Science.gov

Sample records for study flow structure

  1. A study of Hot Flow Anomalies and their internal structure

    NASA Astrophysics Data System (ADS)

    Shestakov, Artyom; Vaisberg, Oleg

    Hot Flow Anomalies (HFAs) were studied for long time. Here we attempt to study internal structure of HFAs. Our study is based on the Interball Tail Probe data. We used data from ion-spectrometer SCA-1, magnetic field measurements from MIF and ELECTRON spectrometer measurements. We have chosen five anomalies for our investigation on the basis of well resolved structure. We calculated displacement velocity along bow shock, flow velocities within HFA and compared convection patterns within them. We checked the main criteria of HFA formation: motional electric field direction was directed toward current sheet at least at one side of it (except one case), bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion velocities along spacecraft trajectory through anomaly. These convection velocities, viewed in coordinate system determined by shock normal and calculated IMF current sheet normal, clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. HFAs we analyzed can be separated in two groups according to pattern of convection velocities. First type of HFAs have velocities directed from central region and circulation in leading and trailing parts. Second type of HFAs show predominant motion along the current sheet. There also other differences between these two types of HFA that are discussed in presentation. Judging from plasma convection pattern within HFAs received additional evidence that central region is the source of energy and momentum near interplanetary current sheet crossing location. We calculated balance of energy within HFA using momentum equation to estimate what amount of reflected particles is needed for central region to be the energy source.

  2. Laboratory Studies of Coherent Structures in Quasi - Flows

    NASA Astrophysics Data System (ADS)

    Meyers, Steven David

    1990-01-01

    Laboratory experiments were conducted in a large, rapidly rotating annulus of fluid. Low Rossby and Ekman numbers, 0.1 and 10^{-5} respectively, were achieved while maintaining large Reynolds number (greater than 10^4). The apparatus had a flat lid and conical bottom (slope s = -0.1) to mimic the planetary beta-effect. Motion was forced with six source-sink pairs, distributed symmetrically in a ring in the bottom of the tank. Two primary flow states were studied: marginally stable westward and eastward jets. Westward jets tended to be wide, and developed a central region of strong shear with quasi-uniform potential vorticity. Elliptical vortices of the same sign as the shear always formed. Due to design limitations, only cyclonic vortices were produced. Multiple vortex states were found for relatively narrow jets when the inertial time scale was comparable to the Ekman time scale. At increasingly shorter inertial time scale, produced with stronger forcing, the number of vortices decreased from a maximum of 5 to 1. The multiple vortex states were essentially laminar, inspite of their high Reynolds number; the single vortex state was turbulent, producing many small vortices that merged with the main vortex. The broad region of quasi -uniform potential vorticity was considered necessary for the formation of a single robust vortex. These vortices had many properties in common with vortices found on the large gaseous planets. Eastward jets tended to be narrow and exhibited Rossby wave instability. The number of waves was fairly well predicted by linear theory, except for the low forcing situation, when the pumping geometry strongly influenced the instability. Potential vorticity was quasi-uniform on either side of the jet, with a strong gradient in the jet center. This gradient was a strong barrier to particle transport. A Hamiltonian model of the flow demonstrated the presence of a robust invariant surface at the jet center, with large chaotic seas on either side. The

  3. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  4. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  5. Flow measuring structures

    NASA Astrophysics Data System (ADS)

    Boiten, W.

    1993-11-01

    The use of flow measuring structures is one of the various methods for the continuous measurement of discharges in open channels. In this report a brief summary of these methods is presented to get some insight in the selection of the most appropriate method. Then the distinct functions of water control structures are described. The flow measuring structures are classified according to international rules. The fields of application are dealt with and the definitions of weir flow are given. Much attention is paid to the aspects of how to select the most suitable flow measuring structure. The accuracy in the evaluation of the discharge has been related to the different error sources. A review of international standards on flow measuring structures concludes the report.

  6. Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jong-Yeon; Yang, Kyung-Soo

    2004-07-01

    Vortical structures around a wall-mounted cubic obstacle in channel flow are studied using numerical simulation. Flows of low-to-moderate Reynolds numbers up to Re=3500 are considered. The objective of this work is to elucidate characteristics of coherent vortical structures produced by the presence of the wall-mounted cubic obstacle, including horseshoe vortex systems upstream of the obstacle, lateral vortices in the vicinity of the two lateral faces of the cube, and hairpin vortices in the near-wake region. As the flow approaches the cube, the adverse pressure gradient produces three-dimensional boundary-layer separation, resulting in the formation of laminar horseshoe vortices. As the Reynolds number increases, the structure of the horseshoe vortex system becomes complex and the number of vortices increases in pairs. The distribution of skin friction on the cube-mounted wall reflects the effect of the horseshoe vortices. Unsteady horseshoe vortex systems are hardly found as long as the upstream flow is fully viscous; they are obtained when the cube is placed in the entrance region of a developing channel flow. The unsteady horseshoe vortex systems are characterized by a repeated process of generation, translation, and mutual merging of the vortices. The laminar wake is characterized by a pair of spiral vortices behind the obstacle; distinct singular points are identified leading to consistent flow topology. In the case of a turbulent wake, however, it is observed that the flow becomes less coherent in the near-wall region downstream of the obstacle. Instead, coherent structures such as lateral vortices and hairpin vortices are found in the vicinity of the two lateral faces of the cube and in the turbulent near-wake region, respectively. Quasiperiodic behaviors of those vortices are noticed and their frequencies are computed. The translating speed of the head portion of a hairpin vortex is lower than the streamwise mean velocity at that location. In the vicinity

  7. Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study.

    PubMed

    Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs F

    2015-08-01

    We study microreactors with internal fields of posts as typical examples of structured microreactors to elucidate flow fields and their implications for mass transfer. Laser-induced fluorescence (LIF) visualization combined with image analysis is used to systematically quantify key features such as interfacial area, phase holdup and the characteristics of the post-wetting layer. The subsequent mass transport analysis yields insight into how the posts contribute to the overall enhanced mass transfer performance compared to open channels, and provides predictions of mass transfer performance under varying operating conditions. Computational fluid dynamic (CFD) simulations of multiphase flow using the volume-of-fluid (VOF) method are in good agreement with experimentally observed multiphase flows. PMID:26126496

  8. Flow visualization study of role of coherent structures in a tab wake

    NASA Astrophysics Data System (ADS)

    Elavarasan, R.; Meng, Hui

    2000-09-01

    A simple surface-mounted tapered tab has recently attracted fluids research both for its ability to enhance mixing and heat transfer (for which it is known as high-efficiency vortab mixer) and for its generation of coherent structures that are topologically similar to those found in natural turbulent boundary layers. Two types of structures, namely pressure-driven counter-rotating vortex pair (CVP) and hairpin vortices were previously identified in the tab wake, but the contribution of individual structures to the mixing enhancement process and how they interact are not known. In the present study, flow visualization using a planar laser-induced fluorescence (PLIF) technique is carried out to probe into the flow dynamics in the wake of the mixing tab. By injecting dye at an appropriate location and illuminating the flow in various planes, the structures are visualized clearly. The results show, in contrary to earlier observations, that the two types of structures dominate different regions. At the Reynolds number of 700 based on tab height ( h), the CVP has more influence in the region 0< x/ h<1.5. The counter-rotating action of the vortex pair induces a pumping action along the symmetry by which the low-speed fluid from the boundary layer is transported to the high-speed outer shear layer. The displaced fluid is entrained by the recirculating counter-rotating vortices and is mixed well while convecting downstream. Beyond this region, fully developed hairpin structures contribute more to mixing in a similar way as in a turbulent boundary layer. It is observed that the shedding frequency of hairpin vortices is slightly higher than the pumping frequency of the counter-rotating vortex pair. It is also observed that the hairpin structures loses their identity beyond x/ h>15, and there is no large-scale cross-stream mixing visible in this region.

  9. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed

  10. Structural power flow measurement

    SciTech Connect

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  11. Computational extended magneto-hydrodynamical study of shock structure generated by flows past an obstacle

    SciTech Connect

    Zhao, Xuan; Seyler, C. E.

    2015-07-15

    The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.

  12. Experimental study of lock-exchange gravity currents: Coupling between particle distributions and flow structures

    NASA Astrophysics Data System (ADS)

    Su, Zhuang; Peng, Ming; Yuan, Huijing; Lee, Cunbiao

    2014-11-01

    This work presents detailed experimental investigations of the interactions between the particles and flows of the lock-exchange particle-laden gravity currents. A phase Doppler particle analyzer provided non-intrusive and synchronous measurements of the velocities and grain sizes of the particles. High-speed particle image velocimetry was used to measure the flow fields. The measurements showed that the particle behavior and the currents were intricately coupled. Particle distributions at different parts of the current are given, showing that the particles' behaviors are highly related to the flow fields. The influences of the grain size to the flow fields are also investigated by comparing flow fields of currents carrying different particles to each other, as well as the un-laden currents. The presence of particles seems to postpone the evolving of the flow structures, it weakens the vorticity of the shear layer in the head but strengthens the voriticty in the body or tail of the currents. The influences to the flow fields increases with the grain size. This work was supported by the National Natural Science Foundation of China under Grant No. 109103010062. This work was also supported by the National Climb- B Plan under Grant No. 2009CB724100.

  13. A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface-mounted obstacle

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl; Bédard, OttO

    2015-09-01

    Roughness elements of varied scale and geometry commonly appear on the surfaces of sedimentary deposits in a wide range of planetary environments. They perturb the local fluid flow so that the entrainment, transport, and deposition of particles surrounding each element are fundamentally altered. Fluid dynamists have expended much effort in examining the flow structures surrounding idealized elements mounted on fixed, planar walls. However self-regulation occurs in sedimentary systems as a result of the bed surface undergoing rapid topographic modification with sediment transport, until it reaches a stable form that enhances the net physical roughness. The present wind tunnel study examines how the flow pattern surrounding an isolated cylinder, a problem extensively studied in classical fluid mechanics, is altered through morphodynamic development of a deep well that envelopes the windward face and sidewalls of the roughness element. Spatial patterns in the fluid velocity, turbulence intensity, and Reynolds stress obtained from laser Doppler anemometer measurements suggest that the flow structures surrounding such a cylinder are fundamentally altered through self-regulation of the bed topography as it reaches steady state. For example, flow stagnation and the turbulent dissipation of momentum are substantially increased at selected points surrounding the upwind face and sidewalls of the cylinder, respectively. Along the center line of the wake flow to the rear of the cylinder, several structures arising from flow separation are annihilated by strong upwelling of the airflow exhausted from the terminus of the well. Feedback plays a complex, time-dependent role in this system.

  14. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  15. Motivation, Instructional Design, Flow, and Academic Achievement at a Korean Online University: A Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Joo, Young Ju; Oh, Eunjung; Kim, Su Mi

    2015-01-01

    The purpose of this study is to examine the structural relationships among self-efficacy, intrinsic value, test anxiety, instructional design, flow, and achievement among students at a Korean online university. To address research questions, the researchers administered online surveys to 963 college students at an online university in Korea…

  16. Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale

    PubMed Central

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. PMID:23630596

  17. Micromodel foam flow study

    SciTech Connect

    Chambers, K.T.; Radke, C.J.

    1990-10-01

    Foams are often utilized as part of enhanced oil recovery techniques. This report presents the results of a micromodel foam flow study. Micromodels are valuable tools in uncovering capillary phenomena responsible for lamellae generation and coalescence during foam flow in porous media. Among the mechanisms observed are snap-off, weeping-flow breakup, and lamella division and leave behind. Coalescence mechanisms include dynamic capillary-pressure-induced lamella drainage and gas diffusion. These phenomena are sensitive to the mode of injection, the local capillary environment, and the geometry of the pore structure. An important consideration in presenting a tractable model of foam flow behavior is the ability to identify the pore-level mechanisms having the greatest impact on foam texture. The predominant mechanisms will vary depending upon the application for foam as an enhanced oil recovery (EOR) fluid. Both simultaneous gas and surfactant injection and surfactant alternating with gas injection (SAG) have been used to create foam for mobility control in EOR projects. The model developed is based on simultaneous gas and surfactant injection during steady-state conditions into a Berea sandstone core. The lamellae generation and coalescence mechanisms included in this model are snap-off, lamella division, and dynamic capillary-pressure-induced lamella drainage. This simplified steady-state model serves as a foundation for developing more complete rate expressions and for extending the population balance to handle transient foam flow behavior. 70 refs., 30 figs.

  18. Turbulent structures in Kolmogorovian shear flows: DNS

    NASA Astrophysics Data System (ADS)

    Tuckerman, Laurette S.; Chantry, Matthew; Barkley, Dwight

    2015-11-01

    Patterns of turbulent and laminar flow form a vital step in the transition to turbulent in wall-bounded shear flows. In flows with two unconstrained directions these patterns form oblique bands, whereas in pipe flow the structures are streamwise-localized puffs. To understand these structures we examine Waleffe flow, a sinusoidal shear flow, Usinπ/2 y , driven by a body force and stress-free boundary conditions at y = +/- 1 . Introduced as a model for plane Couette flow we demonstrate the existence of turbulence bands which match those found in plane Couette flow, excluding the boundary layer regions of the latter flow. This agreement is reiterated in the studies of uniform turbulence and linear stability; highlighting the surprising unimportance of this region to transitional turbulence. Building upon this we consider two other canonical flows: plane Pouiseuille flow and pipe flow. Attacking these flows with the approach that succeeded in plane Couette flow we attempt to clarify the role of boundary layers to transitionally turbulent shear flows.

  19. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  20. Fluid/structure interactions. Internal flows

    NASA Astrophysics Data System (ADS)

    Weaver, D. S.

    1991-05-01

    Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.

  1. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  2. DNS study of very-long coherent structures in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Adrian, Ronald; Wu, Xiaohua; Baltzer, Jon

    2009-11-01

    Fully developed incompressible turbulent pipe flow at Reynolds number ReD=24,580 is simulated with second-order finite differences on a streamwise-periodic, 536 million point grid. The Karman number R^+=648.8, and the computational domain length is 30R. The mean, second-order statistics and two-point correlations agree well with published experimental data. Pre-multiplied power spectra of the streamwise velocity peak at two wave numbers, one corresponding to very large scale motions (VLSM) 3--15R long, and the other corresponding to large scale motions (LSM) less than 3R long, consistent with earlier work (Kim and Adrian, Phys. Fluids 2, 417--422, 1999, et seq.). The low speed patterns of VLS motion convect at the bulk velocity, and they are associated with strong, radially inward ejections from layers closer to the wall. They are made up of smaller structures having spacings of ˜0.2R=125^+ or less, coinciding with the typical spacing between hairpins in a near wall packet. The VLS motions also appear to leave a clear low-speed pattern in the near wall regions.

  3. Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Bogdonoff, S. M.

    1984-01-01

    A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.

  4. FLOW STRUCTURE AND TURBULENT DIFFUSION AROUND A THREE-DIMENSIONAL HILL. FLUID MODELING STUDY ON EFFECTS OF STRATIFICATION. PART I. FLOW STRUCTURE

    EPA Science Inventory

    This research program was initiated with the overall objective of gaining understanding of the flow and diffusion of pollutants in complex terrain under both neutral and stably stratified conditions. This report covers the first phase of the project; it describes the flow structu...

  5. Network structure of inter-industry flows

    NASA Astrophysics Data System (ADS)

    McNerney, James; Fath, Brian D.; Silverberg, Gerald

    2013-12-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 45 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  6. Flow Induced Structures in Liquid Crystalline Polymers as Studied by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark

    2000-03-01

    Small angle neutron scattering has been utilized to examine the orientation of liquid crystalline polymer systems during and after the application of a flow field. Thermotropic systems show unique behavior including perpendicular orientation to the flow direction at low temperature and a temperature dependence of the molecular orientation within in the nematic regime. It is also found that the orientation is long-lived after the removal of the shear field in the thermotropic system. In lyotropic systems, however, an interesting dependence on solvent is found. The alignment behavior of poly(benzyl L-glutamate) (PBLG) in deuterated benzyl alcohol (DBA) differs significantly from the alignment of PBLG in deuterated m-cresol (DMC) during shear and upon shear cessation. This is unexpected, as DMC is an isomer of DBA. Possible explanations for this behavior will be discussed.

  7. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  8. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.

  9. Structure of Hot Flow Anomaly

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2012-12-01

    Hot Flow Anomalies (HFAs) were first discovered in 1980s. These are active processes of hot plasma bulks formation that usually occur at planetary bow shocks. Though HFA were studied for long time it is still not clear if they are reforming structures and what defines particular internal structure of HFA. Our study is based on the Interball Tail Probe data. We used 10-sec measurements of complex plasma analyzer SCA-1 and 1-second magnetic field measurements, and ELECTRON spectrometer 2-dimensional measurements with 3,75-sec temporal resolution. Five anomalies that were observed on the basis of well resolved structure for which we obtained displacement velocity along bow shock, flow velocities within HFA, and estimated the size. We checked if main criteria of HFA formation were fulfilled for each case. The following criteria were satisfied: motional electric field direction was directed toward current sheet at least at one side of it, bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion convection velocities along spacecraft trajectory through anomaly. These convection velocities viewed in coordinate system of shock normal and calculated IMF current sheet normal clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. Ion velocity distributions confirm this triple structure of HFA. Thomsen et al. [1986] identified the region within HFA that they called "internal recovery". It looks like central region that we call narrow central part. Vaisberg et al. [1999] discussed separation of HFA into 2 distinct parts that correspond to leading and trailing parts. Judging from plasma convection pattern within HFAs we assumed that "internal recovery" region is the source of energy and momentum around interplanetary current sheet crossing. HFA

  10. Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA

    NASA Astrophysics Data System (ADS)

    Zinger, Jessica A.; Rhoads, Bruce L.; Best, James L.; Johnson, Kevin K.

    2013-12-01

    paper documents the three-dimensional structure of flow and bed morphology of two developing chute cutoffs on a single meander bend on the lower Wabash River, USA, and relates the flow structure to patterns of morphologic change in the evolving cutoff channels. The upstream end of the cutoff channels is characterized by: (1) a zone of flow velocity reduction/stagnation and bar development in the main channel across from the cutoff entrance, (2) flow separation and bar development along the inner (left) bank of the cutoff channel immediately downstream from the cutoff entrance, and (3) helical motion and outward advection of flow momentum entering the cutoff channel, leading to erosion of the outer (right) bank of the cutoff channel. At the downstream end of the cutoff channels, the major hydrodynamic and morphologic features are: (1) flow stagnation along the bank of the main channel immediately upstream of the cutoff channel mouth, (2) convergence of flows from the cutoff and main channels, (3) helical motion of flow from the cutoff, (4) a zone of reduced velocity along the bank of the main channel immediately downstream from the cutoff channel mouth, and (5) development of a prominent bar complex that penetrates into the main channel and extends from the stagnation zone upstream to downstream of the cutoff mouth. These results provide the basis for a conceptual model of chute-cutoff dynamics in which the upstream and downstream ends of a cutoff channel are treated as a bifurcation and confluence, respectively.

  11. Bypass Flow Study

    SciTech Connect

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  12. Flow Interaction With Highly Flexible Structures

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    Studying the interaction between fluid and structure is an essential step towards the understanding of many engineering and physical problems, from the flow instability of structures to the biolocomotion of insects, birds and fishes. The simulation of such problems is computationally challenging. This justifies the attempts to develop more sophisticated and more efficient numerical models of fluid-solid interactions. In this dissertation, we proposed numerical models both in potential flow and fully viscous flow for the interaction of immersed structure with a strongly unsteady flow. In particular we have developed efficient approaches to study two groups of problems, the flow interaction with skeleton-reinforced fish fins and flow interaction with highly flexible bluff bodies. Fins of bony fishes are characterized by a skeleton-reinforced membrane structure consisting of a soft collagen membrane strengthened by embedded flexible rays. Morphologically, each ray is connected to a group of muscles so that the fish can control the rotational motion of each ray individually, enabling multi-degree of freedom control over the fin motion and deformation. We have developed fluid-structure interaction models to simulate the kinematics and dynamic performance of a structurally idealized fin. The first method includes a boundary-element model of the fluid motion and a fully-nonlinear Euler-Bernoulli beam model of the embedded rays. In the second method, we use an improved immersed boundary approach. Using these models, we study thrust generation and propulsion efficiency of the fin at different combinations of parameters at both high-Re and intermediate-Re flow. Effects of kinematic as well as structural properties are examined. It has been illustrated that the fish's capacity to control the motion of each individual ray, as well as the anisotropic deformability of the fin determined by distribution of the rays (especially the detailed distribution of ray stiffness), is

  13. Kinematic significance of mingling-rolling structures in lava flows: a case study from Porri Volcano (Salina, Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Ventura, Guido

    A basaltic andesite lava flow from Porri Volcano (Salina, Southern Tyrrhenian Sea) is composed of two different magmas. Magma A (51vol.% of crystals) has a dacitic glass composition, and magma B (18vol.% of crystals), a basaltic glass composition. Magma B is hosted in A and consists of sub-spherical enclaves and boudin-like, banding and rolling structures (RS). Four types of RS have been recognized: σ-typeδ-type complex σ-δ-types and transitional structures between sub-spherical enclaves and rolling structures. An analysis of the RS has been performed in order to reconstruct the flow kinematics and the mechanism of flow emplacement. Rolling structures have been selected in three sites located at different distances from the vent. In all sites most RS show the same sense of shear. Kinematic analysis of RS allows the degree of flow non-coaxiality to be determined. The non-coaxiality is expressed by the kinematic vorticity number Wk, a measure of the ratio Sr between pure shear strain rate and simple shear strain rate. The values of Wk calculated from the measured shapes of microscopic RS increase with increasing distance from the vent, from approximately 0.5 to 0.9. Results of the structural analysis reveal that the RS formed during the early-intermediate stage of flow emplacement. They represent originally sub-spherical enclaves deformed at low shear strain. At higher strain, RS deformed to give boudin-like and stretched banding structures. Results of the kinematic analysis suggest that high viscosity lava flows are heterogeneous non-ideal shear flows in which the degree of non-coaxiality increases with the distance from the vent. In the vent area, deformation is intermediate between simple shear and pure shear. Farther from the vent, deformation approaches ideal simple shear. Lateral extension processes occur only in the near-vent zone, where they develop in response to the lateral push of magma extruded from the vent. Lateral shortening processes develop in

  14. Hierarchical structures in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Zou, Zhengping; Zhu, Yuanjie; Zhou, Mingde

    2003-11-01

    Statistical structures of a series of longitudinal velocity fluctuation signals at different distances (10flow are analyzed in the framework of a hierarchical structural (HS) model. The so-called beta-test and gamma-test are designed to study the correlation between intermittent structures of different intensities and the similarity property of the most intense structures. It is shown that at all locations the velocity fluctuations satisfy the She-Leveque hierarchical symmetry (She and Leveque, 1994). The measured HS parameters, beta and gamma, are interpreted in a fluid structure dynamics context. For instance, intense anisotropic fluid structures generated near the wall show smaller gamma and beta. As turbulence migrates into the logarithmic region, small-scale motions are generated by an energy cascade and large-scale organized structures emerge with a less singular character than the most intermittent structures of isotropic turbulence. At the center, turbulence is nearly isotropic, and beta and gamma are close to the 1994 She-Leveque predictions. A transition is observed from the logarithmic region to the center in which gamma drops and the large-scale organized structures break down. We speculate that it is due to the growing eddy viscosity effects of widely spread turbulent fluctuations. Similar effects are observed in the breakdown of the Taylor vortices in a turbulent Couette-Taylor flow at moderately high Reynolds numbers.

