinetics of both MSNs were measured in a cancer cell line (CHO) and a noncancerous cell line (fibroblasts) by flow cytometry and fluorescence confocal microscopy. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake was investigated. We envision that our study on the morphology dependent endocytosis of MSNs would lead to future developments of efficient transmembrane nanodevices for intracellular sensing and gene/drug delivery.

  11. Compartmentalization in T-cell signalling: membrane microdomains and polarity orchestrate signalling and morphology.

    PubMed

    Russell, Sarah; Oliaro, Jane

    2006-02-01

    Lymphocyte function is regulated by complex signalling responses to diverse extracellular inputs, and a cell will often receive multiple, conflicting signals at one time. The mechanisms by which a lymphocyte integrates these signals into a single cellular response are not well understood. An important factor in the integration of signals likely involves the regulation of access of signalling molecules to cell surface receptors and of receptor signals to morphological determinants within the cell. Recent studies have led to important advances in our understanding of both the mechanisms by which signals are compartmentalized in T cells and the physiological role played by such compartmentalization. We review progress in the field, with a particular focus on membrane microdomains or lipid rafts and on cell polarity. PMID:16405658

  12. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  13. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation. PMID:27002485

  14. In vitro and in vivo studies of an aqueous extract of Matricaria recutita (German chamomile) on the radiolabeling of blood constituents, on the morphology of red blood cells and on the biodistribution of the radiopharmaceutical sodium pertechnetate

    PubMed Central

    Garcia-Pinto, Angélica B.; Santos-Filho, Sebastião D.; Carvalho, Jorge J.; Pereira, Mário J. S.; Fonseca, Adenilson S.; Bernardo-Filho, Mário

    2013-01-01

    Background: Natural products might alter the labeling of blood constituents with technetium-99m (99mTc) and these results may be correlated with modifications of the shape of the red blood cells (RBC). The biodistribution of radiopharmaceuticals can be also altered. Objective: This investigation aimed to determine biological effects of an aqueous extract of chamomile (CE). Materials and Methods: To study the effect of the CE on the labeling of blood constituents with 99mTc, in vitro and in vivo assays were performed. The effect of the CE on the morphology of RBC was observed under light microscope. The images were acquired, processed, and the perimeter/area ratio of the RBC determined. To analyze the effect of the CE on biodistribution of the sodium pertechnetate (Na99mTcO4) in Wistar rats, these animals were treated or not with a CE. Na99mTcO4 was injected, the rats were sacrificed, the organs were removed, weighted and percentage of radioactivity/gram calculated. Result: In the in vitro experiment, the radioactivity on blood cells compartment and on insoluble fractions of plasma was diminished. The shape and the perimeter/area ratio of the RBC were altered in in vitro assays. An increase of the percentage of radioactivity of Na99mTcO4 was observed in stomach after in vivo treatment. Conclusion: These results could be due to substances of the CE or by the products of the metabolism of this extract in the animal organism. These findings are examples of drug interaction with a radiopharmaceutical, which could lead to misdiagnosis in clinical practice with unexpected consequences. PMID:24143045

  15. Acquisition of L2 English Morphology: A Family Case Study

    ERIC Educational Resources Information Center

    Zhang, Yanyin; Widyastuti, Ima

    2010-01-01

    This study investigates the status of morphology in the L2 English of three members of a family from Indonesia (parents and their 5-year-old daughter) who have lived, studied or worked in Australia for a year. The investigation is contextualized against various learning settings in which the informants have learned English: formal instruction in

  16. Acquisition of L2 English Morphology: A Family Case Study

    ERIC Educational Resources Information Center

    Zhang, Yanyin; Widyastuti, Ima

    2010-01-01

    This study investigates the status of morphology in the L2 English of three members of a family from Indonesia (parents and their 5-year-old daughter) who have lived, studied or worked in Australia for a year. The investigation is contextualized against various learning settings in which the informants have learned English: formal instruction in…

  17. Lithium intercalation studies of petroleum cokes of different morphologies

    NASA Astrophysics Data System (ADS)

    Tran, T. D.; Derwin, D. J.; Zaleski, P.; Song, X.; Kinoshita, K.

    Petroleum cokes with different morphologies are studied in lithium intercalation experiments. Several types of calcined petroleum cokes with varying microstructures and surface morphologies are heat treated at temperatures approaching 2800C. The physical and structural properties are studied by multi-point N 2 gas adsorption analysis, particle size measurements, electron microscopies and X-ray diffraction (XRD) analysis. Changes in the properties of materials during heat treatment are significant. The effects of the coke structures and heat treatment conditions on their electrochemical lithium intercalation behavior will be discussed.

  18. Morphological study of the accommodative apparatus in the monkey eye.

    PubMed

    Hiraoka, Mari; Inoue, Kenichi; Senoo, Haruki; Takada, Masahiko

    2015-03-01

    For more than a century there has been debate concerning the mechanism of accommodation--whether the lens capsule or lens material itself determines the functional relationship between ciliary muscle contractility and lens deformation during refractive adaptation. This morphological study in monkey eyes investigates the composition and distribution of several connective tissue components in the accommodative apparatus relaying muscle force to lens organization. Elastin distributes on the marginal surface of the ciliary process. A zonule is composed of fibrillin produced by epithelial cells of the process. In the progress of extension over the posterior chamber, fibrils unite into strands and possess longitudinal plasticity. By induction of the elastin network, strands extend in a concentric direction covering the equatorial region of the capsule. Upon tethering to the lens, the strand ramifies into fibrils, penetrating deeply close to the epithelial layer of the lens and binding with the collagen of the intercellular spaces. Tight linkage of the zonule with the capsule transmits precise contractility. Inside the lens, the cortical layer's elastic connective tissue network forms widely spaced lamellae of crystalline fibers. In contrast, the central nuclear lamellae are tightly opposed. The accumulation of lamellae is greater in the anterior cortex than in the posterior, yielding a more variable anterior chamber depth in the visual axis. The plasticity of the zonule and connective tissue distribution inside the lens produces an adjustable configuration. Thus, tight linkage between the dynamism of the capsule with interaction of the lenticular flexibility provides a novel understanding of accommodation. PMID:25403484

  19. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  20. Surface Plasmon Resonance Monitoring of Cell Monolayer Integrity: Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling

    PubMed Central

    Cuerrier, Charles M.; Chabot, Vincent; Vigneux, Sylvain; Aimez, Vincent; Escher, Emanuel; Gobeil, Fernand; Charette, Paul G.; Grandbois, Michel

    2010-01-01

    Morphological changes occurring in individual cells largely influence the physiological functions of various cell layers. The control of barrier function of epithelia and endothelia is a prime example of processes highly dependent on cellular morphology and cell layer integrity. Here, we applied the surface plasmon resonance (SPR) technique to the quantification of cellular activity of an epithelial cell monolayer stimulated by angiotensin II. The analysis of the SPR signal shows reproducible concentration-dependent biphasic responses after cell activation with angiotensin II. Phase-contrast and confocal microscopy imaging was performed to link the SPR signal to molecular and global morphological remodeling. The SPR signal was observed to be in relation with the rapid cell contraction and the subsequent cell spreading observed by phase-contrast microscopy. Additionally, the temporal redistribution of actin, observed by confocal microscopy after angiotensin II stimulation, was also found to be consistent with the SPR signal variation. The modulation of signaling pathways involved in actin-myosin driven cell contraction confirms the direct implication of actin structures in the SPR response. Additionally, we show that the intracellular calcium mobilization associated with angiotensin II stimulation did not produce any significant SPR signal variation. Altogether, our results demonstrate that SPR is a rapid label-free method to study cellular activity and molecular mechanisms implicated in the modulation of the integrity of a cell monolayer in relation to cytoskeleton remodeling with associated cell morphological changes. PMID:21052479

  1. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    PubMed

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. PMID:25929521

  2. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  3. A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology.

    PubMed

    Hodneland Nilsson, Linn Iren; Nitschke Pettersen, Ina Katrine; Nikolaisen, Julie; Micklem, David; Avsnes Dale, Hege; Vatne Rsland, Gro; Lorens, James; Tronstad, Karl Johan

    2015-01-01

    Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms. PMID:26596249

  4. Morphological transformation induced by glass fibers in BALB/c-3T3 cells.

    PubMed

    Gao, H G; Whong, W Z; Jones, W G; Wallace, W E; Ong, T

    1995-01-01

    Studies were conducted to determine whether 1) glass fibers can induce morphological transformation in BALB/c-3T3 cells, 2) the transforming activity of glass fibers is related to fiber size, and 3) transformed cells induced by glass fibers possess neoplastic properties. In the transformation assay, BALB/c-3T3 cells were treated with three different types of glass fibers: Manville code 100 (JM-100, Manville Corp., Denver, CO), Owens-Corning AAA-10 (AAA-10, Owens-Corning Corp., Toledo, OH), and Owens-Corning general building insulation (ISL, Owens-Corning Corp.) fibers. The neoplastic properties were investigated using the soft agar cloning and gene transfection methods. All three different glass fibers were cytotoxic at high concentrations and induced dose-related increases in morphological transformation. The transforming activity was inversely related to fiber size, with AAA-10 showing higher activity than JM-100 and JM-100 showing higher activity than ISL fiber. Transformed cells induced by glass fibers exerted anchorage-independent growth (90%) and DNA transfection-mediated transformation (100%). These results indicate that glass fibers are capable of transforming mammalian (BALB/c-3T3) cells in vitro as a function of their physical properties and that glass fiber-induced transformed cells possess preneoplastic characteristics. PMID:8525469

  5. A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology

    PubMed Central

    Hodneland Nilsson, Linn Iren; Nitschke Pettersen, Ina Katrine; Nikolaisen, Julie; Micklem, David; Avsnes Dale, Hege; Vatne Rsland, Gro; Lorens, James; Tronstad, Karl Johan

    2015-01-01

    Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms. PMID:26596249

  6. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella.

    PubMed

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I-Ping; Camargo, Eddie; Tzen, Jason T C; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-01-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12?h L:12?h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates. PMID:26481560

  7. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I.-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-10-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates.

  8. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    PubMed Central

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-01-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates. PMID:26481560

  9. Morphology and chirality control self-assembly of sickle hemoglobin inside red blood cells

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Lei, Huan; Caswell, Bruce; Karniadakis, George

    2012-02-01

    Sickle cells exhibit abnormal morphology and membrane mechanics in the deoxygenated state due to the polymerization of the interior sickle hemoglobin (HbS). In this study, the dynamics of self-assembly behavior of HbS in solution and corresponding induced cell morphologies have been investigated by dissipative particle dynamics approach. A coarse-grained HbS model, which contains hydrophilic and hydrophobic particles, is constructed to match the structural properties and physical description (including crowding effects) of HbS. The hydrophobic interactions are shown to be necessary with chirality being the main driver for the formation of HbS fibers. In the absence of chain chirality, only the self-assembled small aggregates are observed whereas self-assembled elongated step-like bundle microstructures appear when we consider the chain chirality. Several typical cell morphologies (sickle, granular, elongated shapes), induced by the growth of HbS fibers, are revealed and their deviations from the biconcave shape are quantified by the asphericity and elliptical shape factors.

  10. Growth, cell cycle progression, and morphology of 3T3 cells following fibroin microsphere ingestion.

    PubMed

    Go, Nam Kyung; Lee, Jin Sil; Lee, Joon Ho; Hur, Won

    2015-04-01

    Cellular uptake of microspheres may cause physiological stress and toxicity. In this report, we investigated the effect of cellular uptake of fibroin microspheres on the growth, cell cycle progression, and morphology of 3T3 cells. The microspheres were prepared by physical cross-linking of fibroin molecules without any chemical modification. Fluorescent microspheres are comprised of fluorescein isothiocyanate-dextran core and fibroin shell. More than 90% of cells were determined to be fluorescence-positive following 24-h incubation with fluorescent microspheres (0.17 mg/mL). Microsphere localization in the cytoplasm was demonstrated using confocal and transmission electron microscopy. Cellular uptake of microspheres did not influence cellular viability, but microsphere concentrations above 0.1 mg/mL resulted in decreased cell proliferation. The proliferation inhibition was attributed to G2 /M phase delay in cell cycle progression and S-phase delay at higher microsphere concentrations (0.33 mg/mL). Although flow cytometry light-scattering data raised the possibility of morphological changes, Coulter counter analysis confirmed no significant size differences between cells incubated with and without microspheres. Accordingly, fibroin microspheres can be a potential vehicle for intracytoplasmic delivery of cargos, without affecting cell viability. PMID:25044553

  11. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.

    PubMed

    Zielinski, Rachel; Mihai, Cosmin; Kniss, Douglas; Ghadiali, Samir N

    2013-07-01

    The interactions between adherent cells and their extracellular matrix (ECM) have been shown to play an important role in many biological processes, such as wound healing, morphogenesis, differentiation, and cell migration. Cells attach to the ECM at focal adhesion sites and transmit contractile forces to the substrate via cytoskeletal actin stress fibers. This contraction results in traction stresses within the substrate/ECM. Traction force microscopy (TFM) is an experimental technique used to quantify the contractile forces generated by adherent cells. In TFM, cells are seeded on a flexible substrate and displacements of the substrate caused by cell contraction are tracked and converted to a traction stress field. The magnitude of these traction stresses are normally used as a surrogate measure of internal cell contractile force or contractility. We hypothesize that in addition to contractile force, other biomechanical properties including cell stiffness, adhesion energy density, and cell morphology may affect the traction stresses measured by TFM. In this study, we developed finite element models of the 2D and 3D TFM techniques to investigate how changes in several biomechanical properties alter the traction stresses measured by TFM. We independently varied cell stiffness, cell-ECM adhesion energy density, cell aspect ratio, and contractility and performed a sensitivity analysis to determine which parameters significantly contribute to the measured maximum traction stress and net contractile moment. Results suggest that changes in cell stiffness and adhesion energy density can significantly alter measured tractions, independent of contractility. Based on a sensitivity analysis, we developed a correction factor to account for changes in cell stiffness and adhesion and successfully applied this correction factor algorithm to experimental TFM measurements in invasive and noninvasive cancer cells. Therefore, application of these types of corrections to TFM measurements can yield more accurate estimates of cell contractility. PMID:23720059

  12. Planetary geological studies. [MARS crater morphology and ejecta deposit topography

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.

    1981-01-01

    A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.

  13. Equivalency of endothelial cell growth supplement to irradiated feeder cells in carcinogen-induced morphologic transformation of Syrian hamster embryo cells

    SciTech Connect

    Evans, C.H.; DiPaolo, J.A.

    1982-01-01

    Endothelial cell growth supplement (ECGS), an extract of bovine neural tissue with growth-promoting properties for human endothelial and epithelial cells and for mouse BALB/c fibroblast-like cells, can be substituted for feeder cells in a quantitative 7-day Syrian hamster embryo cell colony in vitro model of carcinogenesis. Inclusion of 50 or 100 micrograms ECGS/ml medium throughout the 7-day growth period produced results equal to those obtained with feeder cells. The frequency and morphology of normal fibroblast colonies and carcinogen-induced morphologically transformed cell colony growth in the presence of ECGS were similar to those in the presence of feeder cells. A positive dose-response relationship in transformation by benzo(a)pyrene occurred. The frequency of transformed colonies following UV irradiation and treatment of the cells with the cocarcinogenic tumor promoter 12-O-tetradecanoylphorbol 13-acetate was greatly augmented, and lymphotoxin, a lymphokine with anticarcinogenic activity, reduced transformation. Thus ECGS can substitute for feeder cells in supporting in vitro transformation and eliminates a potential complex source of variability for studies where interaction(s) with feeder cells are a consideration. The mechanics of this model system was simplified, and its versatility for the study of physiologic, carcinogenic, and other pathophysiologic processes was broadened.

  14. Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death.

    PubMed Central

    Kusters, J G; Gerrits, M M; Van Strijp, J A; Vandenbroucke-Grauls, C M

    1997-01-01

    Helicobacter pylori can transform from its normal helical bacillary morphology to a coccoid morphology. Since this coccoid form cannot be cultured in vitro, it has been speculated that it is a dormant form potentially involved in the transmission of H. pylori and in a patient's relapse after antibiotic therapy. In this study we determined the effects of aging, temperature, aerobiosis, starvation, and antibiotics on the morphologic conversion rate and culturability of H. pylori. Aerobiosis and the addition of a bactericidal antibiotic to the culture medium resulted in the highest conversion rate. During the conversion to coccoid forms, the cultures always lost culturability at the stage where 50% of the organisms were still in bacillary form; this result indicated that culturability and coccoid morphology are two separate but related entities. Independent of the conditions used to induce the conversion into coccoids, the morphological conversion was accompanied by several marked antigenic and ultrastructural changes. Also, both the total amounts and the integrity of RNA and DNA were significantly reduced in coccoid forms. With the potential-sensitive probe diOC(5)-3, a clear loss of membrane potential in coccoid forms was observed. Inhibition of protein or RNA synthesis by the addition of bacteriostatic antibiotics did not prevent the conversion to coccoid forms but resulted in an increased conversion rate. Hence, we conclude that conversion of H. pylori from the bacillary to the coccoid form is a passive process that does not require protein synthesis. Our data suggest that the coccoid form of H. pylori is the morphologic manifestation of bacterial cell death. PMID:9284136

  15. Morphological Priming by Itself: A Study of Portuguese Conjugations

    ERIC Educational Resources Information Center

    Verissimo, Joao; Clahsen, Harald

    2009-01-01

    Does the language processing system make use of abstract grammatical categories and representations that are not directly visible from the surface form of a linguistic expression? This study examines stem-formation processes and conjugation classes, a case of "pure" morphology that provides insight into the role of grammatical structure in…

  16. Morphologic and cytochemical characteristics of green turtle (Chelonia mydas) blood cells

    USGS Publications Warehouse

    Work, T.M.; Raskin, R.E.; Balazs, G.H.; Whittaker, S.D.

    1998-01-01

    Objective - To identify and characterize blood cells from free-ranging Hawaiian green turtles, Chelonia mydas. Sample Population - 26 green turtles from Puako on the island of Hawaii and Kaneohe Bay on the island of Oahu. Procedure - Blood was examined, using light and electron microscopy and cytochemical stains that included benzidine peroxidase, chloroacetate esterase, alpha naphthyl butyrate esterase, acid phosphatase, Sudan black B, periodic acid-Schiff, and toluidine blue. Results - 6 types of WBC were identified: lymphocytes, monocytes, thrombocytes, heterophils, basophils, and eosinophils (small and large). Morphologic characteristics of mononuclear cells and most granulocytes were similar to those of cells from other reptiles except that green turtles have both large and small eosinophils. Conclusions - Our classification of green turtle blood cells clarifies imporoper nomenclature reported previously and provides a reference for future hematologic studies in this species.

  17. Plasma cell myeloma with unusual morphology--a series of 6 cases.

    PubMed

    Gupta, Ruchi; Hussain, Naushad; Rahman, Khaliqur; Nityanand, Soniya

    2014-08-01

    Morphological variants of plasma cells have been described in cases of Plasma cell neoplasm. Presence of these atypical forms poses difficulty in morphological diagnosis and demands the use of ancillary techniques to ascertain the nature of these atypical cells. We hereby report a series of 6 such cases where the bone marrow examination showed plasma cells with atypical morphology, leading to varied differential diagnosis; however immunophenotyping by flow cytometry in adjunct to serum electrophoresis, immunofixation and free light chain assays confirmed the diagnosis. PMID:24628605

  18. Morphological cell transformation of Syrian hamster embryo (SHE) cells by the cyanotoxin, cylindrospermopsin.

    PubMed

    Maire, M-A; Bazin, E; Fessard, V; Rast, C; Humpage, A R; Vasseur, P

    2010-06-15

    Cylindrospermopsin (CYN) is a cyanotoxin which has been implicated in human intoxication and animal mortality. Genotoxic activity of this hepatotoxin is known but its carcinogenic activity remains to be elucidated. In this work, CYN was assessed for its cell-transforming activity using the Syrian hamster embryo (SHE) cell transformation assay. This in vitro assay is used to evaluate the carcinogenic potential of chemical, physical and biological agents in SHE cells, which are primary, normal, diploid, genetically stable and capable of metabolic activation. We demonstrated that CYN induced a significant increase in morphological cell transformation in SHE cells following a 7-day continuous treatment in the range of non-cytotoxic concentrations 1 x 10(-7)-1 x 10(-2) ng/mL. PMID:20144639

  19. Morphological Events during the Cell Cycle of Leishmania major ▿ ‖

    PubMed Central

    Ambit, Audrey; Woods, Kerry L.; Cull, Benjamin; Coombs, Graham H.; Mottram, Jeremy C.

    2011-01-01

    The morphological events involved in the Leishmania major promastigote cell cycle have been investigated in order to provide a detailed description of the chronological processes by which the parasite replicates its set of single-copy organelles and generates a daughter cell. Immunofluorescence labeling of β-tubulin was used to follow the dynamics of the subcellular cytoskeleton and to monitor the division of the nucleus via visualization of the mitotic spindle, while RAB11 was found to be a useful marker to track flagellar pocket division and to follow mitochondrial DNA (kinetoplast) segregation. Classification and quantification of these morphological events were used to determine the durations of phases of the cell cycle. Our results demonstrate that in L. major promastigotes, the extrusion of the daughter flagellum precedes the onset of mitosis, which in turn ends after kinetoplast segregation, and that significant remodelling of cell shape accompanies mitosis and cytokinesis. These findings contribute to a more complete foundation for future studies of cell cycle control in Leishmania. PMID:21926331

  20. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets.

    PubMed

    Shamova, Ekaterina V; Gorudko, Irina V; Drozd, Elizaveta S; Chizhik, Sergey A; Martinovich, Grigory G; Cherenkevich, Sergey N; Timoshenko, Alexander V

    2011-02-01

    Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05?M to 6mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts. PMID:21079947

  1. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  2. Induction of Neuronal Morphology in the 661W Cone Photoreceptor Cell Line with Staurosporine

    PubMed Central

    Thompson, Alex F.; Crowe, Megan E.; Lieven, Christopher J.; Levin, Leonard A.

    2015-01-01

    Purpose RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype. Methods 661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology. Results Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested. Conclusions 661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology. PMID:26684837

  3. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts

    PubMed Central

    Pan, Qian Sheng; Fang, Zhi Ping; Huang, Feng Jie

    2000-01-01

    AIM: To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species. METHODS: Two kinds of immunocytochemical (ICC) techniques of the streptavidin biotin-peroxidase complex (SABC) and streptavidin-peroxidase (S-P) method were used. The identification, localization and morphology of APUD endocrine cells scattered in the mucosa of digestive tract, intermuscular nerve plexus and glandular body of northern snakehead (Channa argus), ricefield eel (Monopterus albus), yellow catfish (Pelteobagrus ful vidraco), mandarinfish (Siniperca chuatsi), largemouth bass (Micropterus salmoides), oriental sheatfish (Silurus asotus), freshwater pomfret (Colossoma brachypomum) and nile tilapia (Tilapia nilotica) were investigated with 8 kinds of antisera. RESULTS: The positive reaction of 5-hydroxytryptamine (5-HT) immunoreactive endocrine (IRE) cells was found in the digestive tract and glandular body of 8 fish species in different degree. Only a few gastrin (GAS)-IRE cells were seen in C. argus, M. albus and P. fulvidraco. Glucagon (GLU)-IRE cells were not found in the digestive tract and glandular body but existed in pancreatic island of most fish species. The positive reaction of growth hormone (GH)-IRE cells was found only in pancreatic island of S. Chuatsi and S. Asotus, no positive reaction in the other 6 fish species. Somatostatin (SOM), calcitonin (CAL), neurofilament (NF) and insulin (INS)-IRE cells in the stomach, intestine and pancreas of 8 kinds of fish were different in distribution and types. The distribution of all 8 APUD cells was the most in gastrointestinal epithelium mucosa and then in digestive glands. The positive reaction of SOM- and 5-HT-IRE cells was found in intermuscular nerve plexus of intestine of P. fulvidraco and S.chuatsi. Only GH-IRE cells were densely scattered in the pancreatic islands of S. chuatsi and S. asotus, and odd distribution in the pancreas of S. asotus. SOM-IRE cells were distributed in the pancreatic islands of S. asotus, C. Brachypomum and T. nilotica. There were INS-IRE cells in the pancreatic islands of S. chuatsi and S. asolus. Eight kinds of APUD cells had longer cell body and cytoplasmic process when they were located in the gastrointestinal epithelium, and had shorter cell body and cytoplasmic process in the gastric gland, and irregular shape in the esophagus and pancreatic island. CONCLUSION: Eight kinds of IRE cells were identified in the GEP system of stomach-containing teleosts. These endocrine cells were scattered in gastrointestinal mucosa, intermuscular nerve plexus, gland body, pancreatic gland and islands under APUD system. CAL- and GH-IRE cells in the pancreatic islands of fishes showed functional diversity for these two hormones. Their morphological feature provides evidence of endocrine-paracrine and endocrine-exocrine acting mode. This research can morphologically prove that the GEP endocrine system of fish (the lowest vertebrate) is almost the same as of mammal and human. PMID:11819706

  4. Growth hormone-induced alteration of morphology and tubulin expression in 3T3 preadipose cells.

    PubMed

    Guller, S; Corin, R E; Wu, K Y; Sonenberg, M

    1989-09-15

    Effects of growth hormone on morphology and cytoskeletal protein expression were examined in 3T3-F442A preadipocytes in serum-free medium. Between 2 and 5 days of culture 2 nM methionyl human growth hormone converted 3T3-F442A cells from a flat fibroblastic morphology to a rounded form with numerous membrane convolutions. Growth hormone treated cultures manifested a 30-40% reduction in cell volume. Growth hormone induced changes in morphology and volume preceded and were independent of lipogenesis. In cells treated with growth hormone, expression of alpha and beta-tubulin as determined by Western blotting was found to increase approximately 50% within 72 h as compared to untreated cells. After 7 days, tubulin levels in growth hormone treated cells were approximately 40% of control levels. This indicated that morphological changes and alteration of tubulin expression were signatures of growth hormone action on 3T3-F442A cells. PMID:2783130

  5. The anterior talofibular ligament: A detailed morphological study.

    PubMed

    Khawaji, Bader; Soames, Roger

    2015-09-01

    The anterior talofibular ligament (ATFL) is commonly injured and may result in ankle instability. Good results from ATFL reconstruction have been reported; however complications and movement restrictions have also been observed. ATFL differences have been reported; however details of its precise bony attachment are lacking. This study provides a detailed morphology of the ATFL with respect to surgical and clinical applications. ATFL morphology, number of bands and the exact insertion points were studied in 50 formaldehyde embalmed feet. ATFL length was measured in different joint positions to assess its functional role: ATFL length varied from 18.81 mm in dorsiflexion to 21.06 mm in plantarflexion: mid-length width and thickness were 4.97 mm and 1.01 mm respectively. The bony attachment lengths were also measured: mean proximal and distal bony attachment lengths were 4.68 mm and 3.1mm respectively, while 13.04 mm had no bony attachment. One (22.9%), two (56.3%) and three (20.8%) band morphologies were observed originating 10.37 mm anterosuperior to the lateral malleolar tip and inserting 3.92 mm anterior to the anterior lateral malleolar line (ALML). Detailed morphology of the ATFL may help in restoring injured ATFL function by appropriate ligament reconstruction, as well as aid the understanding of the mechanism of ligament injury. PMID:26205996

  6. Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived from Hodgkin's disease. Evidence for a B-cell origin of Sternberg-Reed cells.

    PubMed

    Poppema, S; De Jong, B; Atmosoerodjo, J; Idenburg, V; Visser, L; De Ley, L

    1985-02-15

    Cell lines derived from Hodgkin's disease may provide a clue to the nature of Sternberg-Reed cells. In the current study, the establishment of an Epstein-Barr-virus-negative lymphoblastoid cell line, derived from the pleural fluid of a patient with the nodular sclerosis type of Hodgkin's disease, is described. The morphologic and immunologic cell marker findings indicate that this cell line is derived from Sternberg-Reed cells. The immunologic findings and a chromosomal analysis are in agreement with a B-lymphocyte origin of these cultured cells. Extrapolation of the results to Hodgkin's disease in vivo would indicate that Hodgkin's disease, like most non-Hodgkin's lymphomas, is the result of B-cell proliferation. PMID:3881158

  7. Regulatory roles of grass carp EpCAM in cell morphology, proliferation and migration.

    PubMed

    Wang, Xinyan; Guo, Yafei; Wei, He; Wang, Ke; Zhang, Anying; Zhou, Hong

    2016-04-01

    Epithelial cell adhesion molecule (EpCAM) is a Ca(2+)-independent and relatively weak adhesion molecule, which has been extensively investigated in mammalian models. However, the functional roles of its fish homolog are largely unknown. In the present study, we explored the biological properties of grass carp EpCAM (gcEpCAM) in a fish kidney cell line (CIK) via overexpression of gcEpCAM or gcEpCAM intracellular domain (gcEpICD) deletion mutant. Results showed that gcEpCAM overexpression significantly changed the cell morphology, and the proliferation of the cells transfected with gcEpCAM was significantly decreased when compared to the control cells, which is unexpectedly opposite to the increasing effects induced by its mammalian homolog. Moreover, overexpression of gcEpICD deletion mutant had no effect on cell proliferation, indicating gcEpICD's involvement in the cell growth control that is concerted with its role in mammalian model. Additionally, gcEpCAM overexpression increased cell migration which is at least partially consistent with the findings in mammalian cells in which EpCAM expression both positively and negatively affects cell migration. It is worth noting that gcEpICD was not essential to the stimulatory effect of gcEpCAM on cell migration, but overexpression of human EpICD in tumor cells increases cell migration, suggesting the functional discrepancy of EpICD in fish and mammals. In conclusion, we elucidated the cellular functionality of EpCAM in fish cells which will be of benefit to defining the functions of fish EpCAM and also provide rewarding information on the functional evolution of EpCAM in vertebrates. PMID:26497717

  8. ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3H10T1/2CL8 CELLS

    EPA Science Inventory

    ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3HIOT1/2 CL8 CELLS.

    Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interacti...

  9. UV-C pre-adaptation of Salmonella: effect on cell morphology and membrane fatty acids composition.

    PubMed

    Maâlej, Lobna; Chatti, Abdelwaheb; Khefacha, Sana; Salma, Kloula; Gottardi, David; Vannini, Lucia; Guerzoni, Maria Elizabetta; Hassen, Abdennaceur

    2014-03-01

    The present study was carried out to evaluate the effects of ultraviolet radiations (UV-C) on the fatty acids composition of three serovars of Salmonella: S. typhimurium, S. hadar and S. zanzibar. Results obtained show that UV-C treatment increases significantly (P ≤ 0.05) the percentage of cyclic fatty acids. The atomic force microscopy was used to study the morphology and cell surface of irradiated strains. Results show that UV-C rays induce morphological changes and alter the bacterial cell surface (presence of grooves and irregularities). PMID:24092393

  10. Adult Renal Cell Carcinoma: A Review of Established Entities from Morphology to Molecular Genetics.

    PubMed

    Hirsch, Michelle S; Signoretti, Sabina; Dal Cin, Paola

    2015-12-01

    According to the current World Health Organization (WHO), renal cell carcinomas (RCCs) that primarily affect adults are classified into 8 major subtypes. Additional emerging entities in renal neoplasia have also been recently recognized and these are discussed in further detail by Mehra et al (Emerging Entities in Renal Neoplasia, Surgical Pathology Clinics, 2015, Volume 8, Issue 4). In most cases, the diagnosis of a RCC subtype can be based on morphologic criteria, but in some circumstances the use of ancillary studies can aid in the diagnosis. This review discusses the morphologic, genetic, and molecular findings in RCCs previously recognized by the WHO, and provides clues to distinction from each other and some of the newer subtypes of RCC. As prognosis and therapeutic options vary for the different subtypes of RCC, accurate pathologic distinction is critical for patient care. PMID:26612217

  11. Morphological Study of the Accommodative Apparatus in the Monkey Eye

    PubMed Central

    Hiraoka, Mari; Inoue, Kenichi; Senoo, Haruki; Takada, Masahiko

    2015-01-01

    For more than a century there has been debate concerning the mechanism of accommodation—whether the lens capsule or lens material itself determines the functional relationship between ciliary muscle contractility and lens deformation during refractive adaptation. This morphological study in monkey eyes investigates the composition and distribution of several connective tissue components in the accommodative apparatus relaying muscle force to lens organization. Elastin distributes on the marginal surface of the ciliary process. A zonule is composed of fibrillin produced by epithelial cells of the process. In the progress of extension over the posterior chamber, fibrils unite into strands and possess longitudinal plasticity. By induction of the elastin network, strands extend in a concentric direction covering the equatorial region of the capsule. Upon tethering to the lens, the strand ramifies into fibrils, penetrating deeply close to the epithelial layer of the lens and binding with the collagen of the intercellular spaces. Tight linkage of the zonule with the capsule transmits precise contractility. Inside the lens, the cortical layer's elastic connective tissue network forms widely spaced lamellae of crystalline fibers. In contrast, the central nuclear lamellae are tightly opposed. The accumulation of lamellae is greater in the anterior cortex than in the posterior, yielding a more variable anterior chamber depth in the visual axis. The plasticity of the zonule and connective tissue distribution inside the lens produces an adjustable configuration. Thus, tight linkage between the dynamism of the capsule with interaction of the lenticular flexibility provides a novel understanding of accommodation. Anat Rec, 298:630–636, 2015. PMID:25403484

  12. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation

    PubMed Central

    Gerami-Nejad, Maryam; Kumamoto, Yosuke; Mohammed, Javed A.; Jarrett, Elizabeth; Drummond, Rebecca A.; Zurawski, Sandra M.; Zurawski, Gerard; Berman, Judith; Iwasaki, Akiko; Brown, Gordon D.; Kaplan, Daniel H.

    2015-01-01

    Summary Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper-17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans, We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1 mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue specific protection. These findings provide insight into compartmentalization of Th responses, C. albicans pathogenesis and have critical implications for vaccine strategies. PMID:25680275

  13. Morphological priming during language switching: an ERP study

    PubMed Central

    Lensink, Saskia E.; Verdonschot, Rinus G.; Schiller, Niels O.

    2014-01-01

    Bilingual language control (BLC) is a much-debated issue in recent literature. Some models assume BLC is achieved by various types of inhibition of the non-target language, whereas other models do not assume any inhibitory mechanisms. In an event-related potential (ERP) study involving a long-lag morphological priming paradigm, participants were required to name pictures and read aloud words in both their L1 (Dutch) and L2 (English). Switch blocks contained intervening L1 items between L2 primes and targets, whereas non-switch blocks contained only L2 stimuli. In non-switch blocks, target picture names that were morphologically related to the primes were named faster than unrelated control items. In switch blocks, faster response latencies were recorded for morphologically related targets as well, demonstrating the existence of morphological priming in the L2. However, only in non-switch blocks, ERP data showed a reduced N400 trend, possibly suggesting that participants made use of a post-lexical checking mechanism during the switch block. PMID:25566022

  14. Double-staining method for differentiation of morphological changes and membrane integrity of Campylobacter coli cells.

    PubMed

    Alonso, Jose L; Mascellaro, Salvatore; Moreno, Yolanda; Ferrs, Mara A; Hernndez, Javier

    2002-10-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  15. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrs, Mara A.; Hernndez, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  16. Morphology of Mandibular Incisors: A Study on CBCT

    PubMed Central

    Kamtane, Smita; Ghodke, Monali

    2016-01-01

    Summary Background The aim of the study was to identify the number of root canals and examine root canal morphology of permanent mandibular incisors in an Indian sub-population of Pune, Maharashtra, India using cone-beam computed tomography (CBCT). Material/Methods This study was conducted at Elite CBCT & Dental Diagnostics, Pune. One hundred mandibular incisors were evaluated for the number of root, root canals and root morphology. Results In the present study, amongst 102 mandibular incisors, all had one root, 36% of them had a second canal, and Vertucci Type I was the most common type. Conclusions CBCT imaging is an excellent method for detection of different canal configurations of mandibular incisors. PMID:26834865

  17. Morphological observation on cell death and phagocytosis induced by ultraviolet irradiation in a cultured human lens epithelial cell line.

    PubMed

    Shui, Y B; Sasaki, H; Pan, J H; Hata, I; Kojima, M; Yamada, Y; Hirai, K I; Takahashia, N; Sasaki, K

    2000-12-01

    The purpose of this study is to observe dynamic morphological changes induced by ultraviolet (UV) irradiation in a cultured human lens epithelial cell line using electron microscopy, cell viability staining, time-lapsed videography and immunohistochemistry. Human lens epithelial cell line SRA 01-04 was cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 20% fetal bovine serum. Subconfluent cells were irradiated under a bank of UV lamps, which emitted 275-400 nm radiation with a maximum at 310 nm. The UV intensity was 20 microW cm(-2)at dosages from 0 to 10 mJ cm(-2). Alterations in the morphology of the living cells were monitored and recorded with phase-contrast microscopy and time-lapsed videography. At different times, the cells were fixed and examined by transmission electron microscopy (TEM), diamidinophenolindole (DAPI) staining, and in situ immunohistochemistry using TdT-mediated dUTP-biotin nick end labeling (TUNEL). Cell viability was also assessed with crystal violet staining. At low doses of UV exposure (2-5 mJ cm(-2)), time-lapsed videography revealed definitive cell death that appeared to be primarily apoptotic. The dead cell debris was engulfed and phagocytosed by neighboring living cells. Phase-contrast microscopy and TEM demonstrated that, at UV 10 mJ cm(-2), the cells not only showed typical apoptosis such as nuclear membrane shrinkage, chromatin condensation, and fragmentation into apoptotic bodies, but also necrosis such as swelling of the nucleus and cell body, and disruption of the plasma membrane. In support, DNA staining and in situ immunohistochemical reactions in the UV irradiated cells were both positive. The phagocytotic process was also seen with TEM. UV irradiation thus appears to cause both apoptosis and necrosis in the cultured human lens epithelial cell line. Active migration and phagocytosis of the cells appear to be stimulated by UV-induced damage. These findings may also aid in the understanding of UV injury and repair mechanisms of lens epithelial cells in vivo. PMID:11095913

  18. Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology

    NASA Astrophysics Data System (ADS)

    Cardinaletti, Ilaria; Kesters, Jurgen; Bertho, Sabine; Conings, Bert; Piersimoni, Fortunato; D'Haen, Jan; Lutsen, Laurence; Nesladek, Milos; Van Mele, Bruno; Van Assche, Guy; Vandewal, Koen; Salleo, Alberto; Vanderzande, Dirk; Maes, Wouter; Manca, Jean V.

    2014-01-01

    When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups.

  19. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    PubMed Central

    Jensen, Mikkel R. B.; ?opaci?ska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mlhave, Kristian

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412

  20. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domnguez, Fernando; Cejudo, FranciscoJ.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  1. Change in endothelial cell morphology at arterial branch sites caused by a reduction of intramural stress.

    PubMed

    Baker, J W; Thubrikar, M J; Parekh, J S; Forbes, M S; Nolan, S P

    1991-08-01

    Arterial branch sites have very high intramural stresses at physiologic intraluminal pressures; the same sites have a predilection for atherosclerosis. The effect of intramural stress on endothelial cell morphology was investigated. Five rabbits had permanent casts placed around a segment of the abdominal aorta-left renal artery branch area during controlled hypotension, thus reducing intramural stress without narrowing the lumen. These five animals, and three normal rabbits, were sacrificed after 4-8 weeks, and the vessels were perfused with buffered 2.5% glutaraldehyde for 2 h at 100 mm Hg pressure. The aortas were examined by scanning electron microscopy. In normal aortas, the distal region of the ostia of the left renal and celiac arteries just beyond the flow divider displayed many morphologically altered endothelial cells ranging from spindle shape to cobble-stone shape. The same aortic area of casted rabbits, as well as the straight abdominal aorta in all rabbits, showed a smooth surface of endothelial cells with intact cell borders and no morphologically altered cells. At branch sites, the occurrence of morphologically altered endothelial cells may be due to increased intramural stress. When intramural stress is reduced, the morphology of branch endothelial cells changes to resemble that of the unbranched regions. In conclusion, endothelial cell morphology changes in response to changes in intramural stress. PMID:1793449

  2. Equine pituitary adenoma: a functional and morphological study.

    PubMed

    Boujon, C E; Bestetti, G E; Meier, H P; Straub, R; Junker, U; Rossi, G L

    1993-08-01

    Clinico-pathological correlations in horses with pituitary adenomas are poorly understood. This paper describes the functional and morphological features of five cases of equine pituitary adenoma and of a case of multinodular pituitary hyperplasia. New findings reported include immunoreactivity for beta-lipotropin (beta-LPH), beta-melanocyte-stimulating hormone (beta-MSH), gamma 3-MSH, prolactin (PRL), and follicle-stimulating hormone (FSH) in neoplastic cells of the pituitary adenoma; and, in the multinodular hyperplasia, beta-LPH, beta-endorphin (beta-END), alpha-MSH, beta-MSH, gamma 3-MSH and FSH immunoreactivity. It is suggested that the equine pituitary syndrome does not correspond to human Cushing's disease, as generally accepted, but is related to the overproduction of several pro-opiomelanocortin (POMC)-derived peptides by the cells of the tumour or hyperplastic nodules. PMID:8245232

  3. Atypical Renal Cysts: A Morphologic, Immunohistochemical, and Molecular Study.

    PubMed

    Matoso, Andres; Chen, Ying-Bei; Rao, Vishal; Wang, Lu; Cheng, Liang; Epstein, Jonathan I

    2016-02-01

    There is a lack of standardized nomenclature for renal cysts lined by multiple cell layers or with short papillary projections but without nests of epithelial cells within the stroma. We retrieved 29 cases (15 nephrectomies, 14 partial nephrectomies) from the surgical pathology files of Johns Hopkins Hospital from 1993 to 2014 and performed immunohistochemistry for CK7, alpha-methylacyl-CoA racemase (AMACR), CAIX, and CD10 and fluorescence in situ hybridization for trisomy 7 and 17 and 3p deletion. The mean age at excision was 58 years (range, 29 to 80 y) with 16 men and 13 women. Mean size was 2.9 cm (range, 0.3 to 10 cm). The cysts were grouped by their morphology into (1) clear cell, (2) eosinophilic stratified, and (3) eosinophilic papillary. By immunohistochemistry, 7/9 (78%) of the clear cell cases were diffusely positive for both CK7 and CAIX resembling the pattern seen in clear cell papillary renal cell carcinoma. The majority of eosinophilic stratified (4/6; 67%) and eosinophilic papillary (12/14; 86%) cases were positive for CK7 and had variable staining for AMACR, CD10, or CAIX, suggesting a differentiation more aligned with papillary renal cell carcinoma. The most common molecular alterations detected were trisomy 17 (n=6) and trisomy 7 (n=4). One case showed deletion of chromosome 3p. Clinical follow-up information was available in 23 patients; 20 were alive with no evidence of disease after a median follow-up of 20 months (range, 3 to 120 mo), 1 patient was dead due to metastatic lung cancer, 1 of sepsis, and 1 of unknown reason. Atypical renal cysts present as complex radiologic lesions, as secondary lesions in patients with a renal mass, or in a background of chronic renal disease. These atypical cysts appear heterogenous, and some follow in their morphology and immunoprofile with well-established renal tumors. The presence of 3p deletion and trisomy 7/17 suggests that in some cases they may be precursors of renal cell carcinoma. Longer follow-up with more cases is needed, but on the basis of our data, these lesions should not be diagnosed as carcinoma. PMID:26574846

  4. Effects of three-dimensional culturing on osteosarcoma cells grown in a fibrous matrix: analyses of cell morphology, cell cycle, and apoptosis.

    PubMed

    Chen, Chunnuan; Chen, Kathryn; Yang, Shang-Tian

    2003-01-01

    Osteosarcoma cells were cultured in stirred tank bioreactors with either a fibrous matrix or nonporous microcarriers to study the environmental effects on cell growth, morphology, cell cycle, and apoptosis. Cell cycle and apoptosis were analyzed using flow cytometry and visualized using confocal laser scanning microscopy and fluorescence microscopy. The three-dimensional (3-D) fibrous culture had better cell growth and higher metabolic rates than the two-dimensional (2-D) microcarrier culture because cells in the fibrous matrix were protected from shear stress and had lower apoptosis and cell death even under suboptimal conditions (e.g., nutrient depletion). The polyester fibrous matrix used in this study also exhibited the capability of selectively retaining viable and nonapoptotic cells and disposing apoptotic and nonviable cells. Consequently, very few apoptotic cells were found in the fibrous matrix even in the long-term (1 month) T-flask culture. In the continuous culture with packed fibrous matrixes for cell support, most cells were arrested in the G1/G0 phase after 4 days. Decreasing the dissolved oxygen level from 60 to 10% air saturation did not significantly change cell cycle and apoptosis, which remained low at approximately 15%. These results could explain why the fibrous bed bioreactor had good long-term stability and was advantageous for production of non-growth-associated proteins by animal cell cultures. PMID:14524722

  5. Sperm Associated Antigen 6 (SPAG6) Regulates Fibroblast Cell Growth, Morphology, Migration and Ciliogenesis

    PubMed Central

    Li, Wei; Mukherjee, Abir; Wu, Jinhua; Zhang, Ling; Teves, Maria E.; Li, Hongfei; Nambiar, Shanti; Henderson, Scott C.; Horwitz, Alan R.; Strauss III, Jerome F.; Fang, Xianjun; Zhang, Zhibing

    2015-01-01

    Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalized Spag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in the Spag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis. PMID:26585507

  6. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    PubMed

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo. PMID:26386583

  7. Mycophenolic acid reverses TGF beta-induced cell motility, collagen matrix contraction and cell morphology in vitro.

    PubMed

    Petrova, Darinka Todorova; Brandhorst, Gunnar; Koch, Christian; Schultze, Frank Christian; Eberle, Christoph; Walson, Philip D; Oellerich, Michael

    2015-10-01

    The aim of this study was to elucidate functional and molecular effects of mycophenolic acid (MPA) on non-lymphatic, kidney epithelial cells treated with transforming growth factor (TGF). MPA effects were studied using HK2 cells incubated with EGF and TGF. The reversibility of these effects was verified using guanosine and 8-aminoguanosine. The following assays were applied: cell proliferation, viability, collagen matrix contraction, scratch wound closure, spindle index, FACS with anti-CD29 and anti-CD326, promoter demethylation of RAS protein activator like 1 (RASAL1), as well as gene expression of RASAL1, integrin 1 (ITGB1) (CD29) and epithelial cell adhesion molecule (EpCam) (CD326). Cell proliferation was inhibited by increasing concentrations of MPA, whereas neither apoptosis nor cytotoxicity was detected. Stimulation with EGF and/or TGF led to a significant collagen matrix contraction that was successfully inhibited by MPA. In addition, scratch wound closure was inhibited by incubation with TGF alone or with EGF. Under the same conditions, cell morphology (spindle shape) and molecular phenotype (ITGB1(High) EpCam(Low) /ITGB1(Low) EpCam(High) ) were both significantly changed, suggesting an epithelial to mesenchymal transformation. Cell morphology and motility, as well as molecular phenotype, were reversible after MPA treatment with TGF transformation in both presence/absence of EGF, thereby suggesting a correlation with the previously described antifibrotic effects of MPA. Dysregulation of TGF signal transduction appears to be related to progression of fibrosis. A TGF-transformed kidney epithelial cell line derived from human proximal tubules was used to study whether the immunosuppressive drug: MPA possesses any functional or molecular antifibrotic effects. Functional and morphological in vitro changes induced by both the TGF and epithelial-growth-factor were reversible by treatment with MPA. An inhibitory effect of MPA on the TGF pathway appears to be responsible for the previously described antifibrotic effects of the MPA in the COL4A3-deficient mouse model of renal fibrosis. Copyright 2015 John Wiley & Sons, Ltd. PMID:26449633

  8. Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

    PubMed Central

    Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis

    2015-01-01

    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used. PMID:26498381

  9. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus.

    PubMed

    Ansttz, Max; Huang, Hao; Marchionni, Ivan; Haumann, Iris; Maccaferri, Gianmaria; Lbke, Joachim H R

    2016-02-01

    Cajal-Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on ?-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas. PMID:26582498

  10. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal–Retzius Cells in the Postnatal Mouse Hippocampus

    PubMed Central

    Anstötz, Max; Huang, Hao; Marchionni, Ivan; Haumann, Iris; Maccaferri, Gianmaria; Lübke, Joachim H.R.

    2016-01-01

    Cajal–Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas. PMID:26582498

  11. Effect of microfabricated microgroove-surface devices on the morphology of mesenchymal stem cells.

    PubMed

    Zhang, Xiangkai; Aoyama, Tomoki; Yasuda, Takashi; Oike, Makoto; Ito, Akira; Tajino, Junichi; Nagai, Momoko; Fujioka, Rune; Iijima, Hirotaka; Yamaguchi, Shoki; Kakinuma, Norihiro; Kuroki, Hiroshi

    2015-12-01

    The surface of a material that is in contact with cells is known to affect cell morphology and function. To develop an appropriate surface for tendon engineering, we used zigzag microgroove surfaces, which are similar to the tenocyte microenvironment. The purpose of this study was to investigate the effect of microgroove surfaces with different ridge angles (RAs), ridge lengths (RLs), ridge widths (RWs), and groove widths (GWs) on human bone marrow-derived mesenchymal stem cell (MSC) shape. Dishes with microgroove surfaces were fabricated using cyclic olefin polymer by injection-compression molding. The other parameters were fixed, and effects of different RAs (180 - 30 ), RLs (5 - 500?m), RWs (5 - 500?m), and GWs (5 - 500?m) were examined. Changes in the zigzag shape of the cell due to different RAs, RLs, RWs, and GWs were observed by optical microscopy and scanning electron microscopy. Cytoskeletal changes were investigated using Phalloidin immunofluorescence staining. As observed by optical microscopy, MSCs changed to a zigzag shape in response to microgroove surfaces with different ridge and groove properties. . As observed by scanning electron microscopy, the cell shape changed at turns in the microgroove surface. Phalloidin immunofluorescence staining indicated that F-actin, not only in cell filopodia but also inside the cell body, changed orientation to conform to the microgrooves. In conclusion, the use of zigzag microgroove surfaces microfabricated by injection-compression molding demonstrated the property of MSCs to alter their shapes to fit the surface. PMID:26573821

  12. Effects of hypoxia on morphological and biochemical characteristics of renal epithelial cell and tubule cultures.

    PubMed

    Allen, J; Winterford, C; Axelsen, R A; Gob, G C

    1992-01-01

    Apoptotic cell death plays an important role in the pathogenesis of renal atrophy in diseases of the kidney involving chronic mild ischemia. The present study constitutes an in vitro model of these diseases and assesses the modes of cell death involved after hypoxic treatment of renal epithelium. Cultures of MDCK cells or primary cultures of rat renal parenchymal tubules were treated in either a physiological or a hypoxic atmosphere. Cultures were collected before treatment and at 24 h and 48 h, for morphological and biochemical studies. Both apoptosis and necrosis were observed at significantly increased levels by 48 h of hypoxia in the MDCK cell cultures. DNA gel electrophoresis patterns supported these findings. Experiments using tubule cultures demonstrated that, during the 48 h of study, tubular epithelial cells in the center of the control tubule structures died by apoptosis, possibly as a result of mild oxygen and/or nutrient depletion. With added hypoxic treatment, however, the entire tubule structure became necrotic. Results are similar to those found during in vivo studies, thus providing in vitro models that may be developed further to define factors in the pathogenesis of some renal diseases. PMID:1461996

  13. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

    PubMed Central

    Nossol, Constanze; Barta-Bszrmnyi, Anic; Kahlert, Stefan; Zuschratter, Werner; Faber-Zuschratter, Heidi; Reinhardt, Nicole; Ponsuksili, Siriluk; Wimmers, Klaus; Diesing, Anne-Kathrin; Rothktter, Hermann-Josef

    2015-01-01

    The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like lysosome, pathways in cancer, regulation of actin cytoskeleton and oxidative phosphorylation in IPEC-J2 in comparison to IPEC-1. On the other hand, spliceosome, ribosome, RNA-degradation and tight junction are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway ribosome was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism. PMID:26147118

  14. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    SciTech Connect

    Hong, Dun; Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 ; Chen, Hai-Xiao; Yu, Hai-Qiang; Liang, Yong; Wang, Carrie; Lian, Qing-Quan; Deng, Hai-Teng; Ge, Ren-Shan; The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  15. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion.

    PubMed

    Shin, Yoojin; Kim, Hyunju; Han, Sewoon; Won, Jihee; Jeong, Hyo Eun; Lee, Eun-Sook; Kamm, Roger D; Kim, Jae-Hong; Chung, Seok

    2013-06-01

    Plasticity and reciprocity of breast cancer cells to various extracellular matrice (ECMs) are three-dimensionally analyzed in quantitative way in a novel and powerful microfluidic in vitro platform. This successfully demonstrates the metastatic potential of cancer cells and their effective strategies of ECM proteolytic remodeling and morphological change, while interacting with other cells and invading into heterogeneous ECMs. PMID:23184641

  16. DIFFERENCES IN MORPHOLOGICAL AND CELL WALL TRAITS OF ALFALFA PLANTS SELECTED FOR DIVERGENT STEM IN VITRO FIBER DIGESTIBILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared alfalfa clones identified as either low or high rapid (16 h), or low or high potential (96 h) stem in vitro neutral detergent fiber digestibility (IVNDFD) for stem fiber, cell wall, and morphology traits. Five clones of each selection group were grown in replicated field plots at...

  17. Morphological study of biodegradable PEO/PLA block copolymers.

    PubMed

    Younes, H; Cohn, D

    1987-11-01

    A series of PEO/PLA copolymers, covering a wide range of compositions and segmental lengths, was synthesized, and their morphology was investigated by means of DSC and IR studies. For matrices comprising PEO chains with molecular weights below 3400, no soft-segment crystallinity was detected. When long hard segments were present, essentially monophasic, semicrystalline polymers were obtained, with PLA blocks melting around 130 degrees C. Polymers containing longer soft segments (PEO 6000) exhibited a two-phase matrix, with both components being able to crystallize. The relative degree of crystallinity of PEO and PLA blocks was also determined. The thermal history of the sample strongly affected the morphology of the matrix, especially when both blocks were long enough to crystallize. To further explore these polymers, solvent cast films were prepared and their morphology assessed. Casting from acetone, which is an excellent solvent for PLA, resulted in hard blocks exhibiting lower degrees of crystallinity, while methanol had a similar effect on PEO soft segments. PMID:3680315

  18. WISE morphological study of Wolf-Rayet nebulae

    NASA Astrophysics Data System (ADS)

    Toal, J. A.; Guerrero, M. A.; Ramos-Larios, G.; Guzmn, V.

    2015-06-01

    We present a morphological study of nebulae around Wolf-Rayet (WR) stars using archival narrow-band optical and Wide-field Infrared Survey Explorer (WISE) infrared images. The comparison among WISE images in different bands and optical images proves to be a very efficient procedure to identify the nebular emission from WR nebulae, and to disentangle it from that of the ISM material along the line of sight. In particular, WR nebulae are clearly detected in the WISE W4 band at 22 ?m. Analysis of available mid-IR Spitzer spectra shows that the emission in this band is dominated by thermal emission from dust spatially coincident with the thin nebular shell or most likely with the leading edge of the nebula. The WR nebulae in our sample present different morphologies that we classified into well defined WR bubbles (bubble ?-type nebulae), clumpy and/or disrupted shells (clumpy/disrupted C-type nebulae), and material mixed with the diffuse medium (mixed ?-type nebulae). The variety of morphologies presented by WR nebulae shows a loose correlation with the central star spectral type, implying that the nebular and stellar evolutions are not simple and may proceed according to different sequences and time-lapses. We report the discovery of an obscured shell around WR 35 only detected in the infrared. Appendix A is available in electronic form at http://www.aanda.org

  19. Relationship between cell morphology and indole alkaloid production in suspension cultures of Catharanthus roseus.

    PubMed

    Kim, S W; Jung, K H; Kwak, S S; Liu, J R

    1994-11-01

    The relationship between the morphology and indole alkaloid production of Catharanthus roseus cells was investigated. Eleven cell lines were randomly selected from protoplast-derived clones. In each line, most of the cells maintained only one of the two shapes, either spherical or cylindrical. The cell aspect ratio (cell length/width) for most isolates was stable for more than two years of subculture. Cell division patterns of spherical and cylindrical cell isolates were different and patterns of division remained stable in each phenotype and were not considerably affected by auxin or cytokinin levels in the culture media. These observations indicate that cell morphology of our isolates is stable and probably internally determined. Production of the indole alkaloids, ajmalicine and catharanthine was significantly greater when the cell aspect ratio was more than 2.8. PMID:24194221

  20. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  1. Automated cell-by-cell tissue imaging and single-cell analysis for targeted morphologies by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Li, Hang; Smith, Brian K; Shrestha, Bindesh; Márk, László; Vertes, Akos

    2015-01-01

    Mass spectrometry imaging (MSI) is an emerging technology for the mapping of molecular distributions in tissues. In most of the existing studies, imaging is performed by sampling on a predefined rectangular grid that does not reflect the natural cellular pattern of the tissue. Delivering laser pulses by a sharpened optical fiber in laser ablation electrospray ionization (LAESI) mass spectrometry (MS) has enabled the direct analysis of single cells and subcellular compartments. Cell-by-cell imaging had been demonstrated using LAESI-MS, where individual cells were manually selected to serve as natural pixels for tissue imaging. Here we describe a protocol for a novel cell-by-cell LAESI imaging approach that automates cell recognition and addressing for systematic ablation of individual cells. Cell types with particular morphologies can also be selected for analysis. First, the cells are recognized as objects in a microscope image. The coordinates of their centroids are used by a stage-control program to sequentially position the cells under the optical fiber tip for laser ablation. This approach increases the image acquisition efficiency and stability, and enables the investigation of extended or selected tissue areas. In the LAESI process, the ablation events result in mass spectra that represent the metabolite levels in the ablated cells. Peak intensities of selected ions are used to represent the metabolite distributions in the tissue with single-cell resolution. PMID:25361672

  2. Morphological studies of metastatic mammary rat tumors after laser immunotherapy treatment

    NASA Astrophysics Data System (ADS)

    Nordquist, Robert E.; Nordquist, John A.; Agee, James C.; Blomquist, Chad M.; Chen, Wei R.