  15. Experimental study on dynamics of coherent structures formed by inertial solid particles in three-dimensional periodic flows

    NASA Astrophysics Data System (ADS)

    Gotoda, Masakazu; Melnikov, Denis E.; Ueno, Ichiro; Shevtsova, Valentina

    2016-07-01

    We present experimental results obtained under normal gravity on the dynamics of solid particles in periodic oscillatory thermocapillary-driven flows in a non-isothermal liquid bridge made of decane. Inertial particles of different densities and in the size range approximately 0.75 - 75 μm are able to form stable coherent structures (particle accumulation structures, or PASs). Two image processing techniques were developed and successfully applied to compute time required for an ensemble of particles to form a structure. It is shown that the formation time grows with the decrease of the Stokes number. The observations indicate the probable irrelevance of the memory term for these experiments. Two types of PAS were observed—single (SL-I) and double-loop (SL-II)—which sometimes co-existed. Only large or very dense particles may form an SL-II type structure. A number of novel features of the system were perceived. In some cases, intermittently stable structures emerged (their dynamics is characterized by alternating time intervals during which a structure exists and is destroyed). Whereas in most experiments we observed a conventional symmetric and centered PAS, there were cases when a long-term stable asymmetric structure appeared. Experiments wherein two different types of PAS-forming particles were used simultaneously revealed the destructive role of collisions between the particles on formation of structures.

  16. Coupled flow, thermal and structural analysis of aerodynamically heated panels

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Dechaumphai, Pramote

    1986-01-01

    A finite element approach to coupling flow, thermal and structural analyses of aerodynamically heated panels is presented. The Navier-Stokes equations for laminar compressible flow are solved together with the energy equation and quasi-static structural equations of the panel. Interactions between the flow, panel heat transfer and deformations are studied for thin stainless steel panels aerodynamically heated by Mach 6.6 flow.

  17. SAXS studies of the structure of a BCC-ordered block copolymer melt subjected to uniaxial extensional flow

    NASA Astrophysics Data System (ADS)

    Burghardt, Wesley; McCready, Erica

    We report in situ small-angle x-ray scattering (SAXS) investigations of a spherically-ordered block copolymer melt with a low styrene content (13%) resulting in spherical polystyrene microdomains ordered in BCC lattice. Melt annealing after clearing above the ODT produces ordered samples that have a macroscopically random orientation distribution of BCC 'grains'. Melt samples are subjected to uniaxial extensional flow in a counter-rotating drum extensional flow fixture housed in an oven with synchrotron x-ray access. During flow, initially isotropic diffraction rings in SAXS patterns become deformed, reflecting distortion of the BCC lattice. Diffracted intensity also concentrates azimuthally, indicating macroscopic alignment of the BCC lattice. There is evidence that extensional flow leads to progressive disordering of the BCC structure, with loss of higher order peaks and the emergence of a diffuse 'halo' of scattering. While the primary diffraction peak is visible in directions parallel and perpendicular to the stretching direction, the deformation of the lattice d-spacing follows affine deformation. Indications of ordering persist to higher strains in samples stretched at higher extension rates, and evidence of affine lattice deformation persists to very high strains (Hencky

  18. An experimental and numerical study into the effect of submerged vegetation on the generation of turbulent flow structures

    NASA Astrophysics Data System (ADS)

    Marjoribanks, T. I.; Hardy, R. J.; Lane, S. N.; Parsons, D. R.

    2010-12-01

    Vegetation within river channels has a profound influence on the functioning of fluvial systems and can significantly affect: i) flow resistance, which influences water conveyance and therefore potentially increase flooding; ii) sediment transport rates; and iii) biological activity. Vegetation also generates turbulence that drives both mixing and diffusion processes with strong velocity gradients generated around and above submerged macrophytes. Research has shown that even with sparse vegetation, the production of turbulence from stem wakes can far exceed that produced through bed shear alone. Therefore, an understanding on the processes and controls of vortex shedding remains a critical need for understanding how vegetation leads to energy losses in rivers. Here we report on a series of flume experiments that initially use Polyterafluorthylene tubing as a surrogate for vegetation and the move second set of experiments that use Vallisneria spiralis (Tape Grass). Flow measurements were taken using standard Particle Image Velocimetry and endoscopic Particle Image Velocimetry which permitted millimetre scale flow measurements at 100 Hz temporal resolution within and above the plant canopies. This data was used for the necessary boundary conditions and a validation data set for development of a novel Computational fluid Dynamics scheme where a dynamic Mass Flux Scaling Algorithm (MFSA) is used to represent vegetation. Here, each stalk is considered as a stack of cylinders and movement is predicted by a dynamic flexible cantilever beam equation applied to the stack. Both the laboratory and numerical results demonstrate vortex shedding from the top of the canopy, which is a precursor to wake instability. Moreover, the energy transfers that occur within, and just above, the canopy are shown to involve a limited free mixing layer that produces a range of complex coherent flow structures that include transverse and secondary vortices, in the form of rolls and ribs, and

  19. Structure of a reattaching supersonic shear flow

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Abu-Hijleh, B. A. K.

    1988-01-01

    A Mach 1.83 fully developed turbulent boundary layer with boundary layer thickness, free stream velocity, and Reynolds number of 7.5 mm, 476 m/s, and 6.2 x 10 to the 7th/m, respectively, was separated at a 25.4-mm backward step and formed a shear layer. Fast-response pressure transducers, schlieren photography, and LDV were used to study the structure of this reattaching shear flow. The preliminary results show that large-scale relatively organized structures with limited spanwise extent form in the free shear layer. Some of these structures appear to survive the recompression and reattachment processes, while others break down into smaller scales and the flow becomes increasingly three-dimensional. The survived large-scale structures lose their organization through recompression/reattachment, but regain it after reattachment. The structures after reattachment form a 40-45-degree angle relative to the free stream and deteriorate gradually as they move downstream.

  20. Nuclear magnetic resonance studies of the solvation structures of a high-performance nonaqueous redox flow electrolyte

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary; Wei, Xiaoliang; Wang, Wei; Mueller, Karl T.; Chen, Zhong; Hu, Jian Zhi

    2016-03-01

    Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and for understanding the detailed solvation structures. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. At dilute solute concentrations, most Fc1N112+ and TFSI- are fully disassociated with their own solvation shells formed by solvent molecules. At saturated concentration, Fc1N112+-TFSI- contact ion pairs are formed and the solvent molecules are preferentially interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI.

  1. Structures in the Oscillatory regime of RLDCC flow

    NASA Astrophysics Data System (ADS)

    Panchapakesan, Nagangudy

    2015-11-01

    Rotating lid driven cubical cavity flow (RLDCC flow) is studied with a view to test structure eduction algorithms. OpenFoam software was used to simulate the RLDCC flow at Reynolds numbers higher than the critical Reynolds number for this geometry. Vortex bubble and other characteristic structures were observed in these simulations. The vector fields of the simulations were further analyzed with LCS and other methodologies to educe the structures. The structures were compared with level sets of different dynamical variables. The ability of these algorithms to present a coherent representation of the time evolution and unsteady dynamics of the bubble and other structures is evaluated. Funded by AR&DB India.

  2. Undulating membrane structure under mixed extensional-shear flow

    NASA Astrophysics Data System (ADS)

    Idziak, S. H. J.; Welch, S. E.; Kisilak, M.; Mugford, C.; Potvin, G.; Veldhuis, L.; Sirota, E. B.

    2001-10-01

    We report on studies using a new X-ray extensional flow cell to examine, for the first time, the structure of undulating lamellar lyotropic liquid crystal systems under extensional flow. The extensional component of the flow profile produced within this cell causes the lamellae to orient. We find that, although the intermembrane spacing does not change at low flow rates, it suddenly decreases after a critical flow rate has been attained due to the stretching and straightening of the lamellae. The effects of the shear component of flow on this oriented system have been examined in the context of a theoretical model developed by Ramaswamy.

  3. Coherent structures in transitional pipe flow

    NASA Astrophysics Data System (ADS)

    Hellström, Leo H. O.; Ganapathisubramani, Bharathram; Smits, Alexander J.

    2016-06-01

    Transition to turbulence in pipe flow is investigated experimentally using a temporally resolved dual-plane particle image velocimetry approach, at a Reynolds number of 3440. The flow is analyzed using proper orthogonal decomposition and it is shown that the flow can be divided into two regions: a pseudolaminar region governed by the presence of azimuthally steady traveling waves, and turbulent slugs. The evolution of the structures within the slugs is identified by using the temporally resolved data along with the dual-plane velocity field. These structures are shown to be remarkably similar to the large-scale motions found in fully turbulent flows, with a streamwise and spatiotemporal extent about four pipe radii. The transition between structures is characterized by the detachment and decay of an old structure and the initiation of a new structure at the wall.

  4. Study on the effect of punched holes on flow structure and heat transfer of the plain fin with multi-row delta winglets

    NASA Astrophysics Data System (ADS)

    Tian, Liting; Liu, Bin; Min, Chunhua; Wang, Jin; He, Yaling

    2015-11-01

    Three dimensional numerical simulations are performed to investigate the flow and heat transfer characteristics of the plain fin with multi-row delta winglets punched out from the fin. The Reynolds number based on the tube outside diameter varies from 360 to 1440. The effects of punched holes and their orientations on flow structure and heat transfer are numerically studied. Results show that a down-wash flow is formed through the hole punched at the windward side, which has little influence on the longitudinal vortices in the main flow, and a longitudinal main vortex is formed behind each delta winglet. An up-wash flow is formed through the hole punched at the leeward side, the up-wash flow impinges the longitudinal vortices generated by the delta winglet, and then a counter-rotating pair of main vortices is generated behind each delta winglet. The windward punched holes have little effect on the flow friction and heat transfer of the plain fin with delta winglets, while the leeward punched holes deteriorate the heat transfer and decrease the flow friction of the fin channel, the Nusselt number decreases by 3.5-5.0 % with a corresponding decrease of 3.9-4.8 % in the friction factor. The effect of the punched holes on the heat transfer of the fin can be well explained by the field synergy principle. The overall analysis of the thermal performance is performed for all fin configurations, including the slit fins and the wavy fins with one-row delta winglets, the plain fin with the windward punched delta winglets shows the better thermal performance than one with the leeward punched delta winglets.

  5. A field study of the effects of soil structure and irrigation method on preferential flow of pesticides in unsaturated soil

    NASA Astrophysics Data System (ADS)

    Ghodrati, Masoud; Jury, William A.

    1992-10-01

    A large number of field plot experiments were performed to characterize the downward flow of three pesticides (atrazine, napropamide and prometryn) and a water tracer (chloride) under various soil water regimes and soil surface conditions. Each experiment consisted of the uniform application of a 0.4-cm pulse of a solution containing a mixture of the four chemicals to the surface of a 1.5 × 1.5-m plot. The plot was then irrigated with 12 cm of water and soil samples were collected and analyzed to a depth of 150 cm. In all, 64 different plots were employed to study individual as well as interactive effects of such variables as irrigation method (continuous or intermittent sprinkling or ponding), pesticide formulation method (technical grade dissolved in water, wettable powder, or emulsifiable concentrate), and tillage (undisturbed or tilled and repacked surface layer) on pesticide transport. While all three pesticides were expected to be retained in the top 10-20 cm, there was considerable movement below this zone. When averaged over all the treatments, 18.8% of the recovered mass of atrazine, 9.4% of the prometryn and 16.4% of the napropamide were found between 30- and 150cm depth. Moreover, all pesticides were highly mobile in the surface 30 cm regardless of their adsorption coefficient. There were occureences of extreme mobility or "preferential flow" of pesticide under every experimental condition except where the pesticides were applied in wettable powder form to plots which had their surface tilled and repacked. This finding implies that there may be fine preferential flow pathways through which solution may move but particulates may not.

  6. Model of intermittent zonal flow structure formation

    SciTech Connect

    Anderson, Johan; Kim, Eun-jin

    2008-11-01

    We present a theory the PDF tails of the zonal flow formation by assuming that a modon (a bipolar vortex) drives a zonal flow through the generalized Reynolds stress. We show that the PDF tails of zonal flow formation have exponential behavior {approx_equal}e{sup -{xi}}{sup {phi}{sub Z}{sub F}{sup 3}}, with the overall amplitude {xi} severely quenched by strong flow shear. It is found that stronger zonal flows are generated in ITG turbulence than Hasegawa-Mima (HM) turbulence as well as further from marginal stability. This suggests that although ITG turbulence has a higher level of heat flux, it also more likely generates stronger zonal flows, leading to a self-regulating system. It is also shown that shear flows can significantly reduce the PDF tails of structure formation.

  7. TV News Flow Studies Revisited.

    ERIC Educational Resources Information Center

    Hjarvard, Stig

    1995-01-01

    Compares different theoretical approaches to the study of international news. Finds many comparative studies of the foreign news output of national broadcasters and few studies analyzing the actual flow of television news between actors at the wholesale level and the flow between wholesale and retail level. Suggests a better framework for the…

  8. Statistical analysis of coherent structures in transitional pipe flow

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias M.; Eckhardt, Bruno; Vollmer, Jürgen

    2007-06-01

    Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow structures that are dominated by downstream vortices. They attract special attention because they contribute predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and present a Markov model for the transition between the structures. The fraction of states that show vortical structures exceeds 24% for a Reynolds number of about Re=2200 , and it decreases to about 20% for Re=2500 . The Markov model for the transition between these states is in good agreement with the observed fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into dominant qualitative changes of the flow when increasing the Reynolds number.

  9. Numerical study of subcritical flow with fluid injection

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1990-01-01

    It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.

  10. Hot Flow Anomaly Structure Analysis

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2010-12-01

    Hot Flow Anomaly observed on Interball-Tail on 03.14.1996 is investigated. The normal to the interplanetary current sheet interacting with bow shock was determined in assumption of tangential discontinuity. Calculated motional electric field was directed towards current sheet. The bow shock before HFA arrival to the spacecraft was quasi-perpendicular, and was quasi-parallel after HFA passage. Respectively, of the shocks, bracketing HFA, were quasi-perpendicular before HFA passage and quasi-parallel after it. With averaged velocity of plasma within the body of HFA and duration of HFA observation we determined its size in normal to the current sheet direction as ~ 2.5 RE. HFA consists of two regions separated by thin layer with different plasma characteristics. Convection of plasma within HFA, as observed along spacecraft trajectory by subtracting averaged velocity from observed velocities, show that plasma in each of two regions is moving from separating layer. It indicates that separating layer is the site of energy deposition from interaction of the solar wind with ions reflected from the shock. This is confirmed by analysis of ion velocity distributions in this layer.

  11. Basic studies of baroclinic flows

    NASA Technical Reports Server (NTRS)

    Miller, Tim L.; Chou, S.-H.; Leslie, Fred W.; Lu, H.-I.; Butler, K. A.

    1991-01-01

    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM.

  12. Unsteady vortical structures in porous media flows

    NASA Astrophysics Data System (ADS)

    Finn, Justin; Apte, Sourabh; Wood, Brian

    2011-11-01

    The pore scale character of moderate Reynolds number, inertial flow through mono-disperse packed beds of spheres is examined using numerical experiments. Direct numerical simulations are performed for flow through (i) a periodic, 3 × 3 × 6 simple cubic arrangement at Rep = 529 , and (ii) a realistic randomly packed tube containing 326 spheres with dtube /dsp = 5 . 96 at Rep = 600 . At these Reynolds numbers, unsteady vortical regions are dominant features at the pore scale, and can have a profound effect on permeability and dispersion properties at the macro-scale. Despite similar Reynolds numbers and mean void fractions, the vortical structures observed in these two flows are remarkably different. The flow through the arranged packing is characterized by spatially and temporally periodic vortex-ring like structures, while the flow through the random packing contains many elongated helical vortices and a wider spectrum of space and time scales. The sensitive dependence of flow length and time scales and the local pore geometry is investigated using the DNS data. Funding: NSF project #0933857, Inertial Effects in Flow Through Porous Media.

  13. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    NASA Astrophysics Data System (ADS)

    Amata, E.; Savin, S.; André, M.; Dunlop, M.; Khotyaintsev, Y.; Marcucci, M. F.; Fazakerley, A.; Bogdanova, Y. V.; Décréau, P. M. E.; Rauch, J. L.; Trotignon, J. G.; Skalsky, A.; Romanov, S.; Buechner, J.; Blecki, J.; Rème, H.

    2006-08-01

    We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23). The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006).

  14. Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: A multi-modal magnetic resonance imaging study

    PubMed Central

    Lahna, David L; Kaye, Jeffrey A; Dodge, Hiroko H; Erten-Lyons, Deniz; Rooney, William D; Silbert, Lisa C

    2016-01-01

    Normal-appearing white matter (NAWM) surrounding WMHs is associated with decreased structural integrity and perfusion, increased risk of WMH growth, and is referred to as the WMH penumbra. Studies comparing structural and cerebral blood flow (CBF) penumbras within the same individuals are lacking, however, and would facilitate our understanding of mechanisms resulting in WM damage. This study aimed to compare both CBF and structural WMH penumbras in non-demented aging. Eighty-two elderly volunteers underwent 3T-MRI including fluid attenuated inversion recovery (FLAIR), pulsed arterial spin labeling and diffusion tensor imaging (DTI). A NAWM layer mask was generated for periventricular and deep WMHs. Mean CBF, DTI-fractional anisotropy (DTI-FA), DTI-mean diffusivity (DTI-MD) and FLAIR intensity for WMHs and its corresponding NAWM layer masks were computed and compared against its mean within total brain NAWM using mixed effects models. For both periventricular and deep WMHs, DTI-FA, DTI-MD and FLAIR intensity changes extended 2-9 mm surrounding WMHs (p ≤ 0.05), while CBF changes extended 13-14 mm (p ≤ 0.05). The CBF penumbra is more extensive than structural penumbras in relation to WMHs and includes WM tissue both with and without microstructural changes. Findings implicate CBF as a potential target for the prevention of both micro and macro structural WM damage. PMID:27270266

  15. Flow structure on a rotating plate

    NASA Astrophysics Data System (ADS)

    Ozen, C. A.; Rockwell, D.

    2012-01-01

    The flow structure on a rotating plate of low aspect ratio is characterized well after the onset of motion, such that transient effects are not significant, and only centripetal and Coriolis accelerations are present. Patterns of vorticity, velocity contours, and streamline topology are determined via quantitative imaging, in order to characterize the leading-edge vortex in relation to the overall flow structure. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75°, and at each angle of attack, its sectional structure at midspan is relatively insensitive to Reynolds number over the range from 3,600 to 14,500. The streamline topology, vorticity distribution, and circulation of the leading-edge vortex are determined as a function of angle of attack, and related to the velocity field oriented toward, and extending along, the leeward surface of the plate. The structure of the leading-edge vortex is classified into basic regimes along the span of the plate. Images of these regimes are complemented by patterns on crossflow planes, which indicate the influence of root and tip swirl, and spanwise flow along the leeward surface of the plate. Comparison with the equivalent of the purely translating plate, which does not induce the foregoing flow structure, further clarifies the effects of rotation.

  16. Internal wave structures in abyssal cataract flows

    NASA Astrophysics Data System (ADS)

    Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman

    2014-05-01

    We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).

  17. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  18. DNS studies of bubbly flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Esmaeeli, Asghar; Biswas, Souvik

    2004-11-01

    Recent stuies of bubbly flows, using direct numerical simulations, are discussed. The goal of this study is to examine the collective behavior of many bubbles as the rise Reynolds number is increased and and a single bubble rises unsteadily, as well as to examine the motion of bubbles in channels. A front-tracking/finite volume method is used to fully resolve all flow scales, including the bubbles and the flow around them. Two cases are simulated, for one the bubbles remain nearly spherical and for the other case the bubbles are deformable and wobble. The wobbly bubbles remains relatively uniformly distributed and are not susceptible to the streaming instability found by Bunner and Tryggvason (2003) for deformable bubbles at lower rise Reynolds numbers. The more spherical bubbles, on the other hand, form transients ``rafts'' somewhat similar to those seen in potential flow simulation of many bubbles. For channel flow we compare results from direct numerical simulations of bubbly flow with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The results generally agree reasonably well, even though the simulated void fraction is considerably higher than the one assumed in the derivation of the model. Research supported by DOE.

  19. Bleed Hole Flow Phenomena Studied

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

  20. DAMAGE DETECTION IN PLATE STRUCTURES USING MODAL POWER FLOW ANALYSIS

    SciTech Connect

    Liu, X.; Wong, W. O.; Cheng, L.

    2010-05-28

    The power flow and energy distribution of a vibration mode of a damaged plate is studied experimentally. Variation of the modal reactive power distribution of a damaged plate is experimentally evaluated with a scanning LDV and compared to the theoretical predictions. Large variation of local reactive power flow in or around the damage region of a plate under resonant vibration is found to be related to the change of strain and kinetic energies in the damage region. Feasibility of damage identification based on the detection of this local variation of modal reactive power flow in a structure is studied.

  1. Does stream flow structure woody riparian vegetation in subtropical catchments?

    PubMed

    James, Cassandra S; Mackay, Stephen J; Arthington, Angela H; Capon, Samantha J; Barnes, Anna; Pearson, Ben

    2016-08-01

    The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream-specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are

  2. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  3. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  4. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  5. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire A.; Bailey, Nicholas P.; Todd, Billy D.; Daivis, Peter J.; Hansen, Jesper S.

    2015-06-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. At a fixed temperature, the shear-shinning behavior is related not only to the inter- and intramolecular alignments of the solvent molecules but also to the decrease of the average size of the nanoaggregates at high shear rates. The variation of the viscosity with temperature at different shear rates is also related to the size and relative composition of the nanoaggregates. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified. Finally, the position of bitumen mixtures in the broad literature of complex systems such as colloidal suspensions, polymer solutions, and associating polymer networks is discussed.

  6. Hierarchical structures in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Zou, Zhengping; Zhu, Yuanjie; Zhou, Mingde; She, Zhen-Su

    2003-12-01

    A hierarchical structure (HS) analysis ( β-test and γ-test) is applied to a fully developed turbulent pipe flow. Velocity signals are measured at two cross sections in the pipe and at a series of radial locations from the pipe wall. Particular attention is paid to the variation of turbulent statistics at wall units 10< y+<3000. It is shown that at all locations the velocity fluctuations satisfy the She-Leveque hierarchical symmetry (Phys. Rev. Lett. 72 (1994) 336). The measured HS parameters, β and γ, are interpreted in terms of the variation of fluid structures. Intense anisotropic fluid structures generated near the wall appear to be more singular than the most intermittent structures in isotropic turbulence and appear to be more outstanding compared to the background fluctuations; this yields a more intermittent velocity signal with smaller γ and β. As turbulence migrates into the logarithmic region, small-scale motions are generated by an energy cascade and large-scale organized structures emerge which are also less singular than the most intermittent structures of isotropic turbulence. At the center, turbulence is nearly isotropic, and β and γ are close to the 1994 She-Leveque predictions. A transition is observed from the logarithmic region to the center in which γ drops and the large-scale organized structures break down. We speculate that it is due to the growing eddy viscosity effects of widely spread turbulent fluctuations in a similar way as in the breakdown of the Taylor vortices in a turbulent Couette-Taylor flow at high Reynolds numbers.

  7. Structures in Transitional Taylor-Couette Flows Identified using POD

    NASA Astrophysics Data System (ADS)

    Balabani, Stavroula; Imomoh, Eboshogwe; Dusting, Jonathan

    2009-11-01

    The flow in the gap between concentric cylinders, or Taylor-Couette flow, has been used to study transition to turbulence for decades, and is also utilised for various biotechnological and industrial processes. Transitional flow states depend highly on vessel geometry; they are also three-dimensional and often time dependent limiting the use of experimental techniques for their characterisation. In this talk the transition to turbulence in a Taylor-Couette flow is studied by means of time resolved PIV velocity fields and Proper Orthogonal Decomposition (POD). It is found that for the particular geometry studied the transition to turbulence occurs via a quasi periodic regime characterised by a fast moving azimuthal wave (FMAW). Aspects of the FMAW structure, such as a series of co-rotating vortices that increase in strength away from the endwalls, are also revealed by spatially resolved POD.

  8. Flowing crystals: nonequilibrium structure of foam.

    PubMed

    Garstecki, Piotr; Whitesides, George M

    2006-07-14

    Bubbles pushed through a quasi-two-dimensional channel self-organize into a variety of periodic lattices. The structures of these lattices correspond to local minima of the interfacial energy. The "flowing crystals" are long-lived metastable states, a small subset of possible local minima of confined quasi-two-dimensional foams [P. Garstecki and G. M. Whitesides, Phys. Rev. E 73, 031603 (2006)10.1103/PhysRevE.73.031603]. Experimental results suggest that the choice of the structures that we observe is dictated by the dynamic stability of the cyclic processes of their formation. Thus, the dynamic system that we report provides a unique example of nonequilibrium self-organization that results in structures that correspond to local minima of the relevant energy functional. PMID:16907453

  9. Flow structure in front of the broad-crested weir

    NASA Astrophysics Data System (ADS)

    Zachoval, Zbyněk; Roušar, Ladislav

    2015-05-01

    The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices) and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  10. Nanowicking: Multi-Scale Flow Interaction with Nanofabric Structures

    NASA Astrophysics Data System (ADS)

    Zhou, Jijie

    Dense arrays of aligned carbon nanotubes are designed into strips --- nanowicks --- as a miniature wicking element for liquid delivery and potential microfluidic chemical analysis devices. The delivery function of nanowicks enables novel fluid transport devices to run without any power input, moving parts or external pump. The intrinsically nanofibrous structure of nanowicks provides a sieving matrix for molecular separations, and a high surface-to-volume ratio porous bed to carry catalysts or reactive agents. This work also experimentally studies the spontaneous fluid transport along nanowicks. Liquid is conveyed through corner flow, surface flow, and interstitial flow through capillary force and the Marangoni effect. The main course for corner flow and surface flow follows Washburn behavior, and can deliver liquid centimeters away from the input blob with a speed on the order of millimeters per second depending on the nanowick configuration and the amount of input liquid. Corner flow can be minimized and even eliminated through proper nanowick and input design. Otherwise, corner flow interacts with surface flow in the first 2mm of the pathway closest to the input point. Interstitial flow dominates the late stage. It is driven by both capillary force and concentration-gradient-induced Marangoni force. The concentration gradient is determined by two competing rates: surfactant diffusion in solution and adsorption onto nanotube surfaces. The flow inside nanowicks may wick hundreds of microns in seconds or tens of seconds. A non-conventional advancing front may develop in the flow around nanowicks. They are seen as (i) Rayleigh instability-induced fingering in surface flow on millimeter-wide nanowicks, (ii) viscous instability-induced branching near almost-stagnant surface film at low surfactant concentration, and (iii) disjointed wetting domains at very low concentration.

  11. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  12. Detection of coherent structures in photospheric turbulent flows

    SciTech Connect

    Chian, Abraham C.-L.; Rempel, Erico L.; Aulanier, Guillaume; Schmieder, Brigitte; Shadden, Shawn C.; Welsch, Brian T.; Yeates, Anthony R. E-mail: rempel@ita.br

    2014-05-01

    We study coherent structures in solar photospheric flows in a plage in the vicinity of the active region AR 10930 using the horizontal velocity data derived from Hinode/Solar Optical Telescope magnetograms. Eulerian and Lagrangian coherent structures (LCSs) are detected by computing the Q-criterion and the finite-time Lyapunov exponents of the velocity field, respectively. Our analysis indicates that, on average, the deformation Eulerian coherent structures dominate over the vortical Eulerian coherent structures in the plage region. We demonstrate the correspondence of the network of high magnetic flux concentration to the attracting Lagrangian coherent structures (aLCSs) in the photospheric velocity based on both observations and numerical simulations. In addition, the computation of aLCS provides a measure of the local rate of contraction/expansion of the flow.

  13. Condensation of Coherent Structures in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Chong, Kai Leong; Huang, Shi-Di; Kaczorowski, Matthias; Xia, Ke-Qing

    2015-12-01

    Coherent structures are ubiquitous in turbulent flows and play a key role in transport. The most important coherent structures in thermal turbulence are plumes. Despite being the primary heat carriers, the potential of manipulating thermal plumes to transport more heat has been overlooked so far. Unlike some other forms of energy transport, such as electromagnetic or sound waves, heat flow in fluids is generally difficult to manipulate, as it is associated with the random motion of molecules and atoms. Here we report how a simple geometrical confinement can lead to the condensation of elementary plumes. The result is the formation of highly coherent system-sized plumes and the emergence of a new regime of convective thermal turbulence characterized by universal temperature profiles and significantly enhanced heat transfer. It is also found that the universality of the temperature profiles and heat transport originate from the geometrical properties of the coherent structures, i.e., the thermal plumes. Therefore, in contrast to the classical regime, boundary layers in this plume-controlled regime are being controlled, rather than controlling.

  14. Condensation of Coherent Structures in Turbulent Flows.

    PubMed

    Chong, Kai Leong; Huang, Shi-Di; Kaczorowski, Matthias; Xia, Ke-Qing

    2015-12-31

    Coherent structures are ubiquitous in turbulent flows and play a key role in transport. The most important coherent structures in thermal turbulence are plumes. Despite being the primary heat carriers, the potential of manipulating thermal plumes to transport more heat has been overlooked so far. Unlike some other forms of energy transport, such as electromagnetic or sound waves, heat flow in fluids is generally difficult to manipulate, as it is associated with the random motion of molecules and atoms. Here we report how a simple geometrical confinement can lead to the condensation of elementary plumes. The result is the formation of highly coherent system-sized plumes and the emergence of a new regime of convective thermal turbulence characterized by universal temperature profiles and significantly enhanced heat transfer. It is also found that the universality of the temperature profiles and heat transport originate from the geometrical properties of the coherent structures, i.e., the thermal plumes. Therefore, in contrast to the classical regime, boundary layers in this plume-controlled regime are being controlled, rather than controlling. PMID:26764994

  15. Swan falls instream flow study

    SciTech Connect

    Anglin, D.R.; Cummings, T.R.; Ecklund, A.E.

    1992-10-01

    The purpose of the Swan Falls Instream Flow Study was to define the relationship between streamflows and instream habitat for resident fish species and to assess the relative impact of several different hydrographs on resident fish habitat. Specific objectives included the following: (1) Conduct a literature search to compile life history, distribution, and habitat requirements for species of interest. Physical and hydrologic characteristics of the Snake River were also compiled. (2) Determine physical habitat versus discharge relationships and conduct habitat time series analysis for each species/lifestage using the Instream Flow Incremental Methodology (IFIM) developed by the U.S. Fish and Wildlife Service. (3) Examine the impacts on resident fish habitat of proposed hydrographs, including Swan Falls Agreement flows, relative to current conditions. (4) Characterize water quality conditions, including water temperature and dissolved oxygen, in the vicinity of the study area and determine the implications of those conditions for the resident species of interest. (5) Determine streamflows necessary to protect and maintain resident fish habitat in the study area.

  16. Flow Structures in a Healthy and Plaqued Artificial Artery using Fully Index Matched Vascular Flow Facility

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Jain, Akash; Sheng, Jian

    2014-11-01

    Particle Image Velocimetry measurements are made in a closed loop fully index matched flow facility to study the flow structures and flow wall interactions in healthy and diseased model arteries. The test section is 0.63 m long and the facility is capable of emulating both steady and pulsatile flows under physiologically relevant conditions. The model arteries are in-house developed compliant polymer (PDMS) tubes with 1 cm diameter and 1 mm wall thickness. The Reynolds numbers of flows vary up to 20,000. The plaque is simulated by introducing a radially asymmetric bump that can be varied in shape, size and compliancy. The overall compliancy of the model can be also controlled by varying ratio between the elastomer and the curing agent. The tubes are doped with particles allowing the simultaneous measurements of wall deformation and flows over it. The working fluid in the facility is NaI and is refractive index matched to the PDMS model. This allows flow measurement very close to the wall and measurement of wall shear stress. The aim of this study is to characterize the changes in flow as the compliancy and geometry of blood vessels change due to age or disease. These differences can be used to develop a diagnostic tool to detect early onset of vascular diseases.

  17. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  18. Coherent structures in compressible free-shear-layer flows

    SciTech Connect

    Aeschliman, D.P.; Baty, R.S.; Kennedy, C.A.; Chen, J.H.

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  19. A beam-membrane structure micromachined differential pressure flow sensor

    SciTech Connect

    Chen, P.; Zhao, Y. L.; Tian, B. Li, C.; Li, Y. Y.

    2015-04-15

    A beam-membrane structure micromachined flow sensor is designed, depending on the principle of differential pressure caused by the mass flow, which is directly proportional to the square flow rate. The FSI (fluid structure interaction) characteristics of the differential pressure flow sensor are investigated via numerical analysis and analog simulation. The working mechanism of the flow sensor is analyzed depending on the FSI results. Then, the flow sensor is fabricated and calibrated. The calibration results show that the beam-membrane structure differential pressure flow sensor achieves ideal static characteristics and works well in the practical applications.

  20. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  1. Identification of Coherent Structures in Premixed Reacting Flows

    NASA Astrophysics Data System (ADS)

    Haffner, Eileen; Green, Melissa; Oran, Elaine; Syracuse University Team; University of Maryland Team

    2014-11-01

    Many studies have been conducted on the best ways to quantitatively characterize the turbulence-flame interaction in reacting flows. It has been observed that increased turbulence intensity both wrinkles and broadens the flame front throughout the preheat zone and reaction zone. A Lagrangian coherent structures analysis is used to identify the individual coherent turbulent structures as the maximizing ridges of the Finite-Time Lyapunov exponent scalar field (FTLE). This method provides different information than Eulerian criteria which have predominantly been used in previous reacting flow studies. Preliminary results show that LCS ridges exhibit a clear qualitative correlation to the contour of the fuel mass-fraction of the flame. A quantitative characterization of how the LCS results correlate to observed flame geometries will allow for a better understanding of how these structures affect the flame brush, and could lead to improved efficiency in particular engines.

  2. Transient studies of capillary-induced flow

    NASA Technical Reports Server (NTRS)

    Reagan, M. K.; Bowman, W. J.

    1993-01-01

    This paper presents the numerical and experimental results of a study performed on the transient rise of fluid in a capillary tube. The capillary tube problem provides an excellent mechanism from which to launch an investigation into the transient flow of a fluid in a porous wick structure where capillary forces must balance both adverse gravitational effects and frictional losses. For the study, a capillary tube, initially charged with a small volume of water, was lowered into a pool of water. The behavior of the column of fluid during the transient that followed as more water entered the tube from the pool was both numerically and experimentally studied.

  3. Flow structures of Jupiter's Great Red Spot extracted by using optical flow method

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Wang, Bo; Choi, David S.

    2012-09-01

    The flow structures of Jupiter's Great Red Spot (GRS) are studied based on a high-resolution velocity field extracted from the Galileo 1996 cloud images of the GRS by using the physics-based optical flow method. The mean transverse velocity profile across the anti-cyclonic near-elliptical collar of the GRS is obtained. The flow structures in the relatively quiescent inner region enclosed by the high-speed collar are revealed at a coarse-grained level. The cyclonic source node in the inner region is identified that is directly associated with the observed cyclonic rotation near the center of the GRS, and its significance in the maintenance of the GRS is explored by using a topological constraint.

  4. Unsteadiness of Flow Structure on Low Swept Delta Wing

    NASA Astrophysics Data System (ADS)

    Zharfa, Mohammadreza; Ozturk, Ilhan; Yavuz, Mehmet Metin

    2013-11-01

    The flow structure of low-sweep 35 degree delta wing has been analyzed experimentally using flow visualization and flow measurement techniques. Laser illuminated smoke visualization, Laser Doppler Anemometry (LDA), and surface pressure measurements are performed to understand the steady and unsteady behavior of the flow regimes. Reynolds number varying from 10,000 to 100,000 and attack angles varying from 3 to 10 are tested. For the corresponding Reynolds Numbers and attack angles, prestall and poststall regimes are identified. The amplitude and frequency of the pressure and velocity fluctuations at different locations are compared with the regions of reattachment, vortex breakdown, and stall. Using statistics and spectral analysis, the unsteadiness of flow is studied in detail. Both the lift performance of the wing and the regions possibly exposed to surface buffeting are tried to be interpreted. Using the results of the study, an effective active flow control strategy to delay stall and to reduce surface buffeting is going to be determined next. The project was supported by the Turkish Scientific and Technological Research Council of Turkey (3501 - 111M732).

  5. A Structured-Grid Quality Measure for Simulated Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A structured-grid quality measure is proposed, combining three traditional measurements: intersection angles, stretching, and curvature. Quality assesses whether the grid generated provides the best possible tradeoffs in grid stretching and skewness that enable accurate flow predictions, whereas the grid density is assumed to be a constraint imposed by the available computational resources and the desired resolution of the flow field. The usefulness of this quality measure is assessed by comparing heat transfer predictions from grid convergence studies for grids of varying quality in the range of [0.6-0.8] on an 8'half-angle sphere-cone, at laminar, perfect gas, Mach 10 wind tunnel conditions.

  6. Footprints of Lagrangian flow structures in Eulerian concentration distributions in periodic mixing flows

    NASA Astrophysics Data System (ADS)

    Speetjens, M. F. M.; Lauret, M.; Nijmeijer, H.; Anderson, P. D.

    2013-05-01

    Transport of passive tracers may be described through the spatio-temporal evolution of Eulerian concentration distributions or via the geometrical composition of the Lagrangian flow structure. The present study seeks to deepen insight into the connection between the Eulerian and Lagrangian perspectives by investigating the role of Lagrangian coherent structures (LCSs) in the Eulerian concentration distributions in time-periodic and spatially-periodic mixing flows. Representation of the Eulerian transport by the mapping method, describing realistic transport problems by distribution matrices, admits a generic analysis based on matrix and graph theory. This reveals that LCSs-and the transport barriers that separate them-leave a distinct “footprint” in the eigenmode spectrum of the distribution matrix and, by proxy, of the underlying Eulerian transport operator. Transport barriers impart a block-diagonal structure upon the mapping matrix, where each block matrix A corresponds with a given LCS. Its kind is reflected in the spectrum of A; higher-order periodicity yields a distinct permutation within A. The composition of the distribution matrix versus the Lagrangian flow structure thus predicted is demonstrated by way of examples. These findings increase fundamental understanding of transport phenomena and have great practical potential for e.g. flow and mixing control.

  7. Measurements of flow structure interaction in a plaqued artificial artery using an index matched flow facility

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Brock, Larry; Sheng, Jian

    2015-11-01

    The aim of the experiment is to study the flow structure interaction in an arterial model with a simulated plaque inside a closed loop index matched pulsatile flow facility. The test section is 24.5 inches long 6 inches wide. The experimental models are compliant polymer (PDMS) tubes having an outer diameter of 9 mm and a wall thickness of 1 mm. The plaque on the models are simulated by means of a radially asymmetric bump. Both flow and polymeric structures are doped with different particles and imaged with Particle Image Velocimetry (PIV) method. To minimize the optical distortion near liquid solid interface, the facility is fully index matched with NaI at 40% by weight. A suite of analysis procedures quantifying complex interactions including solid-fluid phase separation, near wall flow analysis, and wall shear stress approximation as well as wall deformation quantification, have been developed and applied to study the healthy and plaqued artificial arteries in steady and pulsatile flow conditions. 3D ensemble velocity fields, wall shear stress distributions and corresponding strain deformations will be presented.

  8. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  9. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-06-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.

  10. Investigation on Flow Structures of Supersonic Isolator Flow

    NASA Astrophysics Data System (ADS)

    Zhi, Chen; Yi, Shihe; Yu, Wu; Zhu, Yangzhu

    Hypersonic vehicle of air breathing high speed flight employs a dual-mode engine that can perform scramjet and ramjet propulsion. Lots of researches have been done to gain more understanding of complex flow fields in such engines, since it was first proposed in 1963 [1].

  11. Structure of unsteady flows at leading- and trailing-edges: Flow visualization and its interpretation

    NASA Technical Reports Server (NTRS)

    Rockwell, D.; Atta, R.; Kramer, L.; Lawson, R.; Lusseyran, D.; Magness, C.; Sohn, D.; Staubli, T.

    1987-01-01

    Unsteady two- and three-dimensional flow structure at leading and trailing edges of bodies can be characterized effectively using recently developed techniques for acquisition and interpretation of flow visualization. The techniques addressed here include: flow image/surface pressure correlations; 3-D reconstruction of flow structure from flow images; and interactive interpretation of flow images with theoretical simulations. These techniques can be employed in conjunction with: visual correlation and ensemble-averaging, both within a given image and between images; recognition of patterns from images; and estimates of velocity eigenfunctions from images.

  12. Optimal structure of tree-like branching networks for fluid flow

    NASA Astrophysics Data System (ADS)

    Kou, Jianlong; Chen, Yanyan; Zhou, Xiaoyan; Lu, Hangjun; Wu, Fengmin; Fan, Jintu

    2014-01-01

    Tree-like branching networks are very common flow or transportation systems from natural evolution. In this study, the optimal structures of tree-like branching networks for minimum flow resistance are analyzed for both laminar and turbulent flow in both smooth and rough pipes. It is found that the dimensionless effective flow resistance under the volume constraint for different flows is sensitive to the geometrical parameters of the structure. The flow resistance of the tree-like branching networks reaches a minimum when the diameter ratio β∗ satisfies β∗=Nk, where, N is the bifurcation number N=2,3,4,… and k is a constant. For laminar flow, k=-1/3, which is in agreement with the existing Murray’s law; for turbulent flow in smooth pipes, k=-3/7; for turbulent flow in rough pipes, k=-7/17. These results serve as design guidelines of efficient transport and flow systems.