    1998-05-01

    Laser immunotherapy, using a combination of 805 nm diode laser, photosensitizer indocyanine green and immunoadjuvant glycated chitosan, has shown an induced anti-tumor immune response in treatment of metastatic rat tumors. In additional to an apparent systemic, long-term humoral immunological reaction, there could also be laser induced local cellular immune responses. A morphological study was performed to study the immune cells and their infiltration to tumor tissue after this laser immunotherapy treatment. Tumor-bearing rats were terminated at designated times after the treatment; both the tumor and the surrounding normal tissue were collected. The tissue samples were observed under electron microscope. The number and types of infiltrating cells at the tumor site were studied after treatment to determine the contribution of these cells in the elimination of tumors. The tumor cell structural changes resulted from laser-tissue photothermal interaction was investigated. The morphology of tumor development and activities of immune cells including both lymphocytes and plasma cells could shed light on the mode of action of laser treatment of tumors.

  3. Tuning perovskite morphology by polymer additive for high efficiency solar cell.

    PubMed

    Chang, Chun-Yu; Chu, Cheng-Ya; Huang, Yu-Ching; Huang, Chien-Wen; Chang, Shuang-Yuan; Chen, Chien-An; Chao, Chi-Yang; Su, Wei-Fang

    2015-03-01

    Solution processable planar heterojunction perovskite solar cell is a very promising new technology for low cost renewable energy. One of the most common cell structures is FTO/TiO2/CH3NH3PbI3-xClx/spiro-OMeTAD/Au. The main issues of this type of solar cell are the poor coverage and morphology control of the perovskite CH3NH3PbI3-xClx film on TiO2. For the first time, we demonstrate that the problems can be easily resolved by using a polymer additive in perovskite precursor solution during the film formation process. A 25% increase in power conversion efficiency at a value of 13.2% is achieved by adding 1 wt % of poly(ethylene glycol) in the perovskite layer using a 150 C processed TiO2 nanoparticle layer. The morphology of this new perovskite was carefully studied by SEM, XRD, and AFM. The results reveal that the additive controls the size and aggregation of perovskite crystals and helps the formation of smooth film over TiO2 completely. Thus, the Voc and Jsc are greatly increased for a high efficiency solar cell. The amount of additive is optimized at 1 wt % due to its insulating characteristics. This research provides a facile way to fabricate a high efficiency perovskite solar cell by the low temperature solution process (<150 C), which has the advancement of conserving energy over the traditional high temperature sintering TiO2 compact layer device. PMID:25679316

  4. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  5. Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology

    PubMed Central

    Rotolo, Thomas; Smallwood, Philip M.; Williams, John; Nathans, Jeremy

    2008-01-01

    Background In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes. Methods and Findings In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT)-IRES-CreER or tyrosine hydroxylase (TH)-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL)-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2)-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species. Conclusions Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease. PMID:19116659

  6. Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture.

    PubMed

    Hsu, Shan-hui; Ho, Tung-Tso; Huang, Nien-Chi; Yao, Chao-Ling; Peng, Luen-Hau; Dai, Niann-Tzyy

    2014-08-01

    The structural evolution of three-dimensional spheroids self-assembled from two different types of cells on selective biomaterials is demonstrated in this study. The two types of cells involved in the self-assembly are human mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). When seeded in different population ratios, they can create a variety of cellular patterns on different biomaterial substrates. When the two populations are matched in initial numbers, they are self-assembled in co-spheroids with different morphologies (i.e. randomly mixed, bumped, or concentric spheroids). The morphologies are influenced by the specific cell-substrate interaction possibly through integrin signaling, as well as a substrate-dependent regulation of heterophilic cell-cell interaction possibly through Notch signaling. In particular, the self-assembled core-shell concentric spheroids from adipose-derived MSCs and EPCs show a greater angiogenic effect invitro. This study reveals the possibility to modulate the self-assembled morphology as well as the effect of cocultured cells by changing the cell culture substratum. PMID:24909102

  7. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  8. The mast cell: origin, morphology, distribution, and function.

    PubMed

    Yong, L C

    1997-12-01

    The mast cell remains an enigmatic cell more than 100 years after its discovery by Paul Ehrlich at the turn of the century. It is a cell that is found widely distributed in the body particularly associated with connective tissues. It can be recognised by its content of metachromatic granules when appropriately fixed and stained with metachromatic dyes such as toulidine blue. The metachromatic granules of the mast cell remain an important differentiating characteristic from other cells although it is by no means absolute. In the early days of its discovery it was thought to originate from primitive mesenchyme, thymocyte or lymphocyte. More recent evidence suggests that it may have originated from the monocyte. Current evidence points to an origin from haemopoietic tissue in the bone marrow, the progenitors differentiate from primitive cells under the influence of cytokines (IL3), migrate to other body sites and then undergo differentiation and maturation under the influence of growth and other factors. The mast cell has many functions exerted through its ability to produce a host of biologically active substances the most notable being heparin, serotonin, dopamine, tryptase and chymase. These substances may be released in response to immunological and neural stimuli. Mast cells are found to be functionally heterogeneous, possibly site specific and have the ability to adapt to their environment, producing secretions commensurate with the needs of any situation. The mast cell is involved in immunological, neoplastic, inflammatory and other conditions. Much about its function has been unravelled but there remains more to be uncovered. PMID:9495641

  9. Morphological and cytochemical determination of cell death by apoptosis

    PubMed Central

    Sobel, Burton E.; Budd, Ralph C.

    2007-01-01

    Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues. PMID:18000678

  10. Spectral and morphological study of galaxies with UV excess. VI

    SciTech Connect

    Kazaryan, M.A.; Kazaryan, E.S.

    1985-11-01

    Results are given of a spectral and morphological study of galaxies Nos. 73, 125, and 229. The masses are determined of the gaseous components of these galaxies. It is established that galaxy No. 73 is a type Sy 2 galaxy, and in its physical properties it resembles the Sy 2 type galaxies Markaryan 744 and 1066. In some of its physical properties galaxy No. 125 is similar to galaxy No. 73, but it is evidently at a later stage of development than the latter. The results show that these galaxies differ from one another both in their physical properties and in their external structure.

  11. Morphology and growth characteristics of epithelial cells from classic Wilms' tumors.

    PubMed Central

    Hazen-Martin, D. J.; Garvin, A. J.; Gansler, T.; Tarnowski, B. I.; Sens, D. A.

    1993-01-01

    The ability to establish cell cultures representing the epithelial component of Wilms' tumor was determined for 18 cases of classic Wilms' tumors. From these 18 cases only two resulted in the culture of epithelial cells. Although the tumors from both cases were composed of a prominent epithelial component, other classic tumors not producing epithelial cell cultures also possessed appreciable epithelial components. Likewise, heterotransplants of these two primary tumors failed to give rise to epithelial cell cultures, although cultures of the blastemal element were produced. This suggests that Wilms' tumors may be prone to differentiate in different directions at varying times during tumor growth, possibly dependent on local tumor environment. Epithelial cells from these two classic cases were grown in culture in basal medium composed of a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium, supplemented with selenium, insulin, transferrin, hydrocortisone, tri-iodothyronine, and epidermal growth factor, on a collagen type I matrix with absorbed fetal calf serum proteins. One of the two cases also required the addition of bovine pituitary extract, ethanolamine, prostaglandin E1, and putrescine for optimum growth. Morphological analysis disclosed that the cultured cells were very similar to normal renal tubular cells in culture, except that the cells displayed little evidence for differentiated active ion transport and tended to grow in a multilayered arrangement. The culture of the epithelial cells from classic Wilms' tumors provides a model system for the study of tumor differentiation and progression. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:8384407

  12. Action potential propagation through embryonic dorsal root ganglion cells in culture. I. Influence of the cell morphology on propagation properties.

    PubMed

    Lscher, C; Streit, J; Quadroni, R; Lscher, H R

    1994-08-01

    1. In this and the companion paper the reliability of action potential (AP) propagation through dorsal root ganglion (DRG) cells was investigated. Experimental data were collected from DRG cells of embryonic rat slice cultures of the spinal cord. A field stimulation electrode was used to elicit an AP in the axon. The propagated AP or, in case of conduction block, its electronic residue (ER), was measured intracellularly in the soma of the DRG cell. 2. The morphological and electrophysiological data combined with published data from voltage-clamp studies were taken to implement a compartmental computer model, which allows a precise description of the propagating AP and the channel kinetics at any point along the axon. 3. The safety factor for conduction was found to be low. Thus failures of AP invasion of the DRG cell soma could occur at sites of impedance mismatch when a hyperpolarizing current was applied, a second stimulus felt into the relative refractory period of the first, or when the axon was repetitively stimulated. 4. The ERs of the failed APs had discrete amplitude levels, suggesting that the failures were always caused at the same site along the axon. These sites of low safety factor were found to be the branch point in the unipolar DRG cell and the entrance of the stem piece into the soma in both cell types, the bipolar as well as the unipolar. 5. A systematic comparison of bipolar and unipolar DRG cells showed that the AP conduction through the latter is more reliable. For large cell bodies, the unipolar configuration is needed for save conduction. 6. Conduction through unipolar DRG cells is faster than through bipolar cells because the electrical load of the soma is masked by the high-resistive stem piece. The length of this stem piece is correlated inversely to the delay caused at the branch point, as the electrical load of the soma is more efficiently masked by a long stem piece. PMID:7983524

  13. Multiscale Morphology of Organic Semiconductor Thin Films Controls the Adhesion and Viability of Human Neural Cells

    PubMed Central

    Tonazzini, I.; Bystrenova, E.; Chelli, B.; Greco, P.; Stoliar, P.; Calò, A.; Lazar, A.; Borgatti, F.; D'Angelo, P.; Martini, C.; Biscarini, F.

    2010-01-01

    Abstract We investigate how multiscale morphology of functional thin films affects the in vitro behavior of human neural astrocytoma 1321N1 cells. Pentacene thin film morphology is precisely controlled by means of the film thickness, Θ (here expressed in monolayers (ML)). Fluorescence and atomic force microscopy allow us to correlate the shape, adhesion, and proliferation of cells to the morphological properties of pentacene films controlled by saturated roughness, σ, correlation length, ξ, and fractal dimension, df. At early incubation times, cell adhesion exhibits a transition from higher to lower values at Θ ≈ 10 ML. This is explained using a model of conformal adhesion of the cell membrane onto the growing pentacene islands. From the model fitting of the data, we show that the cell explores the surface with a deformation of the membrane whose minimum curvature radius is 90 (± 45) nm. The transition in the adhesion at ∼10 ML arises from the saturation of ξ accompanied by the monotonic increase of σ, which leads to a progressive decrease of the pentacene local radius of curvature and hence to the surface area accessible to the cell. Cell proliferation is also enhanced for Θ < 10 ML, and the optimum morphology parameter ranges for cell deployment and growth are σ ≤ 6 nm, ξ > 500 nm, and df > 2.45. The characteristic time of cell proliferation is τ ≈ 10 ± 2 h. PMID:20550892

  14. The morphologic relationship of light and dark cells of the collecting tubule in potassium-depleted rats.

    PubMed Central

    Ordnez, N. G.; Spargo, B. H.

    1976-01-01

    The luminal surface of collecting tubule cells in the inner stripe of the renal medulla in normal and potassium-depleted rats was studied by scanning electron microscopy. In normal rats the luminal surfaces were of two types. One cell type was sparsely covered with small bulbous microvilli and had either a single or double cilium. This type corresponds to the light cell seen in transmission electron microscopy. The second cell type was covered by prominent microplicae and represents the dark cell observed in transmission electron microscopy. In potassium-depleted animals, numerous cells with a morphologic appearance of intermediate forms were identified. By scanning electron microscopy, the luminal surface of these cells was covered by a mixed population of villi and microplicae in different stages of development and often showed cilia, which were previously considered to exist only on light cells. On the basis of these morphologic findings, we conclude that the dark and light cells are not different cell types but rather represent different forms of a single type of cell. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 1 Figure 2 Figure 3 PMID:941981

  15. Massive granular cell ameloblastoma with dural extension and atypical morphology

    PubMed Central

    Raghunath, Vandana; Rath, Rachna; Kamal, Firoz; Misra, Satya Ranjan

    2014-01-01

    Ameloblastomas are rare histologically benign, locally aggressive tumors arising from the oral ectoderm that occasionally reach a gigantic size. Giant ameloblastomas are a rarity these days with the advent of panoramic radiography in routine dental practice. Furthermore, the granular cell variant is an uncommon histological subtype of ameloblastoma where the central stellate reticulum like cells in tumor follicles is replaced by granular cells. Although granular cell ameloblastoma (GCA) is considered to be a destructive tumor with a high recurrence rate, the significance of granular cells in predicting its biologic behavior is debatable. However, we present a rare case of giant GCA of remarkable histomorphology showing extensive craniofacial involvement and dural extension that rendered a good prognosis following treatment. PMID:25395775

  16. Morphological alterations induced by patulin on cultured hepatoma cells.

    PubMed

    Rihn, B; Lugnier, A A; Dirheimer, G

    1986-01-01

    Patulin is a mycotoxin produced by various Penicillium, Aspergillus and Byssochlamys species. To evaluate its inhibitory effect on cells, hepatoma tissue culture cells in suspension were incubated in presence of 30 microM of patulin for 7 h and investigated by transmission and scanning electron microscopy. By transmission electron microscopy, the most significant difference observed between treated and control cells was the disorganization of the cytoplasmic microfilaments in the treated cells. The disappearance of superficial membrane microvilli which contain microfibrillar material was visualized by scanning electron microscopy; the cells also presented protrusions. The effect of this toxin on the cytoskeleton can be compared to that exerted by colchicine or by cytochalasins. PMID:3468904

  17. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Santulli, Alexander C.; Koenigsmann, Christopher; Tiano, Amanda L.; DeRosa, Donald; Wong, Stanislaus S.

    2011-06-01

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO2 as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO2 material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  18. Correlating Titania Morphology and Chemical Composition with Dye-sensitized Solar Cell Performance

    SciTech Connect

    Santulli, A.C.; Wong, S.; Koenigsmann, C.; Tiano, A.L., DeRosa, D.

    2011-04-20

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO{sub 2} as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO{sub 2} material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  19. Morphological restriction of human coronary artery endothelial cells substantially impacts global gene expression patterns

    PubMed Central

    Stiles, Jessica M; Pham, Robert; Rowntree, Rebecca K; Amaya, Clarissa; Battiste, James; Boucheron, Laura E; Mitchell, Dianne C; Bryan, Brad A

    2013-01-01

    Alterations in cell shape have been shown to modulate chromatin condensation and cell lineage specification; however, the mechanisms controlling these processes are largely unknown. Because endothelial cells experience cyclic mechanical changes from blood flow during normal physiological processes and disrupted mechanical changes as a result of abnormal blood flow, cell shape deformation and loss of polarization during coronary artery disease, we aimed to determine how morphological restriction affects global gene expression patterns. Human coronary artery endothelial cells (HCAECs) were cultured on spatially defined adhesive micropatterns, forcing them to conform to unique cellular morphologies differing in cellular polarization and angularity. We utilized pattern recognition algorithms and statistical analysis to validate the cytoskeletal pattern reproducibility and uniqueness of each micropattern, and performed microarray analysis on normal-shaped and micropatterned HCAECs to determine how constrained cellular morphology affects gene expression patterns. Analysis of the data revealed that forcing HCAECs to conform to geometrically-defined shapes significantly affects their global transcription patterns compared to nonrestricted shapes. Interestingly, gene expression patterns were altered in response to morphological restriction in general, although they were consistent regardless of the particular shape the cells conformed to. These data suggest that the ability of HCAECs to spread, although not necessarily their particular morphology, dictates their genomics patterns. PMID:23802622

  20. Morphological Measurement of Living Cells in Methanol with Digital Holographic Microscopy

    PubMed Central

    Wang, Yunxin; Yang, Yishu; Wang, Dayong; Ouyang, Liting; Zhang, Yizhuo; Zhao, Jie; Wang, Xinlong

    2013-01-01

    Cell morphology is the research foundation in many applications related to the estimation of cell status, drug response, and toxicity screening. In biomedical field, the quantitative phase detection is an inevitable trend for living cells. In this paper, the morphological change of HeLa cells treated with methanol of different concentrations is detected using digital holographic microscopy. The compact image-plane digital holographic system is designed based on fiber elements. The quantitative phase image of living cells is obtained in combination with numerical analysis. The statistical analysis shows that the area and average optical thickness of HeLa cells treated with 12.5% or 25% methanol reduce significantly, which indicates that the methanol with lower concentration could cause cellular shrinkage. The area of HeLa cells treated with 50% methanol is similar to that of normal cells (P > 0.05), which reveals the fixative effect of methanol with higher concentration. The maximum optical thickness of the cells treated with 12.5%, 25%, and 50% methanol is greater than that of untreated cells, which implies the pyknosis of HeLa cells under the effect of methanol. All of the results demonstrate that digital holographic microscopy has supplied a noninvasive imaging alternative to measure the morphological change of label-free living cells. PMID:23424605

  1. Induction of Morphological Changes in Human Embryo Liver Cells by the Pyrrolizidine Alkaloid Lasiocarpine

    PubMed Central

    Armstrong, Sylvia J.; Zuckerman, A. J.; Bird, R. G.

    1972-01-01

    The pyrrolizidine alkaloids have been implicated in the aetiology of liver disease in man and in animals. Studies of the effects of lasiocarpine indicate that they have several and perhaps independent effects on human liver cells in culture. These may be summarized as follows: 1. Nuclear and nucleolar changes which are probably related to the alkylation of DNA and ensuing inhibition of nucleic acid and protein synthesis. 2. The induction of possible chromosomal damage and mutation. 3. A generalized reduction of the metabolic activities of the cells due to membrane and mitochondrial damage, and to alkylation and inactivation of cell enzymes and proteins. 4. A long-term inhibition of mitosis leading to the formation of giant cells (“megalocytes”). The morphological effects induced by a number of the pyrrolizidine alkaloids were very similar but the pattern of metabolic changes varied somewhat. It is believed that the hepatotoxic effects are not due to the pyrrolizidine alkaloids themselves but to metabolic derivatives formed by the cell. ImagesFigs. 3-5Figs. 1-2 PMID:5032090

  2. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    PubMed Central

    Makowska, Katarzyna A.; Hughes, Ruth E.; White, Kathryn J.; Wells, Claire M.; Peckham, Michelle

    2015-01-01

    Summary We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype. PMID:26670045

  3. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  4. Morphological study of Salicornieae (Chenopodiaceae) native to Iran.

    PubMed

    Zare, Golshan; Keshavarzi, Maryam

    2007-03-15

    The tribe Salicornieae Dum. belonging to the subfamily Salicornioideae Kostel (Chenopodiaceae Vent.) includes halophyte plants. These 5 genera and 6 species are distributed in different habitats of Iran. Members of this tribe have reduced vegetative parts, scale like leaves and articulated stems. In this study quantitative and qualitative morphological characters for 46 accessions of Salicornieae were evaluated. Vegetative characters are not sufficient to distinguish these taxa. Our results indicated that vegetative form, globular buds, plant color, stem base disarticulation and presence of node at the base of inflorescence are diagnostic character in this tribe. Besides floral arrangement in inflorescences, bracts shape, color and shape of seeds are important key features in members of Salicornieae in Iran. Seed coat ornamentations and its hairs and color are found to be helpful in distinguishing these taxa. Quantitative characters show variation too, but as they were not significant, they can not help to resolve the taxonomic problems of this tribe in Iran. Based on studied morphological characters, an identification key for members of this tribe in Iran is provided. PMID:19069878

  5. Morphological studies of resonances in plasmonic metasurfaces for SPR sensing

    NASA Astrophysics Data System (ADS)

    Lelek, Jakub; Kwiecien, Pavel; Richter, Ivan; Homola, Jiří

    2015-05-01

    We investigate selected periodic arrays of nanostructures inspired by metasurfaces originally used in metamaterial structures and evaluate their potential for surface plasmon resonance applicable in sensing. Building blocks including rectangles, cut wires, crosses, fishnets, split ring resonators were ordered on suitable substrates and their reflection (R), transmission (T), and loss energy (L) spectra were calculated. The numerical studies were performed using our efficient in-house two-dimensional rigorous coupled-wave analysis technique. Our technique incorporates all the key improvements of the method available, taking into account both proper Fourier factorization rules, adaptive spatial resolution techniques, as well as structural symmetries. Using the R, T, and L spectra, we investigated spectral sensitivity of SPR and calculated the respective SPR sensor characteristics, such as figures of merit (FOM), enabling direct comparison of various structural morphologies for potential sensing applications. Also, optimization of the structures in terms of FOM has been performed to identify the most promising candidates. Additionally, to allow for interpretation of spectral resonant features and the interplay of individual and surface lattice resonances, we were gradually changing the morphology of individual building blocks from one type of element to another one. We believe that this study will bring insight into plasmonic behavior of nanostructured metasurfaces and will further benefit research into SPR biosensors.

  6. Combined use of alphafetoprotein and amniotic fluid cell morphology in early prenatal diagnosis of fetal abnormalities.

    PubMed Central

    Gosden, C; Brock, D J

    1978-01-01

    The combined use of alphafetoprotein (AFP) measurement and amniotic fluid cell morphology was assessed in 217 pregnancies with normal outcome (including 12 where an anterior placenta was traversed), and 52 where there was a fetal defect (25 cases of anencephaly, 21 of open spina bifida, 2 of exomphalos, 2 of urogenital atresia, and 2 of intrauterine death). In each case maternal serum and amniotic fluid AFP was measured. Total, viable, and rapidly adherent cells were counted and amniotic fluid cell morphology was examined. On the basis of this experience a scheme is suggested for more precise antenatal diagnosis of fetal abnormalities. Images PMID:81877

  7. The use of optical coherence tomography for morphological study of scaffolds

    SciTech Connect

    Veksler, B A; Kuz'min, V L; Kobzev, E D; Meglinski, I V

    2012-05-31

    Aimed at possible widening of the optical coherence tomography (OCT) field of application, an attempt is made to use OCT in tissue engineering and cell transplantology as a tool for morphological studies of substrate materials by the example of scaffolds. By means of the traditional fibreoptical OCT scheme the images of inner structure of scaffolds are obtained, and simultaneously the spatial distribution of the intralipid flow velocity is reconstructed using the Doppler OCT. It is shown that combined use of traditional OCT and Doppler OCT schemes allows revealing the regions of the scaffold demonstrating optimal effect of shear stress, which is a key factor of cell growth.

  8. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    PubMed

    Varga, Ivan; Miko, Michal; Oravcov, Lenka; Ba?kayov, Tatiana; Koller, Jn; Daniovi?, ?ubo

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages-up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1m) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation. PMID:26093679

  9. Androgens modulate the morphological characteristics of human endometrial stromal cells decidualized in vitro.

    PubMed

    Kajihara, Takeshi; Tanaka, Kayoko; Oguro, Tatsuo; Tochigi, Hideno; Prechapanich, Japarath; Uchino, Satomi; Itakura, Atsuo; Su?urovi?, Sandra; Murakami, Keisuke; Brosens, Jan J; Ishihara, Osamu

    2014-03-01

    The activated androgen receptor (AR) in decidualizing human endometrial stromal cells (HESCs) regulates genes involved in cytoskeletal organization, cell motility, and cell cycle progression. Androgens also enhance the secretion of prolactin, a widely used marker of decidualized HESCs. The purpose of the present study was to investigate the direct effects of androgens on the ultrastructural changes associated with decidual transformation of HESCs. Primary HESC cultures were established and propagated, and confluent cultures were decidualized for 6 days with 8-bromoadenosine 3',5'-cyclic monophosphate (8-br-cAMP) and progesterone (P4) in the presence or absence of dihydrotestosterone (DHT). Phase-contrast image analysis demonstrated that DHT increases the shape index of decidualizing cells, which was reversed upon cotreatment with the AR antagonist flutamide. Electron microscopy demonstrated that DHT enhances many of the ultrastructural changes induced by 8-br-cAMP and P4 in HESCs. Decidualizing cells are characterized by an abundant cytoplasm, multiple cell surface projections and, unlike undifferentiated HESCs, form 2 or more cell layers. The DHT further stimulated cytoplasmic expansion, lipid droplet formation, the production of an abundant extracellular matrix, and gap junction formation in decidualized HESCs. The present study demonstrates that androgen signaling has an impact on the morphological and ultrastructural changes associated with the decidual process. Our findings show that androgens promote the development and expansion of cytoplasmic organelles and gap junctions in decidualizing HESCs. These results suggest that androgens in early pregnancy play an important role in promoting the cellular transformation associated with decidualization. PMID:23885104

  10. Morphological and Physiological Characteristics of Laminar Cells in the Central Nucleus of the Inferior Colliculus

    PubMed Central

    Wallace, Mark N.; Shackleton, Trevor M.; Palmer, Alan R.

    2012-01-01

    The central nucleus of the inferior colliculus (IC) is organized into a series of fibro-dendritic laminae, orthogonal to the tonotopic progression. Many neurons have their dendrites confined to one lamina while others have dendrites that cross over a number of laminae. Here, we have used juxtacellular labeling in urethane anesthetized guinea pigs to visualize the cells with biocytin and have analyzed their response properties, in order to try and link their structure and function. Out of a sample of 38 filled cells, 15 had dendrites confined within the fibro-dendritic laminae and in 13 we were also able to reconstruct their local axonal tree. Based on dendritic morphology they were subdivided into flat or less flat; small, medium, or large; elongated or disk-shaped cells. Two of the elongated cells had many dendritic spines while the other cells had few or none. Twelve of the cells had their local axonal tree restricted to the same lamina as their dendrites while one cell had its dendrites in a separate lamina from the axon. The axonal plexus was more extensive (width 0.71.4?mm) within the lamina than the dendrites (width generally 0.070.53?mm). The intrinsic axons were largely confined to a single lamina within the central nucleus, but at least half the cells also had output axons with two heading for the commissure and five heading into the brachium. We were able to identify similarities in the physiological response profiles of small groups of our filled cells but none appeared to represent a homogeneous morphological cell type. The only common feature of our sample was one of exclusion in that the onset response, a response commonly recorded from IC cells, was never seen in laminar cells, but was in cells with a stellate morphology. Thus cells with laminar dendrites have a wide variety of physiological responses and morphological subtypes, but over 90% have an extensive local axonal tree within their local lamina. PMID:22933991

  11. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.

    PubMed

    Aina, Valentina; Bergandi, Loredana; Lusvardi, Gigliola; Malavasi, Gianluca; Imrie, Flora E; Gibson, Iain R; Cerrato, Giuseppina; Ghigo, Dario

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells. In contrast, Sr ions alone, at the concentrations released by Sr-HA (1.21-3.24 ppm), influenced neither cell proliferation nor differentiation. Thus the positive effects of Sr in Sr-HA materials are probably due to the co-action of other ions such as Ca and P. PMID:23827552

  12. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration

    PubMed Central

    2011-01-01

    Background Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways. Results Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells. These include genes previously implicated in a wide range of functions, from mental retardation, Down syndrome and Huntington's disease to RNA and DNA-binding genes. We classify these genes into seven groups according to phenotype and identify those that affect cell migration. We further characterize a subset of seven genes, FAM40A, FAM40B, ARC, FMNL3, FNBP3/FBP11, LIMD1 and ZRANB1, each of which has a different effect on cell shape, actin filament distribution and cell migration. Interestingly, in several instances closely related isoforms with a single Drosophila homologue have distinct phenotypes. For example, FAM40B depletion induces cell elongation and tail retraction defects, whereas FAM40A depletion reduces cell spreading. Conclusions Our results identify multiple regulators of cell migration and cytoskeletal signalling that are highly conserved between Drosophila and humans, and show that closely related paralogues can have very different functions in these processes. PMID:21834987

  13. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    SciTech Connect

    Barrall, G A

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  14. Morphology of the bicipital aponeurosis: a cadaveric study.

    PubMed

    Joshi, S D; Yogesh, A S; Mittal, P S; Joshi, S S

    2014-02-01

    The bicipital aponeurosis (BA) is a fascial expansion which arises from the tendon of biceps brachii and dissipates some of the force away from its enthesis. It helps in dual action of biceps brachii as supinator and flexor of forearm. The aim of the present work was to study the morphology of BA. Thirty cadavericupper limbs (16 right and 14 left side limbs) were dissected and dimensions ofthe BA were noted. The average width of aponeurosis at its commencement on the right was 15.74 mm while on the left it was 17.57 mm. The average angle between tendon and aponeurosis on the right was 21.16 and on the left it was 21.78. The fibres from the short head of the biceps brachii contributed to the formation of proximal part of aponeurosis. Fascial sheath over the tendon oflong head of biceps brachii was seen to form the distal part of the aponeurosis. In 5 cases, large fat globules were present between the sheath and the tendon. Histologically: The aponeurosis showed presence of thick collagen bundles. Fascials heath covering the tendon of long head extended towards the aponeurosis and passed superficial to the tendon of biceps. Blood vessels and adipose tissue were found to be present between fascial sheath and the tendon. This morphological description of BA may be helpful 1) in elucidating the dynamic role that BA plays in normal functioning and 2) to the surgeons in the repair of ruptured biceps brachii tendon. PMID:24590527

  15. A Morphological Study of the Petunia integrifolia Complex (Solanaceae)

    PubMed Central

    ANDO, TOSHIO; ISHIKAWA, NOBUYUKI; WATANABE, HITOSHI; KOKUBUN, HISASHI; YANAGISAWA, YOSHIKI; HASHIMOTO, GORO; MARCHESI, EDUARDO; SUÁREZ, ENRIQUE

    2005-01-01

    • Background and Aims Petunia inflata has been treated taxonomically in various ways: it has been described as an independent species, treated as a synonym of P. integrifolia, and also regarded as a subspecies of P. integrifolia. The present study was designed to resolve the ambiguity involving the P. integrifolia complex (P. integrifolia plus P. inflata). • Methods Tentative identification (either integrifolia group or inflata group) was carried out in the field based on the observation of live specimens at the restricted type localities. The accuracy of the tentative identification was later tested with principal component and cluster analyses of data obtained by measuring 21 morphological characters on cultivated live specimens sourced from 113 natural populations of the P. integrifolia complex in Argentina, Brazil, Paraguay and Uruguay. • Key Results There was a clear, statistically significant gap between the morphological measurements of the two groups, ensuring the accuracy of identification carried out in the field except for a probable hybrid swarm. Previously, the condition of the pedicel in the fruiting state was considered an important character distinguishing between these two groups; however, the condition of the pedicel was rather variable in the integrifolia group. The two groups were found to have geographically distinct distributions: the integrifolia group occurred in southern regions, whereas the inflata group occurred in northern regions. • Conclusions Based on the available evidence, it is suggested that the two groups are allopatric species, P. integrifolia and P. inflata, in agreement with the opinion of Fries (1911). PMID:16103037

  16. Morphological, magnetic and electronic structural studies of nanostructured spinel ferrites

    NASA Astrophysics Data System (ADS)

    Jardim, Marcos; Moura Prata, Daniela

    The scope of this thesis includes study of structural, magnetic and electronic properties of nanostructured ferrites with different morphology/geometries (e.g. core/shell and hollow nanoparticles), and non-stroichiomteric thin-films. In the case of core/shell, shell composition is varied and spin glass (SG) features due to the thick amorphous shells are explored. Exchange Bias (EB) for core/shell (ferromagnetic/SG) nanoparticles namely X33Fe 67/XFe67O4 (X = Co, Ni, Fe) is presented. Limitations in the synthesis of various other alloys by inert gas condensation (IGC) due to the difference in the melting points are discussed. The existence of SG phase in these nanoparticles with CoFe2O4 shell results in the enhancement in EB. This is attributed to the large bulk anisotropy constant of the shell compared to other spinel cubic ferrites. Both dc magnetization and ac susceptibility measurements revealed a SG like transition which occurs at unusually large spin freezing temperature (TF 175K). The SG nature of the transition is also confirmed by the field dependence of the freezing temperature (TF(H)) following the well-known Almeida-Thouless (AT) line, deltaT F H2/3. Particles exhibit a large exchange bias (HEB 1357Oe) arising from the core-shell (ferromagnetic-SG) coupling. The unusually high SG transition temperature and large exchange bias effects are attributed to a combination of several factors including the thickness of the amorphous oxide shell and large values of the exchange and anisotropy constants associated with the CoFe2O 4 shell. In another extreme case of disordered spin systems, we synthesized NPs with hollow morphology with intentional choice of material namely NiFe 2O4 (CoFe2O4) which has lowest (highest) bulk anisotropy constant among the spinel ferrites. The hollow NPs are synthesized by self-templating process utilizing coupled interfacial chemical reactions and Kirkendall effect between the core (X33Fe67) and the shell (XFe2O4) of the core/shell structure is described. Reaction temperature and time dependent structural and morphological transformations are presented in detail. NiFe2O4 hollow particles show lack of saturation, enhancement in EB and inverse trend in the blocking temperature as a function of particles size. These are explained as being due to stabilized spin disorder and surface anisotropy. Unlike solid NPs, hollow NPs are polycrystalline. Electronic structure studies are performed by photoemission which reveals that CoFe2O4 particles with hollow morphology have higher degree of inversion compared to solid NPs. Electronic structure in comparison with magnetic studies reveal that particles exhibit uncompensated spins unlike bulk where Neel's collinear spin alignment is expected. For CoFe2O 4, both morphologies show lack of saturation up to 7T of applied field and magnetic irreversibility exists up to 7T of cooling fields for the entire temperature range (10 to 300K). These effects are explained in terms of temperature dependent large bulk anisotropy constant of CoFe2O4. Strong influence of uncompensated spins for particles with hollow morphology is characterized by cooling the sample in large fields, up to (9T). Magnitude of horizontal shift is more than three times larger compared to that of particles with solid morphology. 11% vertical shift for particles with hollow morphology is observed, whereas solid particles do not show corresponding shift. Finally, off-stoichiometric NiFe2O4 films prepared by pulsed laser deposition at low pressures and relatively high substrate temperatures were studied. Details of electronic structure of the films are presented and compared with stoichiometric bulk counterpart. Significant amount of oxygen vacancies and enhanced cationic inversion for non-stoichiometric thin films is observed. Films show spin glass features which are contrary to the usual ferrimagnetic response of the bulk nickel ferrite and spin freezing temperature which lies above room temperature in low fields (cooling field 0.1T). Interestingly, an exceptionally large exchange bias of 170 Oe at a significantly higher temperature (50K) is measured in cooling field of 3T. This is surprising since no secondary magnetic phase were present in the target and films. In comparison, bulk samples do not show EB and magnetic irreversibility vanishes in significantly weaker fields (i.e., few kOe). Role of oxygen vacancies is to induce spin canting by destabilizing indirect super exchange interaction. Consequently, the spin-glass like behavior occurs that is coupled with huge suppression in saturation magnetization in the thin films. Observation of exchange bias is explained to be due to oxygen vacancies (hence non-stoichiometry) which generates random anisotropy in exchange coupled grains. (Abstract shortened by UMI.)

  17. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    PubMed

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, Jos Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  18. Studying femtosecond-laser hyperdoping by controlling surface morphology

    SciTech Connect

    Winkler, Mark T.; Sher, Meng-Ju; Lin Yuting; Zhang, Haifei; Smith, Matthew J.; Gradecak, Silvija; Mazur, Eric

    2012-05-01

    We study the fundamental properties of femtosecond-laser (fs-laser) hyperdoping by developing techniques to control the surface morphology following laser irradiation. By decoupling the formation of surface roughness from the doping process, we study the structural and electronic properties of fs-laser doped silicon. These experiments are a necessary step toward developing predictive models of the doping process. We use a single fs-laser pulse to dope silicon with sulfur, enabling quantitative secondary ion mass spectrometry, transmission electron microscopy, and Hall effect measurements. These measurements indicate that at laser fluences at or above 4 kJ m{sup -2}, a single laser pulse yields a sulfur dose >(3 {+-} 1) x 10{sup 13} cm{sup -2} and results in a 45-nm thick amorphous surface layer. Based on these results, we demonstrate a method for hyperdoping large areas of silicon without producing the surface roughness.

  19. DCLK1 Marks a Morphologically Distinct Subpopulation of Cells with Stem Cell Properties in Pre-invasive Pancreatic Cancer

    PubMed Central

    Bailey, Jennifer M.; Alsina, Janivette; Rasheed, Zeshaan A.; McAllister, Florencia M.; Fu, Ya-Yuan; Plentz, Ruben; Zhang, Hao; Pasricha, Pankaj J.; Bardeesy, Nabeel; Matsui, William; Maitra, Anirban; Leach, Steven D.

    2014-01-01

    Background & Aims As in other tumor types, progression of pancreatic cancer may require a functionally unique population of cancer stem cells. Although such cells have been identified in many invasive cancers, is not clear whether they emerge during early or late stages of tumorigenesis. Using mouse models and human pancreatic cancer cell lines, we investigated whether pre-invasive pancreatic neoplasia contains a subpopulation of cells with distinct morphologies and cancer stem cell-like properties. Methods Pancreatic tissue samples were collected from the KCPdx1, KPCPdx1, and KCiMist1 mouse models of pancreatic intraepithelial neoplasia (PanIN) and analyzed by confocal and electron microscopy, lineage tracing, and fluorescence-activated cell sorting. Subpopulations of human PDAC cells were similarly analyzed and also used in cDNA microarray analyses. Results The microtubule regulator DCLK1 marked a morphologically distinct and functionally unique population of pancreatic cancer-initiating cells. These cells displayed morphologic and molecular features of gastrointestinal tuft cells. Cells that expressed DCLK1 also expressed high levels of ATAT1, HES1, HEY1, IGF1R, and ABL1, and manipulation of these pathways in PDAC cell lines inhibited their clonogenic potential. Pharmacologic inhibition of ?secretase activity reduced the abundance of these cells in murine PanIN, in a manner that correlated with inhibition of PanIN progression. Conclusions Human PDAC cells and pancreatic neoplasms in mice contain morphologically and functionally distinct subpopulations that have cancer stem cell-like properties. These populations can be identified at the earliest stages of pancreatic tumorigenesis, and provide new cellular and molecular targets for pancreatic cancer treatment and/or chemoprevention. PMID:24096005

  20. Marked difference in self-assembly, morphology, and cell viability of positional isomeric dipeptides generated by reversal of sequence.

    PubMed

    Kar, Sudeshna; Tai, Yian

    2015-02-01

    In this study two positional isomeric dipeptides Boc-m-ABA-Aib-OMe () and Boc-Aib-m-ABA-OMe () synthesized by reversal of the positions of two rigid amino acids (m-ABA: m-aminobenzoic acid, Aib: ?-aminoisobutyric acid) showed marked difference in morphology under the same environmental conditions. Investigation of single crystal structures reveals the difference in crystal packing and higher order self-assembly pattern for both the isomeric peptides, which might be the responsible factor for their different morphological patterns. Moreover, these isomeric dipeptides have produced different cellular viability effects towards normal bone cells. These two peptides would have utilities in the model study of isomeric peptides/proteins, where morphological difference under identical conditions brings changes in their individual bio-activities and where the reversal of sequence causes different cellular viability and generates health hazard. PMID:25574757

  1. Morphological analysis of osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures.

    PubMed

    Gardner, Colin R

    2007-07-01

    Under the influence of RANKL, in the presence of M-CSF, monocyte/macrophage precursor cells entered the osteoclast lineage and expressed the osteoclast marker tartrate-resistant acid phosphatase (TRAP). These cells were motile and began to differentiate by contacting and fusing together, initially forming cells with several nuclei. All sizes of cells continued to fuse, forming larger cells with more than 6 and as many as 50 nuclei. The degree of osteoclastogenesis was related to the concentration of RANKL. High cell density changed osteoclast morphology from a more rounded form with cytoplasm extended all round the cell to a form with cytoplasm concentrated around the nuclei and more restricted multiple cytoplasmic extensions. At optimal cell density and RANKL concentrations the large numbers of rounded cells fused into large cytoplasmic masses. On reaching a critical size, osteoclasts assumed a spread morphology with a peripheral ring structure. Most of the nuclei were associated with the peripheral ring. When cytoplasmic masses were present, rings also formed within the mass, often with no contact with the cell periphery. All forms of RANKL-induced osteoclastogenesis were blocked by the endogenous decoy receptor osteoprotegerin and were also strongly reduced by calcitonin, with the later arriving morphological categories being the first to disappear. PMID:17303447

  2. Investigation of cell morphology for disease diagnostics via high content screening

    NASA Astrophysics Data System (ADS)

    Khatau, Shyam

    2013-03-01

    Ninety percent of all cancer-related deaths are caused by metastatic disease, i.e. the spreading of a subset of cells from a primary tumor in an organ to distal sites in other organs. Understanding this progression from localized to metastatic disease is essential for further developing effective therapeutic and treatment strategies. However, despite research efforts, no distinct genetic, epigenetic, or proteomic signature of cancer metastasis has been identified so far. Metastasis is a physical event: through invasion and migration through the dense, tortuous stromal matrix, intravasation, shear forces of blood flow, successful re-attachment to blood vessel walls, migration, the colonization of a distal site, and, finally, reactivation following dormancy, metastatic cells may share precise physical properties. Cell morphology is the most direct physical property that can be measured. In this work, we develop a high throughput cell phenotyping process and investigate the morphological signature of primary tumor cells and liver metastatic pancreatic cancer cells.

  3. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.

    PubMed

    Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M

    2011-04-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID:21091338

  4. Altered terminal Schwann cell morphology precedes denervation in SOD1 mice.

    PubMed

    Carrasco, Dario I; Seburn, Kevin L; Pinter, Martin J

    2016-01-01

    In mice that express SOD1 mutations found in human motor neuron disease, degeneration begins in the periphery for reasons that remain unknown. At the neuromuscular junction (NMJ), terminal Schwann cells (TSCs) have an intimate relationship with motor terminals and are believed to help maintain the integrity of the motor terminal. Recent evidence indicates that TSCs in some SOD1 mice exhibit abnormal functional properties, but other aspects of possible TSC involvement remain unknown. In this study, an analysis of TSC morphology and number was performed in relation to NMJ innervation status in mice which express the G93A SOD1 mutation. At P30, all NMJs of the fast medial gastrocnemius (MG) muscle were fully innervated by a single motor axon but 50% of NMJs lacked TSC cell bodies and were instead covered by the processes of Schwann cells with cell bodies located on the preterminal axons. NMJs in P30 slow soleus muscles were also fully innervated by single motor axons and only 5% of NMJs lacked a TSC cell body. At P60, about 25% of MG NMJs were denervated and lacked labeling for TSCs while about 60% of innervated NMJs lacked TSC cell bodies. In contrast, 96% of P60 soleus NMJs were innervated while 9% of innervated NMJs lacked TSC cell bodies. The pattern of TSC abnormalities found at P30 thus correlates with the pattern of denervation found at P60. Evidence from mice that express the G85R SOD1 mutation indicate that TSC abnormalities are not unique for mice that express G93A SOD1 mutations. These results add to an emerging understanding that TSCs may play a role in motor terminal degeneration and denervation in animal models of motor neuron disease. PMID:26416261

  5. Fibrocartilage Tissue Engineering: The Role of the Stress Environment on Cell Morphology and Matrix Expression

    PubMed Central

    Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L.; Pryse, Kenneth M.; Marquez, Juan Pablo; Genin, Guy M.

    2011-01-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID:21091338

  6. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.

    PubMed

    Gotté, Maxime; Ghosh, Rajgourab; Bernard, Sophie; Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Hara-Nishimura, Ikuko; Driouich, Azeddine

    2015-01-01

    The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of β-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells. PMID:25305245

  7. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells

    PubMed Central

    Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun

    2015-01-01

    Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization. PMID:26690915

  8. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity.

    PubMed

    Bober, Brian G; Love, James M; Horton, Steven M; Sitnova, Mariya; Shahamatdar, Sina; Kannan, Ajay; Shah, Sameer B

    2015-04-01

    Acute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response. Cells were exposed to hyper- or hypoosmotic media and morphological and cytoskeletal responses were recorded. Hyperosmotic shock resulted in a drop in cell body volume and planar area, a persisting shape deformation, and increases in cellular translocation. Hypoosmotic shock did not significantly alter planar area, but caused a transient increase in cell body volume and an increase in cellular translocation via the development of small protrusions rich in actin. Disruption of the actin-myosin network with latrunculin and blebbistatin resulted in changes to volume and shape regulation, and a decrease in cellular translocation. In both osmotic perturbations, no apparent disruptions to cytoskeletal integrity were observed by light microscopy. Overall, because osmotically induced changes persisted even after volume regulation occurred, it is possible that osmotic stress may play a larger role in neurological dysfunction than currently believed. PMID:25809276

  9. Morphological study and comprehensive cellular constituents of milky spots in the human omentum

    PubMed Central

    Liu, Jiu-Yang; Yuan, Jing-Ping; Geng, Xia-Fei; Qu, Ai-Ping; Li, Yan

    2015-01-01

    Objective: To analyze morphological features of omental milky spots (MS). Method: Hematoxylin-eosin staining and immunohistochemistry technique were used to study the omental MS of gastric cancer (GC) patients and rectal cancer (RC) patients. We focused on morphological features of MS and conducted quantitative analysis on the cells number and cellular constituents. Differences in MS parameters between GC and RC were also analyzed. Results: Various shapes of MS were mainly round, oval, irregular form in the adipose and perivascular annular. The median MS perimeter was 2752 (range 817~7753) computer-based pixels. The median value of immune cells in one MS was 141 (43~650), comprising T lymphocytes (46.1%), B lymphocytes (28.4%), macrophages (12.4%) and other immune cells (13.1%). Relatively high density of vessels in MS could be calculated by micro-vessel density (MVD) as 4 (0~13). The median value of mesothelial cells loosely arranged in the surface layer was 5 (0~51). There were no significant differences in MS perimeter, MVD, the number of mesothelial cells, total immune cells, T lymphocytes and macrophages between GC and RC (P>0.05), while the number of MS B lymphocytes in RC was significantly higher than that in GC (P<0.001). Conclusion: MS are primary immune tissues in the omentum and structural bases for development and progression of peritoneal dissemination of GC and RC. Analyzing the morphology and cellular constituents could help understanding the mechanism of peritoneal metastasis. PMID:26722479

  10. Morphological characteristics and identification of islet-like cells derived from rat adipose-derived stem cells cocultured with pancreas adult stem cells.

    PubMed

    Hefei, Wang; Yu, Ren; Haiqing, Wu; Xiao, Wang; Jingyuan, Wang; Dongjun, Liu

    2015-03-01

    Diabetes is a significant public health problem that can be treated with insulin therapy; however, therapies designed to cure diabetes are limited. The goal of the current study was to assess the potential for curative treatment of diabetes using adipose-derived stem cells (ADSCs). To achieve this goal, the differentiation of rat ADSCs into pancreatic islet-like cells induced by coculture with pancreatic adult stem cells (PASCs) was characterized. Differentiation of ADSCs into islet-like cells induced by coculturing was determined morphologically, as well as by the assessment of islet cell markers using dithizone staining, immunohistochemistry, RT-PCR, qPCR, and western blotting. The results showed that ADSCs formed islet-like round cell masses after coculture with PASCs. These differentiated cells were shown to be positive for islet cell markers, including dithizone incorporation; PDX1, CK19 and Nestin by immunohistochemistry, and insulin, PDX1 and glucagon expression by RT-PCR. Differentiated ADSCs induced by coculturing also expressed insulin at the mRNA and protein level, with the level of insulin mRNA expression in cocultured ADSCs being 0.05 times greater than that of PASCs (P?cells by coculture with PASCs; thus these cells can be used for transplantation, providing a theoretical foundation for the treatment of diabetes using this approach. PMID:25262665

  11. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mlder, Anna; Tassidis, Helena; Hrknen, Pirkko; Falck Miniotis, Maria; Gjrloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. PMID:25637284

  12. Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells.

    PubMed

    Xi, Jun; Wu, Zhaoxin; Dong, Hua; Xia, Bin; Yuan, Fang; Jiao, Bo; Xiao, Lixin; Gong, Qihang; Hou, Xun

    2015-06-28

    Recently, inverted planar heterojunction (PHJ) perovskite solar cells have been developed rapidly by numerous preparations and relative optimizations. Sequential solution deposition is easy to manipulate but it is difficult to control the thickness and morphology of perovskite films. In this article, we report an improved sequential deposition, named twice dipping-vapor solution deposition (TD-VSD) technology, to accurately achieve superior perovskite films. It is demonstrated that the morphology of perovskite films depended on the substrate temperatures as well as the dipping times. The resulting solar cells showed the power conversion efficiency as high as 11.77% based on the ideal thickness and morphology. This work provides a simple but effective fabrication to well control the perovskite films and enhance the power conversion efficiency for inverted PHJ solar cells. PMID:26030406

  13. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation. PMID:9868868

  14. Morphological Changes and Antibiotic-Induced Thermal Resistance in Vegetative Cells of Bacillus subtilis

    PubMed Central

    Dul, Michael J.; McDonald, William C.

    1971-01-01

    The morphology and thermal resistance of vegetative cells of Bacillus subtilis W168 were examined after growth at 37 and 53 C. Vegetative cells grown at 37 C exhibited a typical trilaminar morphology, whereas cells grown at 53 C exhibited a cell wall which was apparently thicker and more loosely organized and had a poorly defined periphery. A concurrent increase in thermal resistance to a heat shock of 60 C occurs with the change in cell wall morphology. The change to the aberrant cell wall form, or its reversal to the normal form, is always accompanied by the gain or the loss of thermal resistance, respectively. The inhibition of protein synthesis by chloramphenicol has little effect upon the acquisition of thermal resistance at 53 C. Addition of the disaccharide pentapeptide subunit to the cell wall peptidoglycan is apparently essential to growth at 53 C and the acquisition of thermal resistance, since both growth and thermal resistance are inhibited by bacitracin. Two antibiotics, penicillin and cycloserine, which inhibit the final cross-linking of the cell wall peptidoglycan at two separate points, do not affect the acquisition of thermal resistance at 53 C. These same antibiotics induce a high degree of thermal resistance at 37 C. It is proposed that a change in the cell wall structure is related to an increased thermal resistance. Images PMID:4995654

  15. Massive obesity and the kidney. A morphologic and statistical study.

    PubMed Central

    Cohen, A. H.

    1975-01-01

    The renal morphology of 5 grossly obese patients with normal renal function and many of the features of the Pickwickian syndrome was studied at autopsy. The most striking feature was that of increased glomerular size. Measurements of two parameters of glomerular areas indicated statistically significant glomerular enlargement for both as compared to controls. Glomerulomegaly was primarily the result of vascular dilatation and a variable mesangial component. This abnormality was related to several factors, including increased blood volume, hypoxia, and increased right ventricular pressure. Polycythemia, commonly noted in other similar conditions with glomerulomegaly, is believed to be of no importance in the pathogenesis of glomerular enlargement. Images Figure 3-6 Figure 1 Figure 2 PMID:1180328

  16. Morphology of alkali halide thin films studied by AFM

    NASA Astrophysics Data System (ADS)

    Golek, F.; Mazur, P.; Ryszka, Z.; Zuber, S.

    2006-04-01

    Thin layers of alkali halides were investigated by atomic force microscope (AFM). The studied systems were: LiBr/KBr(0 0 1) with -16.7% misfit, LiF/Si(0 0 1) with +4.4% misfit, LiBr/LiF(0 0 1) with +36.8% misfit and NaCl/Si(0 0 1) with +46.5% misfit. The results show that the surface morphology strongly depends on the temperature of layer formation. The alkali halides deposited on the foreign substrate at elevated temperatures or at room temperature and subsequently annealed form preferentially 3D islands leaving uncovered substrate areas between them. It is suggested that Ostwald ripening takes place at elevated temperatures.

  17. The acetabular point: a morphological and ontogenetic study

    PubMed Central

    RISSECH, C.; SAUDO, J. R.; MALGOSA, A.

    2001-01-01

    The acetabular point was analysed by studying human pelvic bones from 326 individuals ranging from newborns to age 97 y. The bones were categorised into 3 groups according to the degree of fusion for the 3 elements of the pelvis: nonfused (59), semifused (5) and fused (262). The acetabular point in immature pelvic bones is clearly represented by the point of the fusion lines for each bony element at the level of the acetabular fossa. In adult pelvic bones the acetabular fossa has an irregular clover-leaf shape, the superior lobe being smaller than the anterior and posterior lobes. Cross-sectional analysis of acetabular morphology suggested that the acetabular point in adult pelvic bones is always represented by the indentation between the superior and the anterior lobes of the acetabular fossa. PMID:11465866

  18. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24mV/decade and 2.51, 5.62 and 4.85?molL?1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.0110.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  19. Morphological and molecular study of Symphyla from Colombia.

    PubMed

    Salazar-Moncada, Diego A; Calle-Osorno, Jaime; Ruiz-Lopez, Freddy

    2015-01-01

    The symphylans are a poorly studied group. In Colombia the number of symphylan species is unknown with only Scutigerellaimmaculata (Symphyla: Scutigerellidae) being reported previously. The aim of this research was to collect and identify the symphylan pests of flower crops in Colombia. Morphological descriptions showed that our specimens shared more than one of the characters that define different genera within Scutigerellidae. The COI barcode haplotype showed interspecific level genetic divergence with Scutigerellacauseyae (at least 23%) and Hanseniella sp. (22%). Furthermore, our Colombian symphylans shared the same COI haplotype as some Symphyla found in Cameroon indicating a wide geographical distribution of this taxon. Our results suggest the presence of a new genus or subgenus in the class Symphyla. PMID:25829846

  20. Morphological and molecular study of Symphyla from Colombia

    PubMed Central

    Salazar-Moncada, Diego A.; Calle-Osorno, Jaime; Ruiz-Lopez, Freddy

    2015-01-01

    Abstract The symphylans are a poorly studied group. In Colombia the number of symphylan species is unknown with only Scutigerella immaculata (Symphyla: Scutigerellidae) being reported previously. The aim of this research was to collect and identify the symphylan pests of flower crops in Colombia. Morphological descriptions showed that our specimens shared more than one of the characters that define different genera within Scutigerellidae. The COI barcode haplotype showed interspecific level genetic divergence with Scutigerella causeyae (at least 23%) and Hanseniella sp. (22%). Furthermore, our Colombian symphylans shared the same COI haplotype as some Symphyla found in Cameroon indicating a wide geographical distribution of this taxon. Our results suggest the presence of a new genus or subgenus in the class Symphyla. PMID:25829846

  1. Current morphologic criteria perform poorly in identifying hereditary leiomyomatosis and renal cell carcinoma syndrome-associated uterine leiomyomas.

    PubMed

    Alsolami, Sana; El-Bahrawy, Mona; Kalloger, Steve E; AlDaoud, Nagla; Pathak, Tilak B; Chung, Catherine T; Cheung, Catherine T; Mulligan, Anna Marie; Tomlinson, Ian P; Pollard, Patrick J; Gilks, C Blake; McCluggage, W Glenn; Clarke, Blaise A

    2014-11-01

    The contemporary oncologic pathology report conveys diagnostic, prognostic, predictive, and hereditary predisposition information. Each component may be premised on a morphologic feature or a biomarker. Clinical validity and reproducibility are paramount as is standardization of reporting and clinical response to ensure individualization of patient care. Regarding hereditary predisposition, morphology-based genetic referral systems in some instances have eclipsed genealogy-based systems, for example, cell type in ovarian cancer and BRCA screening. In other instances such as Lynch syndrome, morphology-based schemas supplement clinical schemas and there is an emerging standard of care for reflex biomarker testing. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome predisposes patients to uterine and cutaneous leiomyomas (LMs) and renal cell carcinomas (RCCs). Several authors have emphasized the role pathologists may play in identifying this syndrome by recognizing the morphologic characteristics of syndromic uterine LMs and RCCs. Recently immunohistochemical overexpression of S-(2-succinyl) cysteine (2SC) has been demonstrated as a robust biomarker of mutation status in tumors from HLRCC patients. In this blinded control-cohort study we demonstrate that the proposed morphologic criteria used to identify uterine LMs in HLRCC syndrome are largely irreproducible among pathologists and lack sufficient robustness to serve as a trigger to triage cases for 2SC immunohistochemistry or patients for further family/personal history inquiry. Although refinement of morphologic criteria can be considered, in view of the availability of a clinically robust biomarker, consideration should be given to reflex testing of uterine LMs with an appropriate age cut off or in the setting of a suspicious family history. PMID:25272294

  2. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; de Almeida Engler, Janice

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle. PMID:26659954

  3. Magnetic Resonance Imaging Study on Blebs Morphology of Ahmed Valves

    PubMed Central

    Ferreira, Joana; Fernandes, Fernando; Patricio, Madalena; Brás, Ana; Rios, Cristina; Stalmans, Ingeborg

    2015-01-01

    ABSTRACT Purpose: To determine the morphometric parameters of filtration blebs of a valved aqueous humor drainage device. Materials and methods: Orbital magnetic resonances imaging (MRI) was taken after implantation of an Ahmed valve (FP7 model). Outcomes of the analysis were intraocular pressure (IOP) and the bleb’s morphometric analysis (volume, height, major and minor axis). Associations between IOP and the imaging-related study variables were explored by Spearman’s correlation test. Results: Eleven patients underwent orbital MRI examination. Recordings were taken after a mean of 2.7 months (1-6 months) after surgery. IOP was significantly lower than its preoperative values (17.6 ± 6.4 mm Hg vs 36.1 ± 6.4 mm Hg, p < 0.01). Mean bleb volume was 856.9 ± 261 mm3 and its height, major and minor axis were 5.77 ± 1.9, 14.8 ± 2.9 and 8.14 ± 3.6 mm, respectively. A positive correlation was detected between IOP and mean height (r = 0.77, p = 0.048) and major axis (r = 0.83, p = 0.03). Interestingly, the overall bleb volume was related to IOP levels immediately prior to surgery (r = 0.75, p < 0.01). Additionally, the posterior part of the plate was found to be displaced from the scleral surface in five cases (45%). Conclusion: Ahmed valve’s bleb morphology seems to correlate with both the pre- and postoperative IOP, which might suggest a clinical benefit of administering aqueous suppressants pre- as well as postoperatively. The plate of the device may show a significant dislocation from its initial surgical implantation site. How to cite this article: Ferreira J, Fernandes F, Patricio M, Brás A, Rios C, Stalmans I, Pinto LA. Magnetic Resonance Imaging Study on Blebs Morphology of Ahmed Valves. J Curr Glaucoma Pract 2015;9(1):1-5.