  13. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  14. Quantitative visualization of high-speed 3D turbulent flow structures using holographic interferometric tomography

    NASA Astrophysics Data System (ADS)

    Timmerman, B. H.; Watt, D. W.; Bryanston-Cross, P. J.

    1999-02-01

    Using holographic interferometry the three-dimensional structure of unsteady and large-scale motions within subsonic and transonic turbulent jet flows has been studied. The instantaneous 3D flow structure is obtained by tomographic reconstruction techniques from quantitative phase maps recorded using a rapid-switching, double reference beam, double pulse laser system. The reconstruction of the jets studied here reveal a three-dimensional nature of the flow. In particular an increasing complexity can be seen in the turbulence as the flow progresses from the jet nozzle. Furthermore, a coherent three-dimensional, possibly rotating, structure can be seen to exist within these jets. The type of flow features illustrated here are not just of fundamental importance for understanding the behavior of free jet flows, but are also common to a number of industrial applications, ranging from the combustion flow within an IC engine to the transonic flow through the stages of a gas turbine.

  15. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  16. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  17. Geometry of the ergodic quotient reveals coherent structures in flows

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Mezić, Igor

    2012-08-01

    Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform and simpler behavior, we could hope to study each of the structures separately and then form the understanding of the system as a whole. The method we present in this paper uses trajectory averages of scalar functions on the state space to: (a) identify invariant sets in the state space, and (b) to form coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we construct the ergodic quotient, the object obtained by mapping trajectories to the space of the trajectory averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric structure that successfully captures how similar the invariant sets are in the state space. Finally, we parametrize the ergodic quotient using intrinsic diffusion modes on it. By segmenting the ergodic quotient based on the diffusion modes, we extract coherent features in the state space of the dynamical system. The algorithm is validated by analyzing the Arnold-Beltrami-Childress flow, which was the test-bed for alternative approaches: the Ulam’s approximation of the transfer operator and the computation of Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincaré map analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-dimensional Hill’s vortex flow, discovering unknown coherent structures in its state space. Finally, we discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of (quasi-)periodic structures, and lay out future research directions.

  18. Embrittlement and Flow Localization in Reactor Structural Materials

    SciTech Connect

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.

  19. Optical Flow Structure Effects in Children’s Postural Control

    PubMed Central

    Barela, José A.

    2016-01-01

    The aim of this study was to investigate the effect of distance and optic flow structure on visual information and body sway coupling in children and young adults. Thirty children (from 4 to 12 years of age) and 10 young adults stood upright inside of a moving room oscillating at 0.2 Hz, at 0.25 and 1.5 m from the front wall, and under three optical flow conditions (global, central, and peripheral). Effect of distance and optic flow structure on the coupling of visual information and body sway is age-dependent, with 4-year-olds being more affected at 0.25 m distance than older children and adults are. No such difference was observed at 1.5 m from the front wall. Moreover, 4-year-olds’ sway was larger and displayed higher variability. These results suggest that despite being able to accommodate change resulting from varying optic flow conditions, young children have difficulty in dodging stronger visual stimuli. Lastly, difference in sway performance may be due to immature inter-modality sensory reweighting. PMID:27352305

  20. Optical Flow Structure Effects in Children's Postural Control.

    PubMed

    Godoi, Daniela; Barela, José A

    2016-01-01

    The aim of this study was to investigate the effect of distance and optic flow structure on visual information and body sway coupling in children and young adults. Thirty children (from 4 to 12 years of age) and 10 young adults stood upright inside of a moving room oscillating at 0.2 Hz, at 0.25 and 1.5 m from the front wall, and under three optical flow conditions (global, central, and peripheral). Effect of distance and optic flow structure on the coupling of visual information and body sway is age-dependent, with 4-year-olds being more affected at 0.25 m distance than older children and adults are. No such difference was observed at 1.5 m from the front wall. Moreover, 4-year-olds' sway was larger and displayed higher variability. These results suggest that despite being able to accommodate change resulting from varying optic flow conditions, young children have difficulty in dodging stronger visual stimuli. Lastly, difference in sway performance may be due to immature inter-modality sensory reweighting. PMID:27352305

  1. Characterization of flow-induced structures in carbon nanotube suspensions

    NASA Astrophysics Data System (ADS)

    Khalkhal, Fatemeh

    Carbon nanotubes (CNTs) are fibre-like nano-particles with many different applications. Due to their high specific surface area, high electric current density, thermal stability and excellent mechanical properties, they are used to reinforce physical properties of polymer matrices. The macroscopic properties of suspensions are inherited from their properties at micron and sub-micron scales. The suspensions structure can be easily influenced by many parameters such as the extent of external shear forces, the suspension concentration, temperature, the particles specifications, etc. This makes the study of the suspension structure a very challenging task and has been the subject of interest to many researchers. In this thesis, the structure of a model carbon nanotube suspension dispersed in an epoxy is studied by employing a set of rheological methods, scaling and fractal theories and a structural thixotropic model. The effect of flow history on linear viscoelastic properties of suspensions and the evolution of structure upon cessation of shear flow has been studied over a wide range of pre-shearing rates, concentration and temperature. The results of these analyses are as follows. The effect of flow history is more pronounced on the suspensions structure in dilute and semi-dilute concentration regimes. By pre-shearing at low rates, more inter-particle entanglements were induced, which resulted in reduction of rheological percolation thresholds. After cessation of shear flow, for dilute and semi-dilute suspensions, the formed metastable structures were distinguishable by different storage moduli, which were inversely related to the rate of pre-shearing. However, for the concentrated suspensions, the formed metastable structures had an approximately equal storage modulus regardless of the rate of the applied pre-shearing. It was shown that the rate of formation of these metastable structures was enhanced by increasing concentration. Furthermore, the rate of structure

  2. Online Learner's "Flow" Experience: An Empirical Study

    ERIC Educational Resources Information Center

    Shin, Namin

    2006-01-01

    This study is concerned with online learners' "low" experiences. On the basis of Csikszentmihalyi's theory of flow, flow was conceptualised as a complex, multimentional, reflective construct composing of "enjoyment", "telepresence", "focused attention", "engagement" and "time distortion" on the part of learners. A flow model was put forward with…

  3. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  4. Proteins at flowing interfaces: From understanding structure to treating disease

    NASA Astrophysics Data System (ADS)

    Posada, David; Young, James; Hirsa, Amir

    2012-11-01

    The field of soft matter offers vast opportunities for scientific and technological developments, with many challenges that need to be addressed by various disciplines. Fluid dynamics has a tremendous potential for greater impact, from broadening fundamental understanding to treating disease. Here we demonstrate the use of fluid dynamics in two biotechnology problems involving proteins at the air/water interface: a) 2-Dimensional protein crystallization and b) amyloid fibril formation. Protein crystallization is usually the most challenging step in X-ray diffraction analysis of protein structure. Recently it was demonstrated that flow can induce 2-D protein crystallization at conditions under which quiescent systems do not form crystals. A different form of protein structuring, namely amyloid fibrillization, is also of interest due to its association with several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Protein denaturation, which is the root of the fibrillization process, is also a significant concern in biotherapeutics production. Both problems are studied by using shearing free-surface flows in simple geometries. The common finding is that flow can significantly enhance the growth of protein structures.

  5. Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels.

    PubMed

    McHedlishvili, G; Maeda, N

    2001-02-01

    The review article deals with phenomena of the blood flow structure (structuring) in narrow microvessels-capillaries and the adjacent arterioles and venules. It is particularly focused on the flow behavior of red blood cells (RBCs), namely, on their specific arrangements of mutual interaction while forming definite patterns of self-organized microvascular flow. The principal features of the blood flow structure in microvessels, including capillaries, include axial RBC flow and parietal plasma layer, velocity profile in larger microvessels, plug (or bolus) flow in narrow capillaries, and deformation and specific behavior of the RBCs in the flow. The actual blood flow structuring in microvessels seems to be a most significant factor in the development of pathological conditions, including arterial hypertension, brain and cardiac infarctions, inflammation, and many others. The blood flow structuring might become a basic concept in determining the blood rheological properties and disorders in the narrow microvessels. No solid theoretical (biorheological) basis of the blood flow structuring in microvessel has been found, but in the future it might become a foundation for a better understanding of the mechanisms of these properties under normal and pathological conditions in the narrowest microvessels 5 to 25 microm large. It is also a topic for further biorheological research directed to find the background of actual physiopathological phenomena in the microcirculation. PMID:11281993

  6. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  7. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  8. Origin of Permeability and Structure of Flows in Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  9. Large eddy simulation study of spanwise spacing effects on secondary flows in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Aliakbarimiyanmahaleh, Mohammad; Anderson, William

    2015-11-01

    The structure of turbulent flow over a complex topography composed of streamwise-aligned rows of cones with varying spanwise spacing, s is studied with large-eddy simulation (LES). Similar to the experimental study of Vanderwel and Ganapathisubramani, 2015: J. Fluid Mech., we investigate the relationship between secondary flow and s, for 0 . 25 <= s / δ <= 5 . For cases with s / δ > 2 , domain-scale rollers freely exist. These had previously been called ``turbulent secondary flows'' (Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.; Anderson et al., 2015: J. Fluid Mech.), but closer inspection of the statistics indicates these are a turbulent tertiary flow: they only remain ``anchored'' to the conical roughness elements for s / δ > 2 . For s / δ < 2 , turbulent tertiary flows are prevented from occupying the domain by virtue of proximity to adjacent, counter-rotating tertiary flows. Turbulent secondary flows are associated with the conical roughness elements. These turbulent secondary flows emanate from individual conical topographic elements and set the roughness sublayer depth. The turbulent secondary flows remain intact for large and small spacing. For s / δ < 1 , a mean tertiary flow is not present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.

  10. Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same

    DOEpatents

    Itzel, Gary Michael; Devine, II, Robert Henry; Chopra, Sanjay; Toornman, Thomas Nelson

    2003-07-08

    A coolant flow control structure is provided to channel cooling media flow to the fillet region defined at the transition between the wall of a nozzle vane and a wall of a nozzle segment, for cooling the fillet region. In an exemplary embodiment, the flow control structure defines a gap with the fillet region to achieve the required heat transfer coefficients in this region to meet part life requirements.

  11. FlowSim/FlowRisk: A code system for studying risk associated with material process flows

    SciTech Connect

    Kaufman, A.M.

    1993-10-01

    The need to study and assess life-cycle risks of Pu release by nuclear warheads during peace time lead to the development of a code suite which could model day to day operations involving nuclear weapons and calculate the associated risk involved in these proceedings. The life-cycle study called LIONSHARE is described in Reference 1. The code that models the flow is called FlowSim. The code that evaluates the associated risk is called FlowRisk. We shall concentrate here on the methodology used by FlowSim in modeling material flows. FlowRisk, mainly a postprocessor of FlowSim runs, will be dealt with in less detail.

  12. Mean flow and Reynolds stress structure over aeolian ripples

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl; Bédard, Otto; O'Brien, Patrick

    2015-04-01

    Mean flow and turbulence structure on transverse ripples have been well documented in hydrodynamic literature. However, very few studies have described the flow characteristics over aeolian ripples. This study adopted laser Doppler anemometry (LDA) to measure the wind field above granular ripples with different bimodal particle size distributions in a wind tunnel. Multiple runs were conducted to examine the vertical profiles of time-averaged horizontal and vertical velocities and Reynolds stress above four different locations: crest, lee slope, trough, and stoss slope. The rippled sand bed has a fine beige fraction with grain size smaller than 0.542 mm concentrated in the troughs and a coarse fraction dyed in red with grain size greater than 0.542 mm concentrated in the crests. The magnitude of the ripples at equilibrium is controlled by both wind velocity and the ratio of beige sand to red sand. Freestream velocity has a range between 8-11 m/s (above the saltation threshold of beige sand and below the threshold of red sand) and the percentage coarse by mass varies from 5.2% to 27.5% with median grain size from 0.289 mm to 0.399 mm. Experimental results indicate that the ripples have the wave length ranged between 20 mm and 140 mm with a characteristic ripple index (wave length/wave height) of 15. Flow streamlines are generally parallel to the bed surface, which is inconsistent with previous hydrodynamic observations that a return flow is usually found at the lee side of the ripples. Reynolds stress has demonstrated a strong spatial differentiation near the sand surface: greatest at crests and smallest at the troughs, however, this difference diminishes with elevation. This is an exploratory study on the turbulence characteristics of air flow above aeolian ripples, and we believe the finding of this research will enhance the understanding the interaction mechanisms between the air and bed morphology.

  13. Mixing layers and coherent structures in vegetated aquatic flows

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Nepf, Heidi M.

    2002-02-01

    To date, flow through submerged aquatic vegetation has largely been viewed as perturbed boundary layer flow, with vegetative drag treated as an extension of bed drag. However, recent studies of terrestrial canopies demonstrate that the flow structure within and just above an unconfined canopy more strongly resembles a mixing layer than a boundary layer. This paper presents laboratory measurements, obtained from a scaled seagrass model, that demonstrate the applicability of the mixing layer analogy to aquatic systems. Specifically, all vertical profiles of mean velocity contained an inflection point, which makes the flow susceptible to Kelvin-Helmholtz instability. This instability leads to the generation of large, coherent vortices within the mixing layer (observed in the model at frequencies between 0.01 and 0.11 Hz), which dominate the vertical transport of momentum through the layer. The downstream advection of these vortices is shown to cause the progressive, coherent waving of aquatic vegetation, known as the monami. When the monami is present, the turbulent vertical transport of momentum is enhanced, with turbulent stresses penetrating an additional 30% of the plant height into the canopy.

  14. Effects of shaft supporting structure on performance test of axial flow fan

    NASA Astrophysics Data System (ADS)

    Ma, R.; Liu, S. L.; Li, M. X.; Zheng, S. Y.

    2016-05-01

    CFD numerical simulation combined with theoretical analysis are used to research and discuss the obstructing effect, caused by the supporting structure of torsion meter and connecting shaft, on the outlet airflow of axial-flow fan in type-C ducted inlet device. The relations between axial flow fan's total pressure efficiency and flow rate are studied when the distance between supporting structure and outlet section is different, which may provide a reference for the proper design of the performance test device.

  15. Coherent structures - Reality and myth. [in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1983-01-01

    Large-scale coherent structures (CS) in turbulent shear flows are characterized, reviewing recent theoretical and experimental investigations. The use of computers as a research tool and the flow-visualization experimental technique are introduced, CS are defined, the history of their discovery is traced, and their main characteristics are listed. Topics discussed and illustrated include the initial condition of the free shear layer, triple and double decomposition, topological features of CS, detection and eduction of CS, phase alignment via cross correlation, induced versus natural structures, the bursting phenomenon, turbulent spot, streaks, bursting frequency, the axisymmetric mixing layer, vortex pairing in an axisymmetric jet, CS and jet noise, broadband noise amplification via pure-tone excitation, CS interaction in a plane-jet near field, the Taylor hypothesis applied to CS, negative production, and the validity of the Reynolds-number similarity hypothesis. It is found that the coherent Reynolds stress, vorticity, and production are not much greater than the time-averaged values for fully developed flows with significant incoherent turbulence, suggesting that the importance of CS may have been exaggerated in some recent studies.

  16. Correlating Lagrangian structures with forcing in two-dimensional flow

    NASA Astrophysics Data System (ADS)

    Ouellette, Nicholas T.; Hogg, Charlie A. R.; Liao, Yang

    2016-01-01

    Lagrangian coherent structures (LCSs) are the dominant transport barriers in unsteady, aperiodic flows, and their role in organizing mixing and transport has been well documented. However, nearly all that is known about LCSs has been gleaned from passive observations: they are computed in a post-processing step after a flow has been observed and used to understand why the mixing and transport proceeded as it did. In many applications, the ability instead to control the presence or location of LCSs via imposed forcing would be valuable. With this goal in mind, we study the relationship between LCSs and external forcing in an experimental quasi-two-dimensional weakly turbulent flow. We find that the likelihood of finding a repelling LCS at a given location is positively correlated with the mean strain rate injected at that point and negatively correlated with the mean speed, and that it is not correlated with the vorticity. We also find that mean time between successive LCSs appearing at a fixed location is related to the structure of the forcing field. Finally, we demonstrate a surprising difference in our results between LCSs computed forward and backward in time, with forward-time (repelling) LCSs showing much more correlation with the forcing than backwards-time (attracting) LCSs.

  17. Flow structure of knuckling effect in footballs

    NASA Astrophysics Data System (ADS)

    Asai, Takeshi; Kamemoto, Kyoji

    2011-07-01

    The flight trajectory of a non-spinning or slow-spinning soccer ball might fluctuate in unpredictable ways, as for example, in the many free kicks of C. Ronaldo. Such anomalous horizontal shaking or rapid falling is termed the ‘knuckling effect’. However, the aerodynamic properties and boundary-layer dynamics affecting a ball during the knuckling effect are not well understood. In this study, we analyse the characteristics of the vortex structure of a soccer ball subject to the knuckling effect (knuckleball), using high-speed video images and smoke-generating agents. Two high-speed video cameras were set at one side and in front of the ball trajectory between the ball position and the goal; further, photographs were taken at 1000 fps and a resolution of 1024×512 pixels. Although in a previous study (Taneda, 1978), shedding of horseshoe vortices was observed for smooth spheres in the Reynolds number (Re) range of 3.8×105structure, which consisted of distorted loop vortices, appeared in the wake behind the ball in the supercritical Re number region. Moreover, after the knuckleballs were airborne, large-scale undulations were observed in the vortex trail visualised with a smoke technique. On the other hand, aerodynamic forces acting on the ball were estimated from the data of the ball’s flight trajectory, and a statistically high correlation (r=0.94, p<0.01) between the fluctuation frequency of the lift and side forces and the undulation frequency of the vortex trail was shown to exist. This fact suggests that the phenomenon of large-scale undulations of the vortex trail is closely related to the cause of the unsteady aerodynamic forces acting on the knuckle ball.

  18. Topology method for analyses of 3-D viscous flow structure in transonic turbomachinery

    NASA Astrophysics Data System (ADS)

    Guo, Yanhu; Wang, Baoguo; Shen, Mengyu

    1997-12-01

    A topology method is presented in this paper to reveal flow structure occurring inside turbomachinery, in which near wall flow structure is revealed by using wall limiting streamlines and space flow feature is revealed by using space streamlines and cross-section streamlines. As an example, a computational three-dimensional viscous flow field inside a transonic turbine cascade is studied. Through the analysis, the form and evolution of vortex system and the whole process of separation occurring within this cascade are revealed. The application of topology method for analyze flow structure inside turbomachinery is very important for understanding flow features and mechanism of flow loss even for improving the design of turbomachinery and increasing its efficiency.

  19. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2016-07-01

    Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.

  20. The stability and visualized flame and flow structures of a combusting jet in cross flow

    SciTech Connect

    Huang, R.F.; Chang, J.M. . Dept. of Mechanical Engineering)

    1994-08-01

    The blowoff stability and flame behavior of a combusting propane gas jet issuing from a well-contoured burner perpendicularly to a cross air stream in a wind tunnel test section is studied experimentally. A category of never-lift flames was found to have different stability characteristics and behavior from the conventionally reported liftable flames. The stability domain of the never-lift flames covers higher cross-flow velocities and lower fuel jet velocities compared with the liftable flames. The flame configurations in the stability domain are identified by characteristic modes: down-washed flame, flashing flame, developing flame, dual-flame, flickering flame, and pre-blowoff flame. The schlieren photographs are presented in order to discuss the effects of the flow structures on the general behavior of the flames in each characteristic mode and on the flame stability characteristics. The bisector of the eddy travelling avenue reasonably depicts the trajectory of the combusting jet in cross flow. Correlations for the trajectories of cold and combusting jets in cross flow are obtained.

  1. Near surface flow structure over a dimpled surface with blowing

    NASA Astrophysics Data System (ADS)

    Borchetta, Colby; Martin, Alexandre; Bailey, Sean

    2015-11-01

    The combined effects of surface roughness with flow injection are of particular interest in understanding the flow over ablative heat-shields, a common form of thermal protection system (TPS) used for atmospheric entry. Stereoscopic, time-resolved particle image velocimetry was used to investigate the near-surface flow over a surface geometry consisting of hexagonal dimples, typical of a TPS. Of particular interest are the modifications made to the flow structures generated by the dimpled elements caused by flow injection through the surface. Without flow injection, inclined flow structures are generated periodically at the upstream edge of the dimples and convected downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection occurs through the surface, this process occupies a larger region of the flow, extending further from the surface, with a corresponding increase in the size of the convecting structures and increase in turbulent kinetic energy. These features persist over the range of Reynolds numbers investigated, with increasing Reynolds number resulting in increased turbulence and a corresponding broadening of the region of the flow influenced by the surface. This research is supported by NASA Award NNX13AN04A.

  2. Nonlinear Interactions between Slender Structures and Axial Flow

    NASA Astrophysics Data System (ADS)

    Du, Li

    2015-03-01

    For decades, dynamic behaviors of a slender structure with axial flow have been extensively studied. However, the governing equation based on expansions of small quantities is complicatedly-expressed and can be inappropriate as amplitude becomes considerably large. In this research, we are dedicated to finding an approach to study the nonlinear dynamics of a fluid-conveying slender strcture with arbitrary amplitude. By introducing the Intrinsic Coordinate, we find a concise way to describe the configuration of the system. Differential relations of such coordinate are studied and the rigorous nonlinear equation of motion is derived. Then rather than small-deflection approximation, linear dynamics are studied using Argand Diagram under a weaker condition named low-varying approximation. Nonlinear properties including Hopf bifurcation, limit-cycle motion and vibration frequencies are studied theoretically and experimentally.