  4. Morphologic, molecular, and ultrastructural characterization of a feline synovial cell sarcoma and derived cell line.

    PubMed

    Cazzini, Paola; Frontera-Acevedo, Karelma; Garner, Bridget; Howerth, Elizabeth; Torres, Bryan; Northrup, Nicole; Sakamoto, Kaori

    2015-05-01

    A 2.5-year-old, male, neutered cat presented with a 5-month history of progressive right hind limb lameness and an enlarged right popliteal lymph node. Radiographs revealed significant bony lysis of the tarsus and distal tibia, and fine-needle aspirate of the bone lesion and lymph node revealed a neoplastic population of cells with uncertain origin. Amputation was elected, and the mass was submitted for histology and cellular culture for better characterization. Histologic examination revealed a mixture of spindle-shaped cells and larger, round to polygonal cells. All cells were immunoreactive for vimentin, and only the larger polygonal cells were also positive for cytokeratin. All cells were negative for desmin, smooth muscle actin, cluster of differentiation (CD)3, CD18, CD79a, macrophage antibody (MAC)387, and glial fibrillary acidic protein. Cultured neoplastic cells failed to express CD18, and were not able to secrete the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1 (IL-1)β, and IL-6 when stimulated by lipopolysaccharide, disproving that the cells originated from the macrophage or monocyte line. Ultrastructurally, neoplastic cells were characterized by abundant rough endoplasmic reticulum, interdigitating cellular processes, and membrane condensations. Based on location and cytologic, histologic, ultrastructural, and functional studies, this neoplasm was considered a synovial cell sarcoma. PMID:25901004

  5. VMP1-deficient Chlamydomonas exhibits severely aberrant cell morphology and disrupted cytokinesis

    PubMed Central

    2014-01-01

    Background The versatile Vacuole Membrane Protein 1 (VMP1) has been previously investigated in six species. It has been shown to be essential in macroautophagy, where it takes part in autophagy initiation. In addition, VMP1 has been implicated in organellar biogenesis; endo-, exo- and phagocytosis, and protein secretion; apoptosis; and cell adhesion. These roles underly its proven involvement in pancreatitis, diabetes and cancer in humans. Results In this study we analyzed a VMP1 homologue from the green alga Chlamydomonas reinhardtii. CrVMP1 knockdown lines showed severe phenotypes, mainly affecting cell division as well as the morphology of cells and organelles. We also provide several pieces of evidence for its involvement in macroautophagy. Conclusion Our study adds a novel role to VMP1's repertoire, namely the regulation of cytokinesis. Though the directness of the observed effects and the mechanisms underlying them remain to be defined, the protein's involvement in macroautophagy in Chlamydomonas, as found by us, suggests that CrVMP1 shares molecular characteristics with its animal and protist counterparts. PMID:24885763

  6. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    PubMed Central

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity in vivo since it inhibits ECs in vitro with a morphology resembling that obtained with antibodies to VEGF. PMID:24202320

  7. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  8. Nodular lymphocyte-predominant hodgkin lymphoma with atypical T cells: a morphologic variant mimicking peripheral T-cell lymphoma.

    PubMed

    Sohani, Aliyah R; Jaffe, Elaine S; Harris, Nancy Lee; Ferry, Judith A; Pittaluga, Stefania; Hasserjian, Robert P

    2011-11-01

    Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a distinct Hodgkin lymphoma subtype composed of few neoplastic lymphocyte-predominant (LP) cells in a background of reactive small B and T cells. We have seen occasional NLPHL cases that contain background T cells with prominent cytologic atypia, raising the differential diagnosis of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) or a composite lymphoma. We sought to characterize the clinicopathologic features of such cases. Eleven NLPHL cases with atypical T cells diagnosed from 1977 to 2010 were identified at 2 institutions and compared with 24 control NLPHL cases lacking atypical T cells. All 9 male patients and 2 female patients presented with localized peripheral lymphadenopathy. In comparison with control patients, they were younger (median age, 13.8 vs. 36.1 y; P=0.015), with more frequent cervical lymph node involvement (54.5% vs. 8.3%, P=0.015). In all 11 cases, areas of NLPHL with typical B-cell-rich nodules containing LP cells were present. Nine cases contained sheets of atypical T cells surrounding primary and secondary follicles in a pattern mimicking the T-zone pattern of PTCL-NOS; the remaining 2 cases contained atypical T cells presented as large clusters at the periphery of B-cell-rich nodules. In all cases, the atypical T-cell-rich areas contained rare scattered LP cells, which were IgD in 5 of 7 cases (71.4%). The atypical T cells showed no pan-T-cell antigen loss or aberrant T-cell antigen expression in any case, and polymerase chain reaction or Southern blot analysis showed no evidence of T-cell clonality in 6 cases tested. The atypical T cells exhibited a variable immunophenotype with respect to germinal center, follicular T-helper, T-regulatory, and cytotoxic T-cell markers. Among 8 patients with clinical follow-up (median follow-up: 6.4 y), 5 patients had recurrent NLPHL at 6 months to 12 years after diagnosis and 6 patients are alive without disease at 9 months to 18 years after diagnosis. In comparison with control patients, NLPHL patients with atypical T cells were more likely to develop recurrent NLPHL (71.4% vs. 13.6%, P=0.008) and to have a shorter time to relapse (P=0.04). Our findings suggest that some cases of NLPHL, occurring predominantly in younger patients, contain prominent populations of morphologically atypical T cells that may raise the possibility of concurrent nodal involvement by PTCL-NOS, a rare diagnosis in children. The clinical behavior of these cases appears similar to that of NLPHL with T-cell-rich diffuse areas, with a higher risk of disease recurrence and no difference in overall survival; however, this finding warrants confirmation in studies of larger numbers of patients. PMID:21997687

  9. Altered Dendritic Morphology of Purkinje cells in Dyt1 ?GAG Knock-In and Purkinje Cell-Specific Dyt1 Conditional Knockout Mice

    PubMed Central

    Zhang, Lin; Yokoi, Fumiaki; Jin, Yuan-Hu; DeAndrade, Mark P.; Hashimoto, Kenji; Standaert, David G.; Li, Yuqing

    2011-01-01

    Background DYT1 early-onset generalized dystonia is a neurological movement disorder characterized by involuntary muscle contractions. It is caused by a trinucleotide deletion of a GAG (?GAG) in the DYT1 (TOR1A) gene encoding torsinA; the mouse homolog of this gene is Dyt1 (Tor1a). Although structural and functional alterations in the cerebellum have been reported in DYT1 dystonia, neuronal morphology has not been examined in vivo. Methodology/Principal Findings In this study, we examined the morphology of the cerebellum in Dyt1 ?GAG knock-in (KI) mice. Golgi staining of the cerebellum revealed a reduction in the length of primary dendrites and a decrease in the number of spines on the distal dendrites of Purkinje cells. To determine if this phenomenon was cell autonomous and mediated by a loss of torsinA function in Purkinje cells, we created a knockout of the Dyt1 gene only in Purkinje cells of mice. We found the Purkinje-cell specific Dyt1 conditional knockout (Dyt1 pKO) mice have similar alterations in Purkinje cell morphology, with shortened primary dendrites and decreased spines on the distal dendrites. Conclusion/Significance These results suggest that the torsinA is important for the proper development of the cerebellum and a loss of this function in the Purkinje cells results in an alteration in dendritic structure. PMID:21479250

  10. Morphological and Compositional (S)TEM Analysis of Multiple Exciton Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Wisnivesky-Rocca-Rivarola, F.; Davis, N. J. L. K.; Bohm, M.; Ducati, C.

    2015-10-01

    Quantum confinement of charge carriers in semiconductor nanocrystals produces optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells. One of these properties is the efficient formation of more than one electron-hole pair from a single absorbed photon, in a process called multiple exciton generation (MEG). In this work we studied the morphology of nanocrystal multilayers of PbSe treated with CdCl2 using complementary imaging and spectroscopy techniques to characterise the chemical composition and morphology of full MEG devices made with PbSe nanorods (NRs). IN the scanning TEM (STEM), plan view images and chemical maps were obtained of the nanocrystal layers, which allowed for the analysis of crystal structure and orientation, as well as size distribution and aspect ratio. These results were complemented by cross-sectional images of full devices, which allowed accessing the structure of each layer that composes the device, including the nanorod packing in the active nanocrystal layer.

  11. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  12. Coupling actin flow, adhesion, and morphology in a computational cell motility model

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2014-03-01

    Eukaryotic cells crawl by means of the coordinated spatiotemporal dynamics of an active polymer gel, consisting of actin, myosin and regulators thereof. Motility is necessarily coupled to shape, as the force generating mechanisms such as polymerization-based protrusions interact with the elasticity of the cell membrane and thereby determine the cell morphology. We have introduced a ``phase-field'' model of crawling cells, utilizing a mathematical approach originally developed for morphology problems arising in the field of liquid-solid phase transitions. Our model can be used to explain the pattern of traction forces applied to the substrate as well as some recent observations concerning oscillatory instabilities of cells moving on one-dimensional fiber tracks.

  13. Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology.

    PubMed

    Bonnefont-Rebeix, Catherine; Fournel-Fleury, Corinne; Ponce, Frdrique; Belluco, Sara; Watrelot, Dorothe; Bouteille, Sylvie E; Rapiteau, Sylvie; Razanajaona-Doll, Diane; Pin, Jean-Jacques; Leroux, Caroline; Marchal, Thierry

    2016-01-01

    Dogs with lymphoma are established as good model for human non-Hodgkin lymphoma studies. Canine cell lines derived from lymphomas may be valuable tools for testing new therapeutic drugs. In this context, we established a canine T-cell line, PER-VAS, from a primary aggressive T-cell lymphoma with large granular morphology. Flow cytometric analysis revealed a stable immunophenotype: PER-VAS cells were positively labelled for CD5, CD45, MHC II and TLR3, and were negative for CD3, CD4 and CD8 expression. Although unstable along the culture process, IL-17 and MMP12 proteins were detectable as late as at passages 280 and 325i.e. respectively 24 and 29 months post isolation. At passage 325, PER-VAS cells maintained the expression of IL-17, CD3, CD56, IFN? and TNF? mRNAs as shown by RT-PCR analysis. Stable rearrangement of the TCR? gene has been evidenced by PCR. PER-VAS cells have a high proliferation index with a doubling time of 16.5h and were tumorigenic in Nude mice. Compared to the canine cell lines already reported, PER-VAS cells display an original expression pattern, close to NKT cells, which makes them valuable tools for in vitro comparative research on lymphomas. PMID:26345430

  14. Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex.

    PubMed

    Romand, Sandrine; Wang, Yun; Toledo-Rodriguez, Maria; Markram, Henry

    2011-01-01

    The thick-tufted layer V pyramidal (TTL5) neuron is a key neuron providing output from the neocortex. Although it has been extensively studied, principles governing its dendritic and axonal arborization during development are still not fully quantified. Using 3-D model neurons reconstructed from biocytin-labeled cells in the rat somatosensory cortex, this study provides a detailed morphological analysis of TTL5 cells at postnatal day (P) 7, 14, 21, 36, and 60. Three developmental periods were revealed, which were characterized by distinct growing rates and properties of alterations in different compartments. From P7 to P14, almost all compartments grew fast, and filopodia-like segments along apical dendrite disappeared; From P14 to P21, the growth was localized on specified segments of each compartment, and the densities of spines and boutons were significantly increased; From P21 to P60, the number of basal dendritic segments was significantly increased at specified branch orders, and some basal and oblique dendritic segments were lengthened or thickened. Development changes were therefore seen in two modes: the fast overall growth during the first period and the slow localized growth (thickening mainly on intermediates or lengthening mainly on terminals) at the subsequent stages. The lengthening may be accompanied by the retraction on different segments. These results reveal a differential regulation in the arborization of neuronal compartments during development, supporting the notion of functional compartmental development. This quantification provides new insight into the potential value of the TTL5 morphology for information processing, and for other purposes as well. PMID:21369363

  15. Electrochemical loading of TEM grids used for the study of potential dependent morphology of polyaniline nanofibres.

    PubMed

    Bhadu, Gopala Ram; Paul, Anirban; Perween, Mosarrat; Gupta, Rajeev; Chaudhari, Jayesh C; Srivastava, Divesh N

    2016-03-01

    An electrochemical method for loading electroactive materials over the TEM grid is reported. The protocol has been demonstrated using polyaniline as an example. The electroactive polymer was directly deposited over the Au TEM grid, used as working electrode in a 3 electrode electrochemical cell. The undisturbed as-deposited morphologies under the influence of various counter ions and ex situ electrochemical states have been studied and compared. Contrary to behaviour in bulk the individual polyaniline fibre was found thinner at anodic potentials. The movement of counter ions as a function of the electrochemical state of the polymer was studied using STEM-EDX elemental mapping. PMID:26694198

  16. Exocytosis in normal anterior pituitary cells. Quantitative correlation between growth hormone release and the morphological features of exocytosis.

    PubMed Central

    Draznin, B; Dahl, R; Sherman, N; Sussman, K E; Staehelin, L A

    1988-01-01

    We have used high-pressure freezing techniques to study exocytosis in rat anterior pituitary cells. The cells were either unstimulated or exposed to 1 nM growth hormone releasing factor (GRF) for 10 min before ultrarapid freezing. The magnitude of growth hormone (GH) release was then correlated with the number of exocytotic events observed with freeze-fracture electron microscopy. High-pressure freezing of unfixed and uncryoprotected specimens permits cryofixation of samples up to 1 mm diam (0.5 mm thick) without ice crystal damage, and arrests exocytotic events within 10 ms. Our studies comparing conventionally fixed specimens with those prepared by high-pressure freezing confirm that areas of intramembrane particle clearing at potential exocytotic sites are an artifact of conventional fixation and/or cryoprotection techniques. The cells exposed to 1 nM GRF released approximately fivefold more GH than did unstimulated cells. Morphologically, we have observed a 3.3-fold increase in the number of exocytotic events in GRF-stimulated cells, 33.7 events/100 micron2 compared with 10.4 events/100 micron2 for unstimulated cells. In additional experiments, we studied the effects of two inhibitors of GRF-induced exocytosis, somatostatin and sodium isethionate. Both compounds elicit the same response, a parallel decrease in exocytotic events and in secreted product. We conclude that high-pressure freezing, combined with freeze-fracture and freeze-substitution processing techniques, is an excellent tool for studying the morphological aspects of exocytosis. In the present investigation, it has allowed us to quantitatively relate the biochemistry and morphology of exocytosis in anterior pituitary cells. Images PMID:2895122

  17. Alteration of protein phosphorylation patterns in cell lines morphologically transformed by human cytomegalovirus.

    PubMed

    Muganda-Ojiaku, P M; Huang, E S

    1987-05-01

    Human fibroblastic cell lines morphologically transformed by either live virus or DNA fragments of human cytomegalovirus had altered plasma membrane protein composition; quantitative changes, and gains and losses in protein composition in comparison to normal parent cell lines were detected. These transformed cell lines showed altered total cell protein phosphorylation patterns when compared to parent cell lines. A two to four fold increase in in vivo protein phosphorylation at serine and threonine residues was observed; no increase in phosphorylation at total cell tyrosine residues was detected. Analysis of the in vivo phosphorylated protein by two dimensional gel electrophoresis revealed some similarities as well as differences in the types of polypeptides phosphorylated between transformed and control cell lines. Increased (two-to sixfold over parent cell extracts) casein kinase and polyamine dependent casein kinase activities were detected in HCMV transformed cell extracts. PMID:2441849

  18. Morphological analysis of Francisella novicida epithelial cell infections in the absence of functional FipA.

    PubMed

    Lo, Karen Y; Visram, Shyanne; Vogl, A Wayne; Shen, Chiao Ling Jennifer; Guttman, Julian A

    2016-02-01

    Francisella novicida is a surrogate pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. One of the primary sites of Francisella infections is the liver where >90% of infected cells are hepatocytes. It is known that once Francisella enter cells it occupies a membrane-bound compartment, the Francisella-containing vacuole (FCV), from which it rapidly escapes to replicate in the cytosol. Recent work examining the Francisella disulfide bond formation (Dsb) proteins, FipA and FipB, have demonstrated that these proteins are important during the Francisella infection process; however, details as to how the infections are altered in epithelial cells have remained elusive. To identify the stage of the infections where these Dsbs might act during epithelial infections, we exploited a hepatocyte F. novicida infection model that we recently developed. We found that F. novicida ?fipA-infected hepatocytes contained bacteria clustered within lysosome-associated membrane protein 1-positive FCVs, suggesting that FipA is involved in the escape of F. novicida from its vacuole. Our morphological evidence provides a tangible link as to how Dsb FipA can influence Francisella infections. PMID:26239909

  19. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    PubMed

    Stckel, Jana; Elvitigala, Thanura R; Liberton, Michelle; Pakrasi, Himadri B

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  20. Carbon Availability Affects Diurnally Controlled Processes and Cell Morphology of Cyanothece 51142

    PubMed Central

    Stckel, Jana; Elvitigala, Thanura R.; Liberton, Michelle; Pakrasi, Himadri B.

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  1. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  2. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    NASA Technical Reports Server (NTRS)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  3. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    R?zek, Daniel; Vancov, Marie; Tesarov, Martina; Ahantarig, Arunee; Kopeck, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed. PMID:19264624

  4. Prevalence, morphology, and natural history of FGFR1-amplified lung cancer, including squamous cell carcinoma, detected by FISH and SISH.

    PubMed

    Russell, Prudence A; Yu, Yong; Young, Richard J; Conron, Matthew; Wainer, Zoe; Alam, Naveed; Solomon, Benjamin; Wright, Gavin M

    2014-12-01

    The aim of this study was to investigate the prevalence of fibroblast growth factor receptor 1 (FGFR1) amplification by fluorescence in situ hybridization (FISH) in a lung cancer patient cohort and to correlate results with morphology, silver in situ hybridization (SISH), and patient outcome. FGFR1 FISH and SISH were performed in 406 and 385 lung cancer cases, respectively, and the results were compared. High-level FGFR1 amplification was defined as the ratio of FGFR1/centromere 8 ≥2, or tumor cell percentage with ≥15 signals ≥10%, or average number of signals/tumor cell nucleus ≥6. Low-level amplification was defined as tumor cell percentage with ≥5 signals ≥50%. Of 406 tumors tested, there were 191 squamous cell carcinomas, 28 carcinomas with focal squamous morphology, 24 large cell carcinomas with squamous immunoprofile, 115 adenocarcinomas, 17 neuroendocrine tumors, and 31 carcinomas without squamous morphology or immunoprofile. FGFR1 FISH was assessable in 368 tumors, with FGFR1 amplification identified in 50, including 48 tumors with either squamous morphology or immunoprofile (48 of 225, 21.3%), and two 'marker-null' tumors without squamous or glandular morphology or immunoprofile (2 of 143, 1.4%; P<0.0001). FGFR1 SISH was assessable in 347 tumors. All 46 FGFR1 FISH-amplified tumors with tumor available for testing showed amplification with SISH, while all other tumors were negative. There was no relationship between FGFR1 amplification status and disease-free (P=0.88, HR=1.04, 95% confidence interval (CI)=0.67-1.60) or overall survival (P=0.97, HR=1.01, 95% CI=0.65-1.58) in surgically radically treated patients with tumors with any squamous morphology or immunoprofile. FGFR1 amplification is a common abnormality in tumors with any squamous morphology or immunoprofile, but it is also present in 'marker-null' tumors. The results of FGFR1 SISH showed 1:1 correlation with the results of FGFR1 FISH, indicating that SISH may be an alternative method to detect FGFR1 amplification. No relationship was detected between patient outcome and FGFR1 amplification. PMID:24762544

  5. Morphology, properties, and performance of electrodeposited n-CdSe in liquid junction solar cells

    SciTech Connect

    Tomkiewicz, M.; Ling, I.; Parsons, W.S.

    1982-09-01

    The authors describe the mechanisms for galvanostatic electrodeposition of CdSe in terms of competition between chemical reactions that lead to Se formation and electrochemical reduction of Se as polyselenide, at the interfaces between selenium and selenide. This mechanism leads to a cauliflower morphology for the resulting film. This morphology is ideal for a photoanode in the liquid junction solar cell configuration, and the authors describe the performance of such an electrode. In spite of the unique morphology, solid-state properties of the film can be evaluated and the methodology for these evaluations is presented. The performance of the liquid junction solar cells is limited by the dark current and the dielectric properties of the material. The authors also describe the effects of metal ions such as Zn/sup +2/, Ru/sup +3/, and Ga/sup +3/ on the various electrode properties.

  6. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication.

    PubMed

    Brockman-Schneider, Rebecca A; Pickles, Raymond J; Gern, James E

    2014-01-01

    Vitamin D has been linked to reduced risk of viral respiratory illness. We hypothesized that vitamin D could directly reduce rhinovirus (RV) replication in airway epithelium. Primary human bronchial epithelial cells (hBEC) were treated with vitamin D, and RV replication and gene expression were evaluated by quantitative PCR. Cytokine/chemokine secretion was measured by ELISA, and transepithelial resistance (TER) was determined using a voltohmmeter. Morphology was examined using immunohistochemistry. Vitamin D supplementation had no significant effects on RV replication, but potentiated secretion of CXCL8 and CXCL10 from infected or uninfected cells. Treatment with vitamin D in the form of 1,25(OH)2D caused significant changes in cell morphology, including thickening of the cell layers (median of 46.5 m [35.0-69.0] vs. 30 m [24.5-34.2], p<0.01) and proliferation of cytokeratin-5-expressing cells, as demonstrated by immunohistochemical analysis. Similar effects were seen for 25(OH)D. In addition to altering morphology, higher concentrations of vitamin D significantly upregulated small proline-rich protein (SPRR1?) expression (6.3 fold-induction, p<0.01), suggestive of squamous metaplasia. Vitamin D treatment of hBECs did not alter repair of mechanically induced wounds. Collectively, these findings indicate that vitamin D does not directly affect RV replication in airway epithelial cells, but can influence chemokine synthesis and alters the growth and differentiation of airway epithelial cells. PMID:24475177

  7. Morphological responses of mitochondria-rich cells to hypersaline environment in the Australian mudskipper, Periophthalmus minutus.

    PubMed

    Itoki, Naoko; Sakamoto, Tatsuya; Hayashi, Masahiro; Takeda, Tatsusuke; Ishimatsu, Atsushi

    2012-07-01

    A population of the Australian mudskipper, Periophthalmus minutus, was found to inhabit mudflat that remained uncovered by tide for more than 20 days in some neap tides. During these prolonged emersion periods, P. minutus retreated into burrows containing little water, with a highest recorded salinity of 84 7.4 psu (practical salinity unit). To explore the mechanical basis for this salinity tolerance in P. minutus, we determined the densities of mitochondria-rich cells (MRCs) in the inner and outer opercula and the pectoral fin skin, in comparison with P. takita, [corrected] from an adjacent lower intertidal habitat, and studied morphological responses of MRCs to exposure to freshwater (FW), and 100% (34-35 psu) and 200% seawater (SW). Periophthalmus minutus showed a higher density of MRCs in the inner operculum (3365 821 cells mm(-2)) than in the pectoral fin skin (1428 161) or the outer operculum (1100 986), all of which were higher than the MRC densities in p. takita. [corrected]. No mortality occurred in 100% or 200% SW, but half of the fish died within four days in FW. Neither 200% SW nor FW exposure affected MRC density. Transfer to 200% SW doubled MRC size after 9-14 days with no change in the proportion of MRCs with apical pits or plasma sodium concentration. In contrast, transfer to FW resulted in a rapid closing of pits and a significant reduction in plasma sodium concentration. These results suggest that P. minutus has evolved morphological and physiological mechanisms to withstand hypersaline conditions that they may encounter in their habitat. PMID:22775253

  8. Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms

    PubMed Central

    Van Laar, Tricia A.; Chen, Tsute; You, Tao

    2015-01-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells. PMID:25583711

  9. Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms.

    PubMed

    Van Laar, Tricia A; Chen, Tsute; You, Tao; Leung, Kai P

    2015-03-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells. PMID:25583711

  10. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients.

    PubMed

    Pecorelli, Alessandra; Cervellati, Franco; Belmonte, Giuseppe; Montagner, Giulia; Waldon, PhiAnh; Hayek, Joussef; Gambari, Roberto; Valacchi, Giuseppe

    2016-01-01

    A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder. PMID:26471937

  11. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    NASA Astrophysics Data System (ADS)

    Salcedo, K. L.; Rodrguez, C. A.; Perez, F. A.; Riascos, H.

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al2O3) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  12. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  13. Capturing the elasticity and morphology of live fibroblast cell cultures during degradation with atomic force microscopy.

    PubMed

    Aifantis, K E; Shrivastava, S; Pelidou, S H

    2013-01-01

    Atomic force microscopy, in a liquid environment, was used to capture in vitro the morphological and mechanical changes that cultured fibroblasts undergo as time elapses from the completion of the cell culture. Topography images illustrated that initially, the nucleus had a height of 1.18 ± 0.2 μm, and after 48 h it had decreased to 550 ± 60 nm; similarly, the cell membrane exhibited significant shrinkage from 34 ± 4 to 23 ± 2 μm. After each image scan, atomic force microscopy indentation was performed on the centre of the nucleus, to measure the changes in the cell elasticity. Examination of the force-distance curves indicated that the membrane elastic modulus at the nucleus remained the same within the time frame of 48 h, even though the cell morphology had significantly changed. PMID:23116192

  14. Preparation, structural and morphological studies of Ni doped titania nanoparticles.

    PubMed

    Rajamannan, B; Mugundan, S; Viruthagiri, G; Shanmugam, N; Gobi, R; Praveen, P

    2014-07-15

    TiO2 nanoparticles doped with different weight percentages (4%, 8%, 12% and 16%) of nickel contents were prepared by a modified sol-gel method using Titanium tetra iso propoxide and nickel nitrate as precursors and 2-propanol as a solvent. X-ray diffraction studies show that the as prepared and annealed products show anatase structure with average particle sizes running between of 8 and 16 nm. FTIR results demonstrate the presence of strong chemical bonding at the interface of TiO2 nanoparticles. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the nickel doped TiO2 nanoparticles were studied by scanning electron microscope attached with energy dispersive X-ray spectrometer arrangement. The non linear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP). PMID:24667428

  15. Preparation, structural and morphological studies of Ni doped titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Rajamannan, B.; Mugundan, S.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P.

    2014-07-01

    TiO2 nanoparticles doped with different weight percentages (4%, 8%, 12% and 16%) of nickel contents were prepared by a modified sol-gel method using Titanium tetra iso propoxide and nickel nitrate as precursors and 2-propanol as a solvent. X-ray diffraction studies show that the as prepared and annealed products show anatase structure with average particle sizes running between of 8 and 16 nm. FTIR results demonstrate the presence of strong chemical bonding at the interface of TiO2 nanoparticles. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the nickel doped TiO2 nanoparticles were studied by scanning electron microscope attached with energy dispersive X-ray spectrometer arrangement. The non linear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP).

  16. Morphological Study of Palatal Rugae in a Sudanese Population

    PubMed Central

    Ahmed, Altayeb Abdalla; Hamid, Awrad

    2015-01-01

    Palatal rugae patterns have unique characteristics and have been proposed as an alternative method to establish identity when other means, such as fingerprints and dental records, are not attainable. This study was conducted to determine the morphological characteristics of palatine rugae and to assess the existence of side asymmetry in them in Sudanese Arabs. It also assesses the possibility of determining sex using logistic regression. One hundred dental casts for 50 males and 50 females aged between 18 and 23 were studied for palatal rugae dimensions, shapes, and orientations, as well as sexual dimorphism and side symmetry. The most predominant rugae were primary, and the most prevalent shapes in both sexes were wavy, curved, and straight forms. The predominant orientation was forward. Side asymmetry existed more in the orientations than in the shapes, but no side asymmetry was recorded in the dimensions. There was no significant sexual dimorphism in the rugae dimensions, shapes, and orientations, except for forward-directed rugae (P < 0.037). A predictive value of 60% was obtained in assigning sex using dimensions and orientations and of 58% using shapes alone. Therefore, the palatal rugae are not recommended for assigning sex effectively among Sudanese Arabs unless it is the only means available. PMID:25737723

  17. Morphological and microstructural studies on aluminizing coating of carbon steel

    NASA Astrophysics Data System (ADS)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-01

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe-Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe2Al5) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is `thick' and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  18. Morphological and microstructural studies on aluminizing coating of carbon steel

    SciTech Connect

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  19. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    SciTech Connect

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet; Taylor, Douglas D.

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  20. IRetinal Organization in the retinal degeneration 10 (rd10) Mutant Mouse: a Morphological and ERG Study

    PubMed Central

    Gargini, Cludia; Terzibasi, Eva; Mazzoni, Francesca; Strettoi, Enrica

    2008-01-01

    Retinal degeneration 10 (rd10) mice are a model of autosomal recessive Retinitis Pigmentosa (RP), identified by Chang et al. in 2002. These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because of photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. Aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyze the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also study retinal function with the electroretinogram (ERG), recorded between P18 and P30. We find that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predict that rd10 mice might become excellent models for rescue approaches. PMID:17111372

  1. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: Morphology and viability tests

    PubMed Central

    LEE, SUNG-IL; YEO, SEONG-IL; KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2016-01-01

    Human mesenchymal stem cells have previously been isolated and characterized from the gingiva, and gingiva-derived stem cells have been applied for tissue engineering purposes. The present study was performed to generate size-controllable stem cell spheroids using concave microwells. Gingiva-derived stem cells were isolated, and the stem cells of 1×105 (group A) or 2×105 (group B) cells were seeded in polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres was viewed under an inverted microscope, and the changes in the diameter and cell viability were analyzed. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A compared to group B. No significant changes in shape or diameter were noted with increases in incubation time. Cell viability was higher in group B at each time point when compared with group A. Within the limits of the study, the size-controllable stem cell spheroids could be generated from gingival cells using microwells. The shape of the spheroids and their viability were clearly maintained during the experimental periods. PMID:26870343

  2. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells

    PubMed Central

    Wang, Hongjiang; Li, Jing; Chi, Hongjie; Zhang, Fan; Zhu, Xiaoming; Cai, Jun; Yang, Xinchun

    2015-01-01

    Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3? untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis. PMID:25898913

  3. Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Bjrn; Wibbeling, Jana; Kastl, Lena; Schnekenburger, Jrgen; Ketelhut, Steffi

    2015-05-01

    The minimally-invasive quantitative observation of different cell types in a single culture is of particular interest for the analysis of the impact of pharmaceuticals, pathogens or toxins on different cellular phenotypes under identical measurement conditions and to analyze interactions between different cellular specimens. Quantitative phase microscopy (QPM), provides high resolution detection of optical path length changes that is suitable for quantitative tomographic imaging and stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and thus is in particular suitable for long term time-lapse investigations on cells in which for example morphology alterations due to toxins, drugs or genetic modifications are studied. We analyzed the feasibility of QPM, for the analysis of mixed cell cultures and explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with digital holographic microscopy (DHM) was utilized. Mixed cell cultures with different cell types were continuously observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted image segmentation algorithms. From the segmented quantitative phase images the area covered by the cells, the cellular dry mass as well as the mean cell thickness and volume were determined and used as parameters to quantify the reliability of data acquisition. The obtained results demonstrate that it is possible to characterize the growth of cell types with different morphology features separately in a single cell culture. This prospects new application fields of quantitative phase imaging in drug and toxicity testing in vitro.

  4. Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare cell populations and suggesting preliminary diagnosis in leukemia

    PubMed Central

    Khvastunova, Alina N.; Kuznetsova, Sofya A.; Al-Radi, Liubov S.; Vylegzhanina, Alexandra V.; Zakirova, Anna O.; Fedyanina, Olga S.; Filatov, Alexander V.; Vorobjev, Ivan A.; Ataullakhanov, Fazly

    2015-01-01

    We describe a method for leukocyte sorting by a microarray of anti-cluster-of-differentiation (anti-CD) antibodies and for preparation of the bound cells for morphological or cytochemical examination. The procedure results in a sorted smear with cells positive for certain surface antigens localised in predefined areas. The morphology and cytochemistry of the microarray-captured normal and neoplastic peripheral blood mononuclear cells are identical to the same characteristics in a smear. The microarray permits to determine the proportions of cells positive for the CD antigens on the microarray panel with high correlation with flow cytometry. Using the anti-CD microarray we show that normal granular lymphocytes and lymphocytes with radial segmentation of the nuclei are positive for CD3, CD8, CD16 or CD56 but not for CD4 or CD19. We also show that the described technique permits to obtain a pure leukemic cell population or to separate two leukemic cell populations on different antibody spots and to study their morphology or cytochemistry directly on the microarray. In cases of leukemias/lymphomas when circulating neoplastic cells are morphologically distinct, preliminary diagnosis can be suggested from full analysis of cell morphology, cytochemistry and their binding pattern on the microarray. PMID:26212756

  5. CN MORPHOLOGY STUDIES OF COMET 103P/HARTLEY 2

    SciTech Connect

    Knight, Matthew M.; Schleicher, David G.

    2011-06-15

    We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinct due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10{sup 0} relative to the comet's orbital plane (i.e., it is centered near R.A. = 257{sup 0} and decl. = +67{sup 0} with an uncertainty around this position of about 15{sup 0}) and has two mid-latitude sources, one in each hemisphere.

  6. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  7. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells

    PubMed Central

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  8. Corneal endothelial cell density and morphology and central corneal thickness in Guangxi Maonan and Han adolescent students of China

    PubMed Central

    Liang, Hao; Zuo, Hui-Yi; Chen, Jin-Mao; Cai, Jie; Qin, Yu-Zhua; Huang, Yu-Ping; Chen, Ying-Ying; Tang, Dong-Yong; Tan, Shao-Jian

    2015-01-01

    AIM To investigate the corneal endothelial cell density and morphology and central corneal thickness in the Guangxi Maonan and Han adolescent students of China. METHODS Noncontact specular microscope (Topcon SP3000P, Tokyo, Japan) was performed in 133 adolescent students of Maonan nationality (M:F 54:79) and 105 adolescent students of Han nationality (M:F 50:55), 5 to 20y of age, who were randomly selected from 3 schools in Huanjiang Maonan Autonomous County of Guangxi Zhuang Autonomous Region of China. Parameters studied included endothelial cell density, mean cell area, coefficient of variation in cell size, percentage hexagonality and central corneal thickness. RESULTS Endothelial cell density, mean cell area, coefficient of variation in cell size, percentage hexagonality and central corneal thickness in the study population were (2969.50253.93) cells/mm2, (339.2329.44) m2, (29.964.07) %, (64.589.41) % and (523.7132.82) m in Maonan and (2998.26262.65) cells/mm2, (336.1130.07) m2, (29.895.03) %, (64.9111.64) % and (524.3933.15) m in Han, respectively. No significant differences were observed in endothelial cell density, mean cell area, coefficient of variation in cell size, percentage hexagonality and central corneal thickness between Maonan and Han (P=0.615, 0.659, 0.528, 0.551, 0.999). In Maonan and Han, we found age was negatively correlated with endothelial cell density and percentage hexagonality and positively correlated with mean cell area and coefficient of variation in cell size. Negative correlation was also found between central corneal thickness and age in Han, whereas no correlation was found in Maonan. CONCLUSION There were no differences between Maonan and Han in corneal endothelial cell density and morphology and central corneal thickness. In these two nationalities, there were statistically significant decrease in endothelial cell density and percentage hexagonality with increasing age and statistically significant increase in cell area and coefficient of variation in cell size with increasing age. Central corneal thinned with increasing age in Han, whereas difference did not attain statistical significance in Maonan. PMID:26086017

  9. Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM

    PubMed Central

    Frost, Nicholas A.; Lu, Hsiangmin E.; Blanpied, Thomas A.

    2012-01-01

    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments. PMID:22570741

  10. Morphological Study of the Newly Designed Cementless Femoral Stem

    PubMed Central

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias

    2014-01-01

    A morphology study was essential to the development of the cementless femoral stem because accurate dimensions for both the periosteal and endosteal canal ensure primary fixation stability for the stem, bone interface, and prevent stress shielding at the calcar region. This paper focused on a three-dimensional femoral model for Asian patients that applied preoperative planning and femoral stem design. We measured various femoral parameters such as the femoral head offset, collodiaphyseal angle, bowing angle, anteversion, and medullary canal diameters from the osteotomy level to 150?mm below the osteotomy level to determine the position of the isthmus. Other indices and ratios for the endosteal canal, metaphyseal, and flares were computed and examined. The results showed that Asian femurs are smaller than Western femurs, except in the metaphyseal region. The canal flare index (CFI) was poorly correlated (r < 0.50) to the metaphyseal canal flare index (MCFI), but correlated well (r = 0.66) with the corticomedullary index (CMI). The diversity of the femoral size, particularly in the metaphyseal region, allows for proper femoral stem design for Asian patients, improves osseointegration, and prolongs the life of the implant. PMID:25025068

  11. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  12. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  13. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  14. Spermatozoon of the freshwater rotifer Brachionus calyciflorus (Rotifera, Monogononta): Advances in morphological and ultrastructural studies.

    PubMed

    Gu, Shuyu; Li, Lian; Liang, Luxiaoxue; Liu, Xuezhou; Ouyang, Kai; Li, Jing; Yang, Jiaxin

    2015-09-01

    The morphological and ultrastructural features of the spermatozoon in Brachionus calyciflorus are described using light, fluorescence and transmission electron microscopy (TEM). The mature spermatozoon, which appears to be thread-like, is composed of a slightly expanded anterior of cell body region and a flagellum region without acrosome. The cell body region and flagellum region are respectively 16-27?m and 20-33?m in length (n=60). The spermatozoon is characterized by a mass of dense tubular materials, which occupy most of the cell. Some mitochondria are distributed around the nuclear region in the anterior of the cell body region, while in the posterior portion of cell body, the chromatin often contains a single lobated nucleus arranged at the center of cell. The flagellum contains the classic axoneme (92+2) and possesses lateral undulating membrane. Mature B. calyciflorus males have no germ cell stages earlier than the spermatids in the testis. TEM examination reveals rigid rods as well as predominant typical spermatozoon in the testis. Observations, based on successive photographs and videos, enabled a first-time recording of the unique inverted movement of the spermatozoon, which indicated that the movement of the spermatozoon is driven by the flagellum. Our study also provides further supplementary insights into the phylogenetic systematics of the Rotifera. PMID:26021257

  15. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture

    PubMed Central

    HELLIO LE GRAVERAND, MARIE-PIERRE; OU, YONGCHUNG; SCHIELD-YEE, TERESA; BARCLAY, LEONA; HART, DAVID; NATSUME, TAKASHI; RATTNER, J. B.

    2001-01-01

    Four major morphologically distinct classes of cells were identified within the adult rabbit meniscus using antibodies to cytoskeletal proteins. Two classes of cell were present in the fibrocartilage region of the meniscus. These meniscal cells exhibited long cellular processes that extended from the cell body. A third cell type found in the inner hyaline-like region of the meniscus had a rounded form and lacked projections. A fourth cell type with a fusiform shape and no cytoplasmic projections was found along the superficial regions of the meniscus. Using a monoclonal antibody to connexin 43, numerous gap junctions were observed in the fibrocartilage region, whereas none were seen in cells either from the hyaline-like or the superficial zones of the meniscus. The majority of the cells within the meniscus exhibited other specific features such as primary cilia and 2 centrosomes. The placement of the meniscal cell subtypes as well as their morphology and architecture support the supposition that their specific characteristics underlie the ability of the meniscus to respond to different types of environmental mechanical loads. PMID:11430692

  16. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies.

    PubMed Central

    Chory, J; Donohue, T J; Varga, A R; Staehelin, L A; Kaplan, S

    1984-01-01

    Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM. Images PMID:6611335

  17. Improved efficiency organic photovoltaic cells through morphology control and process modification

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    Organic photovoltaic (OPV) cells have drawn great attention due to the potential to produce flexible, light weight, affordable solar cells using polymer organic photovoltaic materials; however, the current power conversion efficiency achieved for these systems is too low for widespread implementation of the technology. Morphology and phase separation are key factors determining the performance of organic photovoltaic cells. Precise control of the size and distribution of the phase-separated photoactive domains is necessary for optimum photon-electron conversion. Polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals have the potential to provide enhanced control of morphology, crystallinity, and phase dispersion in polymeric blend systems. In this work, POSS molecules with different organic functionalities were utilized to control OPV film morphology. The light absorption, crystallinity, and phase separated domain size were evaluated to determine the relationship between POSS structures and film characteristics. The selected POSS molecules were utilized for further device fabrication and performance measurements, with which the POSS enhanced performance was revealed. Furthermore, processing conditions are also important in determining the performance and phase separated morphology of the OPV devices. The effects of solvent vapor annealing and thermal annealing were evaluated in terms of light absorption, crystallinity, long-term stabilitiy, and device performance.

  18. Phenotypic and Morphological Properties of Germinal Center Dark Zone Cxcl12-Expressing Reticular Cells.

    PubMed

    Rodda, Lauren B; Bannard, Oliver; Ludewig, Burkhard; Nagasawa, Takashi; Cyster, Jason G

    2015-11-15

    The germinal center (GC) is divided into a dark zone (DZ) and a light zone (LZ). GC B cells must cycle between these zones to achieve efficient Ab affinity maturation. Follicular dendritic cells (FDCs) are well characterized for their role in supporting B cell Ag encounter in primary follicles and in the GC LZ. However, the properties of stromal cells supporting B cells in the DZ are relatively unexplored. Recent work identified a novel stromal population of Cxcl12-expressing reticular cells (CRCs) in murine GC DZs. In this article, we report that CRCs have diverse morphologies, appearing in open and closed networks, with variable distribution in lymphoid tissue GCs. CRCs are also present in splenic and peripheral lymph node primary follicles. Real-time two-photon microscopy of Peyer's patch GCs demonstrates B cells moving in close association with CRC processes. CRCs are gp38(+) with low to undetectable expression of FDC markers, but CRC-like cells in the DZ are lineage marked, along with FDCs and fibroblastic reticular cells, by CD21-Cre- and Ccl19-Cre-directed fluorescent reporters. In contrast to FDCs, CRCs do not demonstrate dependence on lymphotoxin or TNF for chemokine expression or network morphology. CRC distribution in the DZ does require CXCR4 signaling, which is necessary for GC B cells to access the DZ and likely to interact with CRC processes. Our findings establish CRCs as a major stromal cell type in the GC DZ and suggest that CRCs support critical activities of GC B cells in the DZ niche through Cxcl12 expression and direct cell-cell interactions. PMID:26453751

  19. Neural Cells: Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells (Adv. Healthcare Mater. 4/2016).

    PubMed

    Yoshida, Shotaro; Teshima, Tetsuhiko; Kuribayashi-Shigetomi, Kaori; Takeuchi, Shoji

    2016-02-01

    Individual neural cells on micro-sized plates are morphologically controlled, mobilized, and utilized as building blocks of a neural circuit. On p. 415, S. Takeuchi and co-workers show how the mobile microplate device enables precise positioning of individual neural cell bodies and neurites in a reproducible fashion, which potentially allows neuroengineers to design the geometry of cultured neural circuits (Cover design: Akiko Sato). PMID:26890082

  20. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  1. Chronic mast cell leukemia: a novel leukemia-variant with distinct morphological and clinical features.

    PubMed

    Valent, Peter; Sotlar, Karl; Sperr, Wolfgang R; Reiter, Andreas; Arock, Michel; Horny, Hans-Peter

    2015-01-01

    Mast cell leukemia (MCL) is a rare form of systemic mastocytosis characterized by leukemic expansion of mostly immature mast cells, organ damage, drug-resistance, and a poor prognosis. Even when treated with chemotherapy, most patients have a life-expectancy of less than one year. However, there are rare patients with MCL in whom the condition is less aggressive and does not cause organ damage within a short time. In these patients, mast cells exhibit a more mature morphology when compared to acute MCL. A recently proposed classification suggests that these cases are referred to as chronic MCL. In the present article, we discuss clinical, histopathological and morphological aspects of acute and chronic MCL. PMID:25443885

  2. P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination

    PubMed Central

    Donald, Sarah; Humby, Trevor; Fyfe, Ian; Segonds-Pichon, Anne; Walker, Simon A.; Andrews, Simon R.; Coadwell, W. John; Emson, Piers; Wilkinson, Lawrence S.; Welch, Heidi C. E.

    2008-01-01

    The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2?/? and P-Rex1?/?/P-Rex2?/? mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2?/? pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2?/? and P-Rex1?/?/P-Rex2?/? mice. P-Rex2?/? mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1?/?/P-Rex2?/? mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function. PMID:18334636

  3. Morphological regional differences of epithelial cells along the midgut in Diatraea saccharalis Fabricius (Lepidoptera: Crambidae) larvae.

    PubMed

    Pinheiro, Daniela O; Quagio-Grassiotto, Irani; Gregrio, Elisa A

    2008-01-01

    The sugarcane borer, Diatraea saccharalis Fabricius, is a pest to sugarcane and many other crops. This work aims to characterize morphological variability in the epithelial cells (columnar, goblet and regenerative) along the midgut of D. saccharalis larvae. Fragments of the midgut (anterior, middle and posterior regions) were fixed and processed by light and scanning electron microscopy. There are both cytochemical and ultrastructural differences in the morphology of the epithelial cells, depending on their localization along the midgut. The apical surface of columnar cells shows an increase in both number and size of the apical protrusions from the anterior to the posterior midgut regions. There is an increase in the amount of PAS-positive (Periodic Acid-Schiff Reaction) granules detected in the cytoplasm of both the columnar and regenerative cells, from the anterior to the posterior region. The goblet cell apical surface is narrow in the anterior region, and enlarged in the posterior midgut; the chamber's cytoplasm extrusion are small and thin at the apical cavity surface, being thicker, longer and more numerous at the basal portion of the cavity. Our results suggest that the sugarcane borer midgut has two morphologically different regions, the anterior and the posterior; the middle region is a transitional region. PMID:18813743

  4. Biophysical and morphological effects of nanodiamond/nanoplatinum solution (DPV576) on metastatic murine breast cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Ghoneum, Alia; Zhu, Huanqi; Woo, JungReem; Zabinyakov, Nikita; Sharma, Shivani; Gimzewski, James K.

    2014-11-01

    Nanoparticles have recently gained increased attention as drug delivery systems for the treatment of cancer due to their minute size and unique chemical properties. However, very few studies have tested the biophysical changes associated with nanoparticles on metastatic cancer cells at the cellular and sub-cellular scales. Here, we investigated the mechanical and morphological properties of cancer cells by measuring the changes in cell Young’s Modulus using AFM, filopodial retraction (FR) by time lapse optical light microscopy imaging and filopodial disorganization by high resolution AFM imaging of cells upon treatment with nanoparticles. In the current study, nanomechanical changes in live murine metastatic breast cancer cells (4T1) post exposure to a nanodiamond/nanoplatinum mixture dispersed in aqueous solution (DPV576), were monitored. Results showed a decrease in Young’s modulus at two hours post treatment with DPV576 in a dose dependent manner. Partial FR at 20 min and complete FR at 40 min were observed. Moreover, analysis of the retraction distance (in microns) measured over time (minutes), showed that a DPV576 concentration of 15%v/v yielded the highest FR rate. In addition, DPV576 treated cells showed early signs of filopodial disorganization and disintegration. This study demonstrates the changes in cell stiffness and tracks early structural alterations of metastatic breast cancer cells post treatment with DPV576, which may have important implications in the role of nanodiamond/nanoplatinum based cancer cell therapy and sensitization to chemotherapy drugs.

  5. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna; Kurcz, Agnieszka

    2016-02-01

    This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes. PMID:26166197

  6. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jrg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  7. Coupling actin flow, adhesion, and morphology in a computational cell motility model.

    PubMed

    Shao, Danying; Levine, Herbert; Rappel, Wouter-Jan

    2012-05-01

    Cell migration is a pervasive process in many biology systems and involves protrusive forces generated by actin polymerization, myosin dependent contractile forces, and force transmission between the cell and the substrate through adhesion sites. Here we develop a computational model for cell motion that uses the phase-field method to solve for the moving boundary with physical membrane properties. It includes a reaction-diffusion model for the actin-myosin machinery and discrete adhesion sites which can be in a "gripping" or "slipping" mode and integrates the adhesion dynamics with the dynamics of the actin filaments, modeled as a viscous network. To test this model, we apply it to fish keratocytes, fast moving cells that maintain their morphology, and show that we are able to reproduce recent experimental results on actin flow and stress patterns. Furthermore, we explore the phase diagram of cell motility by varying myosin II activity and adhesion strength. Our model suggests that the pattern of the actin flow inside the cell, the cell velocity, and the cell morphology are determined by the integration of actin polymerization, myosin contraction, adhesion forces, and membrane forces. PMID:22493219

  8. Inflectional morphology in primary progressive aphasia: An elicited production study

    PubMed Central

    Wilson, Stephen M.; Brandt, Temre H.; Henry, Maya L.; Babiak, Miranda; Ogar, Jennifer M.; Salli, Chelsey; Wilson, Lisa; Peralta, Karen; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2014-01-01

    Inflectional morphology lies at the intersection of phonology, syntax and the lexicon, three language domains that are differentially impacted in the three main variants of primary progressive aphasia (PPA). To characterize spared and impaired aspects of inflectional morphology in PPA, we elicited inflectional morphemes in 48 individuals with PPA and 13 healthy age-matched controls. We varied the factors of regularity, frequency, word class, and lexicality, and used voxel-based morphometry to identify brain regions where atrophy was predictive of deficits on particular conditions. All three PPA variants showed deficits in inflectional morphology, with the specific nature of the deficits dependent on the anatomical and linguistic features of each variant. Deficits in inflecting low-frequency irregular words were associated with semantic PPA, with lexical/semantic deficits, and with left temporal atrophy. Deficits in inflecting pseudowords were associated with non-fluent/agrammatic and logopenic variants, with phonological deficits, and with left frontal and parietal atrophy. PMID:25129631

  9. Unusual morphology of desmoplastic small round cell tumor from an ascitic fluid in the postchemotherapy setting

    PubMed Central

    Gonzlez-Arango, Ricardo; Castro-Villabn, Diana; Barrera-Herrera, Luis E.; Palau, Mauricio; Rodrguez-Urrego, Paula A.

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT) is a malignant neoplasm that most often presents in male adolescents as an abdominal mass. Cytological features have been previously described, but only two reports noted post chemotherapy changes on effusions. We report a case of a 15-year-old male with DSRCT status postchemotherapy that presented with ascitis. Unusual morphology was seen: Numerous malignant large and single cells with prominent nucleoli and abundant cytoplasm in a background without the stroma, occasional mitosis, and the abundant apoptosis. Cell block immunocytochemistry was confirmatory. Awareness of the postchemotherapy changes in this tumor will allow us to diagnose recurrence. PMID:25948947

  10. Effect of warfarin on cell kinetics, epithelial morphology and tumour incidence in induced colorectal cancer in the rat.

    PubMed Central

    Goeting, N; Trotter, G A; Cooke, T; Kirkham, N; Taylor, I

    1985-01-01

    The effect of low dose warfarin and high dose warfarin on epithelial cell kinetics (as determined by stathmokinetic techniques), and preneoplastic morphological changes was studied during azoxymethane induced carcinogenesis in the rat. Warfarin, at either low or high dose, had no effect on crypt cell production rate (CCPR) at any time interval whereas tumour incidence in both low dose warfarin and high dose warfarin groups was significantly reduced. Morphological changes were observed using scanning electron microscopy, which by conventional histology were shown to be adenoma precursors. In the control group the number of microadenomas increased with time after starting azoxymethane. In warfarin treated animals, the number of microadenomas also increased with time, but the actual incidence was reduced when compared with controls. These results suggest that the effects of warfarin on tumour development is unrelated to its anticoagulant effect, because increased dose did not result in greater tumour reduction. Furthermore, there was no overall change in CCPR when warfarin was administered. Warfarin may exert a specific effect, by preventing neoplastic change in cells which have undergone morphologically undetectable changes associated with early carcinogenesis. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:4018647

  11. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 ?m and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  12. THE SUPERFICIAL BRANCH OF THE RADIAL NERVE: A MORPHOLOGIC STUDY

    PubMed Central

    Folberg, Celso Ricardo; Ulson, Heitor; Scheidt, Rodrigo Benedet

    2015-01-01

    Study the morphology of the superficial branch of the radial nerve (SBRN) of the forearms and wrists of fresh adult human cadavers. Methods: Twenty three dissections were performed under 3.5x loupe magnification, histological sections of the nerve were obtained in 20 dissections for fascicle identification. Results: The SBRN emerged, in average, at 8.65cm proximal to the radial styloid apophysis (RSA) between the Brachioradialis (BR) and Extensor Carpi Radialis Longus (ECRL) tendons. In 6/23 cases the SBRN emerged between an accessory BR tendon and the main BR tendon. The first branch of the SBRN arose at an average of 4.58 cm proximal to the RSA. A branch running across the RSA was found in 7/23 cases. At that level, the average number of branches crossing the wrist was 3.4. A fascicle count of the nerve and its first branch showed an average of 6.6 and 4.0 fascicles, respectively. Conclusion: Our anatomical findings are similar to those in the revised literature and contribute towards a better knowledge of the SBRN. Great caution is required in surgical procedures such as percutaneous bone fixation of the distal 1/3 of the forearm and wrist and particularly, in those susceptible to SBRN injury, as in seven of the 23 cases the SRBN ran directly accross the RSA. The authors recommend performing small longitudinal incisions down to the subcutaneous tissue, separating the nerve branches by blunt soft tissue dissection, with a delicate haemostat, before introducing the Kirschner wires (minimally invasive procedures).

  13. Perinatal hemochromatosis. Clinical, morphologic, and quantitative iron studies.

    PubMed Central

    Silver, M. M.; Beverley, D. W.; Valberg, L. S.; Cutz, E.; Phillips, M. J.; Shaheed, W. A.

    1987-01-01

    Three sibling and two isolated-case perinates (4 newborn, 1 stillborn) died with siderotic cirrhosis and widespread parenchymal siderosis, the latter similar to that seen in both hereditary and secondary hemochromatosis. Reticuloendothelial siderosis was absent, as occurs in primary hemochromatosis. Studies of iron metabolism were performed antemortem in two of the siblings and ante-, post- and internatally in their mother, who showed hyperferremia antenatally. The only finding in the affected family suggestive of hereditary hemochromatosis was the commonly associated HLA haplotype (A3, B7) in the mother and an infant. Liver morphology, including immunocytochemistry and ultrastructure, was similar in the 5 infants and suggested that liver disease commenced as massive necrosis in midfetal life. Histologic grading and chemical assays for iron and copper on liver and spleen of the 5 index cases were compared with 26 controls; placentas were compared with 12 control placentas. Hepatic iron concentration, but not hepatic copper concentration, was significantly increased in index cases, compared with controls. Hepatic iron to copper ratio was significantly increased in index cases, compared with controls, but this ratio was unaltered in spleen and placenta. Total hepatic iron, but not total hepatic copper, was significantly increased in index cases, compared with a subgroup of 11 controls of low gestational age, similar to the fetal stage when liver disease commenced in utero. The results suggest that, irrespective of the fetal liver disease being genetic or acquired, hepatic iron overload was directly involved in pathogenesis. Images Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 PMID:3307444

  14. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    PubMed Central

    Idikio, Halliday A

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification. PMID:21479129

  15. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    SciTech Connect

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  16. A new technique for analysis of human sperm morphology in unstained cells from raw semen.

    PubMed

    Soler, Carles; Garca-Molina, Almudena; Sancho, Mara; Contell, Jess; Nez, Manuel; Cooper, Trevor G

    2014-08-11

    Sperm morphology analysis is a fundamental component of semen analysis, but its real significance has been clouded by the plethora of techniques used for its evaluation. Most involve different fixation and staining procedures that induce artefacts. Herein we describe Trumorph (Proiser R+D, Paterna, Spain), a new method for sperm morphology analysis based on examination of wet preparations of spermatozoa immobilised, after a short 60C shock, in narrow chambers and examined by negative phase contrast microscopy. A range of morphological forms was observed, similar to those found using conventional fixed and stained preparations, but other forms were also found, distinguishable only by the optics used. The ease of preparation makes the Trumorph a robust method applicable for the analysis of living unmodified spermatozoa in a range of situations. Subsequent studies on well-characterised samples are required to describe the morphology of spermatozoa with fertilising potential. PMID:25228364

  17. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Hrm, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; kerfelt, Malin; Ltjnen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation. PMID:24810913

  18. Morphological and cytogenetic characterization and N-myc oncogene analysis of a newly established neuroblastoma cell line.

    PubMed

    Nojima, T; Abe, S; Furuta, Y; Nagashima, K; Alam, A F; Takada, N; Sasaki, F; Hata, Y

    1991-07-01

    A permanent cell line established from a xenograft of neuroblastoma which occurred in a 5-year-old girl was investigated for its morphological and biological characteristics. The cultured cells were tumorigenic in nude mice. Microscopically, each tumor consisted of small round to polygonal cells with irregular nuclei and prominent nucleoli, corresponding to the features of the primary and xenografted tumor cells. Electron microscopic examination revealed that both the transplanted tumor cells and the cultured cells contained scanty microtubules and dense-core neurosecretory granules. Chromosome analysis of this cell line showed monosomy for chromosomes 1, 10, 19 and X, and structural rearrangements involving chromosomes 8, 17 and 20, in addition to numerous double minutes. The N-myc oncogene was found to be amplified 40- to 80-fold in the transplanted and cultured tumor cells, as well as in the primary tumor cells. In situ hybridization with a digoxigenin-labeled uridine-triphosphate N-myc RNA probe detected abundant mRNA in the tumor cells. This neuroblastoma line may become a valuable in vitro experimental model system for studies aimed at better characterization of neuroblastoma. PMID:1755317

  19. Growth inhibition, morphological differentiation and stimulation of survival in neuronal cell type (Neuro-2a) treated with trophic molecules.