  3. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    NASA Astrophysics Data System (ADS)

    Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

    2009-02-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of

  4. Nano-PIV for flows near nano-structured surfaces

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea; Lindken, Ralph; Westerweel, Jerry

    2008-11-01

    Previous studies have shown that nano-structured surfaces can exhibit different wetting characteristics and higher slip-length values compared to smooth (i.e. non-structured) surfaces. In order to quantitatively measure the flows near such nano-structured surfaces, a Nano-PIV method with high spatial and temporal resolution is required. The TIRF-based PIV is a good candidate because it has been successfully applied for 3D nano-velocimetry near smooth surfaces, but it cannot be applied in a simple and direct manner since the nano-structures optically complicates the measurements: (i) they spatially influence and modulate the TIRF illumination, and (ii) they increase the probability of obtaining errors caused by the tracers' own emitted evanescent-waves. For fabricated periodic nano-structures with known dimensions and geometry, however, the spatially modulated TIRF illumination can be very useful for (i) a simple estimation of the illumination depth directly inside the microfluidic channels, and (ii) detection and measurement of the thin layer of air bubbles trapped at the nano-structures in the `Cassie-Baxter' wetting mode.

  5. Investigation of flow structures during HFE-7100 refrigerant condensation

    NASA Astrophysics Data System (ADS)

    Bohdal, Tadeusz; Sikora, Małgorzata; Widomska, Katarzyna; Radchenko, Andrii M.

    2015-12-01

    The experimental research of environmentally friendly refrigerant HFE-7100 condensation in pipe minichannels was conducted. During the investigations of HFE-7100 condensation in a minichannel with internal diameter 2 mm together with visualization of flow patterns was made. Visualization results were compared with existing flow structure maps. The identification of the range of flow patterns occurrence during the condensation process of low-pressure refrigerant HFE-7100 was made. The tests were performed throughout the whole range of condensation process.

  6. Flow structure and development of circular meander pools

    NASA Astrophysics Data System (ADS)

    Andrle, Robert

    1994-06-01

    Flow structure, bank strength, and scour and fill in one of a series of atypical river bends on Mansfield Creek, Cattaraugus County, New York are studied. These bends are characterized by large, deep, circular pools located at the apices of extremely tight bends. The pattern of flow through the bends is typified by the presence of a large countercurrent occupying approximately half of the pool on the outside of the bend. This differs greatly from the typical river bend in which flow is generally downstream and subparallel to the channel banks throughout the bend. Deposition in the bend also does not follow the conventional pattern, but instead occurs primarily on the concave bank in the form of a concave bank bench. Erosion is concentrated on the convex bank and no point bar deposits exist. Shifting of erosion to the convex bank has been noted elsewhere in the literature in extremely tight bends with ratios of mean radius to mean width of less than 2.0, but not in association with circular meander pools. Several possible theories are suggested that may explain development of the circular meander pools at this site. It is likely that the high, cohesive banks of the study reach are an important factor, slowing channel migration and preventing cutoff chutes from forming, allowing development of highly sinuous meanders.

  7. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  8. Power flow analysis of an L-shaped plate structure

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  9. Structural support bracket for gas flow path

    DOEpatents

    None

    2016-08-02

    A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.

  10. Investigating Flow-Structure Interactions in Cerebral Aneurysms

    SciTech Connect

    2014-10-13

    Visualization of blood flow in a cerebral aneurysm. Streamlines (colored by fluid velocity magnitude) reveal the complexity of the flow, isocontours of vorticity show blood vortex structures (colored by pressure), and the flexible arterial wall is colored by the stress magnitude, where regions in red indicate areas of high stress.

  11. Investigating Flow-Structure Interactions in Cerebral Aneurysms

    ScienceCinema

    None

    2014-11-24

    Visualization of blood flow in a cerebral aneurysm. Streamlines (colored by fluid velocity magnitude) reveal the complexity of the flow, isocontours of vorticity show blood vortex structures (colored by pressure), and the flexible arterial wall is colored by the stress magnitude, where regions in red indicate areas of high stress.

  12. 8. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Inverted siphon structure carrying ditch flow under Willow Creek, looking southwest - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  13. 7. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Inverted siphon structure carrying ditch flow under Willow Creek, looking east - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  14. Effects of seagrass structure on a wave dominated flow

    NASA Astrophysics Data System (ADS)

    Pujol, D.; Serra, T.; Colomer, J.; Casamitjana, X.

    2012-04-01

    Shallow coastal areas are characterized by the presence of seagrass which occupy ~ 10% of the zone. In natural systems flows are a combination of steady, oscillatory and turbulent flows. Turbulence significantly affects the bottom boundary, therefore the interaction between turbulence and plant canopies is particularly important. In an effort to understand the dynamics of these complex flows we isolated each physical process in a laboratory study. We studied the progressive waves generated by a wavemaker situated at the beginning of the tank impinging on a simulated seagrass meadow. Our experiment is aimed at studying the relationship between flow structure and canopies in terms of a wide variety of parameters. We quantified the vertical distribution of mean current (uc), oscillatory velocity (uw), turbulent kinetic energy (TKE) and shear stress () above and within different types of vegetation, measured by an Acoustic Doppler Velocimeter (Sontek Instruments). Different experimental conditions were considered: two vegetation models (rigid and flexible), vegetation heights (14 and 30 cm, corresponding to submerged and emergent vegetation), plants densities (SPF = 1, 5, 10%) and three oscillatory frequencies (f = 0.8, 1 and 1.4Hz). Our observations suggest that the presence of submerged vegetation alter the flow structure within and above the canopy when the ratio of orbital excursion above the canopy to stem center-center spacing is higher than 1, corresponding to SPF = 5 and 10%. Above the vegetation, the mean current is always higher than without vegetation, whereas within the canopy the mean current is damped by submerged vegetation. The TKE decreases with depth and above the canopy it is higher with vegetation until 2 cm below the top of the canopy, compared to what it is found without vegetation. The presence of vegetation produces a peak of shear stress at the top of the canopy. High levels of shear stress together with fast mean current near the top of the

  15. Lagrangian coherent structures as mesoscale transport barriers in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Naik, Shibabrat; Ross, Shane

    2015-11-01

    Coherent structures in two-dimensional flows have long been studied in the context of transport in fluid dynamics. However, for geophysical systems a small vertical velocity can lead to nontrivial three-dimensional motion of airborne biological populations affecting agriculture or hazardous outputs from natural disasters. The pathways and barriers in the lower atmosphere, from ground level to a kilometer altitude and over a horizontal scale of several kilometers-which bridge the scale of, for example, local farmlands to the larger regional scale-are still unclear. This requires exploring relevant spatiotemporal scales related to advection in the space of 3D + time. In this talk, we will present the application of finite-time Lyapunov exponent based three-dimensional Lagrangian coherent structures (LCS) to address questions of transport using historical data sets from satellite observations, field measurements and the Weather Research and Forecasting (WRF) model.

  16. Study of the velocity gradient tensor in turbulent flow

    NASA Technical Reports Server (NTRS)

    Cheng, Wei-Ping; Cantwell, Brian

    1996-01-01

    The behavior of the velocity gradient tensor, A(ij)=delta u(i)/delta x(j), was studied using three turbulent flows obtained from direct numerical simulation The flows studies were: an inviscid calculation of the interaction between two vortex tubes, a homogeneous isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each flow was obtained when A(ij) was normalized with the mean strain rate. The case of the interaction between two vortex tubes revealed a finite sized coherent structure with topological characteristics predictable by a restricted Euler model. This structure was found to evolve with the peak vorticity as the flow approached singularity. Invariants of A(ij) within this structure followed a straight line relationship of the form: gamma(sup 3)+gammaQ+R=0, where Q and R are the second and third invariants of A(ij), and the eigenvalue gamma is nearly constant over the volume of this structure. Data within this structure have local strain topology of unstable-node/saddle/saddle. The characteristics of the velocity gradient tensor and the anisotropic part of a related acceleration gradient tensor H(ij) were also studied for a homogeneous isotropic flow and a temporally evolving planar wake. It was found that the intermediate principal eigenvalue of the rate-of-strain tensor of H(ij) tended to be negative, with local strain topology of the type stable-node/saddle/saddle. There was also a preferential eigenvalue direction. The magnitude of H(ij) in the wake flow was found to be very small when data were conditioned at high local dissipation regions. This result was not observed in the relatively low Reynolds number simulation of homogeneous isotropic flow. A restricted Euler model of the evolution of A(ij) was found to reproduce many of the topological features identified in the simulations.

  17. Investigation on the near-wake flow structures of a utility-scale wind turbine using snowflake based flow visualization

    NASA Astrophysics Data System (ADS)

    Dasari, Teja; Toloui, Mostafa; Guala, Michele; Hong, Jiarong

    2015-11-01

    Super-large-scale particle image velocimetry and flow visualization techniques using natural snow particles have been shown as an effective tool to probe the structure of the flow around full-scale wind turbines (Hong et al. Nature Comm. 2014). Here we present a follow-up study based on the data collected during a deployment around the 2.5 MW wind turbine at EOLOS Wind Energy Research Station on April, 4th, 2014. The dataset includes the snow visualization of flow fields from different perspectives in the near wake of the turbine. The motions of the dominant coherent structures including tip, blade root, hub and tower vortices, represented by the snow voids, are examined with the objective of quantifying and correlating their behavior with the meteorological and turbine operating conditions. Some preliminary studies on flow-structure interaction are also performed by correlating the data from strain gauges, accelerometers mounted on the turbine blades, with the flow measurements. The statistical analysis of the motions of blade induced vortices shows a clear impact of atmospheric turbulence and vortex interaction on flow development in the near wake. The result further indicates a strong connection between near-wake vorticity field, turbine operation and structure deformations. The work was supported by National Science Foundation (NSF-CBET-1454259) and the research infrastructure was supported by Department of Energy.

  18. Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division.

    PubMed

    Hughes, P E; How, T V

    1995-05-01

    Flow structures were visualized in transparent polyurethane models of proximal side-to-end vascular anastomoses, using planar illumination of suspended tracer particles. Both the effects of geometry and flow division were determined under steady and pulsatile flow conditions, for anastomosis angles of 15, 30, and 45 degrees. The flow patterns were highly three-dimensional and were characterized by a series of vortices in the fully occluded distal artery and two helical vortices aligned with the axis of the graft. In steady flow, above a critical Reynolds number, the flow changed from a laminar regime to one displaying time-dependent behavior. In particular, significant fluctuating velocity components were observed in the distal artery and particles were shed periodically from the occluded artery into the graft. Pairs of asymmetric flow patterns were also observed in the graft, before the onset of the time-dependent flow regime. The critical Reynolds number ranged from 427 to 473 and appeared to be independent of anastomosis angle. The presence of a patent distal artery had a significant effect on the overall flow pattern and led to the formation of a large recirculation region at the toe of the anastomosis. The main structures observed in steady flow, such as vortices in the distal artery and helical flow in the graft, were also seen during the pulsatile cycle. However, the secondary flow components in the graft were more pronounced in pulsatile flow particularly during deceleration of the flow waveform. At higher mean Reynolds numbers, there was also a greater mixing between fluid in the occluded arterial section and that in the graft. PMID:7666660

  19. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-02-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  20. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  1. The significance of micro-topography in generating flow structures in open channel flow

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.

    2011-12-01

    This poster investigates the effect of micro-topographic roughness on the generation, evolution and dissipation of turbulent flow structures in open channel flow. Primarily, a series of flume experiment were undertaken where natural fluvial gravel was placed in a flume and water worked until a stable bed with no sediment transport was obtained. The surface topography was measured to create a digital elevation model (DEM) enabling particle size characteristics to be measured and roughness lengths to be calculated. Flow was measured, at flow Reynolds numbers over two orders of magnitude, using Particle Imaging Velocimetry at data frequencies up to 100 Hz at a spatial resolution of 2×10-3 m. The flume conditions also provided the necessary boundary conditions for Large Eddy Simulation of flow over these heterogeneous surfaces. The data generated by these two separate methodologies was analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE) and; iv) Proper Orthogonal Decomposition (POD) analysis to obtain a full understanding of the turbulent flow structures. Once the LES scheme had been fully validated against the PIV data, scales of topography were removed from the DEM. The LES simulations were then recalculated to assess the influence of topography on the generation of turbulent flow structures. The results demonstrate that the generative mechanism for these bed-generated coherent flow structures are merging hairpin-type vortices that form around bed clasts and generate larger-scale roller-type structures. This mechanism of generation appears consistent over the range of Reynolds numbers but the spatial and temporal length scales appear dependent upon the bed roughness.

  2. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  3. Slat Cove Unsteadiness Effect of 3D Flow Structures

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Khorrami, Mehdi R.

    2006-01-01

    Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.

  4. Flow-induced vibration of circular cylindrical structures

    NASA Astrophysics Data System (ADS)

    Chen, Shoei-Sheng

    The vibrational response of circular cylinder (CC) structures subjected to flow is characterized analytically, summarizing the results of recent theoretical and experimental investigations. Topics addressed include a single CC in quiescent fluid, multiple CCs in quiescent fluid, CC shells containing fluid, pipes conveying fluid, and CCs in axial flow. Consideration is given to cross-flow configurations involving a single CC, an array of CCs, and two CCs; the fluid-elastic instability of a group of CCs in cross flow; and design techniques. Diagrams and graphs are provided, and the vibration of damped linear systems, the general fluid equations, and characteristic equations and adjoint eigenfunctions are treated in appendices.

  5. Investigations of coherent structures in free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1979-01-01

    The dynamics of large-scale coherent structures in general, and studies based on flow-visualization and phase-locked hot-wire measurements of the structures in the near fields of circular jets are considered. A study involving the nature of coherent structures under conditions of stable vortex pairing induced by controlled axisymmetric acoustic excitation reveals that azimuthal coherence initially enhanced by the excitation is lost before the end of the potential core through evolution of azimuthal lobe structures and turbulent breakdown. The evolution of a spark-induced spot in an axisymmetric turbulent mixing layer is also investigated, and the coherent Reynolds stress associated with the spot is found to be much higher than the background turbulence Reynolds stress. In addition, the state of organization in a high Reynolds number unperturbed axisymmetric mixing layer is examined, and it is shown that the shear layer is infrequently organized and the motions are intensely three-dimensional, while tearing and fractional pairing occur as frequently as complete pairing.

  6. Final Report - Investigation of Intermittent Turbulence and Turbulent Structures in the Presence of Controlled Sheared Flows

    SciTech Connect

    Gilmore, Mark A.

    2013-06-27

    Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.

  7. Heat flow anomalies in oil- and gas-bearing structures

    SciTech Connect

    Sergiyenko, S.I.

    1988-02-01

    The main features of the distribution of heat flow values in oil, gas and gas-condensate fields on the continents have been discussed by Makarenko and Sergiyenko. The method of analysis used made it possible to establish that the presence of hydrocarbons in formations leads to high heat-flow, regardless of the age of folding of the potentially oil- and gas-bearing zones. Only in regions adjacent to marginal Cenozoic folded mountain structures and in zones of Cenozoic volcanism is the world average higher, by 2.5 to 10%, than in the oil- and gas-bearing structures in those regions. The earlier analysis of the distribution of heat flow values in oil and gas structures was based on 403 measurements. The author now has nearly doubled the sample population, enabling him substantially to revise the ideas on the distribution of heat flow values and the development of the thermal regime of local oil and gas structures. He notes that the method previously used, comparing heat flow values on young continental platforms with values in local oil and gas structures, makes it possible to estimate the thermal effect of the presence of oil and gas. This conclusion stems from the fact that the overwhelming majority of heat flow measurements were made on various kinds of positive structural forms, and distortions of the thermal field caused by thermal anisotropy phenomena are equally characteristic of both productive and nonproductive structures. As a result, for the first time a continuous time series of heat flow measurements over oil and gas structures in various tectonic regions, with ages of consolidation ranging from the Precambrian to the Cenozoic, was established. 26 references.

  8. Numerical and Experimental Investigation of Flow Structures During Insect Flight

    NASA Astrophysics Data System (ADS)

    Badrya, Camli; Baeder, James D.

    2015-11-01

    Insect flight kinematics involves complex interplay between aerodynamics structural response and insect body control. Features such as cross-coupling kinematics, high flapping frequencies and geometrical small-scales, result in experiments being challenging to perform. In this study OVERTURNS, an in-house 3D compressible Navier-Stokes solver is utilized to simulate the simplified kinematics of an insect wing in hover and forward flight. The flapping wings simulate the full cycle of wing motion, i.e., the upstroke, downstroke, pronation and supination.The numerical results show good agreement against experimental data in predicting the lift and drag over the flapping cycle. The flow structures around the flapping wing are found to be highly unsteady and vortical. Aside from the tip vortex on the wings, the formation of a prominent leading edge vortex (LEV) during the up/down stroke portions, and the shedding of a trailing edge vortex (TEV) at end of each stroke were observed. Differences in the insect dynamics and the flow features of the LEV are observed between hover and forward flight. In hover the up and downstroke cycles are symmetric, whereas in forward flight, these up and downstroke are asymmetric and LEV strength varies as a function of the kinematics and advance ratio. This work was supported by the Micro Autonomous Systems and Technology (MAST) CTA at the Univer- sity of Maryland.

  9. Numerical study of flow turning phenomenon

    NASA Astrophysics Data System (ADS)

    Baum, J. D.; Levine, J. N.

    1986-01-01

    A research project is currently being conducted that is to provide an understanding of the physical mechanisms by which energy is exchanged between the mean and acoustic flowfields in resonant combustion chambers, giving particular attention to solid rocket motors. The present paper is concerned with progress which has been made toward the understanding of the 'flow turning' phenomenon. This term is used to describe the loss of acoustic energy by the acoustic field in the combustor resulting from the inflow of combustion products through the lateral boundary of a combustion chamber containing longitudinal acoustic waves. Attention is given to the modeling of flow turning, acoustic refraction, the numerical solution, numerical results, acoustic wave propagation with no mean flow, and a flow turning study. The discussed research verifies the existence of the flow turning loss phenomenon.

  10. Visualizing the internal structure of subaqueous, high-concentration sediment-laden flows: implication of rheology to flow structure

    NASA Astrophysics Data System (ADS)

    Perillo, M. M.; Buttles, J.; Mohrig, D. C.; Kane, I.; Pontén, A.; Brown, D.; Minton, B. W.

    2013-12-01

    Subaqueous sediment-laden flows are thought to be the main mechanism transporting sediments to the deep sea. Understanding the processes governing these flows is crucial to building predictive models of flow behaviour, sediment transport and deposition and is applicable to a wide range of disciplines. Physical modelling using a wide range of experimental facilities and measurement techniques has significantly advanced our understanding of these sediment-laden flows and their ability to erode, transport and deposit sediments. However, for the case of high-sediment concentration flows, measuring flow and depositional properties is still a challenge. Here, we present results from an acoustic reflection technique that allows for direct and noninvasive visualization of the internal structure of high concentration, clay-rich, sand-laden flows with a range of initial yield strengths (0-26 Pa). As the acoustic signal travels through the sediment-laden flow, it encounters zones of varying acoustic impedance that are due to temporal and spatial changes in sediment concentration, grain size and sorting, and flow mixing. The reflected signal is processed and interpreted using seismic techniques developed in exploration geophysics. The ultrasonic reflection data captured two distinct flow stages, an active stage and a post-depositional creeping stage. The clay-rich sand-laden flows showed stratification expressed by three clear vertical zones: (a) an upper relatively dilute turbulent zone, (b) a zone with high sediment concentration and significantly reduced mixing and (c) an aggrading bed of static grains.

  11. Study on flow instability and countermeasure in a draft tube with swirling flow

    NASA Astrophysics Data System (ADS)

    Nakashima, T.; Matsuzaka, R.; Miyagawa, K.; Yonezawa, K.; Tsujimoto, Y.

    2014-03-01

    The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

  12. Biomimetic structures for fluid drag reduction in laminar and turbulent flows.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-27

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow. PMID:21386280

  13. Experimental Study on Swirl Flow in an ECR Plasma

    NASA Astrophysics Data System (ADS)

    Terasaka, Kenichiro; Yoshimura, Shinji; Furuta, Kanshi; Yamada, Takuya; Tanaka, Masayoshi

    2015-11-01

    Swirl plasma flow plays an important role to clarify astrophysical phenomena, such as astrophysical jets and solar dynamo, and in the development of plasma propulsion systems. We have studied the effect of plasma rotation on flow structure formation in a cylindrical ECR plasma with the HYPER-II device at Kyushu University, Japan. The HYPER-II device consists of two cylindrical chambers with different diameters: one is the plasma production chamber with 0.3 m in diameter and 0.95 m in axial length, and the other is the diffusion chamber with 0.76 m in diameter and 1.3 m in axial length. An electron cyclotron resonance (ECR) plasma is produced by a 2.45 GHz microwave in the magnetic beach configuration. The azimuthal plasma rotation due to E × B drift is generated by a set of cylindrical electrodes, and the swirl plasma flow with various kinetic helicity is produced in a diverging magnetic field. An axially revers flow structure has been found near the center axis, in which the radial density profile exhibits a density build-up in the flow reversal region. The axial flow structure of rotating plasma shows an interesting behavior compared with non-rotating plasmas. This study was supported by JSPS KAKENHI grant number 15K05365.

  14. Numerical Simulation of Flow-Induced Structure in Complex Fluids

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takehiro

    2007-04-01

    It is important to investigate the flow-induced structure for the analysis of the mechanism of flow behavior of complex fluids. The present paper includes two topics in which the flow-induced structure is numerically investigated. The first topic treats the suspensions of disc-like particles under simple shear flows. Disc-like particles were modeled by oblate spheroid particles, and the Brownian dynamics simulation was performed for suspensions of the particles interacting via the Gay-Berne potential. This simulation confirmed that this model system was applicable to the analysis of flow of suspension of disc-like particles. The second one is the numerical simulation of the deformation behavior of a droplet in shear flows. The present simulation is the first step for the numerical simulation of the flow-induced structure in emulsions. This simulation can demonstrate the deformation behavior of droplet observed in experiments and predict effects of non-Newtonian property of fluids on the droplet deformation.

  15. Correlations of Flow Structure and Particle Deposition with Structural Alterations in Severe Asthmatic Lungs

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Miyawaki, Shinjiro; Choi, Jiwoong; Hoffman, Eric A.; Wenzel, Sally; Lin, Ching-Long

    2014-11-01

    Severe asthmatics are characterized by alterations of bifurcation angle, hydraulic diameter, circularity of the airways, and local shift of air-volume functional change. The characteristics altered against healthy human subjects can affect flow structure and particle deposition. A large-eddy-simulation (LES) model for transitional and turbulent flows is utilized to study flow characteristics and particle deposition with representative healthy and severe asthmatic lungs. For the subject-specific boundary condition, local air-volume changes are derived with two computed tomography images at inspiration and expiration. Particle transport simulations are performed on LES-predicted flow fields. In severe asthmatics, the elevated air-volume changes of apical lung regions affect the increased particle distribution toward upper lobes, especially for small particles. The constricted airways are significantly correlated with high wall shear stress, leading to the increased pressure drop and particle deposition. The structural alterations of bifurcation angle, circularity and hydraulic diameter in severe asthmatics are associated with the increase of particle deposition, wall shear stress and wall thickness. NIH Grants: U01-HL114494, R01-HL094315 and S10-RR022421. Computer time: XSEDE.

  16. Flow Structure on a Flapping Wing: Quasi-Steady Limit

    NASA Astrophysics Data System (ADS)

    Ozen, Cem; Rockwell, Donald

    2011-11-01

    The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.

  17. Canonical exact coherent structures embedded in high Reynolds number flows.

    PubMed

    Deguchi, K; Hall, P

    2014-07-28

    The applications and implications of two recently addressed asymptotic descriptions of exact coherent structures in shear flows are discussed. The first type of asymptotic framework to be discussed was introduced in a series of papers by Hall & Smith in the 1990s and was referred to as vortex-wave interaction theory (VWI). New results are given here for the canonical VWI problem in an infinite region; the results confirm and extend the results for the infinite problem inferred the recent VWI computation of plane Couette flow. The results given define for the first time exact coherent structures in unbounded flows. The second type of canonical structure described here is that recently found for asymptomatic suction boundary layer and corresponds to freestream coherent structures (FCS), in boundary layer flows. Here, it is shown that the FCS can also occur in flows such as Burgers vortex sheet. It is concluded that both canonical problems can be locally embedded in general shear flows and thus have widespread applicability. PMID:24936006

  18. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  19. Flow structure, performance and scaling of acoustic jets

    NASA Astrophysics Data System (ADS)

    Muller, Michael Oliver

    Acoustic jets are studied, with an emphasis on their flow structure, performance, and scaling. The ultimate goal is the development of a micromachined acoustic jet for propulsion of a micromachined airborne platform, as well as integrated cooling and pumping applications. Scaling suggests an increase in performance with decreasing size, motivating the use of micro-technology. Experimental studies are conducted at three different orders of magnitude in size, each closely following analytic expectations. The jet creates a periodic vortical structure, the details of which are a function of amplitude. At small actuation amplitude, but still well above the linear acoustic regime, the flow structure consists of individual vortex rings, propagating away from the nozzle, formed during the outstroke of the acoustic cavity. At large amplitude, a trail of vorticity forms between the periodic vortex rings. Approximately corresponding to these two flow regions are two performance regimes. At low amplitude, the jet thrust increases with the fourth power of the amplitude; and at large amplitude, the thrust equals the momentum flux ejected during the output stroke, and increases as the square of the amplitude. Resonance of the cavity, at Reynolds numbers greater than approximately 10, enhances the jet performance beyond the incompressible behavior. Gains of an order of magnitude in the jet velocity occur at Reynolds numbers of approximately 100, and the data suggest further gains with increasing Reynolds number. The smallest geometries tested are micromachined acoustic jets, manufactured using MEMS technology. The throat dimensions are 50 by 200 mum, and the overall device size is approximately 1 mm 2, with eight throats per device. Several jets are manufactured in an array, to suit any given application. The performance is very dependent on frequency, with a sharp peak at the system resonance, occurring at approximately 70 kHz (inaudible). The mean jet velocity of these devices

  20. Numerical study of free surface flow around large obstacles

    NASA Astrophysics Data System (ADS)

    Zhang, Yanming

    In this thesis a numerical model was developed to study three-dimensional turbulent flows around large obstacles in an open channel. With this numerical model, a series of numerical tests was carried out, and the properties of turbulent flows around a single obstacle or a cluster of obstacles were investigated. The origin of this study was to study the flow properties around fish habitat structures. Actually, the numerical model can be applied to the study of general turbulent flows under free surfaces. In the numerical model the three-dimensional Reynolds-averaged Navier-Stokes equations in conjunction with k-epsilon turbulence model were solved in a free surface fitted coordinate system. First, different forms of governing equations for turbulent flow were investigated, and a concise form of fully transformed governing equations in a general curvilinear coordinate system was derived. In the numerical solution the FAVOR (Fractional Area/Volume Obstacle Representation) technique was extended into the free surface fitted coordinate system. With this feature the problem of complex turbulent flow with a free surface and general shaped obstacles could be solved efficiently. To locate the free surface, a method based on integrating the momentum equation in the vertical direction was developed. After study and tests of several popular difference schemes, a QUICK scheme with UMIST limiter was adopted in this numerical model. Several test cases were presented to demonstrate the present numerical model. The first test case was to simulate a submerged hydraulic jump. The calculated velocity, free surface profile and turbulence properties of the flow showed a close match with the experimental data. The second test was a submerged hydraulic jump with a baffle sill. The comparison between numerical and experimental data indicated that the current numerical model could catch the general flow structures of the submerged hydraulic jumps. The last two test cases were flows around a

  1. Spectacular ionospheric flow structures associated with substorm auroral onset

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, B. I.; Nishimura, Y.; Lyons, L. R.; Zou, Y.; Angelopoulos, V.; Donovan, E.; Mende, S. B.; Ruohoniemi, J.; McWilliams, K. A.; Nishitani, N.

    2013-12-01

    Auroral observations have shown that brightening at substorm auroral onset consists of azimuthally propagating beads forming along a pre-existing arc. However, the ionospheric flow structure related to this wavy auroral structure has not been previously identified. We present 2-d line-of-sight flow observations and auroral images from the SuperDARN radars and the THEMIS ground-based all-sky-imager array to investigate the ionospheric flow pattern associated with the onset. We have selected events where SuperDARN was operating in the THEMIS mode, which provides measurements along the northward looking radar beam that have time resolution (6 s) comparable to the high time resolution of the imagers and gives us a unique tool to detect properties of flows associated with the substorm onset instability. We find very fast flows (~1000 m/s) that initiated simultaneously with the onset arc beads propagating across the THEMIS-mode beam meridian. The flows show oscillations at ~9 mHz, which corresponds to the periodicity of the auroral beads propagating across the radar beam. 2-d radar measurements also show a wavy pattern in the azimuthal direction with a wavelength of ~74 km, which is close to the azimuthal separation of individual beads, although this determination is limited by the 2 minute radar scan period. These strong correlations (in time and space) between auroral beading and the fast ionospheric flows suggest that these spectacular flows are an important feature of the substorm onset instability within the inner plasma sheet. Also, a clockwise flow shear was observed in association with individual auroral beads, suggesting that such flow shear is a feature of the unstable substorm onset waves.

  2. Large eddy simulation of flows after a bluff body: Coherent structures and mixing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Han, Chao; Chen, Yiliang

    2013-10-01

    This paper performs large eddy simulations (LES) to investigate coherent structures in the flows after the Sydney bluff-body burner, a circular bluff body with an orifice at its center. The simulations are validated by comparison to existing experimental data. The Q function method is used to visualize the instantaneous vortex structures. Three kinds of structures are found, a cylindrical shell structure in the outer shear layer, a ring structure and some hairpin-like structures in the inner shear layer. An eduction scheme is employed to investigate the coherent structures in this flow. Some large streaks constituted by counter-rotating vortices are found in the outer shear layer and some well-organized strong structures are found in the inner shear layer. Finally, the influences of coherent structures on scalar mixing are studied and it is shown that scalar in the recirculation region is transported outward by coherent structures.

  3. A thermal stack structure for measurement of fluid flow

    NASA Astrophysics Data System (ADS)

    Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.

    2003-03-01

    A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.

  4. Comparative Study of Airfoil Flow Separation Criteria

    NASA Astrophysics Data System (ADS)

    Laws, Nick; Kahouli, Waad; Epps, Brenden

    2015-11-01

    Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.

  5. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  6. Studies of the structure of attached and separated regions of viscous/inviscid interaction and the effects of combined surface roughness and blowing in high-Reynolds-number hypersonic flows. Final report, 1 August 1985-1 June 1988

    SciTech Connect

    Holden, M.S.; Bergman, R.; Harvey, J.; Duryea, G.; Moselle, J.

    1988-12-02

    The first of these 2 studies examined the detailed structure of the hypersonic boundary layer over a large cone/flare configuration. Emphasis was on development and use of instrumentation with which to obtain flow-field measurements of the mean and fluctuating properties of the attached and separated shear layers. Development and use of holographic interferometry and electron-beam techniques in the high Mach number and Reynolds number environment developed in the shock tunnel are described. In the second study, detailed measurements of heat transfer, pressure, and skin friction were made on a unique 'blowing and roughness' model constructed to simulate the aerothermal phenomena associated with a rough ablating maneuverable reentry vehicle. In this study emphasis was placed on development and use of unique heat transfer and skin-friction instrumentation to obtain measurements of the combined effects of blowing and roughness and to understand how such effects influence boundary-layer separation in regions of shock wave/boundary layer interaction. Each focused around providing information with which to construct and evaluate the modeling required in time-averaged Navier-Stokes equations to predict the structure of compressible hypersonic boundary layers in regions of strong pressure gradient, shock-wave/boundary-layer interaction and flow separation over smooth, rough, and ablating surfaces.

  7. Structural analysis of a flexible structural member protruding into an interior flow field

    NASA Astrophysics Data System (ADS)

    Weaver, M. A.; Gramoll, K. C.; Roach, R. L.

    1993-04-01

    A quasi-steady approach is introduced for the analysis of flexible structural members protruding into flow fields. Static equilibrium is enforced for the structure while dynamic equilibrium is enforced for the structure interaction solution, subject to the equilibrium assumptions, but only the structural aspects of obtaining such a solution are examined. This approach is applied to the problem of a flexible annular inhibitor protruding into the interior flow field of a segmented solid rocket motor. A finite element structural model, and a finite difference flow model form the basis of the solution method. The structure is iteratively loaded, with load profiles determined by the flow after each iteration. The results show that large deflections can be expected of inhibitors in solid rocket motors, and that the limitations of the analytical structural model are critical.

  8. Structure and flow properties of block copolyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Tirrell, Matthew

    2015-03-01

    Polyelectrolyte complexes (PEC) are dense, polymer-rich phases that form when oppositely charged polyelectrolyte chains spontaneously associate and phase separate in aqueous mediums. Bulk phase separation of the PECs can be evaded by combining one or both of the polyelectrolytes with a neutral polymer, thus engineering pathways for self-assembly of PEC based micelles and hydrogels with large-scale ordering of the nanoscale PEC domains. The PEC domains in these assemblies can encapsulate both hydrophobic and hydrophilic therapeutics and thus have tremendous potential in drug delivery, diagnostic and tissue engineering applications. This study will present insights on the equilibrium structure and self-assembly kinetics of PEC hybrid hydrogels through detailed rheology studies of self-assembled materials comprising of functionalized polyallyl glycidyl ethers (PAGE) connected to either single poly(ethylene glycol) (PEG) chain to form diblock copolymers or as functionalized end-groups on a triblock copolymer with a PEG midblock. The effect of key parameters such as polymer concentration, polymer block lengths, salt, ionic strength, and degree of charge mismatch on the equilibrium materials properties will be discussed, with a special emphasis on the temporal evolution of flow properties, and will lead to comparisons with the rheology models for associating polymers. Complementary studies with extensive static and dynamic light, X-ray and neutron scattering investigations will also be presented, thus providing a comprehensive structural description of these materials.

  9. Englacial Structures as Indicators of the Controls on Ice Flow

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Parizek, B. R.; Alley, R. B.; Anandakrishnan, S.

    2015-12-01

    Direct sampling of the subglacial environment is costly, and will therefore never supply the spatial coverage needed to determine the basal boundary conditions required for large-scale ice-sheet modeling. Studies of the West Antarctic Ice Sheet (WAIS) show that the frictional and rheologic properties of the bed are a leading control on the evolution of the system, so developing geophysical methods to help constrain the basal characteristics of WAIS will reduce uncertainty in predictions of the timing and magnitude of future sea-level rise. Radar-imaged structures within the ice are an attractive data set for this pursuit, as they contain information about the flow dynamics that transform the horizontally deposited layers to their modern configuration; however, they can be challenging to interpret, given the number of processes acting to deform the internal layers and the difficulty in automating their analysis. In this study, we move away from the layer-tracing paradigm in favor of an automated slope extraction algorithm. This has several advantages: it does not require feature-continuity, providing a more stable result in regions of intense deformation, and it results in a data product that maps directly to model output. For steady-state features, layer slopes reflect the horizontal and vertical velocity structure, making quantitative comparison of the model and observations simple compared to the more qualitative, particle tracer comparisons done in the past. Using a higher order ice-flow model, we attempt to refine our understanding of basal properties using reflector slope fields at the grounding line of Whillans Ice Stream and the shear margin of the North East Greenland Ice Stream, with the hope of eventually using this method for basin-scale inversions.

  10. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  11. Flow structure and vorticity transport on a plunging wing

    NASA Astrophysics Data System (ADS)

    Eslam Panah, Azar

    The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the

  12. Measurement of flow velocity profiles in tank structures using the prototype device OCM Pro LR.

    PubMed

    Klepiszewski, K; Teufel, M; Seiffert, S; Henry, E

    2011-01-01

    Generally, studies investigating the treatment efficiency of tank structures for storm water or waste water treatment observe pollutant flows in connection with conditions of hydraulic loading. Further investigations evaluate internal processes in tank structures using computational fluid dynamic (CFD) modelling or lab scale tests. As flow paths inside of tank structures have a considerable influence on the treatment efficiency, flow velocity profile (FVP) measurements can provide a possibility to calibrate CFD models and contribute to a better understanding of pollutant transport processes in these structures. This study focuses on tests carried out with the prototype FVP measurement device OCM Pro LR by NIVUS in a sedimentation tank with combined sewer overflow (CSO) situated in Petange, Luxembourg. The OCM Pro LR measurement system analyses the echo of ultrasonic signals of different flow depths to get a detailed FVP. A comparison of flow velocity measured by OCM Pro LR with a vane measurement showed good conformity. The FVPs measured by OCM Pro LR point out shortcut flows within the tank structure during CSO events, which could cause a reduction of the cleaning efficiency of the structure. The results prove the applicability of FVP measurements in large-scale structures. PMID:22053484

  13. Evolution of vortical structures in Newtonian and viscoelastic turbulent flows

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2010-11-01

    To study the influence of dynamical interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations were performed for channel flow at Reτ=395. The initial eddy extracted by the conditional averages for the Q2 event from fully turbulent Newtonian flow is self-consistently evolved in the presence of polymer stresses by utilizing the FENE-P model (finitely extensible nonlinear elastic-Peterlin). The initial polymer conformation fields are given by the solutions of FENE- P model equations for the Newtonian mean shear. For a relatively low Weissenberg number, defined as the ratio of fluid relxation time to the time scale of viscous diffusion, (Weτ=50) the generation of new vortices is inhibited by polymer-induced counter torques, which results in fewer vortices in the buffer layer. However, the head of primary hairpin unaffected by the polymer stress. For larger values of Weτ (>=100), the hairpin head becomes weaker and vortex auto-generation and Reynolds stress growth are almost entirely suppressed.

  14. Shock-Induced Separated Structures in Symmetric Corner Flows

    NASA Technical Reports Server (NTRS)

    DAmbrosio, Domenic; Marsilio, Roberto

    1995-01-01

    Three-dimensional supersonic viscous laminar flows over symmetric corners are considered in this paper. The characteristic features of such configurations are discussed and an historical survey on the past research work is presented. A new contribution based on a numerical technique that solves the parabolized form of the Navier-Stokes equations is presented. Such a method makes it possible to obtain very detailed descriptions of the flowfield with relatively modest CPU time and memory storage requirements. The numerical approach is based on a space-marching technique, uses a finite volume discretization and an upwind flux-difference splitting scheme (developed for the steady flow equations) for the evaluation of the inviscid fluxes. Second order accuracy is reached following the guidelines of the ENO schemes. Different free-stream conditions and geometrical configurations are considered. Primary and secondary streamwise vortical structures embedded in the boundary layer and originated by the interaction of the latter with shock waves are detected and studied. Computed results are compared with experimental data taken from literature.

  15. Effect of submerged flexible vegetation on flow structure and resistance

    NASA Astrophysics Data System (ADS)

    Järvelä, Juha

    2005-06-01

    Flume studies were carried out to investigate flow structure above flexible vegetation. A new data set of mean velocity profiles and turbulence characteristics is reported from experiments with wheat. The flow above the wheat reasonably followed the log law. Maximum values of the turbulence intensity urms and Reynolds stress -uw¯ were found approximately at the level of the maximum observed deflected plant height. A recent approach for describing vertical velocity profiles above aquatic vegetation [Stephan, U., 2002. Zum Fließwiderstandsverhalten flexibler Vegetation. Wiener Mitteilungen 180. Doctoral Thesis. Institute of Hydraulics, Hydrology and Water Resources Management, Faculty of Civil Engineering, Technical University of Vienna.] was evaluated with these new data, which represent a different vegetal roughness type. The approach proved to be successful beyond the original scope. However, a new definition for the shear velocity based on the deflected plant height is suggested. The benefit of this modification is that complex turbulence measurements can be avoided, which enhances the practical applicability of the approach.

  16. Simulated tornado debris tracks: implications for inferring corner flow structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael; Lewellen, David

    2011-11-01

    A large collection of three-dimensional large eddy simulations of tornadoes with fine debris have been recently been performed as part of a longstanding effort at West Virginia University to understand tornado corner flow structure and dynamics. Debris removal and deposition is accounted for at the surface, in effect simulating formation of tornado surface marks. Physical origins and properties of the most prominent marks will be presented, and the possibility of inferring tornado corner flow structure from real marks in the field will be discussed. This material is based upon work supported by the National Science Foundation under Grants No. 0635681 and AGS-1013154.

  17. Dynamics of generalized Gaussian polymeric structures in random layered flows.

    PubMed

    Katyal, Divya; Kant, Rama

    2015-04-01

    We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α. Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α, the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure. PMID:25974520

  18. Dynamics of generalized Gaussian polymeric structures in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2015-04-01

    We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α . Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α , the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.

  19. Two-Phase Flow within Geological Flow Analogies--A Computational Study

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Ferer, M.V.; Richards, M.; Bromhal, G.S.

    2006-10-01

    Displacement of a viscous fluid in heterogeneous geological media by a less viscous one does not evacuate 100% of the defending fluid due to capillary and viscous fingering. This is of importance in geological flows that are encountered in secondary oil recovery and carbon dioxide sequestration in saturated brine fields. Hele-Shaw and pore/throat cells are commonly used to study this in the labratory. Numerical simulations of this flow phenomenon with pore-throat models have been prevalent for over two decades. This current work solves the full Navier-Stokes equations of conservation within random pore-throat geometries with varying properties to study the resulting flow properties. Verification of the solution method is performed by comparison of the model predictions with the available experimental data in the literature. Experimental flows in a pore-throat cell with a known geometrical structure are shown to be in good agreement with the model. Dynamic comparisons to a computational pore-throat model have been shown to be in good agreement as well. There are also additional two-phase immiscible flow patterns that can be identified from the current solutions for which the corresponding laboratory counter part or the pore-throat model predictions are not available. The identification of these flow patterns may allow more accurate modeling of fluid displacement on the reservoir scale.

  20. Lower Three Runs Instream Flow Study

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    An Instream Flow Study was conducted to identify the minimum discharge from PAR Pond that will support a balanced biological fish community in Lower Three Runs. Hydraulic and habitat models of the Physical Habitat simulation System (PHABSIM), the major component of the US Fish and Wildlife Service`s Instream Flow Incremental Methodology (IFIM) were applied. Following calibration of the Water Surface Profile (WSP)Model for three study reaches, hydraulic data was input to the AVDEPTH habitat model to develop relationships between discharge and reaches, hydraulic data was input to the AVDEPTH habitat model to development relationship between discharge and available habitat.

  1. A high-performance flow-field structured iron-chromium redox flow battery

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S.

    2016-08-01

    Unlike conventional iron-chromium redox flow batteries (ICRFBs) with a flow-through cell structure, in this work a high-performance ICRFB featuring a flow-field cell structure is developed. It is found that the present flow-field structured ICRFB reaches an energy efficiency of 76.3% with a current density of 120 mA cm-2 at 25 °C. The energy efficiency can be as high as 79.6% with an elevated current density of 200 mA cm-2 at 65 °C, a record performance of the ICRFB in the existing literature. In addition, it is demonstrated that the energy efficiency of the battery is stable during the cycle test, and that the capacity decay rate of the battery is 0.6% per cycle. More excitingly, the high performance of the flow-field structured battery significantly lowers the capital cost at 137.6 kWh-1, which is 28.2% lower than that of the conventional ICRFB for 8-h energy storage.