    PubMed

    Blanco, V; Lopez Camelo, J; Carri, N G

    2001-01-01

    Trophic molecules are key regulators of survival, growth and differentiation of neural cells. Neuronal cell type Neuro-2a is a good model to study development and molecules modulating this process, and retinoic acid (RA) and neurotrophins (NGF, BDNF, NT-3 and NT-4) have been shown to be active in this modulation. The purpose of the present study was the functional analysis of these trophic molecules in our short-term bioassay of Neuro-2a cells, an immortalised murine neuroblastoma cell line. Through cell counting, image process and arithmetic combination of digital parameters of treated and untreated cultures, we show that RA inhibits growth and induces morphological neuronal phenotype of treated cells. Through DNA labelling with BrdU we also show that NGF, BDNF, and NT-3 increase survival and proliferation of cells, grown in serum-deprived media. From these results we conclude that neurotrophins have manifest trophic effects on cells improving survival, growth and proliferation and we also confirm the growth arrest and differentiation properties of RA on Neuro-2a cells. PMID:11518498

  20. Morphological and morphometric study of the pecten oculi in the budgerigar (Melopsittacus undulatus).

    PubMed

    Micali, Antonio; Pisani, Antonina; Ventrici, Claudia; Puzzolo, Domenico; Roszkowska, Anna Maria; Spinella, Rosaria; Aragona, Pasquale

    2012-03-01

    The pecten oculi is a highly vascular and pigmented organ placed in the vitreous body of the avian eye. As no data are currently available on the morphological organization of the pecten in the Psittaciformes, the pecten oculi of the budgerigar (Melopsittacus undulatus) was studied. The eyes from adult male budgerigars were examined by light, transmission, and scanning electron microscopy and a morphometric study on both light and transmission electron microscopy specimens was also performed in the different parts of the organ. In the budgerigar, the type of the pecten oculi was pleated. Its basal part had a cranio-caudal and postero-anterior course; its body consisted of 10-12-folds joined apically by a densely pigmented bridge. The pecten showed many capillaries, whose wall was thick and formed by pericytes and endothelial cells. These latter had a large number of microfolds, rectilinear on their luminal surface and tortuous on their abluminal surface. Interstitial pigment cells were placed among the capillaries, filled with melanin granules and showed many cytoplasmic processes. The morphometric analysis demonstrated significant differences among the three parts of the organ relative to the length of the endothelial processes and to the number and size of the pigment granules. The morphological and morphometric analysis showed that the bridge of the budgerigar, different from the other birds, had a large number of capillaries, so that this part of the organ could also play a trophic role for the retina in addition to the choriocapillaris. PMID:22266789

  1. Effect of heat stress on the porcine small intestine: a morphological and gene expression study.

    PubMed

    Yu, Jin; Yin, Peng; Liu, Fenghua; Cheng, Guilin; Guo, Kaijun; Lu, An; Zhu, Xiaoyu; Luan, Weili; Xu, Jianqin

    2010-05-01

    With the presence of global warming, the occurrence of extreme heat is becoming more common, especially during the summer, increasing pig susceptibility to severe heat stress. The aim of the current study was to investigate changes in morphology and gene expression in the pig small intestine in response to heat stress. Forty eight Chinese experimental mini pigs (Sus scrofa) were subjected to 40 degrees C for 5h each day for 10 successive days. Pigs were euthanized at 1, 3, 6, and 10 days after heat treatment and sections of the small intestine epithelial tissue were excised for morphological examination and microarray analyses. After heat treatment, the pig rectal temperature, the body surface temperature and serum cortisol levels were all significantly increased. The duodenum and jejunum displayed significant damage, most severe after 3 days of treatment. Microarray analysis found 93 genes to be up-regulated and 110 genes to be down-regulated in response to heat stress. Subsequent bioinformatic analysis (including gene ontology and KEGG pathway analysis) revealed the genes altered in response to heat stress related to unfolded protein, regulation of translation initiation, regulation of cell proliferation, cell migration and antioxidant regulation. Heat stress caused significant damage to the pig small intestine and altered gene expression in the pig jejunum. The results of the bioinformatic analysis from the present study will be beneficial to further investigate the underlying mechanisms involved in heat stress-induced damage in the pig small intestine. PMID:20096800

  2. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    SciTech Connect

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  3. The Latin-Greek Connection: Building Vocabulary through Morphological Study

    ERIC Educational Resources Information Center

    Rasinski, Timothy V.; Padak, Nancy; Newton, Joanna; Newton, Evangeline

    2011-01-01

    In this article, the authors make a case for teaching vocabulary in the elementary grades through a focus on the morphological structure of words, in particular English words that are derived through Latin and Greek roots and affixes. The authors present a set of engaging instructional ideas for the use of Latin and Greek derivations to teach

  4. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  5. Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70BM blend

    DOE PAGESBeta

    Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.; Rysz, Jakub; Opitz, Andreas; Campoy-Quiles, Mariano; Wang, Ergang; Barr, Matthew G.; Kilcoyne, A. L. David; Zhou, Xiaojing; et al

    2015-02-13

    The distribution of electron donor and acceptor in the active layer is known to strongly influence the electrical performance of polymer solar cells for most of the high performance polymer:fullerene systems. The formulation of the solution from which the active layer is spincoated plays an important role in the quest for morphology control. We have studied how the choice of solvent and the use of small amounts of a low vapour pressure additive in the coating solution influence the film morphology and the solar cell performance for blends of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and [6,6]-phenyl C71-butyric acid methyl ester (PC70BM). We havemore » investigated the lateral morphology using atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM), the vertical morphology using dynamic secondary ion mass spectrometry (d-SIMS) and variable-angle spectroscopic ellipsometry (VASE), and the surface composition using near-edge X-ray absorption fine structure (NEXAFS). The lateral phase-separated domains observed in films spincoated from single solvents, increase in size with increasing solvent vapour pressure and decreasing PC70BM solubility, but are not observed when 1-chloronaphthalene (CN) is added. A strongly TQ1-enriched surface layer is formed in all TQ1:PC70BM blend films and rationalized by surface energy differences. The photocurrent and power conversion efficiency strongly increased upon the addition of CN, while the leakage current decreased by one to two orders of magnitude. The higher photocurrent correlates with the finer lateral structure and stronger TQ1-enrichment at the interface with the electron-collecting electrode. This indicates that the charge transport and collection are not hindered by this polymer-enriched surface layer. Neither the open-circuit voltage nor the series resistance of the devices are sensitive to the differences in morphology.« less

  6. Gluten challenge in children with dermatitis herpetiformis: a clinical, morphological and immunohistological study.

    PubMed Central

    Ksnai, I; Krpati, S; Savilahti, E; Verkasalo, M; Bucsky, P; Trk, E

    1986-01-01

    Twenty one children with dermatitis herpetiformis were studied in an attempt to evaluate the response in the skin, in jejunal morphology, and in jejunal immunoglobulin containing cell counts to gluten elimination and subsequent gluten challenge. In all of the 15 patients whose jejunal biopsy was studied after the eventual gluten challenge the jejunal lesion had returned in 2.4 to 28 months. The numbers of IgA- and IgM-containing cells were similarly raised in primary and postchallenge biopsies. In the 13 patients whose skin improved during a gluten free diet and who were challenged with gluten the rash worsened and the dapsone/sulphapyridine requirement increased. The jejunal deterioration was equally marked in the six patients whose gluten challenge was stopped because of an intractable rash as it was in those who completed the preplanned challenge. The specimens of the former, however, had significantly more IgA-containing cells than specimens of the latter. The number of intraepithelial lymphocytes clearly reflected the degree of intestinal damage. IgA-containing cells proved to be the most sensitive indicator of an immune reaction taking place in the gut of these patients. Even in the two children with initially normal or nearly normal jejunal mucosa, the IgA cell counts in the jejunal lamina propria were markedly raised. PMID:3804022

  7. Three dimensional morphological studies of Larger Benthic Foraminifera at the population level using micro computed tomography

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Woeger, Julia; Hohenegger, Johann; Briguglio, Antonino; Ferrandez-Canadell, Carles

    2015-04-01

    Symbiont-bearing larger benthic Foraminifera (LBF) are long-living marine (at least 1 year), single-celled organisms with complex calcium carbonate shells. Their morphology has been intensively studied since the middle of the nineteenth century. This led to a broad spectrum of taxonomic results, important from biostratigraphy to ecology in shallow water tropical to warm temperate marine palaeo-environments. However, it was necessary for the traditional investigation methods to cut or destruct specimens for analysing the taxonomically important inner structures. X-ray micro-computed tomography (microCT) is one of the newest techniques used in morphological studies. The greatest advantage is the non-destructive acquisition of inner structures. Furthermore, the running improve of microCT scanners' hard- and software provides high resolution and short time scans well-suited for LBF. Three-dimensional imaging techniques allow to select and extract each chamber and to measure easily its volume, surface and several form parameters used for morphometric analyses. Thus, 3-dimensional visualisation of LBF-tests is a very big step forward from traditional morphology based on 2-dimensional data. The quantification of chamber form is a great opportunity to tackle LBF structures, architectures and the bauplan geometry. The micrometric digital resolution is the only way to solve many controversies in phylogeny and evolutionary trends of LBF. For the present study we used micro-computed tomography to easily investigate the chamber number of every specimen from statistically representative part of populations to estimate population dynamics. Samples of living individuals are collected at monthly intervals from fixed locations. Specific preparation allows to scan up to 35 specimens per scan within 2 hours and to obtain the complete digital dataset for each specimen of the population. MicroCT enables thus a fast and precise count of all chambers built by the foraminifer from its birth until the time of collection and to extract selected chambers for further studies. The variation in chamber number during the sampling period (in this study limited at 15 months) will allow the estimation of the mean chamber building rate for each investigated species. However, a number of morphological aberrations within the population can be observed: often multiple proloculi are present; their orientation to the equatorial plane (or planes) respectively the spatial position of the foramina between proloculus (or proloculi) to the reniform deuteroloculi, the geometry of septa and septula and their variation trough ontogeny and several other ontogenetic variation need further attention. Many new insights into the biology of living and fossil LBF will be obtained when the three dimensional morphology of the complete foraminiferal shell is raised to the population level.

  8. DMPS reverts morphologic and mitochondrial damage in OK cells exposed to toxic concentrations of HgCl2.

    PubMed

    Carranza-Rosales, Pilar; Guzmn-Delgado, Nancy E; Cruz-Vega, Delia E; Balderas-Rentera, Isaas; Gandolfi, A Jay

    2007-05-01

    Mercuric chloride (HgCl(2)) is a highly toxic compound, which can cause nephrotoxic damage. In the present study effects of HgCl(2) on mitochondria integrity and energy metabolism, as well as antidotal effects of 2,3-dimercaptopropane-1-sulfonate (DMPS) were investigated in the opossum kidney derived cell line (OK). OK cell monolayers were incubated during 0, 1, 3, 6, and 9 h in serum-free culture medium containing 15 microM HgCl(2), either in the absence or in the presence of 60 microM DMPS in a 1:4 ratio. Intracellular ATP content, MTT reduction, and HSP70/HSP90 induction were studied; confocal, transmission electron microscopy, and light microscopy studies were also performed. For confocal analysis, a mitochondrial selective probe (MitoTracker Red CMXH2Ros) was used. Antioxidant activity of DMPS was also studied by the scavenging of the free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) technique. A decrease of ATP content, an impaired ability to reduce tetrazolium, and dramatic changes on cellular and mitochondrial morphology, and energetic levels were found after either 6 or 9 h of HgCl(2) exposure. Increased expression of HSP90 and HSP70 were also seen. When OK cells were co-incubated with HgCl(2) and DMPS, cellular morphology, viability, intracellular ATP, and mitochondrial membrane potential were partially restored; a protective effect on mitochondrial morphology was also seen. DMPS also showed potent antioxidant activity in vitro. Mitochondrial protection could be the cellular mechanism mediated by DMPS in OK cells exposed to a toxic concentration of HgCl(2). PMID:17131097

  9. Morphological evidence of apoptosis and the prevalence of apoptotic versus mitotic cells in the membrana granulosa of ovarian follicles during spontaneous and induced atresia in ewes.

    PubMed

    Jolly, P D; Smith, P R; Heath, D A; Hudson, N L; Lun, S; Still, L A; Watts, C H; McNatty, K P

    1997-04-01

    Apoptosis is a process by which granulosa cells are thought to be deleted during ovarian follicular atresia. The aims of the present studies, using sheep as the experimental model, were to determine 1) whether morphological changes in cells composing the membrana granulosa during the process of atresia conformed with the general criteria of apoptotic cell death as assessed using tissue sections stained with hematoxylin and eosin; 2) whether cells classified as apoptotic on the basis of their morphology contained fragmented DNA using an in situ 3' end-labeling technique; and 3) the degree of apoptosis and mitosis within the granulosa cell populations of large antral follicles (> or = 3 mm in diameter) during both spontaneous and experimentally induced atresia using stereological methods. The results showed that most degenerate granulosa cells in follicles undergoing atresia display the morphological characteristics of apoptosis, suggesting that this is the most common pathway of cell deletion. Typical features were cells containing nuclei with marginated chromatin; cells with a single small densely staining nucleus (pyknotic appearance); cells with multiple smaller, densely staining nuclear fragments; and densely staining membrane-bound bodies (apoptotic bodies) either singly or in clusters. Cells with morphological features more typical of oncosis or necrosis were sometimes observed, but mainly during the later stages of atresia. All cells classified as apoptotic on the basis of morphological criteria contained fragmented DNA as measured by 3' end-labeling. Apoptotic bodies and/or cells were found in all follicles examined, including those classified as healthy. The overall prevalence of apoptotic cells plus apoptotic bodies expressed as a percentage of the total granulosa cell number per follicle varied from 0.02% to 0.20% in healthy follicles, varied from 0.21% to 2.00% in follicles in early (primary) atresia, and was > 2.0% in follicles in later (secondary) atresia. Percentages of mitotic cells in healthy follicles were > 0.5% in all but one of those examined and were < 1.0% in all follicles classified as atretic. Both morphological and 3' end-labeling results indicated that apoptotic cells were widely disseminated throughout the membrana granulosa, including the cell layer adjacent to the basement membrane. Collectively, these observations indicate that during early atresia, apoptosis occurs randomly and is not limited to specific areas within follicles. Our finding that apoptotic cell death and mitosis occur simultaneously within the same follicle is consistent with the notion that atresia is determined by a dynamic equilibrium between cell division, differentiation, and death. PMID:9096863

  10. Calmodulin inhibition regulates morphological and functional changes related to the actin cytoskeleton in pure microglial cells.

    PubMed

    Szabo, Melinda; Dulka, Karolina; Gulya, Karoly

    2016-01-01

    The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia. The amounts and intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes opposing, effects on many morphological, cytoskeletal and functional characteristics of the microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, and differentially affected the reorganization of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filopodia and podosome formation. In summary, these CaM antagonists altered different aspects of filamentous actin-based cell morphology and related functions with variable efficacy, which could be important in deciphering the roles of CaM in regulating microglial functions in health and disease. PMID:26551061

  11. Lectin-mediated effects on bone resorption in vitro: a morphological and functional study

    SciTech Connect

    Popoff, S.N.

    1986-01-01

    Lectins have been used to study the structure and function of a variety of cells and tissues. The authors used 4 different lectins, concanavalin A (con A), wheat germ agglutinin (WGA), soybean agglutinin (SBA) and peanut agglutinin (PNA) as in vitro biological probes to study the osteoclast, a multinucleated bone cell that is widely accepted as the primary effector cell responsible for normal bone resorption. They evaluated the effects of each of these lectins on osteoclastic bone resorbing activity and then examined mechanisms that may be responsible for the activation and/or inhibition of osteoclastic activity. Using con A and hemocyanin, a marker molecule used to visualize cell-bound con A via scanning electron microscopy, they demonstrated that osteoclasts have specific con A binding sites on their cell surface. They conducted a series of /sup 45/Ca bone release assays demonstrating that con A has a dose-dependent biphasic effect on bone resorption; stimulation at low concentrations and inhibition at higher concentrations. The findings suggest that the specificity of lectin binding to cell surface receptors may play an important role in the induction of altered cell function. Recently, cells of the mononuclear phagocyte system have been proposed as surrogates of less readily available osteoclasts. They used a macrophage-devitalized bone culture system to evaluate the effects of con A and SBA on the attachment of macrophages to bone and their subsequent functional activity. The results showed that con A, but not SBA, alters the morphology and function of macrophages on a devitalized bone surface. The results support the hypothesis that certain, specific saccharides regulate the interaction between macrophages and bone.

  12. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  13. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  14. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    PubMed

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species. PMID:10766976

  15. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice.

    PubMed

    Chien, Wade W; Isgrig, Kevin; Roy, Soumen; Belyantseva, Inna A; Drummond, Meghan C; May, Lindsey A; Fitzgerald, Tracy S; Friedman, Thomas B; Cunningham, Lisa L

    2016-02-01

    Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy. PMID:26307667

  16. Comparisons of cell culture medium using distribution of morphological features in microdevice.

    PubMed

    Sasaki, Hiroto; Enomoto, Junko; Ikeda, Yurika; Honda, Hiroyuki; Fukuda, Junji; Kato, Ryuji

    2016-01-01

    As the number of available cell types grows, it becomes necessary to develop more effective ways to optimize the cell-culture medium for each cell line and culture condition. However, because of the vast number of parameters that must be decided, such as the combination of components, optimization is both laborious and costly. Microdevices are a cost-effective way to perform such evaluations because they use only a small volume of media and enable high-throughput analyses. However, assays performed in microdevices are themselves minimized, and each assay unit (well/chamber) commonly contains an insufficient number of cells for comprehensive evaluations such as gene-expression or flow-cytometry analyses. To address this issue, we introduced image-based analysis in conjunction with microdevice assays; this approach allows quantification of every cell in each assay unit. To quantitatively profile differences in cellular behaviors in a microdevice under different culture media conditions, we developed a non-staining image-based analysis method that utilizes cellular morphology. Our approach combines the structural advantages of microdevices, which can increase the stability of images, and the quantitative advantages of an image-based cell evaluation technique that utilizes time-course population change in several morphological features. Our results demonstrate that cellular changes due to small alterations in the concentration of serum in medium or differences in the basal medium can be profiled using only microscopic images. PMID:26149718

  17. A novel biointerface that suppresses cell morphological changes by scavenging excess reactive oxygen species.

    PubMed

    Ikeda, Yutaka; Yoshinari, Tomoki; Nagasaki, Yukio

    2015-09-01

    During cell cultivation on conventional culture dishes, various events results in strong stresses that lead to the production of bioactive species such as reactive oxygen species (ROS) and nitric oxide. These reactive species cause variable damage to cells and stimulate cellular responses. Here, we report the design of a novel biocompatible surface that decreases stress by not only morphologically modifying the dish surface by using poly(ethylene glycol) tethered chains, but also actively scavenging oxidative stress by using our novel nitroxide radical-containing polymer. A block copolymer, poly(ethylene glycol)-b-poly[(2,2,6,6-tetramethylpiperidine-N-oxyl)aminomethylstyrene] (PEG-b-PMNT) was used to coat the surface of a dish. Differentiation of undifferentiated human leukemia (HL-60) cells was found to be suppressed on the polymer-coated dish. Notably, HL-60 cell cultivation caused apoptosis under high-density conditions, while spontaneous apoptosis was suppressed in cells plated on the PEG-b-PMNT-modified surface, because a healthy mitochondrial membrane potential was maintained. In contrast, low molecular weight antioxidants did not have apparent effects on the maintenance of mitochondria. We attribute this to the lack of cellular internalization of our immobilized polymer and selective scavenging of excessive ROS generated outside of cells. These results demonstrate the utility of our novel biocompatible material for actively scavenging ROS and thus maintaining cellular morphology. PMID:25691268

  18. Morphology, proliferation, alignment,  and new collagen synthesis of mesenchymal stem cells on a microgrooved collagen membrane.

    PubMed

    Li, Lili; Li, Xia; Chen, Lu; Sun, Peng; Hao, Na; Jiang, Bo

    2016-05-01

    The topographic cues of the extracellular matrix may have significant effects upon cellular behavior, such as adhesion, spreading, migration, proliferation, differentiation, and in particular, morphology and orientation. In this study, we examined the effects of microgrooved collagen membrane (MCM) on mesenchymal stem cell (MSC) behavior. The MCM (9 μm in periodicity, and 1-2 μm in depth) was fabricated on an untreated (nonpolar) and smooth polystyrene substrate, based on the absorption and self-assembly properties of collagen on the polystyrene substrate. Methyl thiazolyl tetrazolium assay revealed that cell proliferation on the MCM was enhanced compared with the smooth collagen membrane at day 2. Qualitative observation of MSC behavior using confocal laser scanning microscopy and scanning electron microscopy showed that MSCs grew with a highly elongated morphology and were aligned strictly along the direction of the microgrooves. Additionally, scanning electron microscopy revealed the oriented cells produced a collagenous matrix on the MCM that had a preferential orientation, whereas the collagenous matrix produced by randomly oriented MSCs on the smooth collagen membrane was disorganized. Future studies should investigate the fabrication of oriented topographical substrates, based on the natural biomaterial collagen, to guide cell alignment and oriented growth along definite directions. These substrates may help produce aligned collagenous matrices that could have good potential for the production of tissue substitutes. PMID:26723935

  19. The effect of photodynamic treatment on the morphological and mechanical properties of the HeLa cell line.

    PubMed

    Kolar, Petr; Tomankova, Katerina; Malohlava, Jakub; Zapletalova, Jana; Vujtek, Milan; Safarova, Klara; Jancik, Dalibor; Kolarova, Hana

    2013-09-01

    High resolution imaging of biological structures and changes induced by various agents such as drugs and toxins is commonly performed by fluorescence and electron microscopy (EM). Although high-resolution imaging is possible with EM, the requirements for fixation and staining of samples for image contrast severely limits the study of living organisms. Atomic force microscopy (AFM), on the other hand, is capable of simultaneous nanometer spatial resolution and piconewton force detection, allowing detailed study of cell surface morphology and monitoring cytomechanical information. We present a method that images and studies mechanically characterized cells using AFM. We used a HeLa cell line (cervix carcinoma cell), which is sensitive to photodynamic treatment (PDT); growth media as a scanning surrounding; atomic force microscopy NT-MDT Aura for cytomechanical measurement; and scanning electron microscope Hitachi Su 6600 for control images of the cells. The modulus of elasticity for intact and photodynamically damaged cells can indicate mechanical changes to the main properties of cells. Cell elasticity changes can provide information on the degree or value of cell damage, for example after PDT. Measurements were carried out on approximately sixty cells, including three independent experiments on a control group and on sixty cells in a photodamaged group. Cells before PDT show higher elasticity: the median of Youngs modulus on the nucleus was 35.283 kPa and outside of the nucleus 107.442 kPa. After PDT, the median of Young's modulus on the nucleus was 61.144 kPa and outside of the nucleus was 193.605 kPa. PMID:23817636

  20. Type II achondrogenesis-hypochondrogenesis: morphologic and immunohistopathologic studies.

    PubMed Central

    Godfrey, M; Keene, D R; Blank, E; Hori, H; Sakai, L Y; Sherwin, L A; Hollister, D W

    1988-01-01

    A 32-wk-gestation female with type II achondrogenesis-hypochondrogenesis has been studied. The clinical features were typical, and radiographs revealed short ribs, hypoplastic ilia, absence of ossification of sacrum, pubis, ischia, tali, calcanei, and many vertebral bodies; the long bones were short with mild metaphyseal flaring. The femoral cylinder index was 6.3. Comparison with previous cases placed the patient toward the mild end of the achondrogenesis-hypochondrogenesis spectrum (Whitley-Gorlin prototype IV). Light microscopy revealed hypercellular cartilage with decreased matrix traversed by numerous fibrous vascular canals. The growth plate was markedly abnormal. Ultrastructural studies revealed prominently dilated rough endoplasmic reticulum containing a fine granular material with occasional fibrils in all chondrocytes. Immunohistologic studies indicated irregular large areas of cartilage matrix staining with monoclonal antibody to human type III collagen. The relative intensity of matrix staining for type II collagen appeared diminished. More striking, however, were intense focal accumulations of type II collagen within small rounded perinuclear structures of most chondrocytes but not other cell types. These results strongly suggest intracellular retention of type II collagen within vacuolar structures, probably within the dilated rough endoplasmic reticulum observed in all chondrocytes by electron microscopy (EM), and imply the presence of an abnormal, poorly secreted type II collagen molecule. Biochemical studies (see companion paper) suggest that this patient had a new dominant lethal disorder caused by a structural abnormality of type II collagen. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3057886

  1. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons.

    PubMed

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. PMID:23742895

  2. TCEB1-mutated Renal Cell Carcinoma: A Distinct Genomic and Morphologic Subtype

    PubMed Central

    Sarungbam, Judy; Sfakianos, John P; Sato, Yusuke; Morikawa, Teppei; Kume, Haruki; Fukayama, Masashi; Homma, Yukio; Chen, Ying-Bei; Sankin, Alexander; Mano, Roy; Coleman, Jonathan A; Russo, Paul; Ogawa, Seishi; Sander, Chris

    2014-01-01

    Integrated sequencing analysis identified a group of tumors among clear cell renal cell carcinomas characterized by hotspot mutations in TCEB1 (a gene that contributes to the VHL complex to ubiquitinate hypoxia inducible factor). We analyzed 11 tumors from two distinct cohorts with TCEB1 mutations along with an expanded cohort to assess whether these should be considered an entity distinct from clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma. All tumors were characterized by hotspot mutations in TCEB1 Y79C/S/F/N or A100P. Morphologic and immunohistochemical characteristics of the tumors were assessed by two experienced genitourinary pathologists. Clinical and pathologic variables, copy number alterations, mutations and expression signatures were compared to a cohort of TCEB1 wild type tumors. All TCEB1 mutated tumors were VHL and PBRM1 wild type and contained distinct copy number profiles including loss of heterozygosity of chromosome 8, the location of TCEB1 (8q21.11). All tumors lacked the clear cell renal cell carcinoma signature 3p loss and contained distinct gene expression signatures. None of the clear cell papillary tumor harbored TCEB1 mutations. Pathologically, TCEB1-mutated tumors all shared characteristic features including thick fibromuscular bands transecting the tumor, pure clear cell cytology frequently with cells showing voluminous cytoplasm, clear cell renal cell carcinoma-like acinar areas associated with in-folding tubular and focally papillary architecture. The presence of voluminous cytoplasm, absence of luminal polarization of tumor nuclei and lack of extensive cup-like distribution of carbonic anhydrase IX expression distinguish it from clear cell papillary carcinoma. No patients had developed metastases at last follow-up (median 48 months). In sum, TCEB1-mutated renal cell carcinoma is a distinct entity with recurrent hotspot mutations, specific copy number alterations, pathway activation and characteristic morphologic features. Further clinical followup is needed to determine whether these tumors are more indolent compared to conventional clear cell renal cell carcinoma. PMID:25676555

  3. TCEB1-mutated renal cell carcinoma: a distinct genomic and morphological subtype.

    PubMed

    Hakimi, A Ari; Tickoo, Satish K; Jacobsen, Anders; Sarungbam, Judy; Sfakianos, John P; Sato, Yusuke; Morikawa, Teppei; Kume, Haruki; Fukayama, Masashi; Homma, Yukio; Chen, Ying-Bei; Sankin, Alexander I; Mano, Roy; Coleman, Jonathan A; Russo, Paul; Ogawa, Seishi; Sander, Chris; Hsieh, James J; Reuter, Victor E

    2015-06-01

    Integrated sequencing analysis identified a group of tumors among clear cell renal cell carcinomas characterized by hotspot mutations in TCEB1 (a gene that contributes to the VHL complex to ubiquitinate hypoxia-inducible factor). We analyzed 11 tumors from two distinct cohorts with TCEB1 mutations along with an expanded cohort to assess whether these should be considered an entity distinct from clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma. All tumors were characterized by hotspot mutations in TCEB1 Y79C/S/F/N or A100P. Morphological and immunohistochemical characteristics of the tumors were assessed by two experienced genitourinary pathologists. Clinical and pathological variables, copy number alterations, mutations, and expression signatures were compared with a cohort of TCEB1 wild-type tumors. All TCEB1-mutated tumors were VHL and PBRM1 wild type and contained distinct copy number profiles including loss of heterozygosity of chromosome 8, the location of TCEB1 (8q21.11). All tumors lacked the clear cell renal cell carcinoma signature 3p loss and contained distinct gene expression signatures. None of the clear cell papillary tumors harbored TCEB1 mutations. Pathologically, all TCEB1-mutated tumors shared characteristic features including thick fibromuscular bands transecting the tumor, pure clear cell cytology frequently with cells showing voluminous cytoplasm, and clear cell renal cell carcinoma-like acinar areas associated with infolding tubular and focally papillary architecture. The presence of voluminous cytoplasm, absence of luminal polarization of tumor nuclei, and lack of extensive cup-like distribution of carbonic anhydrase-IX expression distinguish it from clear cell papillary carcinoma. None of the patients developed metastases at last follow-up (median 48 months). In sum, TCEB1-mutated renal cell carcinoma is a distinct entity with recurrent hotspot mutations, specific copy number alterations, pathway activation, and characteristic morphological features. Further clinical follow-up is needed to determine whether these tumors are more indolent compared with the conventional clear cell renal cell carcinoma. PMID:25676555

  4. Epigenetic reprogramming by tumor-derived EZH2 gain-of-function mutations promotes aggressive 3D cell morphologies and enhances melanoma tumor growth

    PubMed Central

    Barsotti, Anthony M.; Ryskin, Michael; Zhong, Wenyan; Zhang, Wei-Guo; Giannakou, Andreas; Loreth, Christine; Diesl, Veronica; Follettie, Maximillian; Golas, Jonathan; Lee, Michelle; Nichols, Timothy; Fan, Conglin; Li, Gang; Dann, Stephen; Fantin, Valeria R.; Arndt, Kim; Verhelle, Dominique; Rollins, Robert A.