  2. Simulation and study of stratified flows around finite bodies

    NASA Astrophysics Data System (ADS)

    Gushchin, V. A.; Matyushin, P. V.

    2016-06-01

    The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.

  3. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  4. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  5. Ultrasonic Studies and Microchannel Flow Behavior of Copper Oxide Nanofluid

    NASA Astrophysics Data System (ADS)

    Rashin, M. Nabeel; Hemalatha, J.; Nalini, R. Pratibha; Ramya, A. V.

    2011-07-01

    Stable suspensions of nanosized copper oxide nanoparticles in Ethylene glycol are prepared at various concentrations through ultrasonically assisted sol gel method. The structural studies are made through X-ray diffraction technique and the nanoparticle-fluid interaction studies are made through acoustical technique. The molecular interaction is studied as a function of concentration and temperature. The flow behaviors of nanofluids of various concentrations are investigated using the circular and rectangular microchannels of various diameters.

  6. Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing

    NASA Astrophysics Data System (ADS)

    Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin

    2014-11-01

    Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).

  7. Structure formation of surfactant membranes under shear flow

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Noguchi, Hiroshi; Gompper, Gerhard

    2013-07-01

    Shear-flow-induced structure formation in surfactant-water mixtures is investigated numerically using a meshless-membrane model in combination with a particle-based hydrodynamics simulation approach for the solvent. At low shear rates, uni-lamellar vesicles and planar lamellae structures are formed at small and large membrane volume fractions, respectively. At high shear rates, lamellar states exhibit an undulation instability, leading to rolled or cylindrical membrane shapes oriented in the flow direction. The spatial symmetry and structure factor of this rolled state agree with those of intermediate states during lamellar-to-onion transition measured by time-resolved scatting experiments. Structural evolution in time exhibits a moderate dependence on the initial condition.

  8. Flow structures around a flapping wing considering ground effect

    NASA Astrophysics Data System (ADS)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  9. Two-phase flow interfacial structures in a rod bundle geometry

    NASA Astrophysics Data System (ADS)

    Paranjape, Sidharth S.

    Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one

  10. Vortex structures in turbulent channel flow behind an orifice

    NASA Astrophysics Data System (ADS)

    Makino, Soichiro; Iwamoto, Kaoru; Kawamura, Hiroshi

    2006-11-01

    Direct numerical simulation of a channel flow with an orifice has been performed for Reτ0=10 - 600, where uτ0 is the friction velocity calculated from the mean pressure gradient, δ the channel half width and ν the kinematic viscosity. In the wake region, the mean flow becomes asymmetric by the Coanda effect. The degree of asymmetry increases with increasing the Reynolds number for the laminar flow at Reτ0< 50. The degree decreases abruptly at Reτ0=50, where the transition from the laminar to the turbulent flow take places. Large-scale spanwise vortices generated at the orifice edges. They become deformed and break up into disordered small-scale structures in shear layer. The small-scale vortices are convected towards the channel center. The large-scale vortices have an important effect upon the reattachment locations and streamwise vortices near the wall in the wake region.

  11. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  12. Solar Coronal Structure Study

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Nitta, Nariaki; Harvey, Karen

    1997-01-01

    The subject of this investigation is the study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and groundbased data. These joint datasets are useful for understanding the physical state of the solar atmosphere from the photosphere to the corona at the time of the rocket flights. Each rocket flight produced both spectral and imaging data. Highlights of this initial year of the contract included compilation, scaling and co-alignment of image sets, substantial progress on the Bright Point study, initial work on the Active Region and Large Scale Structure studies, DRSC slit-aspect determination work and calibration activities. One paper was presented at the 1997 Annual Meeting of the AAS/SPD in Bozeman, Montana. An initial set of calibrated spectra were placed into the public domain via the World Wide Web. Three Quarterly Progress Reports have been submitted; progress for the fourth quarter of the contract is summarized in this Final Contract Report. The intent of the investigation is to compare the physics of small- and medium-scale structure with that of large-scale structures with weak fields. A study has been identified in each size domain. The calibration of the rocket data forms an important element of the work. Of equal importance is the slit-aspect solution, which determines the correspondence between locations along the spectrograph slit and points on the solar disk.

  13. Silicon surface periodic structures produced by plasma flow induced capillary waves

    SciTech Connect

    Dojcinovic, I. P.; Kuraica, M. M.; Obradovic, B. M.; Puric, J.

    2006-08-14

    Silicon single crystal surface modification by the action of nitrogen quasistationary compression plasma flow generated by a magnetoplasma compressor is studied. It has been found that highly oriented silicon periodic cylindrical shape structures are produced during a single pulse surface treatment. The periodical structure formation can be related to the driven capillary waves quenched during fast cooling and resolidification phase of the plasma flow interaction with silicon surface. These waves are induced on the liquid silicon surface due to the compression plasma flow intrinsic oscillations.

  14. Fluid flow structure around the mixer in a reactor with mechanical mixing

    NASA Astrophysics Data System (ADS)

    Lecheva, A.; Zheleva, I.

    2015-10-01

    Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.

  15. The effects of bubbles on the structure of upward gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Gubaidulin, D. A.; Snigerev, B. A.

    2016-01-01

    The paper presents the results of study of the local structure of turbulent gas-liquid flow in vertical pipe. A mathematical model based on the use of Eulerian description for both phases taking into account the action of different forces of interfacial interaction. Special attention is paid to the development of approaches for the simulation of polydispersed bubbly flows taking into account processes of coagulation and fragmentation. Comparison of simulation results with experimental data showed that the developed approach allows to obtain detailed information about the structures of turbulent gas-liquid flows, the distribution of bubbles by size.

  16. Fluid flow structure around the mixer in a reactor with mechanical mixing

    SciTech Connect

    Lecheva, A.; Zheleva, I.

    2015-10-28

    Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.

  17. Low-level atmospheric flows studied by pulsed Doppler lidar

    NASA Technical Reports Server (NTRS)

    Banta, Robert M.; Olivier, Lisa D.; Hardesty, R. Michael

    1992-01-01

    A pulsed Doppler radar gains a tremendous advantage in studying atmospheric flows when it has the ability to scan. The Wave Propagation Laboratory (WPL) has been operating a scanning, 10.59 micron CO2 system for over 10 years. Recently, the WPL lidar has been a featured instrument in several investigations of mesoscale wind fields in the lowest 3-4 km of the atmosphere. These include four experiments: a study of the initiation and growth of the sea breeze off the coast of California, a study of the snake column of a prescribed forest fire, a study of the nighttime flow over the complex terrain near Rocky Flats, Colorado as it affects the dispersion of atmospheric contaminants, and a study of the wind flow in the Grand Canyon. We have analyzed much data from these experiments, and we have found that the lidar provides new insight into the structure of these flows. Many of these studies took place in rugged or mountainous terrain, thus using one of the major benefits of the lidar: the narrow, 90 microrad beam of the lidar makes it an ideal instrument for studying flow close to topography.

  18. Fluid Structural Analysis of Urine Flow in a Stented Ureter

    PubMed Central

    Gómez-Blanco, J. Carlos; Martínez-Reina, F. Javier; Cruz, Domingo; Pagador, J. Blas; Sánchez-Margallo, Francisco M.; Soria, Federico

    2016-01-01

    Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach. PMID:27127535

  19. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  20. Similarity of organized structures in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Moin, Parviz

    1990-01-01

    Recent analysis of databases generated by direct numerical simulations of homogeneous turbulent shear flows have revealed the presence of coherent structures similar to those in turbulent boundary layers. In this paper these findings and tentative conclusions on their significance are discussed.

  1. Review: Impact of underground structures on the flow of urban groundwater

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Winiarski, Thierry; Rossier, Yvan; Eisenlohr, Laurent

    2016-02-01

    Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.

  2. The generation of coherent flow structures in a gravel bed river

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Best, J.; Parsons, D.; Christensen, K.

    2010-12-01

    Turbulence in rivers is not a simple random field: visualisation and multipoint measurements show it is possible to decompose complex, multi-scaled, quasi-random flow fields into elementary organized structures which posses both spatial and temporal coherence termed either eddies or coherent flow structures (CFS). Quantifying the kinematic (size, scaling, shape, vorticity and energy) and dynamic (origin, stability, growth, genesis into new forms and contribution to averages) characteristics of CFS in gravel-bed rivers are central to improving our understanding of turbulent flow, and the contribution of CFS to shear stress, and hence sediment transport. Much of our uncertainty in understanding CFS over gravel-beds stems from two fundamental shortcomings: i) previous studies have used Reynolds decomposition of Eulerian time series to quantitatively determine processes, which may be interpolated to examine the whole flow field, rather than studying the complete instantaneous flow field; and ii) whole flow field visualization provides a qualitative understanding, but very little quantitative information. Here, we demonstrate a new experimental methodology to quantify simultaneously both the kinematic and dynamic characteristics of coherent flow structures based upon combined planar Laser Induced Fluorescence and Particle Imaging Velocimetry (pLIF-PIV) over a gravel surface for a range of Reynolds numbers. Snapshot POD is applied to the PIV results to determine the initiation of the structures. Initial results agree with the model of Falco (1991) that divides the outer flow into two distinct types of motion; large-scale motions, which are clearly being detected by the pLIF, and smaller ‘typical’ eddies, which the PIV is detecting within these large-scale structures. These results also conform with classical boundary layer hydraulics, where the dominant motions of flow have been shown to be the large-scale regions of momentum deficit that are elongated in the

  3. Development of a flow visualization apparatus. [to study convection flow patterns

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.

    1975-01-01

    The use of an optical flow visualization device for studying convection flow patterns was investigated. The investigation considered use of a shadowgraph, schlieren and other means for visualizing the flow. A laboratory model was set up to provide data on the proper optics and photography procedures to best visualize the flow. A preliminary design of a flow visualization system is provided as a result of the study. Recommendations are given for a flight test program utilizing the flow visualization apparatus.

  4. FLOW STRUCTURE OF RECIRCULATING WAKE FLOWS DOWNWIND OF SURFACE-MOUNTED BLUFF OBSTACLES

    EPA Science Inventory

    Wind-tunnel tests were conducted to examine the surface and centerplane flow structure downwind of several surface-mounted obstacles immersed in shallow and deep boundary layers for Reynolds numbers on the order of 10 to the fifth power. Observations were made using the ink-dot m...

  5. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  6. Efficiency and flow structure of vertical-axis turbines with an upstream deflecting plate

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2012-11-01

    The power generation and flow structure of straight-bladed vertical-axis turbines with an upstream deflector are investigated experimentally in tunnel facilities. When an upstream deflecting plate is normal to flow direction, a region of low velocity is formed in its near-wake. However, the flow speed outside the near-wake region becomes higher than the free-stream speed. Since blades outside the wake encounter higher flow velocity, they can rotate with higher torque and rotating speed compared to the case without an upstream deflector, which results in power output increase. Here, we study the effect of deflector position and width on the efficiency of vertical turbines. We also discuss the flow structure generated by the deflector system. This research is supported by the Gordon and Betty Moore foundation.

  7. Structure and Mixing Characterization of Variable Density Transverse Jet Flows

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Levon

    (CVP) and the generation of strong upstream shear layer instability. In contrast, weak, convectively unstable upstream shear layers corresponded with asymmetries in the jet cross-sectional shape and/or lack of a CVP structure. While momentum flux ratio J and density ratio S most significantly determined the strength of the instabilities and CVP structures, an additional dependence on jet Reynolds number for CVP formation was found, with significant increases in jet Reynolds number resulting in enhanced symmetry and CVP generation. The mixing characteristics of Rej = 1900 jets of various J, S, and injector type were explored in detail in the present studies using jet centerplane and cross-sectional PLIF measurements. Various mixing metrics such as the jet fluid centerline concentration decay, Unmixedness, and Probability Density Function (PDF) were applied systematically using a novel method for comparing jets with different mass flux characteristics. It was found that when comparing mixing metrics along the jet trajectory, strengthening the upstream shear layer instability by reducing J, and achieving absolutely unstable conditions, enhanced overall mixing. Reducing density ratio S for larger J values, which under equidensity (S = 1.00) conditions would create a convectively unstable shear layer, was also observed to enhance mixing. On the other hand, reducing S for low J conditions, which are known to produce absolutely unstable upstream shear layers even for equidensity cases, was actually observed to reduce mixing, a result attributed to a reduction in crossfiow fluid entrainment into shear layer vortex cores as jet density was reduced. Comparing injectors, the flush-mounted pipe was generally the best mixer, whereas the worst mixer was the nozzle that was elevated above the crossfiow boundary layer due to upstream shear layer co-flow generated by the elevated nozzle contour; this co-flow was observed here and in prior studies to stabilize the shear layer. The

  8. The effect of structural and rheological properties on blood flow distributions in capillary networks

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2001-11-01

    In various tissues microvascular structure, both geometric and topological, has been shown to be an important determinant of microcirculatory hemodynamics. In addition, blood rheology affects flow and hematocrit distributions in the microcirculation. Here we study steady-state hemodynamics in capillary networks modeled on the three-dimensional structure of the hamster cheek pouch retractor muscle. Capillary diameter is fixed while other structural properties are varied and an ensemble of similar random networks is generated for each parameter set. Using an experimentally derived two-phase continuum model for the flow of blood plasma and red cells, we investigate the effects of network size and topology on blood flow distributions and their variability. We also use typical capillary network structures to examine the importance of rheological effects under varying conditions. Our results indicate the relative importance of microvascular structure and blood rheology in determining the hemodynamic properties of capillary networks in striated muscle.

  9. Experimental studies of rotating exchange flow

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also ] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu<1 are only limited by the Rossby radius. We also show

  10. Data structures on data flow computers: implementations and problems

    SciTech Connect

    Samet, S.; Gokhale, M.

    1984-01-01

    This paper examines hybrid mechanisms which have been developed to solve the problem of implementing data structures on dataflow machines. These methods require that the data delivery system transmit a pointer to the structure rather than all the elements of the array. The array is then stored in a separate memory, and only the pointer travels on the arc. Schemes used by the Utah DDM, the MIT data flow machine, and the Manchester University machine are presented. Implications for the use of complex data structures on dataflow machines are also discussed. 13 references.

  11. Comparative study of pressure-flow parameters.

    PubMed

    Eri, Lars M; Wessel, Nicolai; Tysland, Ole; Berge, Viktor

    2002-01-01

    Methods for quantification of bladder outlet obstruction (BOO) are still controversial. Parameters such as detrusor opening pressure (p(det.open)), maximum detrusor pressure (p(det.max)), minimum voiding pressure (p(det.min.void)), and detrusor pressure at maximum flow rate (P(det.Qmax)) separate obstructed from nonobstructed patients to some extent, but two nomograms, the Abrams-Griffiths nomogram and the linearized passive urethral resistance relation (LinPURR), are more accepted for this purpose, along with the urethral resistance algorithm. In this retrospective, methodologic study, we evaluated the properties of these parameters with regard to test-retest reproducibility and ability to detect a moderate (pharmacologic) and a pronounced (surgical) relief of bladder outlet obstruction. We studied the pressure-flow charts of 42 patients who underwent 24 weeks of androgen suppressive therapy, 42 corresponding patients who received placebo, and 30 patients who had prostate surgery. The patients performed repeat void pressure-flow examinations before and after treatment or placebo. The various parameters were compared. Among the bladder pressure parameters, P(det.Qmax) seemed to have some advantages, supporting the belief that it is the most relevant detrusor pressure parameter to include in nomograms to quantify BOO. In assessment of a large decrease in urethral resistance, such as after TURp, resistance parameters that are based on maximum flow rate as well as detrusor pressure are preferable. PMID:11948710

  12. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    NASA Astrophysics Data System (ADS)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  13. On the structure of wall-bounded turbulent flows

    NASA Technical Reports Server (NTRS)

    Kim, J.

    1983-01-01

    The variable-interval time-averaging (VITA) technique developed by Blackwelder and Kaplan is applied to data obtained from large-eddy simulation of turbulent channel flow in an investigation of the organized structures associated with the bursting phenomenon in the near-wall region. Conditionally averaged velocities, shear stress, pressure, and vorticity are discussed in conjunction with the bursting phenomenon detected by the VITA technique. The conditionally averaged pressure reveals that the ejection process is associated with a localized adverse pressure gradient. In the plane perpendicular to the flow direction, the conditionally averaged vorticity field indicates that a pair of counterrotating streamwise vorticity is being lifted through the ejection process.

  14. Visual study of the effect of grazing flow on the oscillatory flow in a resonator orifice

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1975-01-01

    Grazing flow and oscillatory flow in an orifice were studied in a plexiglass flow channel with a single side branch Helmholtz resonator using water as the fluid medium. An oscillatory flow was applied to the resonatory cavity, and color dyes were injected in both the orifice and the grazing flow field to record the motion of the fluid. The flow regimes associated with linear and nonlinear (high sound pressure level) impedances with and without grazing flows were recorded by a high-speed motion-picture camera. Appreciable differences in the oscillatory flow field were seen in the various flow regimes. With high grazing flows, the outflow and inflow from the resonator cavity are found to be asymmetric. The visual study confirms that jet energy loss during flow into a resonator cavity is much larger than the loss for ejection from the cavity into the grazing flow. For inflow into the resonator cavity, the effective orifice area was significantly reduced.

  15. Axion-dilaton cosmology, Ricci flows and integrable structures

    NASA Astrophysics Data System (ADS)

    Orlando, Domenico

    2007-09-01

    In this work, based on [Ioannis Bakas, Domenico Orlando, and P. Marios Petropoulos. Ricci flows and expansion in axion-dilaton cosmology. JHEP 01 (2007) 040], we study renormalization-group flows by deforming a class of conformal sigma-models. At leading order in α, renormalization-group equations represent a Ricci flow. In the three-sphere background, the latter is described by the Halphen system, which is exactly solvable in terms of modular forms. The round sphere is found to be the unique perturbative infra-red fixed point at one loop order.

  16. Experimental study of complex flow and turbulence structure around a turbomachine rotor blade operating behind a row of Inlet Guide Vanes (IGVS)

    NASA Astrophysics Data System (ADS)

    Soranna, Francesco

    The flow and turbulence around a rotor blade operating downstream of a row of Inlet Guide Vanes (IGV) are investigated experimentally in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. High resolution 2D and Stereoscopic PIV measurements are performed both at midspan and in the tip region of the rotor blade, focusing on effects of wake-blade, wake-boundary-layer and wake-wake interactions. We first examine the modification to the shape of an IGV-wake as well as to the spatial distribution of turbulence within it as the wake propagates along the rotor blade. Due to the spatially non-uniform velocity distribution, the IGV wake deforms through the rotor passage, expanding near the leading edge and shrinking near the trailing edge. The turbulence within this wake becomes spatially non-uniform and highly anisotropic as a result of interaction with the non-uniform strain rate field within the rotor passage. Several mechanisms, which are associated with rapid straining and highly non-uniform production rate (P), including negative production on the suction side of the blade, contribute to the observed trends. During IGV-wake impingement, the suction side boundary layer near the trailing edge becomes significantly thinner, with lower momentum thickness and more stable profile compared to other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near wake, making it narrower and increasing the phase averaged shear velocity gradients and associated production term just downstream of the trailing edge. Consequently, the turbulent kinetic energy (TKE) increases causing as much as 75% phase-dependent variations in peak TKE magnitude. Further away from the blade, the rotor wake is bent

  17. Performance study of a data flow architecture

    NASA Technical Reports Server (NTRS)

    Adams, George

    1985-01-01

    Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.

  18. Flow structure and mixing at the confluence of unequal density rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Best, J.; Parsons, D. R.; Amsler, M.; Kostaschuk, R.; Lane, S. N.; Orfeo, O.; Szupiany, R.; Hardy, R. J.

    2010-12-01

    River channel confluences are vital components of all river networks and are often sites of significant hydraulic, morphological and ecological change. Past work has identified the principal controls on flow mixing at river junctions, with the confluence angle, discharge or momentum ratio between the two channels and junction bed morphology being critical. However, little attention has been devoted to the influence of density differences between the two confluent flows, which may exist due to differences in suspended sediment concentration. This paper details a case study of the Río Bermejo and Río Paraguay, Argentina, where there is always a density contrast between the two flows, and shows how this dominates the flow structure, turbulence and flow mixing. Field surveys employed acoustic Doppler current profiling, single- and multi- beam echo sounding and direct sampling of the water column to measure the flow structure. This work reveals the distortion of the mixing layer between the flows as the denser Río Bermejo fluid forms a density underflow that moves beneath that of the clearer water Río Paraguay. Upwellings of dense turbid flow occur in the downstream main channel due to bed roughness, mixing instabilities on the top of the underflow and interaction of the flow with the channel margins. These mixing processes, and the techniques used to visualize and quantify them at such river confluences, will be discussed.

  19. Identification of spatially-localized flow structures via sparse proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Dhingra, Neil; Jovanovic, Mihailo; Schmid, Peter

    2013-11-01

    Proper Orthogonal Decomposition (POD) has become a standard tool for identification of the most energetic flow structures in fluid flows. It relies on the maximization of a quadratic form subject to a quadratic equality constraint, which can be readily accomplished via a singular value decomposition. For spatially homogeneous (or nearly homogeneous) flows, the resulting flow structures are global (or have large support) in the spatial domain of interest. By augmenting the optimization problem with an additional penalty term that promotes sparsity in the physical space, we are able to obtain energetic flow structures that become increasingly localized as our emphasis on sparsity increases. The resulting optimization problem, formulated in terms of an augmented Lagrangian functional, is solved using the Alternating Direction Method of Multipliers followed by a postprocessing step. The sparse POD algorithm is applied to the linearized Navier-Stokes equations for a plane channel flow, and the emergence of spatially localized structures is observed for increasing penalty terms. This test case and the underlying optimization techniques build the foundation for further studies into the relevance and role of localized perturbations on the overall behavior of general shear flows.

  20. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  1. Flow Interactions with Cells and Tissues: Cardiovascular Flows and Fluid–Structure Interactions

    PubMed Central

    Friedman, Morton H.; Krams, Rob; Chandran, Krishnan B.

    2010-01-01

    Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid–structure interaction analysis to arterial flows and the dynamics of heart valves. PMID:20336826

  2. Laws of non-symmetric optimal flow structures, from the macro to the micro scale

    NASA Astrophysics Data System (ADS)

    Reis, A. Heitor

    2012-05-01

    Many natural systems and engineering processes occur in which a fluid invades a territory from one entry point (invasion), or conversely is expelled from the territory through an outlet (drainage). In any such situation an evolutionary flow structure develops that bridges the gap between the micro-scale (diffusion dominant) and the macro-scale (convection dominant). The respiratory and circulatory systems of animals are clear examples of complex flow trees in which both the invasion and drainage processes occur. These flow trees display successive bifurcations (almost always non-symmetric) which allow them to cover and serve the entire territory to be bathed. Although they are complex, it is possible to understand its internal structuring in the light of Constructal Law. A scaling law for optimal diameters of symmetric bifurcations was proposed by Murray (1926), while Bejan and co-workers (2000-2006) added a new scaling law for channel lengths, and based scaling laws of tree shaped structures on theoretical grounds. In this work we use the Constructal Law to study the internal structure and scaling laws of non-symmetric flow structures, and show how the results might help understand some flow patterns found in Nature. We show that the global flow resistances depend on the parameter ξ = D2/D1 = L2/L1 defining the degree of asymmetry between branches 1 and 2 in a bifurcation. We also present a more accurate and general form, of Murray's law, as a result of the application of the Constructal law to branching flow structures. We end with a brief analysis of the use of these results in the analysis of flow structures of the human respiratory and circulatory systems.

  3. Structural modelling of a compliant flexure flow energy harvester

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Bryant, Matthew

    2015-09-01

    This paper presents the concept of a flow-induced vibration energy harvester based on a one-piece compliant flexure structure. This energy harvester utilizes the aeroelastic flutter phenomenon to convert flow energy to structural vibrational energy and to electrical power output through piezoelectric transducers. This flexure creates a discontinuity in the structural stiffness and geometry that can be used to tailor the mode shapes and natural frequencies of the device to the desired operating flow regime while eliminating the need for discrete hinges that are subject to fouling and friction. An approximate representation of the flexure rigidity is developed from the flexure link geometry, and a model of the complete discontinuous structure and integrated flexure is formulated based on the transfer matrix method. The natural frequencies and mode shapes predicted by the model are validated using finite element simulations and are shown to be in close agreement. A proof-of-concept energy harvester incorporating the proposed flexure design has been fabricated and investigated in wind tunnel testing. The aeroelastic modal convergence, critical flutter wind speed, power output and limit cycle behavior of this device is experimentally determined and discussed.

  4. Granular flows on erodible layers: type and evolution of flow and deposit structures

    NASA Astrophysics Data System (ADS)

    Crosta, G.; De Blasio, F.; De Caro, M.; Volpi, G.; Frattini, P.

    2012-04-01

    The interaction of a fast moving landslide mass with the basal layer over which movement takes place has been discussed in previous contributions. Nevertheless, the evolution of the structures within the moving mass and the erodible layer are still to be described in detail (Hungr and Evans, 2004; Crosta et al., 1992, 2006, 2009, 2011; Dufresne et al., 2010; Mangeney et al., 2010) and modeling results (Crosta et al., 2006, 2009, 2011; Mangeney et al., 2010). We present some of the results from a campaign of laboratory experiments aimed at studying the evolution of a granular flow at the impact with and during the successive spreading over a cohesionless erodible layer. We performed these test to study the processes and to collect data and evidences to compare them with the results of numerical simulations and to verify capabilities of numerical codes. The laboratory setup consists of an inclined slope and an horizontal sector where release and transport, and deposition take place, respectively. Materials used for the tests are: a uniform rounded siliceous sand (Hostun sand; 0.125-0.5 mm) commonly adopted in lab tests because free of scale effects, and a gravel made of angular elements (12 mm in ave. size). Both the materials have been tested in dry conditions. Different slope angles have been tested (40, 45, 50, 55, 50, 66°) as well as different thicknesses of the erodible layer (0, 0.5, 1, 2 cm) and volumes of the released material (1.5, 3, 5, 9.6 liters). Tests have been monitored by means of a high speed camera and the pre- and post-failure geometries have been surveyed by means of a laser scanner. Deposit description allowed also the computation of volumes and the characterization of the different structures developed and frozen into the deposit. Experiments allowed us to observe the extreme processes occurring during the movement and the mise en place of the deposits. In particular, we observe the formation of a clear wave-like feature developing during the

  5. Axial compressor middle stage secondary flow study

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Dring, R. P.; Joslyn, H. D.

    1983-01-01

    This report describes an experimental investigation of the secondary flow within and aft of an axial compressor model with thick endwall boundary layers. The objective of the study was to obtain detailed aerodynamic and trace gas concentration traverse data aft of a well documented isolated rotor for the ultimate purpose of improving the design phases of compressor development based on an improved physical understanding of secondary flow. It was determined from the flow visualization, aerodynamic, and trace gas concentration results that the relative unloading of the midspan region of the airfoil inhibitied a fullspan separation at high loading preventing the massive radial displacement of the hub corner stall to the tip. Radial distribution of high and low total pressure fluid influenced the magnitude of the spanwise distribution of loss, such that, there was a general decreases in loss near the hub to the extent that for the least loaded case a negative loss (increase in total pressure) was observed. The ability to determine the spanwise distribution of blockage was demonstrated. Large blockage was present in the endwall regions due to the corner stall and tip leakage with little blockage in the core flow region. Hub blockage was found to increase rapidly with loading.

  6. On the flow structure of cloud cavitating flow around an axisymmetric body near the free surface

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Wu, Xiaocui; Huang, Chenguang; Yu, XianXian

    2015-12-01

    The influence of the free surface on the cavitating flow is an important issue involved in the design of high speed surface vehicles. In the present paper, unsteady cavitating turbulent flow around an axisymmetric body near the free surface was investigated by both launching experiment and LES simulation. The vortex motion induced by cavity shedding under the effect of the free surface is emphatically analyzed by comparing with the submerged condition. The vortex shedding process around the projectile is not synchronized, while the asymmetric characteristic in collapse process is more remarkable, with the generation of multiple vortex ring structures.

  7. Epistemic uncertainty propagation in energy flows between structural vibrating systems

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong

    2016-03-01

    A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.

  8. Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Guden, Yigitcan

    2014-11-01

    Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.

  9. Experimental Study of Flow in a Bifurcation

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2003-11-01

    An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.

  10. Dislocation structures and anomalous flow in L12 compounds

    NASA Astrophysics Data System (ADS)

    Dimiduk, D. M.

    1991-06-01

    The theory of the anomalous flow behavior of LI2 compounds has developed over the last 30 years. This theory has a foundation in the early estimates of the crystallographic anisotropy of antiphase boundary (APB) energy in these compounds. In spite of this critical aspect of the theory, it is only in the last five years that electron microscopy has been employed to quantify the APB energies and to determine the detailed nature of dislocation structures at each stage of deformation. The recent studies of several research groups have provided essentially consistent new details about the nature of dislocations in Ni3AI and a few other LI2 compounds which exhibit anomalous flow behavior. These studies have introduced several new concepts for the controlling dislocation mechanisms. Additionally, these studies have shown that in Ni3AI, the APB energies have only small variations in magnitude with change of the APB plane (they are nearly isotropic), are relatively insensitive to changes in solute content, and the anisotropy ratio does not correlate with alloy strength. The present manuscript provides a critical review of the new transmission electron microscopy (TEM) results along with the new concepts for the mechanism of anomalous flow. Inconsistencies and deficiencies within these new concepts are identified and discussed. The collective set of electron-microscopy results is discussed within the context of both the mechanical behavior of LI2 compounds and the Greenberg and Paidar, Pope and Vitek (PPV) models for anomalous flow. Conceptual consistency with these models can only be constructed if the Kear-Wilsdorf (K-W) configurations are treated as an irreversible work hardening or relaxation artifact and, specific details of these two models cannot be shown by electron microscopy. Alternatively, the structural features recently revealed by electron microscopy have not been assembled into a self-consistent model for yielding which fully addresses the mechanical behavior

  11. Study of argon–oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon–oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon–oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  12. The development of supraglottal flow structures during speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron; Plesniak, Michael

    2009-11-01

    During voiced speech, periodic vocal fold oscillations create a pulsatile jet that emanates from the glottis and is convected through the supraglottal tract. Unsteadiness in the supraglottal jet trajectory (superior to the vocal folds) has been observed in a variety of laryngeal flow investigations, contributing to sound production due to vortex pairing which occurs within the jet as well as the impingement of the deflected jet on physiological structures. However, there is confusion in the literature concerning the mechanisms which contribute to the flow variability. Instabilities in the supraglottal jet include the Kelvin-Helmholtz instability, as well as the hypothesized presence of jet 'flip-flopping', the tendency of the glottal jet to detach from one vocal fold wall and reattach to the opposing wall mid-cycle. The morphology of the supraglottal flow field is investigated using phase-averaged PIV measurements acquired in the anterior-posterior midplane of the superior vocal fold tract of a dynamically controlled 7.5 time life-size vocal fold model. Flow parameters are scaled to match physiological values. The relevant fluid flow phenomena that impact the supraglottal jet trajectory are identified.

  13. Flow-structure-acoustic interaction in a human voice model.

    PubMed

    Becker, Stefan; Kniesburges, Stefan; Müller, Stefan; Delgado, Antonio; Link, Gerhard; Kaltenbacher, Manfred; Döllinger, Michael

    2009-03-01

    For the investigation of the physical processes of human phonation, inhomogeneous synthetic vocal folds were developed to represent the full fluid-structure-acoustic coupling. They consisted of polyurethane rubber with a stiffness in the range of human vocal folds and were mounted in a channel, shaped like the vocal tract in the supraglottal region. This test facility permitted extensive observations of flow-induced vocal fold vibrations, the periodic flow field, and the acoustic signals in the far field of the channel. Detailed measurements were performed applying particle-image velocimetry, a laser-scanning vibrometer, a microphone, unsteady pressure sensors, and a hot-wire probe, with the aim of identifying the physical mechanisms in human phonation. The results support the existence of the Coanda effect during phonation, with the flow attaching to one vocal fold and separating from the other. This behavior is not linked to one vocal fold and changes stochastically from cycle to cycle. The oscillating flow field generates a tonal sound. The broadband noise is presumed to be caused by the interaction of the asymmetric flow with the downstream-facing surfaces of the vocal folds, analogous to trailing-edge noise. PMID:19275292

  14. Study of the application of superplastically formed and diffusion bonded (SPF/DB) titanium structure to laminar flow control (LFC) wing design

    NASA Technical Reports Server (NTRS)

    Mcquilkin, F. T.

    1979-01-01

    Eighteen design concepts for a LFC wing cover, using various SPF/DB approaches, were developed. After evaluation of producibility, compatibility with LFC requirements, structural efficiency and fatigue requirements, three candidates were selected for fabrication of demonstration panels. Included were both sandwich and stiffened semi-sandwich panels with slotted and perforated surfaces. Subsequent to the evaluation of the three demonstration panels, one concept was selected for fabrication of a 0.3 x 1.0 meter (12 x 42 inch) feasibility panel. It was a stiffened, semi-sandwich panel with a slotted surface, designed to meet the requirements of the upper wing cover at the maximum wing bending moment of the baseline configuration.

  15. Experimental study of vortex breakdown in a cylindrical, swirling flow

    NASA Technical Reports Server (NTRS)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  16. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness

    SciTech Connect

    Chih-Ying Chen

    2005-06-30

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  17. LiDAR observation of the flow structure in typhoons

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Hsuan, Chung-Yao; Lin, Ta-Hui

    2015-04-01

    Taiwan is subject to 3.4 landfall typhoons each year in average, generally occurring in the third quarter of every year (July-September). Understanding of boundary-layer turbulence characteristics of a typhoon is needed to ensure the safety of both onshore and offshore wind turbines used for power generation. In this study, a floating LiDAR (Light Detection and Ranging) was deployed in a harbor to collect data of wind turbulence, atmospheric pressure, and temperature in three typhoon events (Matmo typhoon, Soulik typhoon, Trami typhoon). Data collected from the floating LiDAR and from meteorological stations located at Taipei, Taichung and Kaohsiung are adopted to analyse the wind turbulence characteristics in the three typhoon events. The measurement results show that the maximum 10-min average wind speed measured with the floating LiDAR is up to 24 m/s at a height of 200 m. Compared with other normal days, the turbulence intensity is lower in the three typhoon events where the wind speed has a rapid increase. Changes of wind direction take place clearly as the typhoons cross Taiwan from East to West. Within the crossing intervals, the vertical momentum flux is observed to have a significant pattern with both upward and downward propagating waves which are relevant to the flow structure of the typhoons.

  18. Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows

    PubMed Central

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthélemy, Marc

    2011-01-01

    The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time ‘Oyster’ card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system. PMID:21249210

  19. Structure of urban movements: polycentric activity and entangled hierarchical flows.

    PubMed

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthélemy, Marc

    2011-01-01

    The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system. PMID:21249210

  20. The 3-dimensional radio mapping experiment /SBH/ on ISEE-C. [interplanetary magnetic field structure for solar wind flow studies using type 3 bursts

    NASA Technical Reports Server (NTRS)

    Knoll, R.; Epstein, G.; Hoang, S.; Huntzinger, G.; Steinberg, J. L.; Fainberg, J.; Grena, F.; Stone, R. G.; Mosier, S. R.

    1978-01-01

    The SBH experiment on ISEE-C will provide maps of the large scale structure of the interplanetary magnetic field from ten solar radii altitude to the earth orbit, in and out of the ecliptic. The SBH instrument will track type III solar radio bursts at 24 frequencies in the range 30 kHz-2 MHz thus providing the positions of 24 points along the line of force which guides the electrons producing the radio radiation. The antennas are two dipoles: one (90 m long) in the spin plane, the other (15 m long) along the spin axis. The receiver was designed for high sensitivity (0.3 microV in 3 kHz BW), high intermodulation rejection (80 dB/1 microV input for order 2 products), large dynamic range (70 dB), high selectivity (-30-dB response 6.5 kHz away from the center frequency of 10.7 MHz for the 3 kHz BW channels), and high reliability (expected orbital life: 3 years).

  1. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  2. Study of flow through a bowl mill model

    SciTech Connect

    Murty, G.V.R.; Babu, U.S.

    1998-07-01

    Bowl Mills are used in Thermal Power plants for pulverizing the raw coal, while drying, to the required fineness and achieve the desired combustion efficiency in the boiler. The Indian coals contain high ash content (some times as high as 60%) and as such the primary air has to handle media of different density namely the coal and the quartz. In this context, the distribution of air in the mill plays a significant role in the lifting of particles from the mill. The wear on the rotating components is increased through repetitive grinding because of improper distribution of air within the mill. Reduction of wear and enhancement of life of mill internals including the rotating components is a continuing goal and few more studies have been carried out in this direction. One such study is the replacement of rotating vane wheel and deflector in the separator body with an air guide ring and air diversion plate. Model studies have been carried out by traversing a five hole prove at different locations within the mill to study the distribution of flow as a result of this modification. The variation of absolute velocity and the associated flow direction has been calculated to describe the flow structure within the mill. The results are presented in non dimensional form to draw suitable conclusions. The present study indicated the possibility of improvement in the distribution of flow within the mill with increased magnitude of velocity at different locations.

  3. Solar Coronal Structure Study

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  4. Flow Solution for Advanced Separate Flow Nozzles Response A: Structured Grid Navier-Stokes Approach

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J.; Dash, S. M.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    NASA Glenn Research Center funded a computational study to investigate the effect of chevrons and tabs on the exhaust plume from separate flow nozzles. Numerical studies were conducted at typical takeoff power with 0.28 M flight speed. Report provides numerical data and insights into the mechanisms responsible for increased mixing.

  5. Effect of turbulent or stationary structures on the flow thermal behaviour in heated square ducts with a non-symmetric heat flow

    NASA Astrophysics Data System (ADS)

    Vazquez, M. S.; Rodriguez, W. V.

    2005-04-01

    From large eddy simulations of heated square ducts, we study the effect of non-stationary structures over the flow thermal behavior. Indeed the net decrease of the turbulent intensity over the heated wall, the velocity temperature correlation intensity is enhanced. This correlation which represents the turbulent heat transfer is fed by turbulent structures of high intensity, but with a low frequency. These turbulent structures create high amplitude temperature fluctuations. A conditional statistical study is performed for isolating these turbulent structures and knowing its local and global effects over the flow.

  6. Fan Stall Flutter Flow Mechanism Studied

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2002-01-01

    Modern turbofan engines employ a highly loaded fan stage with transonic or low-supersonic velocities in the blade-tip region. The fan blades are often prone to flutter at off-design conditions. Flutter is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high-cycle fatigue blade failure. The origins of blade flutter are not fully understood yet. Experimental data that can be used to clarify the origins of blade flutter in modern transonic fan designs are very limited. The Transonic Flutter Cascade Facility at the NASA Glenn Research Center was developed to experimentally study the details of flow mechanisms associated with fan flutter. The cascade airfoils are instrumented to measure high-frequency unsteady flow variations in addition to the steady flow data normally recorded in cascade tests. The test program measures the variation in surface pressure in response to the oscillation of one or more of the cascade airfoils. However, during the initial phases of the program when all airfoils were in fixed positions, conditions were found where significant time variations in the pressures near the airfoil leading edges could be observed.

  7. Space shuttle orbiter flow visualization study. [water tunnel study of vortex flow during atmospheric entry

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1980-01-01

    The vortex flows generated at subsonic speed during the final portion of atmospheric reentry were defined using a 0.01 scale model of the orbiter in a diagnostic water tunnel. Flow visualization photographs were obtained over an angle-of-attack range to 40 deg and sideslip angles up to 10 deg. The vortex flow field development, vortex path, and vortex breakdown characteristics were determined as a function of angle-of-attack at zero sideslip. Vortex flows were found to develop on the highly swept glove, on the wing, and on the upper surface of the fuselage. No significant asymmetries were observed at zero sideslip in the water tunnel tests. The sensitivity of the upper surface vortex flow fields to variations in sideslip angle was also studied. The vortex formed on the glove remained very stable in position above the wing up through the 10 deg of sideslip tested. There was a change in the vortex lifts under sideslip due to effective change in leading-edge sweep angles. Asymmetric flow separation occurred on the upper surface of the fuselage at small sideslip angles. The influence of vortex flow fields in sideslip on the lateral/ directional characteristics of the orbiter is discussed.

  8. Structured Tree Outflow Condition for Blood Flow in Arteries

    NASA Astrophysics Data System (ADS)

    Olufsen, Mette

    1998-11-01

    Modeling blood flow and especially propagation of the pulse wave in the systemic arteries is of interests to the medical society because of the significance of the dicrotic wave. The pulse wave propagating along the larger arteries is reflected because of tapering and branching of the vessels, as well as the peripheral resistance, which is mainly stemming from the smaller arteries and arterioles. In order to avoid artificial reflections it is important to determine a boundary condition, representing the smaller arteries and arterioles, which is physiologically correct. In this work we have proposed a boundary condition based on a structured tree model. The result will be compared both with other modeling approaches as well as with results from measurements of flow and pressure at a number of locations along the larger arteries. The model for the larger arteries is based on the axisymmetrical Navier Stokes equations where the blood is assumed Newtonian and incompressible and the vessels are tapering. In the structured tree the model is based on a linearization of the axisymmetrical Navier-Stokes equations. The reason for setting up a structured tree is that the smaller arteries consist of an almost binary tree. Furthermore, the role of the smaller arteries is to allow blood perfusion of specific tissues. This is done in a structured and optimal way such that the smaller arteries cover the tissue evenly using a minimization principle.

  9. Scour and deposition patterns in complex flow around stream restoration structures in a meandering stream channel

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Plott, J. R.; Diplas, P.; Sotiropoulos, F.; Lightbody, A.

    2010-12-01

    Instream structures are often employed in stream restoration projects to minimize erosion on the outside of a meander bend where shear stresses are highest, but guidelines for installation are often based on subjective criteria or professional experience. As part of a multiphase study to develop comprehensive quantitative design guidelines for instream structures, a series of experiments were conducted in the sand-bed meandering stream channel in the Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Following an experiment with a single rock vane, three arrays of three evenly spaced structures (rock vanes, J-hooks, and bendway weirs) were installed in a single meander bend. To improve fundamental understanding of the interaction of the complex flow field around these structures with the sediment bed in a field-scale meandering stream, high resolution channel topography data were obtained for the entire meander bend at bankfull flow conditions (280 LPS) with and without structure arrays. Three-dimensional flow velocity and turbulence was measured using acoustic Doppler velocimetry for each scenario in nine cross sections located before, after, between, and over the structure installation locations. Velocity point spacing was decreased close to boundaries (bed, bank, or structure). The velocity data confirmed that the velocity core moved away from the outside of the meander bend in the presence of structures; however, increased local shear stresses around the structures increased scour which threatened structure stability. For each structure array, individual structures introduced different velocity patterns including visible recirculation zones and turbulent structures depending on the structure type and where in the meander bend the structure was placed. The results from these experiments will inform stream restoration structure design in a meandering stream.

  10. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.