    2015-01-01

    In addition to genetic alterations, cancer cells are characterized by myriad epigenetic changes. EZH2 is a histone methyltransferase that is over-expressed and mutated in cancer. The EZH2 gain-of-function (GOF) mutations first identified in lymphomas have recently been reported in melanoma (~2%) but remain uncharacterized. We expressed multiple EZH2 GOF mutations in the A375 metastatic skin melanoma cell line and observed both increased H3K27me3 and dramatic changes in 3D culture morphology. In these cells, prominent morphological changes were accompanied by a decrease in cell contractility and an increase in collective cell migration. At the molecular level, we observed significant alteration of the axonal guidance pathway, a pathway intricately involved in the regulation of cell shape and motility. Furthermore, the aggressive 3D morphology of EZH2 GOF-expressing melanoma cells (both endogenous and ectopic) was attenuated by EZH2 catalytic inhibition. Finally, A375 cells expressing exogenous EZH2 GOF mutants formed larger tumors than control cells in mouse xenograft studies. This study not only demonstrates the first functional characterization of EZH2 GOF mutants in non-hematopoietic cells, but also provides a rationale for EZH2 catalytic inhibition in melanoma. PMID:25671303

  5. Morphological and isoenzymatic differentiation of B-chronic lymphocytic leukaemia cells induced by phorbolester.

    PubMed Central

    Drexler, H. G.; Klein, M.; Bhoopalam, N.; Gaedicke, G.; Minowada, J.

    1986-01-01

    Fresh leukaemia cells from the peripheral blood of 6 patients with B-chronic lymphocytic leukaemia (CLL) were cultured in the continuous presence of the phorbolester 12-O-tetradecanoylphorbol 13-acetate (TPA) for in vitro induction of differentiation. Upon treatment with TPA the cells showed distinct morphological changes consisting of cytoplasmic and nuclear enlargement, vacuolisation and protrusion of cytoplasm, eccentric location of nuclei with perinuclear clear zones, and oval to elongated cell forms. Isoenzyme profiles of the enzymes carboxylic esterase, acid phosphatase, hexosaminidase and lactate dehydrogenase (LDH) were analysed by isoelectric focusing on polyacrylamide gels. An increase in the number and in the staining intensity of isoenzymes were observed for all 4 enzymes in the TPA-exposed cells indicating a maturation along the B cell pathway. TPA triggered the new expression of the tartrate-resistant acid phosphatase isoenzyme, a marker of hairy cell leukaemia (HCL) cells, and of the hexosaminidase I isoenzyme, a marker of multiple myeloma cells. The induced phenotypic changes are suggestive of differentiation to stages corresponding to those of HCL cells or 'pre-plasma cells'. Images Figure 2 Figure 4 PMID:3485441

  6. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  7. Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season

    PubMed Central

    Liu, Ming; Cao, Guangming; Zhang, Yanming; Qu, Jiapeng; Li, Wei; Wan, Xinrong; Li, Yu-xia; Zhang, Zhibin; Wang, Yan-ling; Gao, Fei

    2016-01-01

    Plateau pikas are seasonally breeding small herbivores that inhabit the meadow ecosystem of the Qinghai-Tibetan Plateau. Testis regression in plateau pikas begins in early June, and the male pikas are completely infertile, with a dramatically reduced testis size, in late July. In this study, a decreased germ cell number in the testes was first noted in early June. By late June, only Sertoli cells and a small number of spermatogonia remained. Interestingly, large gonocyte-like germ cells were observed in early July. In late July, the number of gonocyte-like cells per tubule increased significantly, and most of the Sertoli cell nuclei moved to and clustered in the center of the seminiferous tubules. The gonocyte-like germ cells and Sertoli cells began to express AP-2γ and anti-Mullerian hormone (AMH) proteins, which were detected in the germ cells and Sertoli cells of juvenile pikas but not in adult testes. Simultaneously, LC3 puncta dramatically increased in the seminiferous tubules of the pikas’ testes during the non-breeding season. Our study found that spermatogonia and Sertoli cells in non-breeding adult pikas morphologically resembled those in juvenile pikas and expressed specific markers, indicating that de-differentiation-like transitions may occur during this process. PMID:26939551

  8. Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season.

    PubMed

    Liu, Ming; Cao, Guangming; Zhang, Yanming; Qu, Jiapeng; Li, Wei; Wan, Xinrong; Li, Yu-Xia; Zhang, Zhibin; Wang, Yan-Ling; Gao, Fei

    2016-01-01

    Plateau pikas are seasonally breeding small herbivores that inhabit the meadow ecosystem of the Qinghai-Tibetan Plateau. Testis regression in plateau pikas begins in early June, and the male pikas are completely infertile, with a dramatically reduced testis size, in late July. In this study, a decreased germ cell number in the testes was first noted in early June. By late June, only Sertoli cells and a small number of spermatogonia remained. Interestingly, large gonocyte-like germ cells were observed in early July. In late July, the number of gonocyte-like cells per tubule increased significantly, and most of the Sertoli cell nuclei moved to and clustered in the center of the seminiferous tubules. The gonocyte-like germ cells and Sertoli cells began to express AP-2γ and anti-Mullerian hormone (AMH) proteins, which were detected in the germ cells and Sertoli cells of juvenile pikas but not in adult testes. Simultaneously, LC3 puncta dramatically increased in the seminiferous tubules of the pikas' testes during the non-breeding season. Our study found that spermatogonia and Sertoli cells in non-breeding adult pikas morphologically resembled those in juvenile pikas and expressed specific markers, indicating that de-differentiation-like transitions may occur during this process. PMID:26939551

  9. Differentiation of glomerular and non-glomerular haematurias on basis of the morphology of urinary red blood cells.

    PubMed

    Nagy, J; Csermely, L; Tvri, E; Trinn, C; Burger, T

    1985-01-01

    Haematurias present serious problems in differential diagnostics. Although no clear-cut instructions exist, patients with haematuria are usually directed to urological surgeries or inpatient departments. Here they are routinely checked by a number of invasive techniques (cystoscopy, i. v. urography, aortography etc.) before the urological nature of haematuria can be ruled out. The suspicion of a glomerular disease being in the background of haematuria emerges only if it is accompanied by a marked proteinuria. Our department deals with kidney diseases since decades. The routine light microscopic examination of haematuric urinary samples called attention to the fine differences between erythrocyte morphology in glomerular and other haematurias. The present paper is an account of morphological studies of red blood cells carried out in haematuric urinary samples of 120 histologically verified glomerulonephritis and 80 other cases. PMID:3939089

  10. Quantitative characterization and comparative study of feather melanosome internal morphology using surface analysis.

    PubMed

    Straker, Lorian Cobra

    2016-03-01

    A successful feather development implies in a precise orchestration of cells in the follicle, which culminates in one of the most complex epidermal structures in nature. Melanocytes contribute to the final structure by delivering melanosomes to the barb and barbule cells. Disturbance to the tissue during the feather growth can damage the final structure. Here, melanosomes seen in an unusual outgrowth on the barb cortex of a flight feather are reported and compared to commonly observed melanosomes embedded in the cortex. Transmission Electron Microscopy in scanning-transmission mode (STEM) generated images coupled with secondary electron detection. The two classes of melanosomes were registered on images combining transmitted and secondary electron signals. Image processing allowed surface analyses of roughness and texture of the internal morphology of these organelles. Results showed that the two classes of melanosomes are significantly distinct internally, indicating that different physiological processes up to feather maturation could have occurred. Surface analysis methods are not regularly used in cell biology studies, but here it is shown that it has great potential for microscopic image analysis, which could add robust information to studies of cell biology events. PMID:26760226

  11. Morphological studies on the pathogenesis of Reinke's edema.

    PubMed

    Tillmann, B; Rudert, H; Schnke, M; Werner, J A

    1995-01-01

    Light microscopy of vocal cord mucosa in patients with Reinke's edema revealed highly ramified fissured spaces in the subepithelial tissue that were generally lined with flat cells. The ultrastructure of the parietal cells resembled fibroblasts whose cytoplasmic extensions overlapped in two to three layers in some places. Cell contacts were not observed. Neither electron microscopy nor immunohistochemical testing with antibody against laminin demonstrated a basal membrane. It was possible to distinguish between light and dark cells in the specimens examined. The cytoplasm of the light cells contained intermediate filaments, mitochondria, lysosomes, coated vesicles, caveolae and broad cisternae of rough endoplasmic reticulum. The dark cells were more numerous and typically exhibited a well-developed endoplasmic reticulum and free ribosomes. The parietal cells showed no immunoreaction against human vascular endothelial cells. Immunohistochemical demonstration of mesenchymal intermediate filaments using antibody against vimentin yielded a positive reaction for some of the cells in the walls of the crevices and subepithelial tissue. It was also possible to demonstrate a few cells with monoclonal antibody against macrophages (KiM6). These findings contradict the concept of lymphatic distension in cases of Reinke's edema. Since the parietal cells seen resembled synoviocytes in their structure and immunohistochemical reactions, findings indicate that the hollow spaces of Reinke's edema develop like neobursae from mechanical strain. PMID:8719588

  12. Morphology of epithelial cells lining the digestive tract of the giant keyhole limpet, Megathura crenulata (Mollusca; Vetigastropoda).

    PubMed

    Martin, Gary G; Bessette, Tracy; Martin, Alanna; Cotero, Renae; Vumbaco, Kathryn; Oakes, Christopher

    2010-09-01

    To understand the digestive functions in the giant keyhole limpet, it is important to know the types of cells present in each region of the gut and their roles in the secretion of digestive enzymes and absorption of nutrients. This study describes the morphology of cells lining the entire gut and identifies sites that may be secreting materials to aid digestion. Previous studies involving electron microscopy and enzyme analysis have focused on the salivary and digestive glands of several gastropods. Studies on the rest of the gut tract typically include only histological descriptions of the epithelia and although several types of cells have been described, they appear very similar. The purpose of this study is to determine if electron microscopy can provide better insights into the functions of cells in these poorly studied regions of the gut. Our ultrastructural observations suggest that only two types of cells, mucus secreting cells and apocrine secretory cells make up the epithelium in the esophagus, style sac, and intestine. These regions account for 85% of the length of the entire digestive tract. Apocrine secretory cells contain pigment granules, bear cilia, and/or microvilli at their apices, and release product into the gut lumen via apocrine secretion. This suggests that the secretory processes involved with digestion are occurring in most regions of the gut and that apocrine secretion is the primary mode by which materials are introduced into the gut lumen. The lips, salivary glands, stomach, and digestive gland lack apocrine secretory cells and the epithelial cells are similar to those described in other gastropods. J. Morphol. 271:1134-1151, 2010. (c) 2010 Wiley-Liss, Inc. PMID:20730925

  13. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  14. Regenerative fuel cell study

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1972-01-01

    The completion of the study is reported for the regenerative fuel cell subsystem (RFCS) as an energy storage process for use aboard the space shuttle launched modular space station (MSS). The MSS mission requirements, and RFCS are discussed, and a comparison between RFCS and a nickel cadmium battery subsystem is presented. Development costs are also discussed.

  15. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  16. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro.

    PubMed

    Halfter, W; Chiquet-Ehrismann, R; Tucker, R P

    1989-03-01

    We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum. PMID:2465193

  17. Principles of connectivity among morphologically defined cell types in adult neocortex.

    PubMed

    Jiang, Xiaolong; Shen, Shan; Cadwell, Cathryn R; Berens, Philipp; Sinz, Fabian; Ecker, Alexander S; Patel, Saumil; Tolias, Andreas S

    2015-11-27

    Since the work of Ramón y Cajal in the late 19th and early 20th centuries, neuroscientists have speculated that a complete understanding of neuronal cell types and their connections is key to explaining complex brain functions. However, a complete census of the constituent cell types and their wiring diagram in mature neocortex remains elusive. By combining octuple whole-cell recordings with an optimized avidin-biotin-peroxidase staining technique, we carried out a morphological and electrophysiological census of neuronal types in layers 1, 2/3, and 5 of mature neocortex and mapped the connectivity between more than 11,000 pairs of identified neurons. We categorized 15 types of interneurons, and each exhibited a characteristic pattern of connectivity with other interneuron types and pyramidal cells. The essential connectivity structure of the neocortical microcircuit could be captured by only a few connectivity motifs. PMID:26612957

  18. Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior

    SciTech Connect

    Cooper, J.F.; Krueger, R.

    1997-01-01

    Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

  19. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  20. Morphological and structural study of pseudowollastonite implants in bone.

    PubMed

    De Aza, P N; Luklinska, Z B; Martinez, A; Anseau, M R; Guitian, F; De Aza, S

    2000-01-01

    In vitro experiments show that pseudowollastonite (alpha-CaSiO3) is a highly bioactive material that forms a hydroxyapatite surface layer on exposure to simulated body fluid and also to human parotid saliva. This finding is very significant, as it indicates that the pseudowollastonite can be physically and chemically integrated into the structure of living bone tissue, and therefore could be suitable for repair or replacement of living bone. The physical and chemical nature of the remodelled interface between the pseudowollastonite implants and the surrounding bone has been studied after in vivo implantation of 20 pseudowollastonite cylinders into rat tibias. The interfaces formed after 3, 6, 8 and 12 weeks of implantation were examined histologically using an optical microscope and also by analytical scanning electron microscopy. SEM and X-ray elemental analysis showed that the new bone was growing in direct contact with the implants. Other examinations found that the bone was fully mineralized. The ionic exchange taking place at the implant interface with the body fluids was essential in the process of the implant integration through a dissolution-precipitation-transformation mechanism. The study found the interface biologically and chemically active over the 12-week implantation period. The rate of new bone formation decreased after the first 3 weeks and reached constant value over the following 9 weeks. The osteoblastic cells migrated towards the interface and colonized the surface at the contact areas with the cortical regions and also bone marrow. PMID:10620149

  1. Morphology of the Myoepithelial Cell: Immunohistochemical Characterization from Resting to Motile Phase

    PubMed Central

    Beha, Germana; Sarli, Giuseppe; Brunetti, Barbara; Sassi, Francesco; Ferrara, Domenico; Benazzi, Cinzia

    2012-01-01

    Myoepithelium is present in canine mammary tumors as resting and proliferative suprabasal and spindle and stellate interstitial cells. The aim of this paper was to evaluate a panel of markers for the identification of four different myoepithelial cell morphological types in the normal and neoplastic mammary gland and to investigate immunohistochemical changes from an epithelial to a mesenchymal phenotype. Cytokeratin 19 (CK19), cytokeratin 5/6 (CK5/6), cytokeratin 14 (CK14), estrogen receptor (ER), p63 protein, vimentin (VIM), and α-smooth muscle actin (Alpha-SMA) antibodies were used on 29 neoplasms (3 benign and 3 malignant myoepithelial tumors, 7 carcinomas in benign-mixed tumors and 16 complex carcinomas) and on normal tissue of mammary glands. All these antibodies were also tested on 3 mammary tissues from animals with no mammary pathology. The myoepithelial markers were well expressed in the suprabasal cells and gradually lost in the motile types, with the stellate cells maintaining only VIM expression typical of mesenchyma. ER labeled some resting and motile myoepithelial cells. On the basis of our results, we propose a transition from myoepithelial immotile cells into migratory fibroblast-like cells. This transition and the characterization of an immunohistochemical panel for resting and motile myoepithelial cells shed more light on the biological behavior of myoepithelial cells. PMID:22919300

  2. Target morphology and cell memory: a model of regenerative pattern formation

    PubMed Central

    Bessonov, Nikolai; Levin, Michael; Morozova, Nadya; Reinberg, Natalia; Tosenberger, Alen; Volpert, Vitaly

    2015-01-01

    Despite the growing body of work on molecular components required for regenerative repair, we still lack a deep understanding of the ability of some animal species to regenerate their appropriate complex anatomical structure following damage. A key question is how regenerating systems know when to stop growth and remodeling – what mechanisms implement recognition of correct morphology that signals a stop condition? In this work, we review two conceptual models of pattern regeneration that implement a kind of pattern memory. In the first one, all cells communicate with each other and keep the value of the total signal received from the other cells. If a part of the pattern is amputated, the signal distribution changes. The difference fromthe original signal distribution stimulates cell proliferation and leads to pattern regeneration, in effect implementing an error minimization process that uses signaling memory to achieve pattern correction. In the second model, we consider a more complex pattern organization with different cell types. Each tissue contains a central (coordinator) cell that controls the tissue and communicates with the other central cells. Each of them keeps memory about the signals received from other central cells. The values of these signals depend on the mutual cell location, and the memory allows regeneration of the structure when it is modified. The purpose of these models is to suggest possible mechanisms of pattern regeneration operating on the basis of cell memory which are compatible with diverse molecular implementation mechanisms within specific organisms. PMID:26889161

  3. Morphological control in polymer solar cells using low-boiling-point solvent additives

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  4. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D.

    PubMed

    Tymchenko, Nina; Nilebck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia

    2012-12-01

    The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies. PMID:22791360

  5. A morphological study of SEI film on graphite electrodes

    NASA Astrophysics Data System (ADS)

    Zane, D.; Antonini, A.; Pasquali, M.

    Morphological features of the protective layer on the graphitic electrodes, formed by reduction of electrolytic solution components during the first cycle, are investigated by SEM and common electrochemical techniques. As expected, the interaction between electrode and solution is very important, leading to quite different results for different solutions. Here, results for solution of various solvents ratio are reported. It appears that the performances of the electrodes are strongly dependent on their surface chemistry in solutions. We can conclude that the nature of the surface film plays a key role for the electrode stability or to capacity decrease always related to an increase of the electrode itself impedance.

  6. Morphological and morphometric characterization of direct transdifferentiation of support cells into hair cells in ototoxin-exposed neonatal utricular explants.

    PubMed

    Werner, Mimmi; Van De Water, Thomas R; Hammarsten, Peter; Arnoldsson, Gran; Berggren, Diana

    2015-03-01

    We have studied aminoglycoside-induced vestibular hair-cell renewal using long-term culture of utricular macula explants from 4-day-old rats. Explanted utricles were exposed to 1 mM of gentamicin for 48 h, during 2nd and 3rd days in vitro (DIV), and then recovering in unsupplemented medium. Utricles were harvested at specified time points from the 2nd through the 28th DIV. The cellular events that occurred within hair cell epithelia during the culture period were documented from serial sectioned specimens. Vestibular hair cells (HCs) and supporting cells (SCs) were systematically counted using light microscopy (LM) with the assistance of morphometric software. Ultrastructural observations were made from selected specimens with transmission electron microscopy (TEM). After 7 DIV, i.e. four days after gentamicin exposure, the density of HCs was 11% of the number of HCs observed in non-gentamicin-exposed control explants. At 28 DIV the HC density was 61% of the number of HCs observed in the control group explant specimens. Simultaneously with this increase in HCs there was a corresponding decline in the number of SCs within the epithelium. The proportion of HCs in relation to SCs increased significantly in the gentamicin-exposed explant group during the 5th to the 28th DIV period of culture. There were no significant differences in the volume estimations of the gentamicin-exposed and the control group explants during the observed period of culture. Morphological observations showed that gentamicin exposure induced extensive loss of HCs within the epithelial layer, which retained their intact apical and basal linings. At 7 to 14 DIV (i.e. 3-11 days after gentamicin exposure) a pseudostratified epithelium with multiple layers of disorganized cells was observed. At 21 DIV new HCs were observed that also possessed features resembling SCs. After 28 DIV a new luminal layer of HCs with several layers of SCs located more basally characterized the gentamicin-exposed epithelium. No mitoses were observed within the epithelial layer of any explants. Our conclusion is that direct transdifferentiation of SCs into HCs was the only process contributing to the renewal of HCs after gentamicin exposure in these explants of vestibular inner ear epithelia obtained from the labyrinths of 4-day-old rats. PMID:25576788

  7. Spatiotemporal quantification of subcellular ATP levels in a single HeLa cell during changes in morphology

    PubMed Central

    Suzuki, Rika; Hotta, Kohji; Oka, Kotaro

    2015-01-01

    The quantitative relationship between change in cell shape and ATP consumption is an unsolved problem in cell biology. In this study, a simultaneous imaging and image processing analysis allowed us to observe and quantify these relationships under physiological conditions, for the first time. We focused on two marginal regions of cells: the microtubule-rich ‘lamella’ and the actin-rich ‘peripheral structure’. Simultaneous imaging and correlation analysis revealed that microtubule dynamics cause lamellar shape change accompanying an increase in ATP level. Also, image processing and spatiotemporal quantification enabled to visualize a chronological change of the relationships between the protrusion length and ATP levels, and it suggested they are influencing each other. Furthermore, inhibition of microtubule dynamics diminished motility in the peripheral structure and the range of fluctuation of ATP level in the lamella. This work clearly demonstrates that cellular motility and morphology are regulated by ATP-related cooperative function between microtubule and actin dynamics. PMID:26575097

  8. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position. PMID:24703843

  9. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  10. Small molecule BHJ solar cells based on DPP(TBFu)2 and diphenylmethanofullerenes (DPM): linking morphology, transport, recombination and crystallinity

    NASA Astrophysics Data System (ADS)

    Fernndez, Daniel; Viterisi, Aurlien; RyanPresent Address: Department Of Chemistry, The University Of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, James William; Gispert-Guirado, Francesc; Vidal, Sara; Filippone, Salvatore; Martn, Nazario; Palomares, Emilio

    2014-05-01

    The effect of alkyl chains in substituted diphenylmethano[70]fullerenes (C70-DPM) on the device characteristics of DPP(TBFu)2 small molecule-based bulk heterojunction (BHJ) organic solar cell devices is investigated. By measuring charge carrier mobilities as well as the morphology and crystallinity of each device we have been able to understand and explain the differences found between solar cells made with the different C70-DPM fullerenes despite the general lack of simple relationships between the molecular structure, orbital level positioning and power conversion efficiency. Our study then concludes with some general rules for the future design of acceptors for DPP(TBFu)2 containing photoactive layers in the search for efficient organic solar cells.The effect of alkyl chains in substituted diphenylmethano[70]fullerenes (C70-DPM) on the device characteristics of DPP(TBFu)2 small molecule-based bulk heterojunction (BHJ) organic solar cell devices is investigated. By measuring charge carrier mobilities as well as the morphology and crystallinity of each device we have been able to understand and explain the differences found between solar cells made with the different C70-DPM fullerenes despite the general lack of simple relationships between the molecular structure, orbital level positioning and power conversion efficiency. Our study then concludes with some general rules for the future design of acceptors for DPP(TBFu)2 containing photoactive layers in the search for efficient organic solar cells. Electronic supplementary information (ESI) available: Device fabrication and characterisation, XRD measurement details, cyclic voltammograms, hole and electron mobility measurements, CE/TPV experimental details. See DOI: 10.1039/c3nr06801c

  11. THE K-REGION DIHYDRODIOL OF BENZO[A]PYRENE INDUCES DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN C3H10T1/2CL8 MOUSE EMBRYO CELLS WITHOUT THE FORMATION OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts

    Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...

  12. Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells.

    PubMed

    Wu, Yongzhen; Chen, Wei; Yue, Youfeng; Liu, Jian; Bi, Enbing; Yang, Xudong; Islam, Ashraful; Han, Liyuan

    2015-09-23

    Perovskite solar cells have shown high photovoltaic performance but suffer from low reproducibility, which is mainly caused by low uniformity of the active perovskite layer in the devices. The nonuniform perovskites further limit the fabrication of large size solar cells. In this work, we control the morphology of CH3NH3PbI3 on a mesoporous TiO2 substrate by employing consecutive antisolvent dripping and solvent-vapor fumigation during spin coating of the precursor solution. The solvent-vapor treatment is found to enhance the perovskite pore filling and increase the uniformity of CH3NH3PbI3 in the porous scaffold layer but slightly decrease the uniformity of the perovskite capping layer. An additional antisolvent dripping is employed to recover the uniform perovskite capping layer. Such consecutive morphology controlling operations lead to highly uniform perovskite in both porous and capping layers. By using the optimized perovskite deposition procedure, the reproducibility of mesostructured solar cells was greatly improved such that a total of 40 devices showed an average efficiency of 15.3% with a very small standard deviation of 0.32. Moreover, a high efficiency of 14.9% was achieved on a large-size cell with a working area of 1.02 cm(2). PMID:26317144

  13. Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis.

    PubMed

    Bhaud, Y; Guillebault, D; Lennon, J; Defacque, H; Soyer-Gobillard, M O; Moreau, H

    2000-04-01

    The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle. PMID:10704374

  14. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    PubMed

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-09-01

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection. PMID:26261281

  15. Morphology and dynamic scaling analysis of cell colonies with linear growth fronts

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Pasquale, M. A.; Bolzn, A. E.; Arvia, A. J.; Gonzlez, P. H.

    2010-09-01

    The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.250.05 . The colony fronts shift at 0.220.02?mmin-1 average constant linear velocity and their roughness (w) increases with time (t) . Dynamic scaling analysis of experimental and overhang-corrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo , a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent ?=0.330.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent ?s=0.500.05 is obtained. For l>200?m , this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.

  16. Morphological characterization of retinal bipolar cells in the marine teleost Rhinecanthus aculeatus.

    PubMed

    Pignatelli, Vincenzo; Marshall, Justin

    2010-08-01

    The marine teleost Rhinecanthus aculeatus (Balistidae) has recently been shown to possess trichromatic color vision supported by a retinal combination of double and single cones. Double cones are composed of two members with different spectral sensitivity. It is not known whether a correlation exists between the chromatic wiring of double cones to the inner retina and trichromacy, nor how unmixed, chromatic information is extracted from the two members of the couple. In mammalians, bipolar cells determine color segregation by means of the midget system, central to trichromatic color vision; however, midget bipolar cells have never been described in teleosts. On the basis of its likely importance in transferring chromatic photoreceptor signals to the inner retina, we have morphologically characterized the retinal bipolar cell types of R. aculeatus using DiOlistic staining techniques to verify if an anatomical specialization of this group of cells is required to support trichromatic color vision. Thirteen cell types are described: eight putative OFF types and five putative ON types. Of these, four had axonal boutons ramifying in both sublayers (ON and OFF) of the inner plexiform layer, six had terminals restricted to the OFF layer, and three cell types had terminals restricted to the ON layer. Dendritic arbors of bipolar cells had narrower diameters (5-40 microm) in comparison to bipolar cells of other teleost species; this supports the idea that a low degree of photoreceptor to bipolar convergence is correlated with trichromacy in this retina and possibly with the function of double cones as color receptors. PMID:20533363

  17. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. PMID:24012106

  18. Morphological control of hybrid polymer-quantum dot solar cells with electron acceptor ligands

    NASA Astrophysics Data System (ADS)

    Boivin, Mathieu; Lamarre, Sébastien; Tessier, Jonathan; Lecavalier, Marie-Ève; Najari, Ahmed; Dufour-Beauséjour, Sophie; Brown Dussault, Evelyne; Collin, Pierre; Allen, Claudine Nı.

    2012-01-01

    We integrate the electro-attractive conjugated molecule tetrafluoro-tetracyano-quinodimethane (F4TCNQ) in the active layer of polymer-CdSe colloidal quantum dot (cQD) solar cells. The addition of this molecule enhances cQD dispersion inside the polymer. In tuning its concentration, we can optimize the active layer morphology for charge separation and transport. A smoother morphology is likely the result of polymer chain adsorption on cQDs via F4TCNQ which increases the steric barrier between cQDs. Our most optimized device has a F4TCNQ:cQDs weight ratio of 0.5% improving the power conversion efficiency by a factor ˜2.3.

  19. SDF-1α and LPA Modulate Microglia Potassium Channels Through Rho GTPases to Regulate Cell Morphology

    PubMed Central

    Muessel, Michelle J.; Harry, G. Jean; Armstrong, David L.; Storey, Nina M.

    2016-01-01

    Microglia are the resident immune cells of the brain, which are important therapeutic targets for regulating the inflammatory responses particularly neurodegeneration in the aging human brain. The activation, chemotaxis and migration of microglia are regulated through G-protein coupled receptors by chemokines such as stromal cell-derived factor (SDF)-1α and bioactive lysophospholipids such as lysophosphatidic acid (LPA). Potassium channels play important roles in microglial function and cell fate decisions; however, the regulation of microglial potassium channels has not been fully elucidated. Here we show reciprocal action of SDF-1α and LPA, on potassium currents through Kir2.1 channels in primary murine microglia. The potassium channel modulation is mediated by the same small GTPases, Rac and Rho that regulate the actin cytoskeleton. SDF-1α rapidly increased the Kir2.1 current amplitude and cell spreading. These effects were mimicked by dialysing the cells with constitutively active Rac1 protein, and they were blocked by inhibiting the phosphatidylinositol 3-kinase (PI3K) with wortmannin. In contrast, LPA and constitutively active RhoA decreased the Kir2.1 currents and stimulated cell contraction. Thus, SDF-1α and LPA regulate both the actin cytoskeleton and the Kir2.1 potassium channels through the same Rho GTPase signaling pathways. The inhibition of Kir2.1 with chloroethylclonidine produced cell contraction independently of chemokine action. This suggests that potassium channels are essential for the morphological phenotype and functioning of microglia. In conclusion, the small GTPases, Rac and Rho, modulate Kir2.1 channels and block of Kir2.1 channels causes changes in microglia